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INTRODUCTIO~

Progress in reducing mortality can be conceived in two ways. Demographers
generally view mortality change as change in the force of mortality and associated
life table statistics for a population. Most laypersons, on the other hand, especially
physicians and other health and safety personnei, perceive a reduction in mortality
as being achieved by saving the lives ofindividuals faced with death. A demographer
might report that the force of mortality at age 50 among V.S. males was cut in half
from 1900 to 1980, from 1.6 percent to 0.8 percent. A public health specialist might
focus attention on the lives that were saved in 1980 compared with 1900 because of
new surgical and medical procedures; the introduction of penicillin, polio vaccines,
and other pharmaceuticals; better nutrition and sanitation; improved automotive
safety; less cigarette smoking; faster and more effective ambulance service; and so
on.

These two conceptions are not contradictory: both have validity; both aid
understanding. Furthermore, both models are abstractions. Demographers are so
accustomed to thinking about the force of mortality that they sometimes forget how
far removed this construct is from the empirical counts of deaths and population
numbers on which it is ultimately based. The notion of lifesaving is also an
idealization. A lifeguard rnay believe he or she saved a swimmer from drowning, and
a surgeon may believe an operation averted death; but even in these cases, there is
uncertainty about what would have happened otherwise, and this uncertainty
increases when the lifesaving is attributed to, say, better nutrition or healthier life
styles. If, however, progress is achieved against mortality, then it seems reasonable
to say that lives have been saved, that is, that deaths have been averted, even though
the identity ofthe individuals saved and the cause ofthe lifesaving may not be known
or even knowable.

In this paper we develop a model that combines the analytical power of the
concept of tbe force of mortality with tbe appeal and relevance of tbe notion of
lifesaving. We explore botb bow lifesaving alters life table statistics and, conversely,
bow change in a life table, in particular cbange resulting from a reduction in tbe force
of mortality at all ages, can be interpreted in terms of lifesaving. If lives are saved,
bow will tbe force of mortality cbange? If tbe force of mortality is reduced, how
many lives will be saved?*

Our goal is insight into tbe relationsbip between averting deaths and reducing tbe
force of mortality. We develop a model-an imperfect one because it neglects
heterogeneity (and much else), but a useful starting point for developing understand­
ing of tbe Iinkage between lifesaving and life tables. We present six tables that
include some 534 statistics, not because the statistics are intrinsically interesting or
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124 DEMOGRAPHY, volume 24,number 1, February 1987

worth calculating for alllife tables, but because they aid insight and understanding by
providing specific illustrations of the magnitude of different aspects of this relation­
ship.

A DEMOGRAPHIe MODEL OF LIFESAVING

Let f.L(x) represent the force of mortality at age x. Let l(x) represent survivorship

(with a radix of one):

[(x) ~ exp[ - f: 141) dl] .

Let fix) denote the density distribution of deaths:

fix) == f.L(x)l(x).

(1)

(2)

And let e(x) represent life expectancy:

e(x) == LW l(t) dt/l(x), (3)

where w is an age beyond which no one survives.

Suppose that the force of mortality is reduced to a new level, f.L*(x) , such that

all x. (4)

Let l*(x),f*(x), and e*(x) represent survivorship, the density distribution of deaths,
and life expectancy under the new mortality regime, respectively. The reduction in
the force of mortality can be defined by either

or

f.L*(x) == f.L(x) - A(x),

f.L*(x) == (1 - 8(x»f.L(x) ,

A(x) ;::: 0 all x,

8(x) ;::: 0 all x,

(5)

(6)

where Ameasures the absolute reduction in the force of mortality and () measures the
relative reduction,

(7)

Note that the two variables are related by

(8)

Consider the model aepicted in figure 1. Everyone initially starts off in the leftmost
box. From each box the force of mortality is f.L*(x), so the overall force of mortality
must also be f.L*(x). There is a A(x) intensity of transition to the next box. Because
f.L(x) == f.L*(x) + A(x), the rate of attrition from each box is simply the old force of
mortality, f.L(x). Thus the transition from one box to the next can be considered to
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Repeated Resuscitation 125

Original A x
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•~·(x) ~·(x)

Figure l.-A model of lifesaving

represent lifesaving. Under the old mortality regime, the force of mortality was J.L<x):
under the new regime, this JL(x) is divided into two parts-a new force of mortality
JL*(x) and a force of lifesaving A(X). At each age, a proportion 5(x) of the individuals
who would have died are now resuscitated and given another chance.

