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Discussion Paper

Repetition priming and repetition suppression: A case for

enhanced efficiency through neural synchronization

Stephen J. Gotts1, Carson C. Chow2, and Alex Martin1

1Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental

Health (NIMH), National Institutes of Health, Bethesda, MD, USA
2Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases

(NIDDK), National Institutes of Health, Bethesda, MD, USA

Stimulus repetition in identification tasks leads to improved behavioral performance (“repetition priming”) but

attenuated neural responses (“repetition suppression”) throughout task-engaged cortical regions. While it is clear

that this pervasive brain–behavior relationship reflects some form of improved processing efficiency, the exact form

that it takes remains elusive. In this Discussion Paper, we review four different theoretical proposals that have the

potential to link repetition suppression and priming, with a particular focus on a proposal that stimulus repetition

affects improved efficiency through enhanced neural synchronization. We argue that despite exciting recent work on

the role of neural synchronization in cognitive processes such as attention and perception, similar studies in the

domain of learning and memory ––and priming, in particular––have been lacking. We emphasize the need for new

studies with adequate spatiotemporal resolution, formulate several novel predictions, and discuss our ongoing

efforts to disentangle the current proposals.

Keywords: Repetition priming; Repetition suppression; Synchrony; Prediction; Expectation.

When we repeatedly encounter an object in the envir-

onment, we become faster and more accurate at identi-

fying it, a phenomenon referred to as “repetition

priming” (see Schacter & Buckner, 1998; Tulving &

Schacter, 1990, for review). Repetition priming is

stimulus-specific, builds up over several stimulus repe-

titions (e.g., Logan, 1990; Ostergaard, 1998; Wiggs,

Martin, & Sunderland, 1997), and while it attenuates

over short delays (e.g., McKone, 1995, 1998), it can be

extremely long-lasting with significant residual effects

lasting days, months, and even years (e.g., Cave, 1997;

Mitchell, 2006; van Turennout, Ellmore, & Martin,

2000). It is also relatively automatic in the sense that

it often occurs without subjects’ awareness (e.g., Cave

& Squire, 1992) and is robust to attentional manipula-

tions (e.g., Kellogg, Newcombe, Kammer, & Schmitt,

1996; Szymanski & MacLeod, 1996) and modest

alterations of stimulus form (e.g., Biederman &

Cooper, 1991, 1992; Cave, Bost, & Cobb, 1996;

Srinivas, 1996). Historically, repetition priming has

played an important role in our understanding of the

organization of human memory due to its neuropsy-

chological dissociation from more explicit forms of

memory in amnesic patients (e.g., Graf, Squire, &

Mandler, 1984; Warrington & Weiskrantz, 1974).

Amnesic patients with damage to the medial temporal
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lobes, including the hippocampus, can exhibit pro-

found impairments in recall and recognition of recent

events while at the same time demonstrating normal or

nearly normal repetition priming effects (see Squire,

1992, for review). While caution is warranted in attri-

buting priming entirely to implicit as opposed to expli-

cit memory processes (both would typically

be expected to contribute in normal individuals––

e.g., Henson & Gagnepain, 2010; Voss & Paller,

2008), the basic dissociation has led researchers to

focus primarily on the role of neocortical plasticity

mechanisms, with priming potentially serving as a

window into the formation of long-term knowledge

representations that reside primarily in the neocortex

(e.g., McClelland, McNaughton, & O’Reilly, 1995;

Stark &McClelland, 2000). Indeed, stimulus repetition

paradigms in neuroimaging studies (e.g., functional

magnetic resonance imaging, or fMRI) are routinely

used as a tool to infer the nature of neocortical repre-

sentations in a variety of cognitive domains

(e.g., Andresen, Vinberg, & Grill-Spector, 2009;

Bedny, McGill, & Thompson-Schill, 2008; Cant,

Large, McCall, & Goodale, 2008; Fairhall, Anzellotti,

Pajtas, & Caramazza, 2011; Gold, Balota, Kirchhoff, &

Buckner, 2005; Gotts, Milleville, Bellgowan, &

Martin, 2011; Konen & Kastner, 2008; Mahon et al.,

2007; Piazza, Izard, Pinel, Le Bihan, & Dehaene,

2004). Recent work has identified separate contribu-

tions of perceptual, conceptual, and decision/response-

related processing to both task performance and prim-

ing effects (e.g., Dobbins, Schnyer, Verfaellie, &

Schacter, 2004; Horner & Henson, 2008, 2012; Wig,

Buckner, & Schacter, 2009; Race, Badre, & Wagner,

2010; Race, Shanker, & Wagner, 2009 Wig, Grafton,

Demos, & Kelley, 2005).

While behavioral performance improves with stimu-

lus repetition, neural activity in humans (BOLD fMRI)

andmonkeys (single-cell firing rates) tends to decrease, a

phenomenon often referred to as “repetition suppres-

sion” (see Desimone, 1996; Henson, 2003; Grill-

Spector, Henson, & Martin, 2006, for reviews). Like

priming, repetition suppression is stimulus-specific,

builds up over several repetitions (e.g., Jiang, Haxby,

Martin, Ungerleider, & Parasuraman, 2000; Miller,

Gochin, & Gross, 1991), and has both short-lived and

long-lasting components (e.g., Grill-Spector & Malach,

2001; Li, Miller, & Desimone, 1993; van Turennout,

Bielamowicz, &Martin, 2003). It occurs relatively auto-

matically (e.g., under anesthesia: Miller et al., 1991) and

in a wide range of neocortical brain regions. Indeed, the

agreement of the empirical properties of repetition prim-

ing and repetition suppression was initially met with

enthusiasm that the relationship between the two would

clarify the mechanisms underlying priming

(e.g., Schacter & Buckner, 1998; Wiggs & Martin,

1998). Given the automatic nature and generality of the

two phenomena throughout different cognitive domains,

tasks, and brain regions, the promise of understanding

this link is that it could pay large dividends in under-

standing the basic relationships between brain andmind.

However, the relationship between repetition prim-

ing and repetition suppression also presents a major

puzzle: How is it that reductions in neural activity can

mediate better behavioral performance? After all, the

propagation of neural activity from sensory areas

through to decision- and response-related brain regions

(ultimately in motor cortex) is what is thought to med-

iate performance in an identification task. In studies of

repetition priming using common objects and other

familiar stimuli, there is little evidence of repetition-

related increases in neural activity (see Henson, 2003,

for review). So where does the behavioral facilitation

come from? Just to highlight how puzzling this basic

situation is, it is worth remembering that the major

“activation-based” theories of priming that existed

prior to the first neuroimaging studies of priming in

the mid-1990s (e.g., spreading activation, connection-

ist models) posited repetition-related accumulation or

increases in activity in the nodes or units that repre-

sented a given stimulus (e.g., Anderson, 1983; Becker,

Moscovitch, Behrmann, & Joordens, 1997; Collins &

Loftus, 1975; McClelland & Rumelhart, 1985). This

issue would also appear to cut across the distinction

between implicit versus explicit memory, since both

sets of processes are likely to be reflected in some

mixture in neural and behavioral repetition effects.

One must still explain how less neural activity some-

how produces a more effective behavioral response. It

is worth noting that in a variety of cognitive domains

that do not intrinsically involve stimulus repetition

(e.g., attention, visual search, working memory, motion

discrimination) better behavioral performance is

generally associated with increased rather than

decreased activity in cells that prefer a stimulus, loca-

tion, or response (e.g., Luck, Chelazzi, Hillyard, &

Desimone, 1997; Newsome, Britten, & Movshon,

1989; Rainer, Asaad, & Miller, 1998; Schall & Hanes,

1993). Indeed, the basic logic used in mapping visual

receptive fields in single-unit studies, in evaluating the

results of functional localizers in neuroimaging studies,

or in quantitatively comparing neural responses to dif-

ferent experimental conditions, implicitly relies on the

assumption that greater activity corresponds to greater

involvement in processing. The disconnect with this

logic that is represented by the joint observation of

repetition priming and repetition suppression makes

these phenomena even more important and fundamental

to understand. Joint repetition priming/suppression
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appears to reflect some kind of improved efficiency

mechanism or set of mechanisms that apply over a

wide range of repetition lags. While the exact form of

these mechanisms is unclear, the need for such mechan-

isms is clear, given the high energy cost of neural

signaling (see Raichle & Mintun, 2006, for review). It

is likely that processes of natural selection discovered

solutions that optimize both performance and energy

use simultaneously (e.g., Aiello & Wheeler, 1995;

Allman, 1990). Below, we review four of the main

theoretical proposals about what form these solutions

might take (see also Grill-Spector et al., 2006).

THEORETICAL MODELS OF
REPETITION SUPPRESSION

AND PRIMING

Facilitation

The “Facilitation” model (Henson, 2003; James &

Gauthier, 2006; James, Humphrey, Gati, Menon, &

Goodale, 2000) is perhaps the most straightforward

resolution, positing that with repetition, neural activity

is advanced in time with a more rapid overall time

course (see Figure 1A). In BOLD fMRI experiments,

rapid timing differences such as this would be lost due

to the slow time course of the BOLD response. This

view has received some support in fMRI experiments

that either slowed down the time course of a trial by

gradually unmasking the stimuli (e.g., James et al.,

2000; but see Eger, Henson, Driver, & Dolan, 2007)

or attempted to measure BOLD latency differences

directly (e.g., Gagnepain et al., 2008; Henson, Price,

Rugg, Turner, & Friston, 2002). However, direct

electrical recordings of single-cell activity in a

variety of brain regions in monkeys (e.g., Anderson,

Mruczek, Kawasaki, & Sheinberg, 2008; Freedman,

Riesenhuber, Poggio, & Miller, 2006; Li et al., 1993;

McMahon & Olson, 2007; Rainer & Miller, 2000;

Verhoef, Kayaert, Franko, Vangeneugden, & Vogels,

2008) and in human patients undergoing neurosurgery

(e.g., Pedreira et al., 2010) have presented strong

counter evidence to this idea under typical stimulus

presentation conditions. Firing-rate curves to repeated

stimuli show no evidence of advancing in time and

are subsumed under the firing-rate curves to novel

stimuli. A more sophisticated version of this hypoth-

esis (Bayesian networks and “explaining away”) are

discussed below.

Facilitation 
(James & Gauthier, 2006; James et al., 2000)

Sharpening 
(Desimone, 1996; Wiggs & Martin, 1998)
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Figure 1. Theories that explain repetition priming in the face of repetition suppression. Graphical depictions of the theories discussed in the text

are shown for (A) facilitation, (B) sharpening, (C) synchrony, and (D) Bayesian “explaining away.”Hypothetical novel and repeated conditions are

shown with black and red curves, respectively. In panel D, suppressive feedback from higher levels to lower levels in the network structure is

highlighted by thick black lines, and the earlier separation of novel and repeated conditions in higher levels relative to lower levels is indicated with

vertical dashed lines in the activity plots to the right.
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Sharpening

A second idea, often referred to as “sharpening”

(Desimone, 1996; Wiggs & Martin, 1998), holds that

while neural activity is decreasing on the average, the

decreases are carried mainly by the cells that are poorly

tuned and/or weakly responsive to the repeated stimuli

with the “best” cells (i.e., most selective/responsive)

instead retaining their activity levels (Figure 1B). If the

poorly responsive cells are dropping out while the best-

responsive cells keep their responses, the distribution

of cell responses over the population is actually more

informative about the identity of the stimulus even

though the firing rates have decreased overall. In mon-

keys, there is certainly some evidence consistent with

sharpening in single-cell recordings, particularly after

lengthy periods of training with the same set of stimuli

(e.g., several months: Baker, Behrmann, & Olson,

2002; Freedman et al., 2006; Rainer & Miller, 2000).

However, stimulus repetitions that occur solely within

a single experimental session have tended to elicit

changes in firing-rate that are more consistent with

proportional “scaling”, in which the “best” responses

exhibit the largest decreases (e.g., Li et al., 1993;

McMahon & Olson, 2007; Miller, Li, & Desimone,

1993). It is particularly challenging to understand

how priming can occur under these circumstances

because the cells that are most responsible for driving

downstream responses are the ones that are decreasing

the most. fMRI studies in humans that have attempted

to evaluate sharpening of visual object representations

with experience have similarly generated mixed

results. Jiang et al. (2007) trained subjects to discrimi-

nate between morphed pictures of cars that were

assigned to distinct categories. Using an fMRI-

adaptation paradigm (see Grill-Spector & Malach,

2001), they found greater release from adaptation

with small changes in visual stimulus form in the right

lateral occipital cortex after training relative to pre-

training, consistent with “sharper,” less-overlapping

visual form representations. However, another recent

fMRI-adaptation study by Weiner, Sayres, Vinberg,

and Grill-Spector (2010), using short- and longer-lag

repetitions to measure changes in category selectivity,

found proportional changes for preferred and non-

preferred categories throughout the lateral aspects of

ventral occipitotemporal cortex, consistent with pro-

portional “scaling” (i.e., multiplying by a value

between 0 and 1) rather than sharpening. Only the

more medial aspects of ventral temporal cortex showed

larger repetition suppression effects for non-preferred

relative to preferred categories, and only for longer-lag

repetitions. Similar attempts to use rapid adaptation

paradigms to measure tuning changes in single-cell

firing rates in monkeys have failed to yield support

for sharpening (e.g., De Baene & Vogels, 2010). Even

if sharpening were shown to occur robustly in the

experimental contexts in which repetition priming is

observed, additional assumptions would need to be

articulated in order for sharpening to explain priming.

