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Correspondence 

Repeated-Root Cyclic Codes 

J. H. van Lint 

Abstract-In the theory of cyclic codes, it is common practice to 
require that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n,q)= 1, where n is the word length and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFq is the 
alphabet. This ensures that the generator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( x )  of the cyclic code has no 
multiple zeros zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( = repeated mots). Furthermore it makes it possible to 
use an idempotent element as generator. However, much of the theory 
also goes through without the restriction on n and q. Recently, the 
author was asked whether dropping the restriction could produce any 
good d e s  or that they would always zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe bad (in some sense), in which 
case making the restriction right after the definition, as most authors 
do, would he justified. This question led to the results below. We shall 
show that a binary cyclic code of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2n(n  odd) can be obtained from 
two cyclic codes of length n by the well known lulu + V I  construction. 
This leads to an infinite sequence of optimal cyclic d e s  with distance 
4. Furthermore, it shows that for these codes low complexity decoding 
methods can be used. The structure theorem generalizes to other char- 
acteristics and to other lengths. Independently, Castagnoli ef al. have 
studied the same question. Some of their results are similar to these 
results, but their methods are different. Some comparisons of the 
methods using earlier examples are also given. 

I n h -  Term -Binary cyclic codes of even length, shortened Hamming 
codes. 

I. BINARY CYCLIC CODES OF LENGTH 2n (n  ODD) 

Let n be odd and x" - 1 = f l ( x ) f 2 ( x ) .  . . f , ( x )  the factoriza- 
tion of X" - 1 into irreducible factors in IF,[x]. 

We define g l ( x ) : = f l ( x ) . . . f , ( x ) ,  g2(x):=fk+l(x)...fr(x), 
where k < 1 < t. Let r ,  := deg g , ,  r ,  := deg g,g , .  

Let C ,  be the cyclic code of length n and dimension n - rl 
with generator g, (x ) ,  and let C ,  be the cyclic code of length n 
and dimension n - rz with generator g, (x )g , (x ) ,  and let d ,  be 
the minimum distance of Ci ( i  = 1,2). Clearly d ,  2 d , .  

We are interested in the cyclic code C of length 2n and 
dimension 2n - rl - r ,  with generator g ( x )  := g?(x)g , (x ) .  We 
claim that this code has the following structure: 

Let a = (ao,a l ;  a ,  u , - , ) E  C ,  and c =(c0,c1;. ., c , - , ) E  C,. 
Define b := a +  c. Since n is odd, we can define words that 
belong to C by 

and in this way we find all words of C. The last assertion is a 
consequence of dimension arguments. We prove the first asser- 
tion as follows. Write 

, b,, - 2 ,  a, - 1 9 bo 7 a 1 7 * . * 9 a, - z 9 bn - 1 ) 9 
w : = ( a , , b , , a , ,  . . .  

a(.) = a,+ a , x  + . .. + a , - , X " - l  

= ( a , + a , x 2 +  . . .  + a , _ , x " - l )  

+ x ( a ,  + . . . + a , -2x " -3 )  

= a,( x 2 )  + xu,( XZ) ,  
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and analogously for c ( x )  and b(x) .  We then have the following 
two (equivalent) representations for the polynomial w ( x )  wrre- 
sponding to the codeword w :  

w( x )  = {a,(  x ' )  + X"+ lU, (  2)) + { xb,( x ' )  + X"b,( 2)) 
(1.1) 

and 

w ( x )  ={a(x)+x(x"+l )a , (x2)}  

+ ( b ( x )  + ( x "  + l)b,(xZ)). (1.2) 

Both terms in (1.2) are divisible by g l ( x ) .  From (1.1) we see that 
the first term only contains even powers of x ,  the sewnd one 
only odd powers of x .  Since g , ( x )  has no multiple factors, this 
implies that both terms are actually divisible by g: (x ) .  

w( x )  = ( x" + l)a( x )  + c( x )  + ( X" + l)c,( x') 

From (1.2) we find 

(1.3) 

in which every term is divisible by g,(x) .  
Since b = a + c ,  the word w is a permutation of the word 

IaIa + CI, (cf. [4, p. 761). We have proved the following theorem. 

Theorem I: Let C ,  be a binary cyclic code of length n (odd) 
with generator g l ( x ) ,  and let C ,  be a binary cyclic code of 
length n with generator g , ( x ) g , ( x ) .  Let di be the minimum 
distance of Ci, i = 1,2. Then the binary cyclic code C of length 
2n with generator g : (x )g2 (x )  is equivalent to the IuIu + U I  sum 
of C ,  and C,. Therefore C has minimum distance min{2d1, d2).  

