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The collapse of turbulence, observable in shear flows at low Reynolds numbers, raises the question if

turbulence is generically of a transient nature or becomes sustained at some critical point. Recent data

have led to conflicting views with the majority of studies supporting the model of turbulence turning into

an attracting state. Here we present lifetime measurements of turbulence in pipe flow spanning 8 orders of

magnitude in time, drastically extending all previous investigations. We show that no critical point exists

in this regime and that in contrast to the prevailing view the turbulent state remains transient. To our

knowledge this is the first observation of superexponential transients in turbulence, confirming a

conjecture derived from low-dimensional systems.
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Finding appropriate models and concepts describing
fluid turbulence is one of the outstanding challenges in
the physical sciences. Shear flows with a linearly stable
laminar state, such as pipe, channel, duct, or Couette flow
have proven to be particularly intricate in this regard [1].
Here the laminar and the turbulent state coexist [2,3]
without a clear transition point, yet at large flow rates the
laminar state becomes increasingly susceptible to pertur-
bations. Once a disturbance is large enough the transition
to turbulence occurs suddenly without any intermediate
states [4–6]. Surprisingly, at relatively low Reynolds num-
bers (Re & 2000) the turbulent state is not stable and after
long times suddenly collapses [7–12]. This behavior is
reminiscent of memoryless processes in nonlinear systems.
In phase space the dynamics can be described by a com-
plex structure giving rise to the disordered dynamics, a so-
called chaotic repeller [13]. Underlying such a structure are
unstable states and for pipe flow unstable solutions to the
governing equations have been identified in the form of
traveling waves [14,15]. Surprisingly clear transients of
such traveling waves were observed in experiments
[16,17] confirming their relevance to the turbulent dynam-
ics. More recently traveling wave transients were also
reported in numerical studies [18,19].

A way to probe the validity of this model is to measure
the lifetime of turbulence in the transient regime. Previous
experimental and numerical lifetime measurements have
shown approximately exponential probability distributions
[8,10,11,20,21] which suggests that the probability for a
turbulent structure to decay is independent of its age and
hence that this process is memoryless as would be expected
for the escape from a chaotic saddle. Here the probability
for a flow to still be turbulent after a time t at a fixed
Reynolds number (Re) is then given by

Pðt� t0;ReÞ ¼ exp½�ðt� t0Þ=�ðReÞ�; (1)

where � is the characteristic lifetime (��1 can be also

interpreted as the escape rate) and t0 is the initial time
period required for turbulence to form after the disturbance
has been applied to the laminar flow at t ¼ 0. The fate of
the chaotic repeller is then determined by the functional
form of the characteristic lifetime �ðReÞ, and different
suggestions have been made in the past. The majority of
studies reported that ��1 decays linearly and reaches zero
at a critical Reynolds number. Here the turbulent state
undergoes a boundary crisis [1] leading from transient to
sustained turbulence. However there is no quantitative
agreement for the value of such a critical point and cited
values differ by more than 25%. This view has been
challenged in an experimental study [12] carried out in
an extremely long pipe where ��1 has been observed to
decay exponentially. Crucially it only approaches zero and
hence (unless a global bifurcation occurs at larger Re [1])
an infinite lifetime is only reached in the asymptotic limit
Re ! 1. Subsequently a number of studies have ques-
tioned this finding and again entertained the occurrence
of a boundary crisis [11,22,23]. A clear constraint of all
previous investigations is the limited range in lifetimes
measured. Typically scaling laws were postulated from
data covering 2 orders of magnitude. Numerical simula-
tions are particularly problematic because in order to cap-
ture the quantitatively correct behavior computations have
to be carried out in large domains, which severely restricts
the number of realizationsN that are manageable (N < 50)
[11]. Consequently the statistics are often insufficiently
resolved resulting in ambiguous probability distributions
[24]. A further difficulty in interpreting the existing data
arises from the initial formation time t0. Most numerical
measurements have been carried out at relatively low
Reynolds numbers where t0 can be larger than the actual
observation time. Consequently the evaluations of life-
times in this regime have significant uncertainties.
The experiments presented here were carried out in four