For example, when neural representations are

distributed over many cells in a “population code”

(e.g., Georgopoulos, Schwartz, & Kettner, 1986),

each individual cell–– even ones that fire at lower

rates––could potentially contribute to activating cells

in downstream regions that prefer the current stimulus.

What is to guarantee that a large loss of firing rate in the

poorly responsive cells will not result in weaker or

slower onset of firing in the preferred cells down-

stream? This point highlights another elusive aspect

of the sharpening idea. In order for sharpening of firing

rate responses to go through as an explanation of prim-

ing, there still seems to be a need for an increase in

firing rate at earlier latencies in the cells that most

prefer the repeated stimulus somewhere in the brain

(akin to the facilitation model). Perhaps this would not

occur until the ultimate or penultimate stage of proces-

sing in executing a response, but it would still appear to

be necessary. Indeed, most neural network models that

exhibit sharpening through the application of a super-

vised learning algorithm predict a mixture of repetition

suppression and enhancement effects (e.g., McClelland

& Rumelhart, 1985; Norman & O’Reilly, 2003). To

date, we still have little or no evidence of such an

enhancement occurring, even in lateral prefrontal

sites that may play a more central role in decision/

response selection (e.g., Rainer & Miller, 2000).

Enhanced neural synchronization

A very different proposal that may help to resolve this

puzzle is that as cells are firing at lower overall

rates, they are firing more synchronously with one

another, leading to more efficient neural processing

(Gilbert, Gotts, Carver, & Martin, 2010; Gotts, 2003)

(Figure 1C). Neurons are not only sensitive to the

average firing rates of their inputs––they are also

sensitive to the relative timing of their input spikes

due to the passive membrane property of “capacitance”

(e.g., Koester & Siegelbaum, 2000). Input spikes only

transiently depolarize a receiving cell, after which the

membrane voltage decays back toward the resting

potential at a rate dictated by the membrane time con-

stant. Small depolarizations that occur simultaneously

(i.e., synchronously) in a receiving cell will be much
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more likely to sum above the voltage threshold needed

to evoke an action potential. Biophysical models and

in vitro physiology experiments on cortical cells have

substantiated this relationship, demonstrating separate

contributions of input firing rate and synchrony to a

receiving cell’s responses (e.g., Reyes, 2003; Salinas &

Sejnowski, 2000, 2001). In the extreme, volleys of

single spikes could travel along reliably through a

processing pathway from sensory to motor, perhaps

only requiring a few spikes to generate an appropriate

response. Note that this mechanism would also not

require elevated firing rates in downstream areas

for priming to occur, potentially allowing for decreases

in firing rate throughout the entire system. In this view,

what increases is the likelihood of generating a single

post-synaptic spike when a pre-synaptic spike occurs.

It predicts that stimulus repetition should be accompa-

nied by larger fluctuations in local measures of neural

population activity (e.g., local field voltages and

magnetic field measurements, multi-neuron firing

rate binned over short time windows, etc.; e.g., Gilbert

et al., 2010), as well as greater phase-locking/coherence

between task-engaged cortical sites (e.g., Ghuman, Bar,

Dobbins, & Schnyer, 2008).

In a simplified neocortical circuit model that incor-

porated biologically proportionate numbers of excita-

tory and inhibitory cells and short-term plasticity

mechanisms, Gotts (2003) showed that it was possible

to simultaneously address short-lag repetition suppres-

sion and priming effects through enhanced synchroni-

zation. The model included synaptic depression, an

attenuation of transmitter release following spiking

activity (e.g., Abbott, Varela, Sen, & Nelson, 1997;

Tsodyks & Markram, 1997), and spike-frequency

adaptation, the spike-dependent activation of K+

currents that hyperpolarize the membrane post-

synaptically and decrease the membrane resistance

(e.g., Constanti & Sim, 1987; Madison & Nicoll,

1984), both parameterized to independent in vitro

and in vivo physiological recordings of neocortical

cells (e.g., Ahmed, Allison, Douglas, Martin, &

Whitteridge, 1998; Varela, Song, Turrigiano, &

Nelson, 1999). The model was able to address short-

term (i.e., a few seconds) repetition suppression effects

quantitatively as well as qualitatively in a variety of

monkey single-cell recording and human fMRI experi-

ments (e.g., Grill-Spector & Malach, 2001; Jiang

et al., 2000; Miller et al., 1991; Miller et al., 1993),

and it naturally produced “scaling” of the firing-rate

distributions as observed in several experiments

(e.g., MacMahon & Olson, 2007; Miller et al., 1993;

Weiner et al., 2010). Importantly, as the model’s firing

rates decreased with repetition, the synchronization

of the spike times simultaneously increased. This

enhanced synchronization could be propagated

between separate simulated regions in the model, and

it was robust to expected synaptic delays and a modest

amount of variability in the firing-rate distribution.

Simulating reaction time as the amount of time

required for a single receiving output cell to reach

a threshold number of spikes, the model also

produced repetition priming effects as synchronization

increased. Repetition priming that occurs through

enhanced synchronization––and in the face of firing-

rate decreases––constitutes a particular form of neural

efficiency mechanism. A model quite similar to the

Gotts (2003) model has also been applied to account

for repetition-related decreases in firing rate and

enhanced spike synchronization in the insect antennal

lobe (olfaction) with good success (Bazhenov, Stopfer,

Sejnowski, & Laurent, 2005). While the cellular

mechanisms in these models would not enhance

synchronization over the much longer repetition lags

discussed above, good candidates would include

longer-term synaptic plasticity mechanisms such

as spike-timing-dependent, long-term potentiation

and depression (LTP/LTD) (e.g., Bi & Poo, 1998;

Markram, Lubke, Frotscher, & Sakmann, 1997;

Sjöstrom, Turrigiano, & Nelson, 2001). With repeti-

tion, spike-timing-dependent LTP/LTD mechanisms

have the potential to improve and coordinate the timing

of spikes across cells, permitting enhanced local and

long-range synchronization among task-engaged brain

regions.

Despite the promise that the synchrony model holds

for resolving the puzzle of repetition priming and repe-

tition suppression, there are relatively few studies that

have evaluated it empirically. A burgeoning literature

on neural synchronization has developed over the last

10–15 years in domains such as attention and percep-

tual binding (see Engel, Fries, & Singer, 2001; Fries,

2005; Gregoriou, Gotts, Zhou, &Desimone, 2009b, for

reviews). However, only a handful of studies involving

stimulus repetition in the neocortex have used multi-

electrode recording techniques that are capable of mea-

suring spike synchronization directly. For example,

von Stein, Chiang, and Konig (2000) recorded simul-

taneously from areas 17 and 7 in cat visual cortex while

the cats performed a go/no-go task. When they com-

pared trained to novel stimuli, they found greater

phase-locking between the two visual areas in the

alpha frequency range (8–12 Hz) for trained stimuli.

Two recent recording studies by Dragoi and colleagues

in monkeys, one in V1, using multi-contact, cross-

laminar electrodes (Hansen & Dragoi, 2011), and

another in V4, using multiple single electrodes

(Wang, Iliescu, Ma, Josić, & Dragoi, 2011), examined

local changes in synchronization after brief visual
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adaptation (duration ¼ 300 ms) to oriented sine-wave

gratings. In both studies, firing rates were reduced to a

test grating presented 100 ms after the adaptor. Spikes

elicited by the test grating were simultaneously more

synchronized with the local field potential (LFP)

(spike-LFP coherence) in the gamma frequency range

(30–80 Hz) relative to a control condition in which the

adapting grating was replaced with a random dot patch

of matched luminance. The increases in gamma syn-

chronization in both studies were associated with

improvement in neuronal orientation discrimination

performance of the test gratings. For the study in V1,

for which laminar information was available, the

improvement in neuronal orientation discrimination

performance was only associated with increases in

gamma synchronization within the superficial cortical

layers that serve as output to subsequent visual areas. In

models, it is not clear whether synchronization effects

should have a different impact at higher versus lower

frequencies, since similar benefits can be observed

over a range of frequencies (e.g., Salinas &

Sejnowski, 2000, 2001). However, given that the

brain’s activity dynamics are generally weighted

toward lower frequencies (e.g., He, Zempel, Snyder,

& Raichle, 2010), one might expect changes in lower

frequencies to have a larger impact relative to higher

frequencies that have weaker overall amplitudes (such

as gamma).

A few additional studies using single electrodes

have provided relevant data for evaluating the syn-

chrony model. Anderson et al. (2008) exposed mon-

keys to novel and familiar images during passive

viewing while recording both multi-unit spiking activ-

ity and LFPs in inferior temporal cortex. In addition to

observing repetition suppression effects in firing rate to

the familiar images, they simultaneously observed lar-

ger low-frequency fluctuations in the LFPs (,5–10

Hz) that were phase-locked to the stimulus onset (i.e.,

larger evoked responses). In a related study, Peissig,

Singer, Kawasaki, and Sheinberg (2007) observed a

similar pattern in LFPs that they recorded with tran-

scranial electrodes implanted over occipitotemporal

sites. They first trained monkeys to classify a set of

bird and object pictures. During testing, the monkeys

performed the same classifications on both previously

trained and novel pictures. Behaviorally, they observed

repetition priming effects for trained relative to novel

pictures (faster reaction time and improved accuracy),

while they observed larger low-frequency fluctuations

in the LFPs that were particularly prominent at 170 ms

after stimulus onset. In a different study aimed at eval-

uating changes in stimulus selectivity to familiar pic-

tures, Freedman et al. (2006) analyzed the firing-rate

responses of a large number of single cells (,300) in

inferior temporal cortex (area TE) to familiar and novel

stimuli during passive viewing. They observed

increases in stimulus selectivity to familiar pictures

(consistent with the sharpening model), while also

observing a hint of periodicity in the firing rate curves

to familiar stimuli, with fluctuations at approximately

5–10 Hz (see their Figure 8). Closer inspection of the

firing rate curves reported for the three monkeys in

Anderson et al. (2008, their Figure 4) also reveals a

similar tendency for periodicity. Taken together, these

studies all provide evidence that supports the basic

premise of the synchrony model, namely that cells

should fire in a more synchronous and temporally

coordinated manner following stimulus repetition,

both locally and in inter-areal interactions among

task-engaged cortical sites. It is important to note that

such evidence is not limited to monkeys and other

mammals. Striking similarities also exist in electrode

recordings in insects during stimulus repetition. For

example, Stopfer and Laurent (1999) repeatedly pre-

sented odor puffs to the antennae of locusts and

recorded spikes and LFP responses in the antennal

lobe (i.e., the insect equivalent of the olfactory bulb

in mammals). Across a series of repetitions presented at

a rate of one stimulus per 10 s, they found repetition

suppression in firing rates, as well as increased syn-

chrony between the spikes and the LFPs in the 20–

30-Hz frequency range. In a separate conditioning

experiment in honeybees, Stopfer, Bhagavan, Smith,

and Laurent (1997) were able to pharmacologically

block odor-selective synchronous firing while leaving

odor-selective firing rates intact. Under these condi-

tions, the bees’ odor discrimination was impaired,

demonstrating a causal role of synchrony in their

behavior.

Having just reviewed many of the microelectrode

recording studies in animals that are relevant to the

evaluation of the synchrony model, what relevant data

exist for humans and in repetition priming tasks? In most

human studies, measurements of neural activity are

restricted to noninvasive neuroimaging methods such

as fMRI, magnetoencephalography (MEG), and electro-

encephalography/event-related potentials (EEG/ERP).

The most extensive literature in humans that employs a

method with the appropriate temporal resolution is the

EEG/ERP literature on repetition priming (e.g., Bentin &

Peled, 1990; Henson et al., 2003; Henson, Rylands,

Ross, Vuilleumier, & Rugg, 2004; Kiefer, 2005;

Olichney et al., 2000; Paller & Gross, 1998; Rugg,

Brovedani, & Doyle, 1992; Rugg, Mark, Gilchrist, &

Roberts, 1997; Swick, 1998). While scalp EEG/ERP

studies have occasionally found evidence consistent

with larger evoked responses to repeated stimuli for

select electrode sites (e.g., Schendan & Kutas, 2003;
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Scott, Tanaka, Sheinberg, & Curran, 2006), most studies

have failed to find such evidence or have even reported

attenuated ERPs with repetition (e.g., Fiebach, Gruber,

& Supp, 2005; Gruber & Muller, 2005; Race et al.,

2010). The discrepancy with the results reviewed

above for electrode-recording studies with animals

could occur for several reasons: (1) there is a species

difference with humans, and larger ERPs with repetition

are simply not occurring (i.e., the synchrony model is

wrong); (2) the timing of fluctuations in the ERPs, such

as those in the alpha to gamma frequency range (,8–80

Hz), are somewhat idiosyncratic from subject to subject

and group-averaging across subjects (or low-pass filter-

ing the voltage signals below 20 Hz) washes these dif-

ferences away; or (3) the spatial resolution of scalp EEG

signals is too coarse and requires source estimation to see

spatially localized effects, particularly for those in deeper

sources that may carry the largest effects (e.g., the fusi-

form gyrus). Two recent source-localized MEG studies

of repetition priming in humans suggest that the answer

may be one of the last two reasons (Ghuman et al., 2008;

Gilbert et al., 2010). Gilbert et al. (2010) asked subjects

to covertly name pictures of common objects by pressing

a response button when they knew the correct name,

with randomly intermixed novel and repeated trials.

