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Repetitive transcranial magnetic stimulation 
increases the brain’s drainage e�ciency 
in a mouse model of Alzheimer’s disease
Yangyang Lin1†, Jian Jin1,2†, Rongke Lv1,2, Yuan Luo3,4, Weiping Dai4,5,6, Wenchang Li7, Yamei Tang3,4,8, 

Yuling Wang1*, Xiaojing Ye4,5,6* and Wei-Jye Lin3,4*  

Abstract 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease with high prevalence rate among the elderly 

population. A large number of clinical studies have suggested repetitive transcranial magnetic stimulation (rTMS) 

as a promising non-invasive treatment for patients with mild to moderate AD. However, the underlying cellular and 

molecular mechanisms remain largely uninvestigated. In the current study, we examined the effect of high frequency 

rTMS treatment on the cognitive functions and pathological changes in the brains of 4- to 5-month old 5xFAD mice, 

an early pathological stage with pronounced amyloidopathy and cognitive deficit. Our results showed that rTMS 

treatment effectively prevented the decline of long-term memories of the 5xFAD mice for novel objects and locations. 

Importantly, rTMS treatment significantly increased the drainage efficiency of brain clearance pathways, including 

the glymphatic system in brain parenchyma and the meningeal lymphatics, in the 5xFAD mouse model. Significant 

reduction of Aβ deposits, suppression of microglia and astrocyte activation, and prevention of decline of neuronal 

activity as indicated by the elevated c-FOS expression, were observed in the prefrontal cortex and hippocampus of 

the rTMS-treated 5xFAD mice. Collectively, these findings provide a novel mechanistic insight of rTMS in regulating 

brain drainage system and β-amyloid clearance in the 5xFAD mouse model, and suggest the potential use of the 

clearance rate of contrast tracer in cerebrospinal fluid as a prognostic biomarker for the effectiveness of rTMS treat-

ment in AD patients.
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Introduction
Alzheimer’s disease (AD) is the most common type of 

dementia, featured by progressive impairment of cogni-

tive functions across multiple domains including mem-

ory, language, emotion, executive ability, and eventually 

the ability to live independently [60]. Pathologically, 

AD is defined by the appearance of amyloid plaque and 

neurofibrillary tangles in the brain [42]. Despite tradi-

tionally being considered as a neurodegenerative dis-

order, emerging evidences suggest that dysregulations 

of non-neuronal cells in the brain may contribute to 

early pathological development of AD [6]. For example, 
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overactivation of microglia and astroglia by amyloid-

beta (Aβ) peptide-formed oligomers or amyloid plaques 

has been reported to result in glial activation, chronic 

inflammation and subsequent damages to neuronal 

synapses in the AD brains [1]. Aberrant angiogenesis 

has also been observed in AD patients and mouse mod-

els, likely to cause cerebral hypoperfusion and insuf-

ficient energy supply [3, 22]. Furthermore, recently 

discovered/rediscovered brain drainage machinery, 

the glymphatic system along the cerebral vasculatures 

in the brain parenchyma and the meningeal lymphatic 

vessels in the dura mater, have been proposed to play 

important roles in the clearance of Aβ from the brain, 

and aging-related impairment of the glymphatic system 

or the meningeal lymphatics is thought to aggravate Aβ 

accumulation in the AD brains [14, 29, 49], forming a 

vicarious feedback cycle to aggravate AD pathological 

development. Previous studies have shown the perivas-

cular localization of astroglial water channel aqua-

porin-4 (AQP4) is critical for the influx and glymphatic 

transport of cerebrospinal fluid (CSF) [48], and is nec-

essary for the clearance of interstitial Aβ and Tau by the 

glymphatic system [29, 30, 67]. Reduced perivascular 

astrocytic end feet localization of AQP4 and increased 

astrocyte activation in the aged or traumatic brain 

injury mouse models have been reported to exacerbate 

glymphatic pathway dysfunction [25, 28]. Given the 

complex nature of AD, advance in effective treatments 

is still lacking and will require the mechanistic elucida-

tion of the disease and the multiple cell types that are 

involved.