Individuals can be saved any number of times: the various boxes from left to right
include individuals resuscitated zero, one, two, three, and so on, times. The model
assurnes that a resuscitated individual faces the same life chances as an individual
who has not been saved. This commonly made assumption, which is analogous to the
assumption of independent competing risks, is unrealistic, as discussed at length
elsewhere (e.g., Vaupel, Manton, and Stallard 1979; VaupeI1986). Nonetheless the
assumption is useful because it simplifies the analysis, permitting some first steps to
be taken that aid understanding and insight.

Let l;(x) denote the probability that an individual will be alive and in state i at age
x, where i represents the number of times the individual' s life has been saved, i = 0,
1, 2, . . .. For i > 0, the l;s pertain to revival-survivorship or "revivorship."
Because the total force of attrition from state zero is simply JL(x), the value of lo(x)

equals l(x); that is, survivorship in the first box is the same as survivorship under the
old mortality regime. Thus

l*(x) = lex) + lt(x) + Mx) + (9)

Ifformulas could be found for the revivorship statistics lj(x), then l*(x), survivorship
under the new mortality regime, could be related to lex), survivorship under the old
regime. Furthermore, formulas (2) and (3) could then be used to analyze the change
in the distribution of deaths and in life expectancy.

THE CHANCES OF REPEATED RESUSCITATION

Our central result is thus the derivation of formulas for the l;(x), that is, the
probability that an individual will be resuscitated i times by age x. The formulas turn
out to be remarkably simple:

l;(x) = l(x)A(xYli!, i = 0, 1,2, ... ,

where

A(x) = f: ~(t) dt.

It follows from (1) and (5) that

A(x) = ln(l*(x)!l(x)).

(10)

(11)

(12)
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126 DEMOGRAPHY, volume 24, number 1, February 1987

In the special case in which progress against mortality is uniform at all ages,

8(x) = s, all x, (3)

it is not difficult to show that formula (2) reduces to

A(x) = -S In l(x). (4)

The quantity A(x) , which plays such a fundamental role in our results, can be

interpreted as the cumulative hazard averted or the cumulative intensity of lifesav­

ing.

The formula in (0) is reminiscent ofthe formula for a Poisson distribution. Indeed,

one way of proving (0) is to prove that the distribution of survivors at age x by the

number of times they have been resuscitated [i.e., the distribution of l;(x)//*(x) over

i] is a Poisson distribution with mean A(x). [We prove, in (38), that A(x) is not only

the cumulative hazard averted but also the average number of times death has been

averted among survivors at age x.]

An alternative proof of (0) is by mathematical induction. Two steps are required:

proving that (0) holds when i = 0 and proving that if (0) holds for i-I, it also holds

for i. For the first step, note that the differential equation describing lo(x) is

dlo(x)/dx = -/L(x)/o(x).

The differential equation has the familiar solution

u» ~ 1,(Olexp[ - f: ",t) dt] .

(5)

(6)

When the radix /0(0) is one, as assumed here, this reduces to the desired result:

lo(x) = l(x).

The differential equation describing li(X) is

(7)

i = 1,2,3, .... (8)

Assuming that (0) holds for i-I, (8) can be reexpressed as

[dli(x)//(x)]!dx = A(x) [A(X)i-l]/(i - 1)!,

with the solution

l;(x) = l(x)(c + A(X)i/i!),

where c is a constant that must be zero to satisfy (20) at age zero. QED.