They measured evoked power (i.e., phase-locked to the

stimulus onset) in source-estimated data by an event-

related beamformer approach, that is, event-related syn-

thetic aperture magnetometry (“ER-SAM”) (Cheyne,

Bostan, Gaetz, & Pang, 2007), focusing the analyses

on brain regions known to exhibit repetition suppression

in fMRI studies (e.g., extrastriate visual cortex, the fusi-

form gyrus, and the lateral prefrontal cortex). In order to

retain phase information in the MEG signals, source-

estimated responses in different frequency bands

(5–15 Hz: theta/alpha; 15–35 Hz: beta; 35–60 Hz:

gamma) were first averaged in the time domain across

trials, either novel or repeated. Evoked power estimates

were calculated in 100-ms bins around the stimulus

onset. Gilbert et al. (2010) observed increases in low-

frequency evoked power (5–15 Hz) for repeated stimuli

in the right fusiform gyrus and right lateral prefrontal

cortex, with the earliest effects occurring between 100

and 200 ms post-stimulus onset in the fusiform gyrus.

Similar results were observed in striate/extrastriate visual

cortex, albeit in a slightly higher frequency range (beta:

15–35 Hz). Ghuman et al. (2008) measured changes in

phase-locking between distant cortical sites in lateral

prefrontal and occipitotemporal cortex while subjects

made size judgments about novel and repeated objects.

They found increases in fronto-temporal phase-locking

between 10 and 15 Hz for repeated relative to novel

objects. Importantly, the latency of the phase-locking

increase predicted the magnitude of repetition priming

for individual subjects. Taken together, these studies

suggest that stimulus repetition in humans indeed leads

to similar changes to those observed in electrode record-

ing studies in animals. Repetition leads to larger local

fluctuations in neural activity, as well as increased cou-

pling between distant task-engaged sites, providing sup-

port for the synchrony model.

Bayesian networks and “explaining
away”

The final proposal that we will consider is a more

sophisticated variant of the facilitation model proposed

by Friston and Henson (Friston, 2005; Henson, 2003;

see Grill-Spector et al., 2006, for further discussion). In

this proposal, the cortex is cast as a form of hierarchical

generative Bayesian statistical model (see also Dayan,

Hinton, Neal, & Zemel, 1995; Lee & Mumford, 2003;

Lewicki & Sejnowski, 1996; Mumford, 1992; Rao &

Ballard, 1999). Perceptual inference occurs as a pro-

gressive interaction between bottom-up sensory input

(“evidence”) and top-down expectations (“prediction”)

throughout the cortical hierarchy. A critical aspect of

this view is that top-down predictions serve to inhibit

or suppress the bottom-up sensory evidence, with resi-

dual activity in the lower levels of the cortical hierarchy

serving as “prediction error” that is, in turn, relayed

back toward the higher levels. The learning mechanism

(expectationmaximization––EM––algorithm) improves

the top-down predictions in the service of reducing

prediction error, leading to reductions in neural activity

in lower levels with stimulus repetition (i.e., repetition

suppression) (see Figure 1D). This process is commonly

referred to in the literature on Bayesian networks

as “explaining away” (e.g., Pearl, 1988), since as the

appropriate causes of the sensory evidence are learned,

the incorrect causes (i.e., prediction error) are reduced

and explained away. The proposal bears similarity to the

simple facilitationmodel in that stimulus repetition leads

to progressively earlier termination of activity, poten-

tially supporting earlier and improved behavioral identi-

fication/discrimination.

The Bayesian “explaining away” model makes a

number of novel predictions in stimulus repetition

paradigms. Given that repetition suppression in a cer-

tain brain region results from top-down input and that

this input can be further propagated to progressively

lower levels, the model predicts the following: (1)

repetition suppression effects should tend to occur ear-

lier in higher-level regions than in lower-level regions,

(2) repetition should lead to stronger top-down causal

interactions as assessed by methods such as Grainger

causality and dynamic causal modeling (DCM)
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(Friston, Harrison, & Penny, 2003), and (3) the nature

of those stronger top-down causal interactions should

be suppressive/inhibitory (i.e., negative coupling). One

relatively novel feature of the Bayesian view is that

higher levels of the processing hierarchy can track the

likelihood of encountering particular objects, as well as

more abstract variables such as the likelihood of object

repetition in a stream of stimuli. This feature leads to a

fourth prediction: a high likelihood of stimulus repeti-

tion in an experimental session (or block of trials)

should produce a stronger top-down expectation/pre-

diction from brain regions representing this more

abstract contextual information (possibly in prefrontal

regions). Hence, larger repetition suppression effects

should be observed in brain regions receiving this kind

of input (perhaps in object or category selective cortex

in the temporal lobes). This last prediction has been

evaluated in several recent experiments. Summerfield,

Trittschuh, Monti, Mesulam, and Enger (2008)

embedded short-term repetitions of face pictures in

blocks of trials in which repetitions were either fre-

quent (60% of trials) or infrequent (20% of trials). They

found that repetition-suppression effects in the fusi-

form face area (FFA) were stronger when repetitions

were expected, with similar recent results reported in

EEG/ERP (Summerfield,Wyart, Johnen, & deGardelle,

2011) and MEG (Todorovic, van Ede, Maris, & de

Lange, 2011). In contrast, a study of repetition suppres-

sion in monkey TE by Kaliukhovich and Vogels (2011)

failed to find evidence of this kind of contextual sensi-

tivity in single-cell firing rates or in LFP gamma band

power. Another recent fMRI study in humans, while

able to replicate the effect of repetition expectation on

repetition-suppressionmagnitude, found that this expec-

tation effect disappeared when subjects had their atten-

tion diverted away from the stimuli (Larsson & Smith,

2012). This would appear to rule out the extreme ver-

sion of the “explaining away” view in which all

repetition-suppression effects are explained by rela-

tively high-level repetition expectation. However, it is

important to keep in mind that this extreme version

probably had few adherents to start with, since earlier,

more perceptual levels in the Bayesian hierarchy would

not be expected to be influenced directly by more

abstract variables such as the frequency of stimulus

repetition. Taken together, these results provide partial

support for a role of high-level expectation in modulat-

ing short-term repetition suppression effects, at least at

particular points along the cortical processing hierarchy.

The first three predictions listed above have been eval-

uated less thoroughly. However, one recent study by

Ewbank et al. (2011) has provided some support for

the prediction that top-down causal interactions should

be stronger following stimulus repetition. They used

DCM in fMRI to investigate changes in causal interac-

tions between the fusiform body area (FBA) and the

extrastriate body area (EBA) while subjects viewed

pictures of human bodies. Pictures were either repeti-

tions of the same body identity or different identities,

shown in blocked conditions. They also evaluated the

effect of varying picture size and viewpoint on repetition

suppression and causal interactions. They found repeti-

tion suppression in both EBA and FBA to all viewing

conditions (the same identity evoked less activity than

different identities). Simultaneously, the DCM analyses

revealed increased top-down causal interactions from

FBA to EBA for same-identity relative to different-

identity blocks in all conditions, with the same size/

same view condition also showing greater causal

interactions in the bottom-up direction. The fact that

repetition suppression and greater top-down causal

interactions occurred in the same experimental circum-

stances is consistent with prediction no. 2 listed above.

However, these authors did not evaluate the more direct

association between the strength of top-down coupling

from FBA to EBA and the magnitude of repetition

suppression in EBA, nor did they focus discussion on

the apparently positive sign of the top-down coupling

(relevant to prediction no. 3 listed above; for another

study evaluating positive versus negative causal inter-

actions with DCM, see a recent paper by Cardin,

Friston, & Zeki, 2011). Positive coupling suggests an

excitatory rather than inhibitory top-down influence

on the lower-level activity, inconsistent with the

“explaining away” account of repetition suppression

but potentially consistent with the synchrony model

(e.g., Ghuman et al., 2008). The use of a blocked design

also brings with it issues of interpretation, due to poten-

tial differences in attentional state and processing strat-

egy (see below for further discussion). Nevertheless,

these preliminary results provide some partial support

for the Bayesian “explaining away” proposal. Future

experiments will need to focus on how proposals such

as the synchrony model and “explaining away” might

be further teased apart.

GOING FORWARD

Having reviewed four basic proposals as to how repeti-

tion suppression might afford repetition priming, the

only view that we consider definitively ruled out by

current data is the facilitation model, at least in its

existing form. Firing-rate recordings in a variety of

areas in monkeys and even in humans (e.g., Pedreira

et al., 2010) have shown that the onset of neural

responses in typical stimulus viewing conditions is

not temporally advanced. In many experimental
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circumstances used to measure priming, particularly

those in which stimulus repetitions occur within a

single experimental session, tests of the sharpening

model have also yielded a surprising lack of support.

At present, we view the synchrony model as the most

promising. Recent experiments in a variety of cogni-

tive domains in animals and humans have provided

converging support for the role of neural synchroniza-

tion in behavior. However, the Bayesian “explaining

away” model has received experimental support, as

well, and neither the synchrony nor “explaining away”

model has been run through a full gauntlet of experi-

mental tests. Below we lay out three basic experimental

methods, that, if applied, should help to bring about

more clarity to the relationship between repetition sup-

pression and priming.

Spike-LFP recordings in animals and
human patients

The most direct way to evaluate the synchrony model

would be to measure single-unit and/or multi-unit spik-

ing responses, along with LFPs, in several task

engaged cortical regions. For example, monkeys

could be trained to perform a discrimination task on

visual stimuli with responses indicated through eye

movements, taking behavioral measures of response

time and accuracy (as in McMahon & Olson, 2007).

Responses could then be recorded simultaneously in

object/form-selective temporal regions such as the TE

and areas involved in the execution of eye movements

such as the frontal eye fields (FEF). The synchrony

model would predict that spike-LFP coherence, possi-

bly in lower frequencies such as alpha (8–12 Hz) or

beta (13–30 Hz), should be greater for repeated

stimuli within areas as well as across areas (for an

example of this type of experiment in visual attention,

see Gregoriou, Gotts, Zhou, & Desimone, 2009a).

Furthermore, this increased coherence should predict

the magnitude of repetition priming. Interestingly, the

Bayesian “explaining away” model would also predict

increased coherence between spikes in higher-level

areas, such as FEF, and LFPs in lower-level areas

(e.g., TE, in this case, due to suppression by top-

down predictions). Both models would expect similar

results in other paired locations within the ventral

visual pathway that are involved in object form proces-

sing (e.g., V1, V2, V4, and TEO). The “explaining

away” model would posit a further relationship

between coherence increases and the magnitude of

repetition suppression in the more bottom-up region

of a pair of recording sites (with larger repetition sup-

pression expected for larger coherence). Taking

measures of causality in LFP-LFP recordings between

two connected regions (e.g., Grainger causality, DCM,

etc.), the “explaining away”model clearly predicts that

the directionality of the interactions should flow more

in the top-down direction for repeated stimuli com-

pared to novel stimuli. Repetition-suppression effects

should also occur earlier in top-down regions than in

bottom-up regions. The quantitative relationship

between repetition suppression and increased synchro-

nization, as well as the direction of information flow

following repetition, is less constrained in the syn-

chrony model, potentially allowing for somewhat inde-

pendent effects and symmetrical top-down/bottom-up

causal interactions (see discussion below). However,

the synchrony and “explaining away” proposals differ

critically in which cells should show the increased

coupling. The synchrony model posits that task-

engaged cells that carry information critical for task

performance are the ones that are synchronizing, acti-

vating each other more reliably and effectively with

single spikes. The prediction that follows is that cells

that prefer a repeated stimulus are the ones that should

synchronize (relative to those that are weakly tuned or

weakly responsive). In contrast, the Bayesian “explain-

ing away” proposal holds that there are two separate

subpopulations of cells, cells that encode the condi-

tional expectation of perceptual causes ( fi) and those

encoding prediction error ( ξi) (see Figure 1D and

Friston, 2005, p. 826, for discussion). After learning,

the “error” cells are the ones that are suppressed by top-

down predictions, and it is the firing of these cells that

should carry the effects of the more strongly negative

top-down coupling (perhaps exhibiting hyperpolarized

voltages following spiking in higher-level areas repre-

senting predictions). Occasionally, experiments of this

type (i.e., recording spikes and LFPs with microelec-

trodes) can be conducted in human patients undergoing

brain surgery (e.g., Kraskov, Quiroga, Reddy, Fried, &

Koch, 2007), and the same sorts of predictions would

be expected to hold in these contexts.