Example 1:. Take n = 7. We have 

x7-  1 = ( x 3  + x + 1)( x3 + x 2  + 1)( x + 1). 

Define g l ( x ) : =  ( x 3  + x + 11, g 2 ( x )  := ( x  + 1). Then 

U ( . )  := g , ( x )  = 1 + x + x3 = 1 + x ( l +  XZ), 

C(X) :=g , ( x )gz (x )= l+x2+x3+x4=1+x2+x4+x (x2 ) ;  

w = (11000000111100), 

so, a = (1101OOO) and b = (0110100). We find 

i.e., 

w ( x )  = 1+ x + x8 + x9 + XI0  + XI1 

= (1 + + x3)2(1 + x)(i + x 2  + x4). 

It was shown by Best and Brouwer [ l ]  that the three times 
shortened binary Hamming codes are ,optimal. In fact, they 
showed that, if A h , &  is the maximal cardinality of binary 
codes with length n and minimum distance d, then 

A(m+1,4 )=  A(m,3 )12" / (m+4- i ) ,  

if m = i (modd), 0 s i -< 3. (1.4) 

We now consider the even-weight subcode of a shortened 
Hamming code. With m = 2' - 1 we have an [m - 1, m - 1 - 2,4] 
code, which is optimal by (1.4). The following theorem gives a, 
perhaps surprising, property of these optimal codes. 

OOlS-9448/91/0300-0343$01 .OO 01991 IEEE 
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Theorem 2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe even weight subcode of a shortened binary 

Hamming code is cyclic (for a suitable ordering of the symbols). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
proof: It is not difficult to see that it makes no difference 

on which position the code is shortened (all resulting codes are 
equivalent). Let n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2' - 1. Let m , ( x )  denote the minimal poly- 
nomial of a primitive element a of FZs. Then m , ( x )  is the 
generator polynomial of the [n ,n - s ]  Hamming code and 
( x  + l ) m , ( x )  is the generator polynomial of the corresponding 
even weight subcode. In Theorem 1 we take g J x )  = ( x  + 1) and 
g 2 ( x ) = m l ( x ) .  We then find a cyclic code zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC of length 2n, 
dimension 2n - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs - 2 with minimum distance 4. It follows from 
the lulu + V I  construction that all weights in C are even. There- 
fore C has a parity check matrix with a top row of 1's and all 
columns distinct. Hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC is equivalent to the even weight 
subcode of a shortened Hamming code (see Example 4). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

A simple decoding method for the IuJu + U J  codes is known. It 
is in fact an example of the method of Blokh and Zyablov [31. 
Besides being simple the method has the advantage that it 
sometimes corrects error patterns beyond half the minimum 
distance. Recently, Forney [SI introduced the "squaring con- 
struction" of which the lulu+vl construction is an example. 
Fomey's trellis decoding method for these codes again provides 
a low complexity decoder for our cyclic codes of length 2n. This 
is a possible advantage of these codes. 

11. CycLic CODES OF LENGTH q'n OVER Fq WITH 

(n,q)= 1 

The situation for the general case (mentioned in the title of 
this section) can be handled in the same way as we did in 
Section I. However, the generalization of (1.2) and (2.1) below 
to the general case leads to formulas that show that in the 
general case the approach used by Castagnoli et al. 161 is much 
easier. So, it is only for lengths 2n, 3n, and 4n that we really 
gain some more insight by the generalized IuIu + U I  construc- 
tion. We illustrate the idea for q' = 3 and give a brief sketch for 
q'= 4. 

Let (n,3) = 1. We consider the factorization of x" - 1 into 
irreducible factors in IF,[ XI: 

We now take g l ( x )  = f l ( x )  * . . f k ( x ) ,  g2 (x )  = f k + , ( x ) .  . . fr(x!,  
and g3(x )  = f,+ , ( x )  * . . f,(x). We consider three ternary cyclic 
codes Ci, ( i =  1,2,3) of length n with generator polynomials 
g l ( x ) ,  g,(x)g2(x), and gl (x)g2(x)g3(x) .  Using the same nota- 
tion as in the previous section, we denote the dimension of Ci 
by n -  ri and its minimum distance by di. Let g ( x ) : =  
{g l (x) }3{g2(x) }2g3(x)  be the generator polynomial of a cyclic 
code C of length 3n. 

Apolynomial a ( x ) = a , + a , x +  +a , - , x " - '  iswrittenas 

a ( x )  = (ao + a,x3+ . . e ) +  X ( U l  + a4x3 + . . . ) 

+ .'(a2 + a5x3 + * * * ) 

= d o ) ( x 3 ) +  x a ( ' ) ( x 3 )  + x ~ ~ ( ~ ) ( x ~ ) .  