(9)

(20)
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Repeated Resuscitation 127

Table 1.-Breakdown of the difference in survivorship at selected ages for U.S. females at

1980 vs. 1900, 2050 vs. 1980, and 2050 vs. 1900mortality rates, with a radix of 100,000

suntvouhlp lu.ber of raau.cltatlon. (til

lortality ra9i.a.
t" t t".t tl t 4 t5+co.para" "9a t2 t3

1980 ... 1900 10 98521 79646 18875 16939 1801 128 7 0
30 97495 70969 26526 22537 3578 379 30 2
50 93872 57711 36161 28075 6829 1107 135 14
70 75637 31986 43651 27529 11846 3398 731 146
90 18933 1719 17214 4124 4947 3956 2373 1113

100 1501 23 1478 96 201 280 292 609

2050 ... 1980 10 99199 98521 678 676 2 0 0 0
30 98423 97495 928 924 4 0 0 0
50 96296 93872 2424 2393 31 0 0 0
70 83270 75637 7633 7272 350 11 0 0
90 39994 18933 21061 14159 5294 1320 247 42

100 9221 1501 7720 2725 2473 1497 679 346

2050 ••• 1900 10 99199 79646 19553 17485 1919 140 8 0
30 98423 70969 27454 23209 3795 414 34 2
50 96296 57711 38585 29547 7564 1291 165 18
70 83270 31986 51284 30604 14641 4669 1117 253
90 39994 1719 38275 5410 8512 8929 7025 8399

100 9221 23 9191 138 413 825 1237 6585

REVIVORSHIP FROM 1900TO 2050

It follows from (10) that the relationship between survivorship under the new and

old mortality regimes, as given by (9), can be rewritten as

l*(x) == l(x) + l(x)A(x) + [l(x)A(x)2]12 + ... + [l(x)A(x)i]/i! + (21)

or

Al(x)/l(x) == [l*(x) - l(x)]/l(x) == L A(X)i/iL

i=O

(22)

By analogy with the Poisson distribution, the sum in (22) can be determined and
change in survivorship can be summarized as

Al(x)/l(x) == exp[A(x)] - 1. (23)

This expression can also be derived directly from (12). For our present purposes,
however, it is the decomposition of lifesaving in (21) and (22) that is of interest.

To illustrate this decomposition, survivorship statistics for U.S. females are

presented in table 1 for three pairs of mortality regimes: 1980 versus 1900, 2050
versus 1980,and 2050versus 1900. The values of l*(x) and l(x) were taken from Faber
(1982); the values of A(x) were computed, using (12), from these l*(x) and l(x) values.

The values of the various revivorship statistics li(X) were then calculated by using

(21). It can be seen from the table that at 1980mortality rates, some 18,933 females
out of a birth cohort of 100,000 would survive to age 90, compared with only 1,719
individuals at 1900rates. Hence some 17,214hypotheticallife table lives were saved.
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128 DEMOGRAPHY, volume 24, number 1, February 1987

Of these resuseitated women, 4,124 had their life saved onee, 4,947 had their life
saved twiee, ... , and 1,813 had their life saved at least five times.

Note that although the progress aehieved in saving lives is additive, the breakdown
of this progress by number of resuseitations is not additive. The progress aehieved
from 1900 to 1980 saved the lives of 1,478 women who went on to beeome
eentenarians, and the progress from 1980 to 2050is foreeast to save the lives of 7,220
women who eventually reaeh age 100; altogether, 9,198 more women (1,478 plus
7,220) will beeome eentenarians at 2050 rates than at 1900 rates. At 1980 rates
relative to 1900 rates, however, only 609eentenarians had their lives saved five times
or more, and at 2050 rates relative to 1980 rates, only 346 eentenarians benefited so
mueh from lifesaving. But at 2050 rates relative to 1900 rates, fully 6,585 eentenar­
ians-about two-thirds of all eentenarians-will have been reprieved from death at
least five times. Some of these women would have been saved three times beeause
of the progress aehieved from 1900 to 1980 and an additional two times beeause of
the progress from 1980 to 2050: it is the existenee of sueh multiple lifesaving paths
between 1900 and 2050 that explains why so many women will be saved so many
times as mortality is redueed from 1900 levels to 2050 levels.

POSTPONING DEATHS

The density distribution of deaths (or alternatively, of life spans), .f(x), is given by
the produet of }J-(x) and I(x). It follows from (21) that the density under the redueed
mortality is

f*(x) = (l - 8(x»f(x)[1 + 1\(x) + A(x)2/2 + + 1\(xY/i! + ... ). (24)

This formula eould be used to break deaths down into first deaths, seeond deaths,
and so on, in the sense that seeond deaths oeeur among those reprieved onee.