Intracranial EEG in humans

While we view recent source-estimated MEG experi-

ments in humans as supporting the synchrony model

(and potentially the Bayesian “explaining away”

model), source-estimation procedures are forced to

make many assumptions in order to provide an inverse

solution, and the algorithms are complex. Direct elec-

trical recordings with good spatial resolution

(<1–2 cm) would be useful for verifying the basic

pattern of results observed in these MEG experiments,

as well as for testing further predictions of the two
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models. Such measures are currently available in intra-

cranial EEG studies in human patients who are under-

going surgery for intractable epilepsy; this is referred to

as electrocorticography (EcoG) (e.g., Canolty et al.,

2006; Puce, Allison, & McCarthy, 1999). While the

subdural electrodes used in these studies typically do

not allow the recordings of spikes, they permit record-

ings of field voltages directly from the cortical surface

and often provide coverage over a large extent of one

cerebral hemisphere, recording signals from up to 100

electrodes simultaneously per patient. We have

reported preliminary results of one such study utilizing

an object-naming task in two patients with coverage of

the lateral surface of the left frontal and temporal lobes

(Gotts, Crone, & Martin, 2010, Society for

Neuroscience Abstracts, Program 94.11). We found

that stimulus repetition led to repetition priming in

both patients and increases in low-frequency evoked

power (1–15 Hz) for virtually all task-engaged electro-

des (i.e., those that exhibited significant evoked

responses), replicating the basic pattern of Gilbert

et al. (2010). Like Ghuman et al. (2008), we also

observed increases in phase-locking (LFP-LFP coher-

ence) between task-engaged frontal and temporal elec-

trodes in the alpha (8–12 Hz) and low beta (12–18 Hz)

frequency ranges. With additional patients, we should

have the ability to test several of the predictions dis-

cussed above for the spike-LFP experiments, such as

the timing and directionality of changes in the top-

down and bottom-up directions, as well as the associa-

tion between coherence changes and the magnitude of

repetition priming. While the inability to record spikes

in single cells will necessarily create some ambiguity in

interpretation with respect to the exact form that

changes in synchronization take (e.g., spike synchrony

versus rapid co-modulation of firing rates), the advan-

tage of this method over the spike-LFP recordings is

the nearly whole-hemisphere coverage that it provides.

To our knowledge, only one other ECoG study to date

in humans has examined the effect of stimulus repeti-

tion on local field activity (Puce et al., 1999). However,

this study examined only short-term repetitions in ven-

tral temporal cortex during passive viewing (as in

Miller et al., 1991), and no measures of repetition

priming were taken.

Connectivity methods in fMRI

One large downside in using source-estimated MEG or

ECoG to assess changes in neural synchronization is

that the analog of repetition suppression in these meth-

ods is unclear. Fluctuations in field activity, either

magnetic or electrical, may eventually be found to

have a reliable correlate in terms of overall neural

activity level, but this relationship is currently

unknown. The two types of measures could theoreti-

cally be unrelated in the same manner that the mean

and variance of a random variable can be independent

and separate quantities. For example, a firing rate that

is uniformly distributed in time may have no detectable

effect on field fluctuations, resulting in a blindness to

certain sorts of changes in activity level when taking

field measurements. In order to relate repetition sup-

pression, repetition priming, and changes in synchrony,

it would be best to measure these phenomena in the

same experiments. While this should be possible for

the spike-LFP recording methods in animals, it might

also be possible in coarser methods that are available to

more researchers, such as fMRI in humans. First

emphasized by Friston and colleagues (Friston et al.,

1997, 2003), fMRI studies that measure patterns of

temporal covariation in the BOLD response across

pairs or collections of brain regions have become com-

monplace following the advent of resting-state func-

tional connectivity methods (see Fox & Raichle, 2007,

for review). If cells in two brain regions are engaging in

more synchronous interactions with increased coupling

while processing repeated compared to novel stimuli,

one might expect the magnitudes of the corresponding

BOLD responses to co-vary at higher levels, as well.

This idea suggests a relatively straightforward fMRI

experiment in which it should be possible to evaluate

the separate effects of stimulus repetition on the mean

BOLD response versus on the magnitude of BOLD

covariation between pairs of task-engaged voxels/

regions. However, there is at least one main stumbling

block to carrying out this experiment. When novel and

repeated stimuli are randomly intermixed in a typical

rapid event-related design, standard analysis methods

do a good job at estimating the mean BOLD response

to each condition, even with a great deal of overlap of

the slow responses to individual stimuli as long as

baseline periods are appropriately interleaved.

However, the same is not true of estimating the varia-

tion around the mean to each individual stimulus. This

is what would be necessary in order to measure a

condition-specific change in correlation/coupling

cleanly, with correlation/coupling between two brain

regions being calculated over the set of individual

stimulus responses in each experimental condition

(e.g., novel versus repeated). One solution would be

to use a blocked design with no temporal overlap of the

novel and repeated conditions, although that has well-

known downsides, creating problems of interpretation

with respect to strategic effects and differences in

attentional state (e.g., D’Esposito, Zarahn, & Aguirre,

1999; Hamburger & Slowiaczek, 1998). A better
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solution would be to space individual stimuli far enough

apart such that the peaks of the BOLD responses are no

longer overlapping (,8–10 s, closer to a “slow” event-

related design; e.g., Bandettini & Cox, 2000), still

permitting randomly interleaved conditions. In an

experiment such as this (currently underway in our

laboratory), the synchrony model predicts that while

the mean BOLD response is decreased to repeated

stimuli (repetition suppression), correlations of the

responsemagnitudes to individual repeated stimuli across

task-engaged voxels should increase. Furthermore, beta

weights or causal model parameters (e.g., DCM) that

assess the strength of inter-regional coupling should be

more positive and facilitatory for repeated compared to

novel stimuli. The Bayesian “explaining away” model

makes at least two novel predictions in this experiment:

(1) methods of assessing causality (e.g., Grainger,

DCM) should reveal a greater top-down flow of infor-

mation (see discussion of Ewbank et al., 2011, above),

and (2) beta weights or DCM model parameters

between two connected brain regions should be nega-

tive, rather than positive as in the synchrony model,

between top-down and bottom-up areas for repeated

stimuli. The magnitude of this negative coupling

should be associated with the magnitude of repetition

suppression in the bottom-up areas.

A FINAL NOTE ON REPETITION

SUPPRESSION AND THE SYNCHRONY

MODEL

The synchrony model posits that stimulus repetition

should lead to enhanced local and long-range syn-

chronization among task-engaged cortical regions,

and this, in turn, should lead to improved accuracy

and more rapid response times. What does this

model have to say about repetition suppression? In

the Gotts (2003) neural network model, short-term

repetitions produced repetition suppression and syn-

chronization in a more or less unitary fashion,

through short-term plasticity mechanisms of synap-

tic depression and spike-frequency adaptation.

However, these mechanisms recover over tens of

seconds and do not apply at the longer lags used

to study repetition suppression in many experi-

ments. At longer lags, long-term plasticity mechan-

isms, such as LTP/LTD, are likely to be responsible

for any observed changes in synchronization, per-

haps through spike-timing-dependent plasticity

(e.g., Bi & Poo, 1998; Markram et al., 1997;

Sjöstrom et al., 2001), which improves the timing

relations among cells that prefer the repeated stimu-

lus. It is further possible that LTD dominates the

changes such that activities will be reduced overall,

producing repetition suppression, but how this

would relate to changes in synchrony is quite

unclear. We would tentatively suggest that the

mechanisms producing changes in synchronization

and those resulting in overall activity decreases may

be at least partially independent, possibly explain-

ing the lack of relationship between repetition sup-

pression and repetition priming that has

occasionally been observed (e.g., McMahon &

Olson, 2007; Race et al., 2009; Xu, Turk-Browne,

& Chun, 2007). Partial independence would require

at least two mechanisms that would tend to be

engaged when stimuli are repeatedly encountered

in the service of improving neural processing effi-

ciency. With more data in spike-LFP and slow

event-related fMRI experiments, the relative impor-

tance of repetition suppression and synchronization

in explaining priming may be put to the appropriate

tests.
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Commentaries

Predictive coding, precision and
synchrony

Karl Friston

The Wellcome Trust Centre for Neuroimaging,

University College London, London, UK

E-mail: k.friston@fil.ion.ucl.ac.uk

http://dx.doi.org/10.1080/17588928.2012.691277

Abstract: Gotts, Chow and Martin provide a very nice

review of repetition priming and suppression that reaches

a compelling conclusion—we need to look more closely at

synchronization in learning and priming. Indeed, current

modeling work focuses on this issue—namely, the

dynamic causal modeling of electrophysiological

responses to address the role of synchrony in Bayesian

explaining away. This commentary revisits the nature and

relationships among the four theories in Gotts et al. and

nuances some of their empirical predictions. In particular,

I emphasize precision or uncertainty in predictive coding as

a unifying consideration.

I think that we are closer to understanding the com-

putational anatomy of repetition and priming than

might be thought. This optimism rests upon casting

the theories reviewed in Gotts et al. as complemen-

tary perspectives on the same problem: Facilitation

and sharpening are phenomena that are fully consis-

tent with Bayesian explaining away, which is

mediated by synchronization. In other words,

explaining away is a theory about what the brain is

doing and synchronization is a proposal about how

the brain does it. In one sense, the Bayesian brain

hypothesis is almost certainly correct—in the sense

that our capacity for near-optimal perceptual infer-

ence means that we must be performing some form of

approximate Bayesian (probabilistic) inference. The

real question is how this approximate inference is

implemented neuronally. At present, the most popu-

lar implementation is predictive coding that involves

reciprocal message-passing between hierarchically

deployed cortical areas (Mumford, 1992; Rao &

Ballard, 1999). There is a vast amount of neurobio-

logical evidence in support of this scheme, which

can be derived—in a fairly straightforward way—

from (approximate) Bayesian optimality principles

(Friston, 2008). So, can predictive coding explain

the phenomena of facilitation and sharpening; and

does it admit a role for synchrony?

Predictive coding

Predictive coding relies upon the optimization of top-

down predictions—thought to originate in deep pyra-

midal cells—that try to suppress or explain away pre-

diction errors, encoded by superficial pyramidal cells

in lower hierarchical levels (Mumford, 1992; Friston,

2008). Prediction errors are then broadcast over for-

ward connections to adjust predictions at higher levels.

Crucially, top-down predictions are not just about the

content of lower-level representations but also about

our confidence in those representations. This confi-

dence may be mediated by modulating the post-

synaptic gain of superficial pyramidal cells encoding

prediction error—to boost their influence on higher

levels. Mathematically, this gain corresponds to the

precision (inverse variance) of prediction errors and

provides a nice metaphor for attention (Feldman &

Friston, 2010).

It is fairly straightforward to explain facilitation and

sharpening within this framework: Facilitation

involves a speeding of evoked neuronal responses,

which—in the context of predictive coding—speaks

to an increase in synaptic rate constants that is formally

identical to increases in synaptic gain (encoding preci-

sion or confidence). This boosts prediction errors that

inform the best hypothesis about the cause of sensory

input (Gregory, 1980), while suppressing alternative

hypotheses; namely it sharpens neuronal representa-

tions. On exposure to repeated stimuli, plastic changes

in forward (and backward) connections enable a more

efficient facilitation and sharpening (see Henson et al.,

2012). In short, this scheme accounts for repetition

priming and suppression and the phenomena of

facilitation and sharpening. So where does synchrony

come in?
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Synchronous gain and predictive coding

An obvious candidate for controlling post-synaptic

gain is synchronization of pre-synaptic inputs—a phe-

nomena referred to as synchronous gain (Chawla,

Lumer, & Friston, 1999). This means that the selection

of prediction errors—that drive higher-level represen-

tations—almost certainly involves synchronization.

Indeed, there is current interest in the possibility that

bottom-up messages—from superficial pyramidal cells

—are mediated by fast (gamma) frequencies, while

top-down messages from deep pyramidal cells may

be mediated by slower (beta) frequencies (Buffalo,

Fries, Landman, Buschman, & Desimone, 2011). It is

this hypothesis that current collaborations with Pascal

Fries and colleagues hope to test—using dynamic cau-

sal modeling (Bastos et al., 2012).

Empirical predictions

Finally, I will reiterate the importance of formal the-

ories and modeling—as emphasized by Gotts et al.—

by commenting on the empirical predictions made by

predictive coding. First, repetition suppression rests on

optimizing connection strengths that mediate predic-

tions. Crucially, these change (anti-symmetrically) the

efficacy of both forward and backward connections

(Friston, 2008). Second, because predictive coding

minimizes prediction error, it is based upon feedback

dynamics. This means that either forward or backward

connections must be (effectively) inhibitory. The fact

that both forward and backward connections are exci-

tatory (Glutamatergic) has exercised us a little. Current

thinking is that explaining away is mediated by local

inhibitory interneurons (Bastos et al., 2012). Finally,

repetition suppression is expressed throughout the hier-

archy (in high and low areas) at the same time. This is

because message-passing is recurrent and suppression

of prediction error emerges concurrently at all levels.