We now use the same idea of stretching this polynomial ( = word) 
to length 3n (as in Section I) as follows. We must distinguish 
between n = 1 (mod31 and n = 2 (mod3). We define 

Clearly all monomials in Z(x )  have an exponent divisible by 3, 
i.e., Z ( x )  is the third power of some polynomial. Note that 

ii( x )  = a( x ) ,  mod( x" - 1) 

and therefore fL(x) ln(x)  implies that f:(x)lii(x). 
The next step is also a generalization of the idea of Section I. 

Let U E C , ,  b € C 2 ,  c € C 3 .  We generalize the lulu+vl con- 
struction and form a codeword that is a permutation of 
lala - bla + b + cl as follows. We define 

w( x )  := ( x "  - l)'Z( x )  + x"( X "  - 1)5( x )  + x%( x ) ,  

(mod(x3" -1)). (2.1) 

This definition ensures that g ( x )  divides w(x ) .  For example 
g : (x )  divides the second and third term in (2.1) by the observa- 
tion just made and g:(x)  clearly divides the first term. A trivial 
dimension argument shows that we obtain all the words of C in 
this way. A generalization of the minimum distance argument of 
the Iu(u + V I  construction shows that the minimum distance d of 
C is equal to min(3d,,2d2,d,}. Here we take d, =CO if C,  =(O). 

For binary cyclic codes of length 4n (n odd), one proceeds in 
the same way. As generalization of (2.1) one finds 

4 
= X ( m - l ) n ( X p l  -114-n- a , ( x ) ,  (mod(x4" -1)). 

m = l  

The right-hand side is a vector of the form (a ,  a + b, a + c, a + b 
+ c + d ) ,  and repeated application of the rule wt (x )+  w t ( y )  2 
wt (x  + y )  leads to dmin = min(4d,,2d2,2d,, d4) in the obvious 
notation. 

Example 2: Let n = 8. We have 

x8 -  1 = ( x  - 1)( x + l ) ( 2  +1)(x2 + x + 2 ) ( x 2  + 2 x  +2) 

= m 0 ~ x > m 4 ~ x ~ m 2 ~ x ~ m 1 ~ x ~ m ~ ~ x ~ ~  

(where m , ( x )  is the minimal polynomial of a', a a primitive 
element of (F,z). Take g l ( x ) =  mo(x ) ,  g2 (x )=  m, (x ) ,  and g , (x )  
=m, (x )m, (x ) .  Then the codes C, are [8,7,21, [8,5,31, and 
[8,2,6] respectively. We find a ternary cyclic code that is a 
[24,14,6] code. If we compare with BCH codes, then there is a 
[26,16,6] code that can be shortened to yield the same parame- 
ters. Note that there is a [24,12,9] ternary extended quadratic 
residue code (cf. [4]) while the best we can do to obtain d = 9, 
using the construction of this section, is to take g l ( x ) =  
m o ( x ) m l ( x ) ,  g2 (x )  = m2(x ) ,  and g,(x)  = m4(x)m,(x) ,  which 
yields a code of dimension 8. 

Bloemen et. a1 [21 analyzed ternary cyclic codes of length 3n 
with n I 8. The only "good" code that they found was a [24,20,3] 
code ( g , ( x )  = 1, g 2 ( x )  = m,(x) ,  g 3 ( x )  = m,(x)). There is no 
[24, k ,d ]  code with d = 3, k > 20 or k = 20, d > 3 (by the 
Hamming bound). 

We give one more example of the construction of binary cyclic 
codes of length 4n, n odd. This example generalizes Theorem 2. 
It is also due to Bloemen et al. 

Example 3: Let n = 2" - 1. Take as generator for a cyclic code zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C of length 4n the polynomial g ( x )  = ( x  - l ) 3 m , ( ~ ) .  Here m , ( x )  
is the minimal polynomial of a primitive element a of F2a. Using 
the terminology of previous examples we have g l ( x )  = 1, g 2 ( x )  
= ( x  - l), g , (x )  = 1, and g4(x )  = m,(x) .  The ingredients are 
now four cyclic codes of length n with minimum distances 
1,2,2,4 respectively. The minimum distance of C is min(4.1, 
2.2,1.4) = 4. Let s = a +2. We find a binary cyclic [2" -4,2'- s 
-5,4] code. This is not bad, since by (1.4) the [2"-4,2"-4,3] 
code is optimal. 