The proportion of deaths that oeeur from eaeh state depends simply on the
proportion of surviving individuals aged x in eaeh state. Formulas (10) and (12) imply
that the proportion of surviving individuals in eaeh state is given by

1Ti(X) = li(x)/I*(x)= exp[ - 1\(x»)[1\(x)'/i1], (25)

whieh, as noted above, is a Poisson distribution. The proportions presented in table
2 were eaIculated by using this formula, with the values of 1\(x) eomputed, using (12),
from available survivorship statisties. As might be expeeted, hardly anyone is saved
from death more than onee before age 10, but the proportion benefiting from
repeated resuscitation grows with age. Inpartieular, 71.4 pereent ofthe eentenarians
alive in 2050 (and 71.4 pereent of the eentenarians who die in 2050) will have been
reprieved five or more times from the deaths they would have suffered at 1900 rates.

It follows from (24) and (25) that

b..f(x)!.f(x) = [f*(x) - .f(x»)!.f(x) = (I - 8(x»exp[A(x») - I (26)

and then from (12) that

!:J..f(x)!.f(x) = (I - O(x»!:J.I(x)/I(x) - 8(x). (27)
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Repeated Resuscitation 129

Table 2.-Breakdown of the proportions of those alive at selected ages who
have been resuscitated 0, 1,2,3,4, or 5 or more times, for U.S. females at 1980

vs. 1900, 2050 vs. 1980, and 2050 vs. 1900mortality rates

Proportion reeueeiteted i ti.ee ('i)

Morta1ity regt.ee
eo.pared "ge '0 'I '2 '3 '4 '5+

1980 ve. 1900 10 0.808 0.172 0.018 0.001 0.000 0.000
30 0.728 0.231 0.037 0.004 0.000 0.000
50 0.615 0.299 0.073 0.012 0.001 0.000
10 0.423 0.364 0.157 0.045 0.010 0.002
90 0.091 0.218 0.261 0.209 0.125 0.096

100 0.015 0.064 0.134 0.186 0.195 0.406

2050 va. 1980 10 0.993 0.007 0.000 0.000 0.000 0.000
30 0.991 0.009 0.000 0.000 0.000 0.000
50 0.975 0.025 0.000 0.000 0.000 0.000
70 0.908 0.087 0.004 0.000 0.000 0.000
90 0.473 0.354 0.132 0.033 0.006 0.001

100 0.163 0.296 0.268 0.162 0.074 0.038

2050 va. 1900 10 0.803 0.176 0.019 0.001 0.000 0.000
30 0.721 0.236 0.039 0.004 0.000 0.000
50 0.599 0.307 0.079 0.013 0.002 0.000
70 0.384 0.368 0.176 0.056 0.013 0.003
90 0.043 0.135 0.213 0.223 0.176 0.210

100 0.002 0.015 0.045 0.090 0.134 0.714

Because death is never avoided but merely postpuned, a life saved today will

contribute an extra death in the future. Hence the value of f*(x) must eventually

exceed the value of j{x). Both (26) and (27) are consistent with this, although the

necessity of a crossover is perhaps more evident from (26). Initially A(O) is zero, so

the expression in (26) must be negative. If there is no age xoafter which the value of

S(x) never exceeds zero, then A(x) increases indefinitely: consequently, the value of

the expression must in time become positive. On the other hand, if there is an age xo
after which o(x) stays at zero, then the expression must be positive after this age.

To iIlustrate this crossover, it is convenient to consider the simple case in which

S(x) equals 0 for all x, that is, a constant proportion of deaths are averted at all ages.

In this case, it can readily be shown that

and hence, using (27), that

ill(x)/l(x) = l(x)-5 - 1

ilj{x)if(x) = (l - o)l(x)-5 - 1.