Repetition suppression to high-level attributes will

clearly occur later but it will be expressed at lower

levels. This phenomenon has been studied extensively

in the context of the simplest repetition suppression—

namely the mismatch negativity (Garrido, Kilner,

Stephan, & Friston, 2009).

In conclusion, I think Gotts et al. raise a number of

fascinating questions that may herald some important

advances in our understanding of computational archi-

tectures in the brain, over the next few years.

* * *

Explaining away repetition
effects via predictive coding

Michael P. Ewbank and Richard N. Henson

MRC Cognition and Brain Sciences Unit,

Cambridge, UK

E-mail: michael.ewbank@mrc-cbu.cam.ac.uk

http://dx.doi.org/10.1080/17588928.2012.689960

Abstract: Gotts, Chow and Martin summarize Predictive

Coding models in which repetition-related decreases in

neural activity reflect an “Explaining Away” of stimulus-

driven neural activity. Here we elaborate the subtleties of

testing such models, particularly with fMRI.

The “Explaining Away” model described by Gotts

et al. is really the application of a more general doctrine

in neuroscience—that of “predictive coding” (Friston,

2012)—to the case of repetition effects. The key idea is

that neurons receive predictions from higher layers of a

hierarchical network, with any difference between

those predictions and the input from lower layers pro-

ducing a prediction error in that layer. Synaptic change

serves to reduce future prediction error (i.e., improve

predictions), resulting in reduced activity in those neu-

rons coding the prediction error when a stimulus is

repeated.

In the specific instantiation of predictive coding

discussed by Gotts et al., each layer contains three

types of neurons: Not just those coding prediction

error, but also those coding predictions (from higher

layers) and input (prediction errors from lower layers).

Yet the relative contribution of these different types of

neurons to a hemodynamic measure like BOLD is

uncertain (see Egner, Monti, & Summerfield, 2010),

making such models difficult to test with fMRI. Testing

may be easier with EEG/MEG though, given that

Friston (2008) makes a specific claim that the cortical

neurons coding prediction error are the large, supra-

granular pyramidal neurons, thought to make the domi-

nant contribution to the EEG/MEG signal.

Regarding experimental paradigms to test predic-

tive coding, it is important to note that the recent debate

about whether expectation of repetition does, on the

basis of human fMRI and EEG (e.g., Summerfield,

Wyart, Johnen, & de Gardelle, 2011), or does not, on

This work was supported by the UK Medical Research Council

(MC_A060_5PR10) and (MC_A060_5PQ50).

© 2012 Medical Research Council
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the basis of monkey single-cell recording

(Kaliukhovich & Vogels, 2011), modulate repetition

suppression is actually somewhat parenthetical to pre-

dictive coding. This is because the “predictions”

manipulated in the Summerfield et al. paradigm are

likely to be conscious/strategic (and so may be less

prevalent in monkeys). Yet the “predictions” in predic-

tive coding theory are automatic, intrinsic properties of

the brain networks that do not necessarily depend on

conscious expectation. Thus while the effects of

higher-order expectancy are clearly interesting and

important (and probably generated by prefrontal regions

that act on the ventral stream), the lack of such expec-

tancy effects in other paradigms (Kaliukhovich &

Vogels, 2011; Larsson & Smith, 2012) should not be

used to reject predictive-coding models.

Another approach used to support predictive coding

models of repetition suppression is to examine changes

in connectivity between brain regions. Our own work,

for example, has used Dynamic Causal Modelling

(DCM) of fMRI data to show that repetition of bodies

(Ewbank et al., 2011) or faces (Ewbank, Henson,

Rowe, Stoyanova, & Calder, in press), at least across

different images, modulates backward connections

from “higher” regions in fusiform cortex to “lower”

regions in extrastriate occipital cortex. Gotts et al. won-

dered why this modulation by repetition reflected a

more positive coupling parameter in the DCM, when

according to predictive coding, one might expect a

more negative coupling associated with the suppres-

sion of prediction error in lower regions by higher

regions. Again, however, the precise interpretation is

more subtle because we do not know which types of

excitatory/inhibitory neurons contribute to the BOLD

signal. Moreover, due to high interdependency

between parameters in such recurrent DCMs, inference

is often more appropriate at the level of model selection

rather than model parameters (Rowe, Hughes, Barker,

& Owen, 2010). Thus, although we discussed our

results in terms of predictive coding, the main conclu-

sion of the Ewbank et al. papers (which were based on

model selection) is that repetition suppression is not

purely a local phenomenon (such as sharpening or even

neuronal fatigue; Grill-Spector, Henson, & Martin,

2006), but also entails interactions between brain

regions. This claim is consistent with both predictive

coding and synchrony theories.

A further reason why DCM for fMRI may be lim-

ited in its ability to distinguish theories like predictive

coding and synchrony is that the modulatory inputs

(repetition in this case) need to be sustained over sev-

eral seconds in order to have an appreciable impact on

the network dynamics (Henson, Wakeman, Phillips, &

Rowe, 2012). This is why we used a blocked design in

the Ewbank et al. studies, where the modulation was

assumed to operate throughout blocks. As Gotts et al.

observe, such designs are undesirable from a beha-

vioral perspective (e.g., encouraging use of conscious

expectancies like those discussed above). Randomized

designs (e.g., Henson, 2012) are clearly preferable, but

in order to test for changes in effective connectivity as

defined by dynamic models like DCM, data with

higher temporal resolution are needed (e.g., Garrido,

Kilner, Stephan, & Friston, 2009). Thus we agree with

Gotts et al. that an exciting future direction is to exam-

ine connectivity, perhaps via synchrony, between

regions using methods like EEG/MEG.

* * *

Repetition accelerates neural
dynamics: In defense of
facilitation models

Richard N. Henson

MRC Cognition and Brain Sciences Unit,

Cambridge, UK

E-mail: rik.henson@mrc-cbu.cam.ac.uk

http://dx.doi.org/10.1080/17588928.2012.689962

Abstract: Gotts, Chow and Martin give an excellent

contemporary summary of the neural mechanisms that have

been proposed to underlie the effects of stimulus repetition on

brain and behavior. Here I comment on their Facilitation

mechanism, and provide EEG evidence that repetition can

accelerate neural processing.

Gotts et al. (2012) review four types of neural mechan-

ism that might underlie the reduced brain response

associated with repetition of a stimulus: Facilitation,

Sharpening, Synchrony and Explaining Away. In par-

ticular, they make a case for mechanisms based on

This work was supported by the UK Medical Research Council

(MC_US_A060_0046).

© 2012 Medical Research Council
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Synchrony, while questioning the cases for Facilitation

and Sharpening. However, it is important to note that

these mechanisms are not mutually exclusive. For

example, it is possible that predictive coding is a gen-

eral property of the brain (Friston, 2012; Ewbank &

Henson, 2012), and that the associated explaining

away of stimulus-driven activity is achieved by syn-

chronous activity between hierarchical brain regions,

such that repetition causes sharper (sparser) spatial

patterns of activity, and a facilitation (acceleration) of

the dynamics of that activity. So below, I caution

against the premature dismissal of Facilitation.

From a dynamical perspective, the brain’s response

to an external perturbation (stimulus) is likely to entail

a period of higher energy (activity) that lasts several

hundred milliseconds until a new, stable state of lower

energy is reached (an attractor). As in many recurrent

neural network models, this state-change is likely to

trigger synaptic change, so as to widen/deepen the

basin of attraction. When that stimulus is repeated

therefore, there will be a faster settling (stabilization)

of the network dynamics, i.e., a shorter duration of

above-baseline neural activity (possibly despite negli-

gible change in the onset of that activity). A shorter

duration of neural activity will reduce the magnitude of

response recorded by hemodynamic methods like

fMRI that integrate over seconds of activity (i.e.,

cause repetition suppression; Henson, 2003).

The tension that Gotts et al. observe between faster

behavioral responses (repetition priming) and reduced

neural activity does not apply to Facilitation models,

because both are the consequence of accelerated neural

processing. However Facilitation is not really a mechan-

ism, but rather a description of what happens at the

neural level (to produce a reduced response at

the hemodynamic level). Nonetheless, it remains

distinct from the other mechanisms considered, in that

Facilitation could occur with, or without, any

concomitant change in Sharpness, Synchrony or

Explaining Away.

Gotts et al. dismiss Facilitation models because of a

lack of direct electrophysiological evidence. However,

such evidence may be abundant in human EEG/MEG

studies; just rarely conceptualized as such. Figure 1, for

example, shows that the ERP to the repeatedpresentation

of a face can be parsimoniously described as an acceler-

ated version of the ERP to its initial presentation. Though

such extracranial ERPs could originate from multiple

neural sources (as Gotts et al. warn), it is unclear how

this multiple determinacy would produce such a simple

temporal scaling. Since EEG/MEGdata relate directly to

LFPs from a population of neurons, the puzzle, as Gotts

et al. observe, is why this apparent acceleration has not

been observed at the level of spiking rates.

Looking forward, I fully support Gotts et al.’s pro-

posals for future research, which can be divided into

better data and better modeling. In addition to concur-

rent recording of local field and action potentials, to

address the puzzle above, better data will come from

recording from neurons in different layers of cortex, to

relate to specific predictive coding models

(e.g., Friston, 2008), and to establish which of these

neurons contribute to M/EEG and fMRI signals. Data

with high temporal resolution (such as M/EEG) is

critical to test for dynamical changes over the few

hundred milliseconds post-stimulus onset, for exam-

ple, in terms of within- and/or across-frequency

changes in power and/or phase of oscillations. In

terms of better models, computational instantiations

of some the above ideas are vital (e.g., the important

work of Gotts, 2003), to relate both spatial

(e.g., sharpness) and temporal (e.g., synchrony) dimen-

sions of data, and to relate single-neuron data to popu-

lation responses like fMRI; particularly, as noted

above, if those ideas are not mutually exclusive and

all turn out to reflect aspects of reality.

* * *

Figure 1. EEG data recorded from 70 electrodes (Henson,

Wakeman, LItvak, & Friston, 2011) show that the ERP to the

immediate (after ~3 seconds) yet unpredictable repetition of a face

(magenta) is accelerated relative to that for its initial presentation

(cyan). The topography (left; nose upward) and timecourse (right) are

the first, dominant spatial and temporal components of a singular-

value decomposition (SVD) of the (temporally-concatenated) trial-

averaged ERPs, averaged over 18 participants. The scaling (zoom) of

the time-axis for the temporal component of the initial presentation

was systematically varied to minimize the RMSE between it and

that for the repeat presentation. The mean acceleration factor was

92%, which was significantly less than 100% across participants,

t(17) ¼ 3.18, p < .01 (two-tailed).
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Learning-induced sharpening of
neuronal tuning and adaptation:
Not “mixed”

Maximilian Riesenhuber

Laboratory for Computational Cognitive

Neuroscience, Department of Neuroscience,

Georgetown University Medical Center,

Washington, USA

E-mail: mr287@georgetown.edu

http://dx.doi.org/10.1080/17588928.2012.689970

Abstract: Gotts et al. present an attractive model of how

priming can arise from neuronal adaptation effects. Their

very satisfying account helps to demystify adaptation effects.

In fact, adaptation effects are even less mysterious than

portrayed: While Gotts et al. state that “fMRI studies in

humans that have attempted to evaluate sharpening of visual

object representations with experience have . . . generated

mixed results”, referring to fMRI adaptation (fMRI-A)

studies by our group and others, the results described in the

cited papers are in fact entirely compatible, further establishing

the usefulness of fMRI-A to probe neuronal tuning in humans.

To review, Weiner, Sayres, Vinberg and Grill-Spector

(2010) investigated fMRI adaptation effects across the

brain for different object classes, with subjects viewing

images belonging to categories such as flowers, cars, or

guitars. For short lag adaptation paradigms (where

prime and target immediately follow each other, with

no intervening images), they report that adaptation

consisted of a scaling of fMRI responses, i.e., a

response reduction that was proportional to the initial

response, in line with neurophysiological results in

non-human primates (De Baene & Vogels, 2010;

McMahon & Olson, 2007). This response scaling

effect of adaptation is what is exploited by studies

using fMRI rapid adaptation techniques (fMRI-RA)

to estimate neuronal tuning specificity: In fMRI-RA,

the response to a pair of stimuli presented in rapid

succession is measured for pairs similar or different in

a specific perceptual aspect (e.g., viewpoint or shape),

and the difference between the two response ampli-

tudes is interpreted as an index of stimulus representa-

tional dissimilarity at the neuronal level. For instance,

we previously used fMRI-RA to test our model of face

neurons in the fusiform face area, the FFA (Jiang et al.,

2006). Specifically, the model predicted that viewing a

particular face should be associated with a sparse acti-

vation pattern over face neurons sharply tuned to faces

similar to the currently viewed face, with little activa-

tion of neurons sharply tuned to dissimilar faces. Thus,

in an fMRI-RA paradigm that varies the similarity

between two face images shown successively in a

single trial, the BOLD-contrast signal in the FFA for

increasing within-pair face dissimilarity should pro-

gressively increase as the two faces activate increas-

ingly disjoint subpopulations of neurons (causing

increasingly lower amounts of neuronal adaptation),

up to where the two images activate different subpo-

pulations of neurons, at which point the response level

should asymptote and not increase for further increases

in face dissimilarity. Correspondingly, at the behavioral

level, this model predicts that the ability to discriminate

specific faces is directly related to the dissimilarity of

the neuronal activation patterns associated with these

faces in the FFA and thus the response level in the

adaptation paradigm. These predictions were con-

firmed experimentally (Jiang et al., 2006).