pipe setups located in three different laboratories. On all
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four occasions the pipes were made of 1 m long precision
bore glass tubes and the working fluid was water. The
setups mainly differ in the diameters (D) and their total
length (L). For two pipes 4 mm (� 0:01) bore tubes were
used and their lengths were L=D ¼ 2000 and 3600; the
other two had a diameter of D ¼ 10 mm� 0:01 and a
length of L=D ¼ 690 and 600. As in our previous study
[12] the flow was driven by a constant pressure head. To
avoid fluctuations during transition caused by the differ-
ences in drag between the turbulent and the laminar mo-
tion, a large constant resistance to the flowwas added to the
supply line between the constant head reservoir and the
flow conditioning section at the pipe entrance. This en-
sured that the flow rate remained constant to between 0.1%
and 0.01% depending on the setup, even when transition
occurred. The main improvement over the earlier study by
Hof et al. [12] was the implementation of an accurate
temperature control allowing measurements to be carried
out at constant temperatures (�0:05 K) for several days
and hence avoiding Reynolds number changes caused by
the temperature dependence of the viscosity.

In order to achieve laminar flows at Reynolds numbers
in excess of 2000 the pipe sections need to be very accu-
rately aligned and special care has to be taken at the pipe
inlet to avoid turbulence being induced (see Fig. 1). In
three of the pipes laminar flow could be achieved up to
Re � 3000. Detailed tests have shown that at the natural
transition point turbulence is always triggered at the pipe
inlet and not inside the pipe itself. For these three pipes the
inlet consisted of a straight convergence reducing the
diameter from 12.5 to 4 mm. In the L=D ¼ 690 pipe a
more sophisticated inlet was used employing several
meshes and a smooth convergence. This resulted in a
much higher natural transition point of Re ¼ 104.

The experimental procedure then was as follows: First a
perturbation was applied at a fixed position upstream. The
perturbation amplitude was chosen large enough to trigger
the transition to turbulence and the duration of the pertur-
bations was set to between 10 and 20D=U. The perturbed
segment then develops into a so-called turbulent puff,
which in this Reynolds number regime has a fixed length
and travels downstream at approximately the mean veloc-

ity U [25]. To determine if this turbulent puff had survived
its journey to the end of the pipe or if the flow had
relaminarized, the outflow angle at the pipe exit was moni-
tored. Since for a given Reynolds number the turbulent
flow has a lower center line velocity than the laminar one, it
exits the pipe at a steeper angle (with respect to the pipe
axis) [12,26]. In the 10 mm pipes velocities were measured
with laser Doppler anenometry (LDA) in addition to moni-
toring the outflow angle. These velocity measurements
made it possible to determine the formation period t0
more accurately. In the case of the single jet perturbation
the value of t0 was t0 ¼ 70� 5. In order to establish if the
type of perturbation used had an influence on the lifetime
of the resulting turbulent flow, measurements were carried
out at various amplitudes and different perturbation types.
For the majority of measurements shown here a single jet
was injected for a duration of 10D=U through a small
(0.5 mm) hole in the wall. In additional studies [27] differ-
ent types of perturbations were tested including a simulta-
neous injection and withdrawal of fluid through two small
holes and triggering of turbulence at larger flow rates
followed by a sudden reduction in the Reynolds number
(this perturbation is identical to the one used by [8,11,20]).
Outside the formation period t0 no differences, neither in
the observed turbulent structures nor in their statistics were
observed. Indeed, this behavior is typical for chaotic sys-
tems where the exponential divergence of neighboring
trajectories quickly erases the memory of the initial
conditions.
The improved temperature control allowed us to base

each measurement point on observations of typically N ¼
500 and occasionally even up to N ¼ 100 000 puffs reduc-
ing statistical errors by an order of magnitude compared to
all previous studies and increasing the range of measurable
lifetimes by more than 5 orders of magnitude. The proba-
bility distributions obtained in the D ¼ 4 mm pipes are
shown in Fig. 2 for five different distances between the
perturbation and the measurement point (x ¼ 140, 270,
930, 1900, and 3500) corresponding to fixed dimensionless
times t ¼ ðx=UÞ=ðD=UÞ. Our data confirm that probability
distributions are S shaped and not simple exponentials as
would be expected if �ðReÞ was a linear function as pro-