(28)

(29)

A crossover such that f*(x) begins to exceed j{x) occurs at the age xo, where the

expression in (29) equals zero. This age is the age such that

(30)

Thus if 0 is 0.5, then l(xO) equals 0.25. For D.S. males at 1980 rates, survivorship is

down to 25 percent at age 82: if male death rates were cut in half, deaths under the

new regime would start exceeding deaths at 1980 rates after age 82.
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Table 3.-Breakdown of life expectancy, e*(O), into its components e(O), 'Th 'Tz, ..• , 'T9, for U .S. females
and males at 1980vs. 1900,2050 vs. 1980, and 2050 vs. 1900mortality rates and for females vs. males at

1900, 1980, and 2050 rates

Life expectancy Life yeara in aach reauacitation atate ('il

Mortality regimea
1.*(0) 1.(0) '8 '9cOllpared 'I '2 '3 '4 '5 '6 '7

Fellla1.a, 1980 va. 1900 77.53 49.07 19.84 5.89 1.79 0.60 0.21 0.08 0.03 0.01 0.01
Males, 1980 va. 1900 69.85 46.56 17.91 4.28 0.87 0.18 0.04 0.01 0.00 0.00 0.00
Femal•• , 2050 va. 1980 83.84 77.53 4.83 1.01 0.31 0.11 0.04 0.01 0.00 0.00 0.00
Males, 2050 va. 1980 75.84 69.85 4.87 0.83 0.20 0.06 0.02 0.01 0.00 0.00 0.00
FemaIe., 2050 va. 1900 83.84 49.07 21.29 7.36 2.93 1.41 0.76 0.42 0.24 0.14 0.23
Males, 2050 vs , 1900 75.84 46.56 20.14 6.09 1.86 0.66 0.27 0.12 0.06 0.03 0.05

Females VB. males, 1900 49.07 46.56 2.41 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FemaIes va. malesl 1980 77.53 69.85 6.18 1.18 0.26 0.05 0.01 0.00 0.00 0.00 0.00
FemaIe. vs. males, 2050 83.84 75.84 6.31 1.30 0.30 0.06 0.01 0.00 0.00 0.00 0.00

DECOMPOSING LIFE EXPECTANCY

Let Ti denote life years lived in resuscitation state i:

r, ~ f: l,{x) dx ~ f: l(x)A(x)' dxIi!·
Then the new value of life expectancy at birth can be decomposed as

e*(O) = e(O) + T\ + Tz + "',

(31)

(32)

and the relative change in life expectancy can be represented as

t.e(O)/e(O) ~ ,~ r'lf: lex) dx, (33)

Table 3 presents a breakdown of the change in life expectancy from one mortality
regime to another, for nine different pairs of regimes. Life expectancies in 1980
versus 1900,2050 versus 1980, and 2050versus 1900 are compared for males as wen
as for females. In addition, comparisons are drawn between male and female life
expectancies at the mortality rates in 1900, 1980, and 2050: the malelfemale analysis
is possible because male mortality rates either equal (for an practical purposes) or
exceed female rates at an ages in each of the three years. In the comparison of 2050
with 1900,note that a significant amount oflife expectancy, nearly a quarter of a year

for females, is added by saving lives 9 times: a cat may have 9lives, but progress in

reducing mortality will give some humans at least 10. In the comparison of female
and male life expectancies, most of the additional female life expectancy is

attributable to saving lives once: if an males had their lives saved once, the gap

between male and female life expectancy would be cut by 96 percent, 80 percent, and
79 percent at 1900, 1980, and 2050 rates, respectively.

In the simple case in which the same proportion of deaths are averted at an ages,
(33) can be reexpressed as

(34)
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Repeated Resuscitation 131

Table 4.-Values oflife expectancy at birth and of H" H2, ••• , H9 , for U.S. females and males at 1900,
1980, and 2050 mortality rates

Mortslity regime e(o) H1 H2 H3 H4 H5 H6 H7 H8 H9

Femsles, 1900 49.07 0.480 0.205 0.111 0.075 0.058 0.047 0.040 0.034 0.028
PIsles, 1900 46.56 0.516 0.225 0.122 0.082 0.064 0.052 0.044 0.038 0.032
Fems1es, 1980 77.53 0.155 0.071 0.048 0.037 0.031 0.026 0.023 0.019 0.016
Males, 1980 69.85 0.193 0.092 0.062 0.048 0.040 0.034 0.029 0.025 0.021
Fema1es, 2050 83.84 0.144 0.069 0.048 0.038 0.031 0.026 0.021 0.017 0.012
Males, 2050 75.84 0.176 0.089 0.063 0.051 0.042 0.036 0.030 0.025 0.020

where

H, ~ fot» I(x)(-In l(x»'1i! dx/ J: I(x) dx, (35)