This ability to probe neuronal selectivity with

fMRI-RA opens the door to using adaptation effects

to measure how perceptual and task learning change

neuronal selectivity. A common prediction (with ample

support from animal studies, as pointed out by Gotts

et al.) of computational models is that perceptual learn-

ing involves sharpening of neuronal stimulus representa-

tions. The goal of Jiang et al. (2007)was to use fMRI-RA

to test the core prediction that perceptual learning also

sharpens neuronal stimulus representations in humans.

To this end, we trained subjects to categorize morphed

car shapes (Jiang et al., 2007), and probed the selectivity

of car-selective stimulus representations using fMRI-RA

before and after training. We reasoned that if categoriza-

tion training leads to sharpened neuronal selectivity to

car images, then the overlap of neuronal activations

caused by two sequentially presented car images differ-

ing by a fixed amount of shape change would decrease

following training, resulting in an increase of BOLD-

contrast response in brain regions selective for the car

shapes (independently identified in lateral occipital cor-

tex, the LOC). Indeed, we found that categorization

training induced a significant release from adaptation

for small shape changes in LOC irrespective of category

membership, compatible with the sharpening of a repre-

sentation coding for physical appearance (while an area

in lateral prefrontal cortex showed sensitivity post-

training to explicit changes in category membership, as

predicted by a computational model).
Supported by NSF grants 0749986 and 1026934 and NIH grant

HD067884.
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When applying fMRI-RA in this way, i.e., to probe

changes in neuronal selectivity induced by intervening

task training, it would be highly problematic if probing

the stimulus representation with fMRI-RA itself

affected the selectivity of the underlying representation

(e.g., by sharpening of neuronal tuning), which would

raise the question of whether the changes observed in

the adaptation paradigm were due to training or were

due to probing with fMRI-RA. However, in the same

study (Jiang et al., 2007), we conducted a control

experiment that established that repeated fMRI-RA

without intervening training did not cause a change in

release from adaptation. Similarly, a recent monkey

electrophysiology study showed that stimulus repeti-

tion did not affect neuronal shape selectivity (De Baene

& Vogels, 2010). Nevertheless, special care needs to be

taken when designing fMRI-A paradigms to control

factors such as differences in attention or task difficulty

for particular stimuli or trials that might cause modula-

tions of stimulus responses independent of adaptation

effects and could thus complicate the interpretation

of the experimental results (see also Krekelberg,

Boynton, & van Wezel, 2006).

Thus, in summary, (Weiner et al., 2010) and (Jiang

et al., 2007) did not produce mixed results but rather

paint a consistent picture, that adaptation techniques,

when used carefully, can be used as a powerful tool to

finely probe the selectivity of neuronal tuning with fMRI

.

* * *

Synchrony upon repetition: One
or multiple neural mechanisms?

Kevin S. Weiner1 and Kalanit Grill-Spector1,2

1Department of Psychology, Stanford University,

Stanford, USA
2Neuroscience Institute, Stanford University,

Stanford, USA

E-mail: kweiner@stanford.edu

http://dx.doi.org/10.1080/17588928.2012.689973

Abstract: A central goal of cognitive neuroscience is to

understand the relationship between repetition suppression

(RS) and priming. Gotts and colleagues propose a new model

examining this relationship where stimulus repetition produces

increased neural synchronization, thus increasing the efficiency

of neural responses and potentially explaining the characterizing

features of both RS and priming. While synchrony is an

appealing new model, we suggest that further constraints are

necessary to account for qualitatively different types of RS and

priming yet to be considered by the present implementation.

Gotts et al. propose a new model to explain a puzzling

enigma in cognitive neuroscience: How does stimulus

repetition generate reduced neural responses (repetition

suppression; RS) as well as faster and more accurate

behavioral responses (priming)? The authors suggest

that along with the commonly reported RS, stimulus

repetition also increases neural synchronization locally

within neurons of a brain region, as well as globally

among regions in a task-engaged cortical network. In

turn, this increased synchrony leads to increased preci-

sion of neural responses by shortening the time it takes

downstream neurons to reach firing threshold, which

then expedites behavioral responses. Two new ideas

are appealing about the synchrony model. First, it sug-

gests an unconsidered direction where joint coupling of

neural responses may be the key link between RS and

priming. Second, synchrony predicts that in order to

understand the neural mechanisms of RS and priming,

researchers need to consider not only the firing rate or

overall responses of a neural population, but also the

coherence among neural firing patterns.

Though both priming and RS are widespread phe-

nomena, there are qualitatively different types of each

yet to be considered by the present implementation of

the synchrony model. Researchers have identified dis-

sociable forms of priming linked with RS in specific

regions either cortically distant from one another

(e.g., in frontal and temporal cortex; Schacter,

Dobbins, & Schnyer, 2004; Race, Shanker, &

Wagner, 2009) or cortically proximate (e.g., within

left lateral frontal cortex; Race et al., 2009). Further,

though the authors use evidence of RS from striate and

extrastriate regions across species in support of the

synchrony model, RS dynamics are not cortically uni-

form, but are region-specific and time scale dependent.

For instance, different types of RS matriculate in early

and high-level visual regions: RS occurs after a single

presentation of a stimulus and is sustained across many

intervening stimuli in high-level ventral temporal cor-

tex (VTC), but not in primary visual cortex (V1; Sayres

and Grill-Spector, 2006). Indeed, in order to induce RS

in V1, one needs continual stimulus repetitions for anThis work was supported by NSF BCS grant 0920865.
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extended time period and to “top-it-up” with later

repetitions in order to extend its effects even over a

handful of intervening stimuli (Boynton and Finney,

2003; Fang, Murray, Kersten, & He, 2005).

Additionally, even within VTC, medial and lateral

aspects display differential RS effects across time

scales: RS in lateral VTC manifests as scaling of neural

responses across immediate and long-lagged repeti-

tions, whereas RS in medial VTC exhibits scaling for

immediate repetitions and sharpening for long-lagged

repetitions (Weiner et al., 2010). We give examples

from the visual system, but these concerns of regional

specificity and time scale dependency are general con-

cerns of RS across cortical systems and species (van

Turennout, Ellmore, & Martin, 2000; Schacter et al.,

2004; Verhoef, Kayaert, Franko, Vangeneugden, &

Vogels, 2008; Race et al., 2009). As timing parameters

within and across task-engaged regions are central to

the authors’ idea of synchronization, it is essential to

consider at least two alternatives that may account for

the regional specificity of RS. One possibility is that

synchrony can generate many types of RS for different

ranges and combinations of model parameters

(e.g., synaptic depression and spike-frequency adapta-

tion). Alternatively, differential neural mechanisms

underlie differential RS effects across regions and

time scales where synchrony alone cannot explain a

multitude of RS effects. Simulating interactions among

model parameters will be a useful stepping-stone for

testing the feasibility of these alternative hypotheses.

Gotts et al. further propose that increased synchrony

of neural responses with repetition occurs both locally

within a region and globally across regions. However,

local and inter-areal synchrony are fundamentally dif-

ferent and are associated with different types of neural

signatures. Long-range coupling is associated with

local field potential (LFP) power in lower frequencies

(alpha range, 8–20 Hz), whereas local spiking activity

is associated with LFP power in higher frequencies

(high gamma range, > 60Hz). As decreased local firing

is the defining feature of RS, intuitively then, high

gamma power tends to decrease with repetition (De

Baene and Vogels, 2010). On the other hand, additional

findings show increases in alpha power with repetition

(Ghuman, Bar, Dobbins, & Schnyer, 2008; Gilbert,

Gotts, Carver, & Martin, 2010), suggesting increased

inter-areal synchrony of neural responses. These data

suggest an anticorrelated relationship between local and

inter-areal synchrony as a function of repetition, which

is at odds with the present description of the model.

Thus, we suggest that a productive future direction will

be to make explicit predictions about what aspects of the

model relate to local synchrony vs. inter-areal syn-

chrony, and to test these hypotheses empirically by

examining coherence in spiking activity and LFPs.

In sum, the synchronymodel suggests important new

directions for understanding RS, priming, and their rela-

tionship. Future consideration of computational factors

accounting for the multitude of RS and priming effects,

as well as their effects on local and inter-areal syn-

chrony, will determine either the ubiquity or specificity

of the synchrony model of repetition.

* * *

All in the timing: Priming,
repetition suppression, and
synchrony

David B. T. McMahon

Section on Cognitive Neurophysiology and

Imaging, Laboratory of Neuropsychology, National

Institute of Mental Health, National Institutes of

Health, Bethesda, USA

E-mail: mcmahond@mail.nih.gov

http://dx.doi.org/10.1080/17588928.2012.689969

Abstract: The terms “priming” and “repetition suppression”

are commonly used to refer to phenomena occurring on time

scales that can differ by several orders of magnitude, ranging

from seconds to days or even years. The models discussed by

Gotts et al. provide a thought-provoking theoretical

framework for relating neuronal and behavioral plasticity. I

argue that whereas both the sharpening and the Bayesian

models may mediate the gradual acquisition of perceptual

expertise, they are unlikely to account for more rapid

behavioral changes. The synchrony model, however, could

potentially operate within the timing constraints imposed by

the fastest forms of repetition priming.

The author is supported by the NIMH Intramural Research

Program.

This work was authored as part of the Contributor's official duties

as an Employee of the United States Government and is therefore a

work of the United States Government. In accordance with 17 U.S.C.

105, no copyright protection is available for such works under U.S.

Law.
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With regard to the sharpening hypothesis, it is note-

worthy that the evidence for enhanced selectivity in

monkey inferotemporal (IT) cortex comes from pro-

longed training periods across many days, if not weeks

(Baker, Behrmann, & Olson, 2002; Freedman,

Riesenhuber, Poggio, & Miller, 2006; De Baene, Ons,

Wagemans, & Vogels, 2008). By contrast, studies of

visual response plasticity that were expressed over time

scales relevant to the fastest priming effects found the

opposite of sharpening, namely scaling reductions of

firing rates (Li, Miller, & Desimone, 1993; McMahon

and Olson, 2007; De Baene and Vogels, 2010). These

findings support the idea that gradually acquired per-

ceptual expertise could be mediated by sharpening, but

some other mechanism is needed to explain more

rapidly induced behavioral changes such as priming.

According to the Bayesian model, perceptual learn-

ing is mediated by priors represented in high-level

cortical areas that become more efficient at predicting

representations in lower-level sensory areas.

Consistent with this notion, recent physiological evi-

dence shows that IT visual responses are reduced when

the appearance of a stimulus is reliably predicted by an

antecedent stimulus, but this effect is only evident after

many days of training (Meyer and Olson, 2011). A

similar effect is not observed when prior expectation

is based on experience with predictable stimulus pair-

ings during a single block within a recording session

(Kaliukhovich and Vogels, 2011). These two studies

together provide an upper and lower bound on the time

scale over with a mechanism of Bayesian “explaining

away” could be instantiated in the brain.

An appeal of the synchrony model is that it could

operate on a fast enough time scale to account for prim-

ing. In monkeys trained to report a perceptual decision

with eye movements (McMahon and Olson, 2007), the

observed distribution of saccadic reaction times fell

between 220 and 490ms (Figure 2A, inset). In the

same study, repetition suppression was evident in visual

responses of neurons in IT cortex at a latency of 150ms

(Figure 2A). These results constrain the time range

within which synchrony (or any neural mechanism of

priming) would need to operate: Certainly some time

after the visual response, perhaps after the repetition

suppression, but before the behavioral responses.

How do these timing constraints compare with the

candidate mechanisms proposed for the synchrony

model? Gotts et al. focus on examples of reduced

spiking responses that were accompanied by low-

frequency (4–8 Hz) oscillations (Freedman,

Riesenhuber, Poggio, & Miller, 2006, Anderson,

Mruczek, Kawasaki, & Sheinberg, 2008), a schematic

of which is shown in Figure 2B.

Strong rhythmic activity in this range is prevalent in

IT cortex (Rollenhagen and Olson, 2005; Mirpour and

Esteky, 2009). A recent study further showed that, in

monkeys performing a delayed match to sample task,

low-frequency oscillations recorded simultaneously

in V4 and prefrontal cortex became more coherent

during the delay period (Liebe, Hoerzer, Logothetis,

& Rainer, 2012). This result lends plausibility to the

proposal by Gotts et al. that modulation of low-

frequency oscillations could act as a mechanism for

enhanced long-range coupling between cortical areas.