FIG. 1 (color online). (a) Sketch of the general pipe setup. Four different pipes were used, two of them with a 10 mm diameter
(L=D ¼ 690 and 600) and two with a 4 mm diameter (L=D ¼ 2000 and 3600). Pipes were gravity driven and turbulence could be
induced by injection and withdrawal of fluid through small holes in the pipe wall at various downstream positions. Turbulence was
detected by monitoring the outflow angle and by LDAvelocity measurements. (b) LDAvelocity trace obtained at the center line of the
D ¼ 10 mm (L=D ¼ 690) pipe during the passage of a turbulent event. The trace shows the well-known [25] signature of a turbulent
puff for the axial velocity (top) and the radial velocity (bottom).
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posed in Refs. [8,10,11,20]. In particular the dotted lines
show the exponential distributions that follow from the
proposed boundary crisis in [11]. Both scalings (exponen-
tial and S-shaped curves) agree well for Re< 1870. Here
differences only occur for very short pipes, where errors
due to uncertainties in t0 are very large and make a dis-
tinction of the decay rates very difficult. ForRe> 1870 our
data clearly disagree with the proposed exponentially di-
vergent curves and instead fall on the S curves resulting
from the fit shown in Fig. 3.

The observed distributions however also differ from the
S shape suggested by Hof et al. [12]: they are not self-
similar but instead their maximum slope (at PðtÞ ¼ 0:5)
increases with L=D. For each of the measured probabilities

PðtÞ inverse characteristic lifetimes ��1ðReÞ can be deter-
mined using Eq. (1), and the values are plotted in Fig. 3.
In addition to the data obtained in the 4mm pipes, the

data of the 10 mm pipes is also included in the graph. All
the data collapses onto a single curve which shows that
Eq. (1) is the appropriate description for the observed
decay of turbulence and hence confirms the model of a
chaotic repeller. By resolving values of PðtÞ up to 0.9999
we were able to determine escape rates down to ��1 ¼
10�8 which is 4 orders of magnitude smaller than had been
measured before. By resolving very small probabilities in a
L=D ¼ 140 pipe it was possible to determine decay rates
down to Re ¼ 1670 while keeping errors due to t0 at a
minimum. In principle lifetimes at even lower Re can be
obtained in even shorter pipes, yet as discussed above, the
uncertainty in the initial formation time t0 is considerable
when compared to the total observation time, severely
restricting measurements in this regime. In addition the
numerical data by Willis and Kerswell [11] (open squares)
are plotted together with the linear fit proposed in that
study. Note that the data point at Re ¼ 1580 of [11] has
been refitted as suggested in [24]. The numerical data is in
excellent agreement with our measurements (taking the
relatively large uncertainties due to t0 at small Re into
account). However the data of our experiments clearly
does not follow the linear fit [dashed curve in Fig. 3(a)]
proposed in their study. Turbulent puffs are still found to
decay well beyond the critical point of Rec ¼ 1870 postu-
lated by Willis and Kerswell [11]. The exponential scaling
suggested by Hof et al. [12], shown by the solid black line,
gives a reasonable fit only over 2 orders of magnitude in
��1 , but fails over the far larger range measured in the
present study. Over these 2 orders of magnitude also the
shape of the probability distributions of the present study
are indistinguishable to the ones by [12]. Outside this
overlap region the S-curves in the present study are ob-
served to become steeper with Re. Such a Re dependence
had not been seen in the earlier study [12]. Note that the
solid black line in Fig. 3(a) was shifted by �Re ¼ �48