Note that H 1 is the familiar expression for the entropy or information measure H
used by Keyfitz (1985) to analyze how a proportionate change in mortality rates
affects life expectancy; it is clear from (34) that this expression for H is valid when
ois smalI. [See Vaupel and Yashin (1985) for further discussion of this and of the
logic of approaches based on finite differences vs. infinitesimal differentials. Also see

Keyfitz (1985) for formulas like (34) and (35), based on a Taylor series expansion.]
Following the method used by Vaupel (1986), an alternative expression for H, can be
developed:

H, ~ f: I'(x) I(x)e(x)( -In l(x))H/i! dx/ J: I(x) dx. (36)

This expression for H 1 is the expression for H used by Vaupel (1986) to analyze how
change in age-specific mortality affects life expectancy.

Table 4 presents values of H 1 through H9 for V.S. males and females at 1900, 1980,
and 2050 mortality rates. Note how slowly the values of H, fall off as i increases. It

is not difficult to show that the sum of the HiS increases without limit as i increases,
which is intuitively reasonable because if lives are saved over and over again
indefinitely, then life expectancy should grow without limit. The values of H, fall off
as i increases because persons whose lives are saved repeatedly are likely to be older
persons who face high rates of death: if mortality rates were constant over age, the
values of the HiS would all be the same (and equal to one), and if mortality rates
declined with age, the values of the HiS would be increasing.

By multiplying the value of H, by the prevailing life expectancy, the life years
gained by saving a person's life the ith time can be calculated. Vaupel and Yashin
(1985) explained the logic of this in detail; the basic idea is that if a random person's
life is saved the ith time, then he or she can expect to live H, x e(O) years in state i.
These additional years of life expectancy represent the benefit of saving a life the ith

time, not including the further benefit that might arise if the individual were saved
again, the (i + 1)st time. Table 5 summarizes the effects of repeatedly averting death
by presenting the average life spans of people saved not at all, once and only once,

twice and only twiee, and so on up to nine times, in 1900, 1980, and 2050, for V.S.

females and males.
The high values of H 1 in 1900 imply that if every female's first death could be
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Table 5.-Average lifespans of people resuscitated 0, I, 2, ... ,9 times before u]tjmate death, for U.S.
females and males at 1900, 1980, and 2050 mortality rates

Mortality re9imes
compared o

Average l i f e s ~ a n 8 of those resu8citated i times
9

Females,
Males,
Females,
Males,
Females, 2050
Males, 2050

1900
1900

1980
1980

49.07 72.63 82.67 88.10 91.79 94.63 96.95 98.90 100.55 101.93
46.56 70.60 81.09 86.76 90.60 93.56 95.99 98.05 99.81 101.30
77.53 89.53 95.03 98.75 101.66 104.07 106.12 107.86 109.33 110.55
69.85 83.32 89.73 94.08 97.43 100.19 102.54 104.56 106.29 107.74
83.84 95.88 101.68 105.73 108.93 111.57 113.75 115.51 116.89 117.94
75.84 89.19 95.96 100.77 104.60 107.80 110.50 112.77 114.66 116.17

averted, 23.56 years would be added to female life expeetaney, inereasing life
expeetaney from 49.07 years to 72.63 years. Similarly, averting every male's first
death would inerease male life expeetaney by 24.04 years, from 46.56 years to 70.60
years. It is intriguing to note that the aetual inereases in female and male life
expeetaney from 1900 to 1980 are roughly eomparable to these gains: the progress
aehieved is equivalent to saving every female's life a bit more than onee and every
male's life a bit less than onee.

At 1980 and 2050 rates, averting everyone's first death would be about half as
benefieial: female life expeetaney would inerease about 12 years and male life
expeetaney by somewhat more than 13 years. Averting everyone's seeond death
would add another 5V2 years to female life expeetaney and another 6V2 years to male
life expeetaney, putting female life expeetaney in 2050 at nearly 102 years and male
life expeetaney at nearly 96 years.