Repetitive transcranial magnetic stimulation (rTMS) 

is a noninvasive therapy that uses rapidly changing 

magnetic field to modulate the electrical activity of the 

brain [63]. A large number of clinical studies have sug-

gested rTMS as a promising treatment for mild and 

moderate AD [5, 55, 56, 63]. A wide array of rTMS 

protocols have been tested on early and middle stage 

AD patients. �e rTMS is normally administered for 

5–30 consecutive days, with treatment effects last-

ing for 4–12 weeks [9, 66]. It has been noticed that 

high frequency rTMS is more effective than low fre-

quency rTMS for improving cognitive functions and 

recovering the daily living ability of AD patients [66, 

69]. Furthermore, a meta-analysis on randomized-

controlled clinical trials suggested that high frequency 

rTMS treatment that targeted multiple brain regions 

was more effective than targeting any single region 

for cognitive improvement in AD patients [41]. A few 

studies have shown that rTMS treatment reduces the 

production of Aβ peptide, recovers neuronal plasticity 

and reduces neuronal apoptosis in AD mouse models 

[7, 8, 27, 62]. Despite that, the cellular mechanisms by 

which rTMS improves cognitive functions and how 

rTMS may affect Aβ clearance in the AD brains remain 

under-investigated.

In the current study, we examined the effect of high 

frequency wide-field rTMS treatment on the cogni-

tive functions and pathological changes of neurons and 

glia in the brains of 5xFAD mice, an Aβ precursor pro-

tein (APP)/presenilin-1 (PS1) double transgenic mouse 

model that develops rapid cerebral amyloid plaques and 

gliosis. We showed that rTMS treatment at early age of 

5xFAD mice effectively prevented decline of long-term 

memories for novel object and location, which was 

accompanied by enhanced drainage efficiency through 

brain glymphatic system and meningeal lymphatics, 

reduction of Aβ deposits, reduced activation of micro-

glia and astrocyte, and prevention of decline of neu-

ronal activity as indicated by increased c-FOS expression 

in the 5xFAD mouse brains. Collectively, these find-

ings provide novel mechanistic insights of rTMS for 

the treatment of early stage AD via improved clearance 

of Aβ deposits through brain glymphatic system and 

meningeal lymphatics. Our findings also suggest that 

improvement of CSF clearance efficiency, which can 

be measured by clinically available imaging techniques 

[4, 33, 39], may serve as a prognostic biomarker for the 

effectiveness of rTMS in AD patients.

Materials and methods
Animals

The 5xFAD mice (B6/SJL genetic background) over-

expressing both human APP harboring the Swedish 

(K670N, M671L), Florida (I716V) and London (V717I) 

FAD mutations, and the PS1 harboring the two FAD 

mutations (M146L and L286V) were obtained from the 

Jackson Laboratory. 4–5 months old female and male 

5xFAD mice and their wild-type littermates were used. 

The mice were housed in groups of 4–5 in an envi-

ronmentally controlled animal facility on a 12 h light/

dark cycle. Food and water were available ad  libitum. 

All animal studies were approved by the Institutional 

Animal Care and Use Committee of the Sun Yat-sen 

University.

rTMS procedures

For the delivery of rTMS, 5xFAD mice were placed 

in homemade cloth sleeves which gently and tempo-

rarily restrained their movement, with the top of the 
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head exposed. The mice were breathing normally with-

out visible struggling during rTMS stimulation. The 

rTMS was delivered by a magnetic stimulator (CCY-II, 

Wuhan Yiruide Medical Equipment, Wuhan, China) 

connected to a round coil (diameter: 6.5 cm). The 

head of mouse was pressed against the center of the 

coil. The rTMS was administered between 10 am to 

12 pm for 14 consecutive days. On each day, the mice 

received 100 sessions of rTMS treatment with inter-

session interval of 5 s. In each session, 40 burst trains 

of 20 Hz stimulation were delivered, with the magnetic 

stimulation intensity set at 1.38 T. The control wild-

type and 5xFAD mice underwent the same procedures 

including restraint and being exposed to the noise 

from the magnetic stimulator, except that they were 

not placed under the coil.