The relative time scales of behavioral priming, repeti-

tion suppression, and rhythmic spiking illustrated here

suggest a behavioral approach for testing of the syn-

chrony model: If enhanced neuronal synchrony leads

to faster reaction times, then it should be possible to

manipulate behavioral responses using stimuli that
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Figure 2. Timing constraints on neural mechanisms of priming. A,

Spiking responses to primed and unprimed visual stimuli recorded

from single units in IT cortex. Inset, distribution of saccadic reaction

times irrespective of priming (2.5%— 97.5% percentile range, based

on McMahon and Olson, 2007). B. Schematic of oscillatory spiking

response evoked from IT neurons (based on Rollenhagen and Olson,

2005; Mirpour and Esteky, 2009).
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match (or interfere with) the resonance frequency of

the oscillation in the spiking responses.

* * *

Focusing on the frontal cortex

Aidan J. Horner1,2

1 UCL Institute of Cognitive Neuroscience, London,

UK
2 UCL Institute of Neurology, London, UK

E-mail: a.horner@ucl.ac.uk

http://dx.doi.org/10.1080/17588928.2012.689959

Abstract: Gotts et al. provide a timely review of the major

neural models of repetition suppression (RS) and priming.

They justifiably call on researchers to focus their attention on

the extent to which these phenomena can be explained by

changes in synchrony between cortical regions. They are

relatively agnostic as to which regions may be critical to RS

and priming. Here I argue we should devote more attention to

the role of frontal regions, and suggest that there is a need to

engage with more cognitive accounts of priming in order to

develop a comprehensive neurocognitive account of priming

and RS.

Gotts et al. present four neuralmodels designed to capture

the complex relationship between repetition suppression

(RS) and behavioral priming (henceforth referred to as

priming). They support the idea that synchrony, tempo-

rally correlated neural firing that allows for increased

efficiency of communication between spatially distinct

cortical regions, underlies this relationship. I strongly

support Gotts et al.’s call for more research focusing

on the interaction between cortical regions following

stimulus repetition. Their discussion, however, was

relatively agnostic concerning the cortical regions

we should focus on in order to understand such inter-

actions. I would argue that the prefrontal cortex, more

specifically the inferior frontal gyrus (IFG), and its

interactions with more posterior perceptual regions,

should be the focus of our attention.

Firstly, the IFG has been perhaps the only region

that has consistently demonstrated RS across multiple

stimulus types including visual objects (e.g., Koutstaal

et al., 2001), faces (e.g., Henson et al., 2003), and

written (e.g., Barton, Fox, Sekunova, & Iaria, 2010)

and spoken (e.g., Gagnepain et al., 2008) words.

Secondly, the IFG has consistently been shown to

correlate with priming (e.g., Dobbins, Schnyer,

Verfaellie, & Schacter, 2004). Thirdly, transcranial

magnetic stimulation to the IFG has been shown to

disrupt priming and RS (Wig, Grafton, Demos, &

Kelley, 2005). Finally, using magnetoencephalogra-

phy, visual object repetition has been shown to increase

synchrony between frontal and occipitotemporal

regions (Ghuman, Bar, Dobbins, & Schnyer, 2008).

It seems the IFG plays a critical and causal role in the

production of priming and is therefore a key region on

which to focus our attention. Two questions emerge from

this discussion: (1) Why has the IFG been relatively

overlooked despite this evidence and (2) What role does

the IFG play in priming and RS? With regard to the

former question, the first possible reason is due to the

legacy of particular cognitive accounts of priming, which

were largely adopted by the neuroimaging community,

that suggest priming relates to the modification of per-

ceptual (and conceptual) representations (Henson, 2003).

The second reason is that RS, as measured by fMRI, is

often maximal in occipitotemporal perceptual regions.

Thus, regions known to be involved in perceptual proces-

sing, such as lateral occipital and fusiform regions in the

case of object recognition, were (and still are) the pre-

dominant cortical regions of focus.

What role does the IFG play in priming and RS? In

recent years, there has been a resurgence of interest in

the idea that bindings between a stimulus (e.g., a visual

object) and a response (e.g., a “yes” decision) can facil-

itate response selection processes (Logan, 1990). Such

stimulus-response (S-R) contributions have now been

shown to drive RS in frontal regions (Horner & Henson,

2012). Furthermore, S-R learning has been shown to

explain a large proportion of priming variance during

long-lag visual classification studies (Horner & Henson,

2009). As such, it seems the IFG may play an important

role in the selection of task-appropriate responses,

possibly integrating information from multiple cortical

sources including, though not limited to, posterior

perceptual regions. Importantly, given the localization

of S-R contributions to frontal regions and the dominant

role it plays in priming, it would seem appropriate to

focus our efforts on understanding RS in frontal regions,

and how this region communicates with more posterior

perceptual regions.

Finally, the above discussion serves to highlight the

need to embed cognitive theories of priming and RS

(e.g., episodic vs. abstractionist accounts) within
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models of the neural mechanisms that underlie such

effects (e.g., sharpening vs. synchrony). For example,

not only do we need to state how RS results in priming

but also what information is being learned (i.e., what

representations are being encoded/modified) in order

for such phenomena to manifest. Each level of account

should serve to shape and constrain the other, allowing

for a fuller understanding of the neurocognitive

mechanisms that give rise to RS and priming.

* * *

Repetition suppression and
repetition priming are processing
outcomes

Gagan S. Wig

Department of Neurology, Washington University

School of Medicine, St Louis, USA

E-mail: gwig@npg.wustl.edu

http://dx.doi.org/10.1080/17588928.2012.689964

Abstract: There is considerable evidence that repetition

suppression (RS) is a cortical signature of previous

exposure to the environment. In many instances RS in

specific brain regions is accompanied by improvements in

specific behavioral measures; both observations are

outcomes of repeated processing. In understanding the

mechanism by which brain changes give rise to behavioral

changes, it is important to consider what aspect of the

environment a given brain area or set of areas processes,

and how this might be expressed behaviorally.

Different structures of the brain engage in different

forms of information processing. One way of defining

the function of a specific brain structure is to examine

its methods of computation in service of learning

(e.g., Doya, 1999). There is considerable anatomical,

neurophysiological, and theoretical evidence to sug-

gest that the cerebral cortex engages in unsupervised

learning to reflect the statistics of the environment by

forming efficient cortical representations of the organ-

ism’s experiences. Moreover, different areas of the

cerebral cortex learn the statistics of distinct features

of the environment, and RS may be a neural signature

of this statistical learning. Identifying a mechanism by

which RS produces the behavioral changes that typi-

cally accompany repeated processing (i.e., repetition

priming) necessitates careful consideration of how RS

reflects the processing outcomes of a specific area or

set of areas, and what the appropriate behavioral metric

for this processing outcome may be.

Drawing from empirical and theoretical sources,

Gotts and colleagues describe four potentialmechanisms

for howRSmay result in repetition priming. The authors

provide clear and testable predictions for evaluating how

thesemechanismsmay link RS to behavioral facilitation.

Their article will be a key source of reference in moving

forward with this important endeavor.

In studying the mechanism by which RS may result

in repetition priming, it is imperative to remember that

both RS and repetition priming are independent mea-

surements of the processing outcomes of repeated

experience. It is not necessary that observations of RS

in a collection of areas be clearly linked to changes in

the observed behavior, or any clear or measureable

behavioral measures for that matter. If RS is a neural

signature of cortical learning, it is likely that RS

observed in different areas is a consequence of different

processing outcomes. As such, different areas may

reveal that they’ve learned the statistics of the environ-

ment via distinct behavioral measures.

As an example, speeded response times following

repeated semantic classification of visually responsive

objects is typically accompanied by RS within numer-

ous brain areas including regions of the inferior frontal

gyrus, inferior temporal lobes, and occipital cortex.

While the behavioral improvements may be a product

of increased synchrony between a subset of regions

that are involved in decision processes (e.g., between

areas within the frontal and temporal cortex; see

Ghuman, Bar, Dobbins, & Schnyer, 2008), other

regions exhibiting RS need not be directly linked to

the measured classification-time improvements.

RS can be eliminated or diminished in certain regions

using transient disruption (i.e., TMS; Wig, Grafton,

Demos, & Kelley, 2005) or changes in stimulus-to-

decision mapping (e.g., Dobbins, Schnyer, Verfaellie,

& Schacter, 2004; Horner & Henson, 2008; Wig,

Buckner, & Schacter, 2009). The disruption of RS is

also accompanied by reductions in the observed beha-

vioral improvements (e.g., response time during seman-

tic classification). However, despite these region-

specific reductions in RS, RS is still prominent in other

regions that are likely involved in task performance

(e.g., regions of the visual cortex—see Figure 4 of Wig
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et al., 2005). Does this mean that the neural changes in

the visual cortex are “epiphenomenal”, unrelated to any

form of learning, or mediated by a distinct mechanism?

Not necessarily: An alternate explanation is that the

visual cortex has learned some statistics related to the

experimental paradigm and that this has resulted in

neural changes reflecting this learning (i.e., RS), but

that an appropriate behavioral marker of the statistical

learning in these regions has not been sufficiently

measured.

In understanding how RS may lead to behavioral

facilitation, and evaluating one mechanism for this

relationship over the other, we need to carefully iden-

tify the appropriate behavioral metrics that may signify

cortical learning for the specific area or set of areas that

are the focus of investigation. Investigations of repeti-

tion priming have a long and rich history and have

described a variety of behavioral changes that reveal

past exposure to the environment (e.g., Roediger,

1990; Schacter, 1987). RS may be a consequence of

the mechanism by which the brain indexes past expo-

sure, and it will be essential to identify appropriate

measures to quantify the ways in which the brain and

its substructures might retain and express information

related to previous experience.

* * *

Task, time and context as
potential mediators of repetition
priming effects

Benjamin J. Dyson1 and Claude Alain2

1 Department of Psychology, Ryerson University,

Toronto, Canada
2 Rotman Research Institute, Toronto, Canada

E-mail: ben.dyson@psych.ryerson.ca

http://dx.doi.org/10.1080/17588928.2012.689961

Abstract: In apparent conflict with the synchronicity model,

we consider three types of evidence from the auditory

literature (negative priming, perceptual learning, sensory

gating) that reveal stimulus repetition can be associated

with decreased rather than increased early evoked

responses. The difficulty with consolidating a wide range of

tasks in adjudicating between theories of repetition priming

might be because the potentially critical roles of task, time

and context are neglected.

Gotts, Chow and Martin provide a stimulating review

regarding one of cognitive neuroscience’s most perva-

sive double-takes: Processing facilitation at a behavioral

level expressed as activation suppression at a neural

level. Attempting to consolidate studies on perception,

attention and memory across a number of different

species inevitably leads to spatially and temporally dif-

fuse patterns of activation, which threaten to cloud the

evaluation of some already relatively complex hypoth-

eses regarding repetition priming. Limiting our discus-

sion to the interpretation of event-related potentials,

Gotts et al. appeal to the observation of repeated stimuli

with “larger low-frequency fluctuations in the LFPs (~

5–10 Hz) that were phase-locked to the stimulus onset

(i.e., larger evoked responses)” in support of the syn-

chronicity model, citing novel versus familiar (or

trained) image exposure paradigms in monkeys. We

will discuss additional evidence from the human audi-

tory evoked response literature and consider the poten-

tially critical roles of task, time and context.

The negative priming paradigm provides one exam-

ple of how stimulus repetition interacts with task

demands. Typically, the requirement for participants

to respond to a target stimulus that was designated as

a distractor stimulus on the previous trial leads to less

efficient responding. When evoked potentials asso-

ciated with auditory negative priming are considered,

negative priming trials were associated with reduced

N1 amplitude, a negative deflection at about 100ms

post-stimulus, relative to standard control trials in

which neither the target nor distractor on the previous

trials was repeated (Mayr, Niedeggen, Buchner, &

Pietrowks, 2003). Similar reductions in N1 amplitude

were also observed in repetition control trials, where

the target on the previous trial became the distractor on

the current trial. In this case, reduced N1 amplitude to

repeated stimuli appear to counter the claims of the

synchronicity model and suggest that task and/or

response demands may be critical in determining the

direction of the repetition priming effect.

Studies into the neural correlates of perceptual

learning also offer insights into how the brain responds

to stimulus repetition over longer periods of time. For

instance, learning to identify different speech tokens

has been associated with reductions in early auditory

evoked responses that take place within the first hour of

training (N1 and P2, a positive deflection at about
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180ms post-stimulus; Alain, Campeanu, & Tremblay,

2009; Ben-David, Campeanu, Tremblay, & Alain,

2011). These amplitude reductions were apparent

within the same block of trials as well as between

blocks of trials within the recording session. These

studies raise the concern that stimulus spacing may

also modulate the direction of the repetition priming

effect (see Gotts et al. discussion of achieving uncon-

taminated BOLD response). The concern that longer

temporal intervals may decrease the likelihood of facil-

itation with respect to repeated stimuli is supported by

the data on inhibition of return (IOR). IOR is a tem-

poral constraint of repetition priming in that the beha-

vioral processing facilitation observed at short intervals

reverses to inhibition at longer intervals (“longer” in

the context of auditory processing can be as short as

750ms; Mondor, Breau, & Milliken, 1998).