Eaeh additional death averted adds fewer years to life expeetaney, but the
eumulative effeet ean be substantial. The average male faeing 1980 death rates will
survive to eelebrate his 100th birthday if his life is saved five times. At 2050 rates if
a woman's life were saved nine times, she could expect to live to age 118.

ROW MANY TIMES RAS YOUR LIFE BEEN SAVED?

If mortality rates are redueed, some people will have their lives saved onee, some
twice, and some many times before they finally die, and other people will die at the
same age they would have died before. Let n(x) be the average number of times a
synthetic eohort of people aged x have had their lives saved beeause mortality rates
followed a lower trajeetory:

n(x) = 2: i7T;(X),

;=0

(37)

where 7T;(X) denotes the proportion of people aged x who have had their lives saved
i times, as given by (25). Substituting (25) and simplifying yields

n(x) = A(x). (38)

Thus A(x), the key variable in many of our formulas, can be interpreted not only as
the cumulative intensity of lifesaving but also as the average number of times death
has been averted.

The average number of times a newborn ean expeet to have his or her life saved
before inevitable, final death is given by
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Repeated Resuscitation

Table 6.-Average number of resuscitations for those alive at selected ages [n(a)]

and expected number of resuscitations in a lifetime (ti), for U.S. females and
males at 1980 vs. 1900, 2050 vs. 1980,and 2050 vs. 1900 mortality rates and for

females vs. males at 1900, 1980, and 2050 rates

Kortality regimea
iicOllpared "(10) "(30) "(SO) "(70) "(90) "(100)

r••al •• , 1980 va. 1900 0.21 0.32 0.49 0.86 2.40 4.18 1.61
Mal•• , 1980 va. 1900 0.24 0.33 0.48 0.71 1.77 3.07 0.91
Femal••• 2050 va. 1980 0.01 0.01 0.03 0.10 0.7! 1.82 0.76
Mal.a, 2050 va. 1980 0.01 0.02 0.04 0.20 0.96 2.17 0.57
Fellal•• , 2050 va, 1900 0.22 0.33 0.51 0.96 3.15 5.99 2.76
Mal•• , 2050 va. 1900 0.25 0.34 0.53 0.91 2.72 5.23 1.70

Femalu va. male., 1900 0.03 0.04 0.05 0.12 0.40 0.43 '0.11
Fe..alea va. .al.e, 1980 0.00 0.02 0.06 0.27 1.04 1.54 0.63
F••al•• va. .al•• , 2050 0.00 0.02 0.04 0.17 0.83 1.19 0.66

133

fi = foW!*(x)n(x) dx. (39)

This value summarizes the differenee between two mortality regimes and thus might

be used to measure the distanee between two levels of mortality. Change in life

expeetaney is the measure usually used; fi represents an alternative that ean be
employed when one mortality trajectory is at least as low as a second trajectory, at

all ages.
Table 6 presents values of n(x) at selected ages as weIl as ii for nine different pairs

of mortality regimes; beeause the mortality rates are period rates, the results pertain
to hypotheticallife table lives. On average, the older a person gets, the more times
his or her life has been saved: the average 100-year-old female at 2050 versus 1900
rates will have had her life saved six times. At birth, a newborn girl at 2050 versus
1900 rates ean expect to be reprieved from death more than 2.7 times, whereas a
newborn boy can expeet only 1.7 resuscitations: that extra life measures the greater

progress made in lowering female mortality. The gap between male and female life
chanees can be measured by comparing the two regimes: To achieve female life
expectaney in 1900, the average male would have to be resuscitated 0.11 times; in
1980 and 2050, the required average number of resuscitations is six times higher.

When 8(x) is constant, the formula for neollapses to the remarkably simple result

fi = 8/(1 - 8). (40)

Thus if mortality is cut in half at all ages, a newborn ean expeet to be reprieved from
death once; if mortality is cut to a quarter of its original level, the average newborn
will be resuseitated three times.