FIG. 3 (color online). (a) Decay rates plotted on a log linear scale. Circles represent data obtained in theD ¼ 10 mm pipes while the
full symbols were measured in the D ¼ 4 mm pipe. The dashed line and the open squares are a reproduction of the data points and the
linear fit given by Willis and Kerswell [11]. The black line has the same slope as the exponential scaling observed by Hof et al. [12].
The light solid curve assumes a superexponential dependence of the decay rate on Re. The dash-dotted line shows an alternative
superexponential fit (see text for details). (b) Data on a log-log linear scale. The data could be fitted by a straight line over the entire
regime. This two parameter fit was then used to plot the five curves in Fig. 2 as well as the light solid curve in Fig. 3(a).

FIG. 2 (color online). Probabilities for the flow to still be
turbulent after traveling a fixed distance x. Viewed from left to
right the five data sets shown correspond to the following dis-
tances: x ¼ 140 (down triangles), 270 (diamonds), 930 (up tri-
angles), 1900 (circles), 3500 (squares). The fitted curves follow
directly from the superexponetial scaling shown in Fig. 3. The
dotted curves show the scaling that would be expected for the
critical behavior suggested by Willis and Kerswell [11].
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with respect to the one shown in [1]. This shift of the data
corresponds to a 2.5% difference in the absolute value of
Re. In particular the uncertainty of the pipe diameter in
[12] with (�1:5%) was comparatively large; furthermore
in the present study greater care was taken to measure the
absolute value of the temperature allowing to determine the
viscosity values more accurately.

The robustness of the scaling behavior was tested by
applying a periodic modulation to the flow rate. At a
frequency of up to 2 Hz and an amplitude of �Re ¼
�10 the shape of the S curves remained unchanged within
experimental errors. Equally small intentional misalign-
ments of the pipe segments did not show any noticeable
influence on the distribution shape. S-shaped probability
distributions have also been observed in plane Couette
[12,28] flow suggesting that this scaling behavior applies
to a variety of shear flows.

In Fig. 3(b) the present data are shown on a double log
linear scale. On this scale a straight line can be fitted to the
data suggesting lifetimes scale superexponentially with
Re: ��1 ¼ exp½� expðc1Reþ c2Þ�, with c1 ¼ 0:0057 and
c2 ¼ �8:7. As shown in Fig. 3 this two parameter fit
captures the observed escape rate dependence over 8 orders
of magnitude. Equally the S-shaped curves plotted in Fig. 2
directly follow from this straight line fit without any addi-
tional fitting parameters. While the data allows to rule out
functional forms which are subexponential, it should be
noted that adequate fits can also be obtained by other
superexponential functions.

For instance, ��1 ¼ exp½�ðRe=cÞn�, with c ¼ 1549 and
n ¼ 9:95 [dash-dotted line in Fig. 3(a)]. Here the magni-
tude of the exponent n is related to the rate at which the
basin of attraction of the laminar state shrinks as Re
increases [29]. Discriminating between the different super-
exponential scalings would require measurements over a
substantially larger Reynolds number range. However, due
to the rapid increase in lifetimes the parameter space
observable in experiments is rapidly approaching its limit.
In order to measure the escape rate at Re ¼ 2100 would
require an estimated time of 46 yr in our setup, and at Re ¼
2200 with 1012 yr the experimentation time would have to
surpass the age of the Universe. Previously long lived
transients whose lifetime scales superexponentially with
system size, so-called Type-II supertransient [29], had only
been observed in low-dimensional dynamical systems.

In conclusion, by increasing the range of measured life-
times by 6 orders of magnitude and significantly reducing
statistical errors the decay rate of turbulence has been
measured far more accurately than previously possible.
The observation of a critical point reported in many recent
studies is not supported. The superexponential behavior
found here identifies turbulence in pipe flow as a type-II
supertransient [29,30], which had been conjectured as a
potential description of turbulence two decades ago [30].
This scaling shows that at least in the intermittent regime,
the correct dynamical model of turbulence in linearly
stable shear flows is that of a strange repeller.
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