A final example of reduced evoked responses to

stimulus repetition is provided by the sensory gating

literature. Here, the amplitude of a positive-going

deflection 50ms after sound onset (labeled P1 or P50)

is typically reduced for the second presentation of an

identical sound (e.g., Kisley, Noecker, & Guinther,

2004). Importantly, the presence and absence of P1

attenuation is used to adjudicate between non-

schizophrenic and schizophrenic samples, respec-

tively, and so the interpretation of neural activity at

these early stages has clear clinical implications.

What is critical to note though is in sensory gating

paradigms, participants tend to be exposed to sounds

under passive listening conditions. Therefore, the fre-

quency of repetition and change in the environment

may be a third influence on the direction of the repeti-

tion priming effect (see current discussion of

Summerfield et al., 2008, 2011) even in the absence

of task. We argue that a consideration of the percep-

tual and cognitive demands within repetition priming

paradigms is required to disambiguate the currently

disparate literatures.

* * *
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Reply to Commentaries

Repetition priming and repetition suppression: Multiple

mechanisms in need of testing

Stephen J. Gotts1, Carson C. Chow2, and Alex Martin1

1Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental

Health (NIMH), National Institutes of Health, Bethesda, MD 20892, USA
2Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases

(NIDDK), National Institutes of Health, Bethesda, MD 20892, USA

In our Discussion Paper, we reviewed four theoretical proposals that have the potential to link the neural and

behavioral phenomena of Repetition Suppression and Repetition Priming. We argued that among these proposals,

the Synchrony and Bayesian Explaining Away models appear to be the most promising in addressing existing data,

and we articulated a series of predictions to distinguish between them. The commentaries have helped to clarify

some of these predictions, have highlighted additional evidence supporting the Facilitation and Sharpening models,

and have emphasized dissociations by repetition lag and brain location. Our reply addresses these issues in turn, and

we argue that progress will require the testing of Repetition Suppression, changes in neural tuning, and changes in

synchronization throughout the brain and over a variety of lags and task contexts.

Keywords: Repetition priming; Repetition suppression; Synchrony; Prediction; Bayesian.

BAYESIAN EXPLAINING AWAY MODEL

Both Friston’s and Henson’s commentaries make the

point that the Facilitation, Sharpening, Synchrony, and

Bayesian Explaining Away models are not mutually

exclusive. This is a point that we failed to clarify and

that we fully endorse. The ideas are certainly mechanis-

tically distinct, but theycould all coexistwithone another

simultaneously, perhaps making separate contributions

in explaining repetition priming. Efforts should be

focused on assessing the contribution of any/all (none?)

of these in a given experimental situation.

Friston’s commentary clarifies his positions on the

experimental predictions that we articulated. He re--

emphasizes his commitment to anti-symmetrical

bottom-up and top-down interactions, while he is less

enthusiastic about the relative timing predictions.

Between-region anti-symmetry is the central claim of

this model. It predicts that top-down causal interactions

should be more negative after stimulus repetition and

that repetition suppression in lower-level areas should

be due to feedback from higher-level areas. Friston also

stresses the presence of repetition-dependent changes

in the feed-forward direction with stimulus repetition,
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although with an inverse valence to the feedback

effects (implementing a negative feedback loop). We

view these clarifications as quite reasonable but differ

with Friston on other aspects of his argument. Friston

claims that near-optimal perceptual inference lends

support to a Bayesian brain hypothesis in which top-

down/bottom-up interactions are anti-symmetrical. We

believe that it is difficult in principle and practice to

distinguish between near-optimal and satisfactory

inference given a set of stimuli to be identified and

tasks to be performed. Many neural network models

demonstrate good performance over a range of learning

problems. For example, the Boltzmann machine

(e.g., Ackley, Hinton, & Sejnowski, 1985) utilizes a

“contrastive” Hebbian algorithm to modify synaptic

strengths as the model is exposed to a set of patterns

to be associated. The learning algorithm, often her-

alded for its “biologically plausibility” (e.g., O’Reilly,

1998), leads this model to improve gradually with

experience, develop similarity-based internal represen-

tations, and perform “linearly inseparable” mappings

such as the XOR problem (e.g., Minsky & Papert,

1969). It does all of this while developing symmetrical

weights between units in higher- and lower-level pools

of units. Influential models such as Adaptive

Resonance Theory (e.g., Grossberg, 1976), the

Interactive Activation Model (McClelland &

Rumelhart, 1981), and the Biased Competition Model

(Desimone & Duncan, 1995) all predict a symmetrical

coding scheme. These models exploit the flexible

advantages of top-down, selective excitation in

domains ranging from perception to working memory,

visual attention/search, and imagery. It will be interest-

ing to see if the Bayesian brain hypothesis can be

extended into these domains using a more anti-

symmetrical scheme. We would also note that attempts

to test the anti-symmetrical property of Mumford’s

(1992) Bayesian theory in single-cell recordings with

monkeys have found support for feedback excitation

rather than feedback inhibition (e.g., Lee & Mumford,

2003). This is not necessarily problematic for Friston’s

proposal, because the cells encoding the conditional

expectation of perceptual causes are distinct from those

encoding prediction error. Nevertheless, we do not

believe that it is self-evident that the brain behaves in

its details as a Bayesian neural network model, at least

one that relies on anti-symmetrical coupling in the

feed-forward versus feedback directions.

Ewbank and Henson appear to take issue with our

use of the label “Explaining Away” when referring to

Friston’s Bayesian model, preferring instead “Predictive

Coding”. Our rationale was simply to use a label that

better distinguished the anti-symmetrical property in

this model from the variety of models that utilize

“prediction” in very different ways (e.g., Elman nets,

Temporal Difference learning, forward models, etc.).

Ewbank and Henson emphasize the difficulty in testing

subtle predictions about brain connectivity using fMRI

methods when the separate contributions of different

cell types to the BOLD signal are unknown. We cer-

tainly agree that local estimates of the BOLD response

in a given voxel will reflect an unknown mixture of

various influences (a small fraction of which are neural).

However, given the importance of the anti-symmetrical

property to the Bayesian model articulated above, we

think that it would be unwise to dispatch with this

prediction prematurely. Causal modeling approaches

that are capable of assessing directional influences

between anatomically connected cortical regions

(e.g., DCM, Grainger, etc.) should detect net inhibitory

coupling in the feedback direction—even when local

activity represents an average over different cell types

that are present in unknown proportions. If the feedback

is net excitatory, what would serve as the basis of

repetition suppression? If the problem is the ability of

causal modeling approaches to infer directional influ-

ences appropriately among interrelated variables, then

this problem will apply in a similar manner to the

analyses of experiments using alternative methods

such as EEG/MEG (e.g., Kiebel, Garrido, Moran, &

Friston, 2008). However, we agree that EEG/MEG stu-

dies of inter-areal interactions constitute a promising

direction for future research.

FACILITATION AND SHARPENING
MODELS: THE SHORTAND LONG OF IT

In his separate commentary, Henson makes the case

that it is too soon to dismiss the Facilitation model.

While he admits that supporting evidence from single-

cell recordings has been lacking, he raises the possibi-

lity that accelerated neural responses may be common-

place in EEG/MEG. We concur with him about the

basic puzzle: How is it that electrical/magnetic field

data can become decoupled from spike data? This

decoupling extends even to the basic latency of

stimulus-evoked responses in microelectrode record-

ings from occipital areas in animals (firing-rate laten-

cies ranging from 30–50ms, whereas field

measurements often show onsets closer to 70–

100ms). Our best guess for a resolution is that it

involves some form of field cancellation of the earliest

responses. In any case, accelerated responses at the

single-cell level should be obtainable if the

Facilitation model is to hold. Having said that, a very

recent study (since the submission of our paper) has

provided some more direct support for the Facilitation
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model, as well as the Sharpening model, in recordings

from monkey inferior temporal cortex (Woloszyn &

Sheinberg, 2012). This study involved an extensive

training period of several months (like other studies

providing support for Sharpening), but it still suggests

that Facilitation may apply in some cases. We are

therefore happy to concede the point to Henson that it

is too early to dismiss the Facilitation model.

The Riesenhuber, Weiner and Grill-Spector, and

McMahon commentaries all mention the issue of how

repetition lag (short versus long) relates to the observa-

tion of proportional scaling versus Sharpening.

Riesenhuber makes the case that evidence on long-lag

repetitions and Sharpening is not mixed but paints a

consistent picture, with proportional scaling effects lim-

ited to lags typically involved in fMRI rapid adaptation

paradigms (repetitions separated by a few seconds). We

agree that results from experiments employing very

long lags (and/or practice durations) versus very short

lags have been reliably associated with Sharpening and

scaling, respectively (see also McMahon’s commen-

tary). However, results for lags of an intermediate

range (minutes or longer within a single testing session)

do not fit cleanly into this picture. For example, Li et al.

(1993) showed independent effects of short- and long-

lag repetitions on single-cell firing rates in monkey

inferior temporal cortex, with proportional scaling

observed for long-lag repetitions (, tens of minutes).

As noted by Weiner and Grill-Spector, Weiner et al.

(2010) found results in human fMRI for long lags that

were consistent with proportional scaling in all but one

of the regions that they examined (medial ventral tem-

poral cortex). Given that these more intermediate lags

are the ones involved in most repetition priming studies,

the evidence supporting the involvement of Sharpening

in repetition priming does indeed appear to be mixed.

Even if we were to grant a larger role to Sharpening at

these lags, additional assumptions would still be

required to explain Repetition Priming. We concur

with McMahon that the Synchrony model is well situ-

ated to explain priming at the shorter lags that tend to

produce scaling, and it may participate at longer lags

(and/or practice durations) as well.

DIFFERENT LOCATIONS DO NOT
NECESSARILY IMPLY DIFFERENT

MECHANISMS

The Weiner and Grill-Spector, Horner, and Wig com-

mentaries all highlight the fact that studies of

Repetition Suppression often report findings that vary

by brain location. Weiner and Grill-Spector note the

challenges facing the Synchrony model in explaining

the region- and lag-dependent nature of Repetition

Suppression in occipital and temporal brain regions.

While no model can currently explain this range of

data, we agree that this should be the goal. We would

note that while synchrony is a mechanism at one level

of description, it is also an emergent phenomenon with

multiple possible underlying mechanisms that can

apply differentially at different lags and potentially in

different brain regions (e.g., spike-frequency adapta-

tion and synaptic depression, electrical synapses

between interneurons, spike-timing-dependent plasti-

city, etc.). Our current experimental focus is simply to

detect whether synchronization is occurring in the

appropriate experimental contexts and whether it is

quantitatively related to the magnitude of repetition

priming. In his commentary, Horner rightly makes the

point that Repetition Suppression is most strongly

related to priming in the prefrontal cortex and that

this central issue should not be lost in the discussion.

Wig counters, appropriately in our view, that just

because occipital Repetition Suppression is more

weakly related to repetition priming in certain tasks

does not imply that it is irrelevant to priming magni-

tudes in all tasks. Would a task that emphasizes infor-

mation represented in occipital areas (e.g., fine shape

discriminations) yield a stronger association between

occipital Repetition Suppression and priming (see also

Martin & Gotts, 2005)? More generally, we would

argue that Repetition Suppression effects that are dis-

sociable by brain region or task do not necessarily

imply qualitatively distinct lower-level mechanisms.

Future experiments will need to clarify the region-

and lag-dependence of Repetition Suppression,

changes in neural tuning properties, as well as changes

in Synchrony. One issue raised by Weiner and Grill-

Spector that we would dispute is the exclusive role of

high versus low frequency oscillations in local versus

long-distance cortical interactions, respectively.

Modulations of local synchrony can be in lower fre-

quencies (theta, alpha, beta: E.g., Anderson et al.,

2008; Gilbert et al., 2010; Gregoriou, Gotts, &

Desimone, 2012) and modulations of long-distance

synchrony can be in higher frequencies (gamma: E.g.,

Buschman & Miller, 2007; Gregoriou et al., 2009a).

NEGATIVE PRIMING AND OTHER
PARADIGMS

In the final commentary, Dyson and Alain argue that

our proposal has failed to consider the influences of

task, time, and context on repetition priming. They cite

evidence from EEG/ERP studies in the auditory mod-

ality, noting conflicting evidence from negative
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priming, perceptual learning of speech tokens, and

sensory gating. Some of the differences with our

literature review may involve genuine differences

between visual and auditory modalities. However,

we would reiterate the difficulty of using scalp EEG/

ERP measurements to rule out a proposal cast at the

level of underlying neural sources. Too many ambi-

guities are present. Results from paradigms such as

negative priming that involve multiple simultaneous

stimuli and additional processes (selective attention)

may also not be directly comparable to simple identi-

fication paradigms with sequentially presented single

stimuli.

The Commentaries offered in response to our

Discussion Paper highlight the importance and interest

in uncovering the mechanism(s) linking Repetition

Suppression to one of nature’s most powerful learning

phenomena, Priming. We again thank our colleagues

for their thoughtful and thought-provoking comments

on our proposal.
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