a(')( x 3 )  + x" +'a(')( x 3 )  + x '" + ' a ( ' ) (  x ' ) ,  (mod3), 

a( ' ) ) (X3)+ x n + ' U ( ' ) ( x 3 ) +  X ' ~ + ~ U ( ~ ) ( X ~ ) ,  if n = 2, (mod3). 

if n 3 1, a( x )  := 
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111. COMPARISON WITH OTHER METHODS 

The ideas and results of the previous sections were discussed 
with J. L. Massey at a meeting in Oberwolfach in 1989. It turned 
out that he and some of his students were working on the same 
problem and that they had several similar results (and the 
general case) but that their methods were different. He kindly 
sent a preprint of the paper. Below we shall compare our results 
and their methods. For more details the reader is referred to 
Castagnoli zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. [6]. There the authors treat repeated-root cyclic 
codes using parity check matrices that are based on the proper- 
ties of the so-called Hasse derivative of a function. 

Definition: If f ( x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ‘ L~= , , f i x i  E E,,[+], then the kth Hasse 
derivative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfLk1(x) is defined by 

i = k  

It is an elementary exercise to prove the following lemma (use 
(3.1) to generalize Leibnitz’s rule). 

Lemma 1: If a is a zero of f ( x )  in some extension field of IF,, 
with multiplicity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is a zero of f f k ] ( x )  for k < s but not 
for k = s. 

Let us see what this lemma shows for some of the examples 
previously given. 

Example 4: Consider the code of Theorem 2. The generator 
has 1 as a zero with multiplicity 2 and a is a zero with 
multiplicity 1. This means that if c ( x ) =  C c , x ‘  is a codeword, 
then 

c c i  = 0 ,  tic, = 0, and c c i a i  = 0, 

i.e., 

is a parity check matrix for C; here the second row is obtained 
by applying the lemma. Note that a” = 1. Hence the matrix H, 
consists of all possible columns with a 1 at the top, except for 
(1000. . . O)T and (1100. . . O)T, i.e., the code is indeed equivalent 
to the even weight subwde of a shortened Hamming code. 

Example 5: Consider the [24,20,3] ternary code C mentioned 
after Example 2. It has as generator mg(x)m,(x). Let a be a 
primitive element of IF,. By the same argument as in the previ- 
ous example we find a parity check matrix for this code: 

1 1 1 . - .  1 1  
H2:=  0 1 2 . . .  0 1 : ) .  i 1 . . .  

So, it is clear that C is equivalent to a twice shortened [26,22,3] 
BCH code (the columns of H,  are all possible (l,[)T with 

Example 6: We have another look at Example 3. The code C 
6 E IF27\IF3). 

of length 4n has a parity check matrix 

1 1 1 1 * ‘ .  

0 1 0 1 * * ’  I 0 0 1 1 . . .  H ,  := 

anticode construction (cf. [4], pp. 548-549). In our case H ,  
generates a [2” -4,s +1,2’-’ -41 code (by the same argument 
as for the anticode construction). This code has the additional 
property of being cyclic and its minimum distance is only 2 less 
than the maximal possible value. If we write x“ - 1 = 
(X - l)m,(x)r(x), then in the terminology of Section I1 we have 
g,(x)  = r ( x ) ,  g , ( x )  = m,(x),  g 3 ( x )  = I, g4(x)=  x -1 .  It follows 
that the minimum distance of the cyclic code is min{4.(2“-’ - 
1),2.(2“ - l)}, in accordance with what was just stated. 

One could ask whether the code meeting the Griesmer bound 
could also be cyclic. Our formula for the minimum distance, i.e., 
the minimum of the distances 4d,, 2d,, 2d,, and d 4 ,  would 
imply that d ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2a-1, d, 2 2a - 1, and similarly for d,, while 
d4 =m. So C ,  has dimension I 1 and then C, must have 
dimension > 1. This forces C, to be the simplex code, but that 
does not contain the repetition code ( = C,) as a subcode. So 
the answer is no. 

IV. CONCLUSION 

We have found that the even weight subcodes of the short- 
ened binary Hamming codes form a sequence of repeated-root 
cyclic codes that are optimal. In nearly all other cases, one does 
not find good cyclic codes by dropping the usual restriction that 
n and q must be relatively prime. This statement is based on an 
analysis for lengths up to 100. Theorem 1 shows why this was to 
be expected, but it also leads to low complexity decoding meth- 
ods. This is an advantage (especially for the codes that are not 
much worse than corresponding codes of odd length). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

: I  1 
0 

1 1 . . .  
1 0 ’ . .  

( p + l  . . .  f f Z n - 2  a 2 n - 1  
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