That the average newborn can expeet to be reprieved from death fi times does not
mean that all newborns will be reprieved fi times. On the contrary, some members

of the birth eohort will benefit many times from lifesaving and others will not benefit

at all. Consider the simple case in which mortality rates are cut in half at all ages,

such that n = 1. At the moment death would have occurred, half of the individuals
are reprieved-and the other half die as before. This same bifurcation occurs among
those resuscitated once, then among those resuscitated twice, and so on, Thus half
of the eohort do not benefit from the lifesaving, a quarter are reprieved onee, an
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eighth are reprieved twice, and an eighth are reprieved more than twice. The quarter
who are reprieved once and the eighth who are reprieved twice each account for a
quarter of the total reprieves: this means that the fortunate eighth who are reprieved
more than twice account for fully half of the total reprieves. There is, in short, a
concentration of resuscitation such that an eighth of the people get half of the
benefits. This concentration arises even though, indeed because, the process of
lifesaving is completely democratic-everyone has an equal chance, at birth, of
having his or her life saved. As in many other situations, an equitable process leads
to a very unequal outcome. (For further discussion of concentrations in populations,
see Goodwin and Vaupel1985 and Vaupel and Goodwin 1986).

EXTENSIONS

In companion papers (Vaupel 1986; Vaupel and Yashin 1985), we initiated some
lines of analysis that, combined with the approach presented here, could lead to
some additional results of interest.

1. Vaupel (1986) analyzes how change in age-specific mortality affects life
expectancy. His approach, which is based on methods of differential calculus, is
useful when small changes in age-specific mortality are being considered. When
age-specific mortality changes substantially, the approaches proposed by Pollard
(1982) and a United Nations study (1982) are appropriate. An alternative decompo­
sition of the effects of age-specific mortality change on life expectancy could be
based on the notion of repeated resuscitation.

2. The lifesaving model developed here assumes that all individuals face the same
chances of death and that the resuscitated have the same life chances as those who
did not have to be saved from death. It seems c1ear, however, that individuals differ
in their frailty (Vaupel, Manton, and Stallard 1979) and that this heterogeneity will
alter the impact of lifesaving on life table statistics. The results in the current paper
could be extended along the lines discussed in Vaupel (1986) and Vaupel and Yashin
(1985).

3. In Vaupel and Yashin (1985) we developed a model, called the second-chance

model, that permits individuals' lives to be saved once but only once. A comparison
of that model with the repeated resuscitation model could yield some stimulating
insights, For instance, is it better to save everyone's life once or to save lives once
on average? The second-chance model may be useful in evaluating the effects of
heterogeneity in life chances, since the mortality rates of those who are resuscitated
can be set at a higher level than the rates for those whose lives have not been saved.

The illustrations presented in this paper have all concerned human mortality, but
studies of other kinds of population attrition-pertaining to morbidity, marriage,
divorce, abortion, unemployment, animal stocks, pest control, equipment failure,
and so on-might also benefit from application of the notion of lifesaving and the
repeated-resuscitation model. Indeed, in some of these areas, the model may be
especially relevant and useful because lifesaving may be under the direct and
effective control of adecision maker. Consider, for instance, the case of equipment
that can be repaired (thus resuscitated) if it fails. Our case corresponds to the
situation with "minimal repair" analyzed in some recent papers on reliability theory
(Natvig 1985; Norros 1986). The model could be used to investigate the optimal
number of times the equipment should be repaired, the expected number of times the
equipment will be repaired before ultimate scrapping, and the concentration of repair
among the equipment population. In an example analogous to that given above, it
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eould be shown that an eighth of the equipment requires half of the repairs-even
though there are no lemons, all of the equipment having equal chances of failure.

CONCLUSION

The notion of lifesaving ean be combined, as this paper has illustrated, with
standard methods of demographie analysis to yield insights about how progress
against mortality influenees patterns of survivorship, the density distribution of
deaths, and life expeetaney. Furthermore, thinking about progress against mortality
in terms of lifesaving-for example, the number of times a newborn's life will be
saved if mortality is redueed from one level to another-helps clarify the nature and
signifieanee of this progress.

NOTE

* While this article was in production for publication, we came across an article by Mitra (1979) that
developed a model and derived formulas similar to ours for the special case in which the relative reduction
in the force of mortality at age x, the function we call 5(x), is constant at an ages.
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