Novel object recognition (NOR) and novel object location 

(NOL) tasks

The mice were handled for five days before conduct-

ing behavioral training and test. Animal behavior was 

videotaped and scored by 2–3 independent investiga-

tors blind to the experimental conditions, or by the 

TopScan software (CleverSys, Reston, VA, USA). The 

NOR and NOL tests were modified based on previous 

studies [40, 64]. Briefly, the tests were carried out in 

a 40 × 40 × 40 cm arena placed in a quiet room with 

dim light. During the habituation session on the first 

day, the mice were allowed to explore the arena with-

out objects for 10 min. On the second day, the mice 

explored the same arena again for 10 min, with two 

objects placed on the two ends of a side wall. On the 

third day, the mice were tested for their long-term 

memory for objects. During the test session, the mice 

were allowed to explore the arena for 5 min, with one 

of the old objects replaced by a new object. The NOL 

test was carried out following the same procedures of 

NOR, except that during the test session, one of the 

previously explored objects was placed to a new loca-

tion across the arena. The discrimination index (DI) 

was calculated as follows: [(time exploring the novel 

object or the object placed to a novel location–time 

exploring the familiar) / (total time exploring both 

objects)] × 100.

Open �eld test

We used the habituation session for NOR or NOL 

test as the open field test for accessing the explora-

tory and anxiety-like behaviors of the mice, as pre-

vious described [37]. The exploratory activity was 

measured by the total distance of mice exploring the 

arena. The anxiety-like behaviors were accessed by 

the distance and time spent in the 20 × 20 cm center 

zone as percentages of the total distance and time, 

respectively.

Y-maze task

Working memory was measured by spontaneous alter-

nation in a Y-maze as previously described [38]. �e 

Y-maze consisted of 3 arms of 50 × 10 × 20 cm each. 

�e mice were placed in the center zone of the maze and 

allowed to freely explore the maze for 5 min. An alter-

nation event was defined as the completion of sequen-

tial entries into all three arms. Percent alternation was 

calculated as follows: [(number of alternations)/(total 

entries -2)] × 100.

Intracisternal injection

Intracisternal injection was carried out as described 

previously [14]. Briefly, the mice were anesthetized by 

intraperitoneal injection of 5% chloral hydrate in saline 

(0.1 mL per 10 g body weight). �e hair on the neck was 

shaved and the head was fixed on a stereotaxic appara-

tus. �e skin on the neck was then incised, and the mus-

cle layers were retracted to expose the cisterna magna. 

Using an infusion pump (Model R452, RWD Life Sci-

ence, China) with a Hamilton syringe connected to a 

30-gauge needle, 5μL of 10kD Dextran-Alexa Fluor 647 

(�ermo Fisher, 1% in artificial cerebrospinal fluid) was 

injected at a rate of 1μL per min. �e needle was left in 

place for an additional 10 min after injection to prevent 

backflow. �e neck skin was then sutured. �e mice were 

placed on a heating pad to maintain body temperature 

and sacrificed 20 min after withdrawal of the injection 

needles.

Immuno�uorescence staining and image analysis

At the aforementioned time point after tracer injec-

tion, mice were transcardially perfused with PBS fol-

lowed by 4% paraformaldehyde in PBS. �e brains were 

harvested and post-fixed in PBS with 4% paraformal-

dehyde at 4 °C overnight. 40 μm coronal sections were 

collected by a cryostat for free-floating immunofluo-

rescence staining. Two sections of the prefrontal cor-

tex (mPFC) brain region at approximately 1.78 mm 

and 1.98 mm anterior to the Bregma, and two sections 

of the dorsal hippocampus (dHC) brain region and the 

primary sensory cortex (S1) at approximately 1.58 mm 

and 1.82 mm posterior to the Bregma were sampled 
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for each staining. �e averaged values from the two 

sections of the same animals were taken as one data 

point for each staining. �e sections were incubated in 

the blocking buffer (5% normal goat serum, 1% bovine 

serum albumin in PBS with 0.4% Triton X-100) for 2 h 

at room temperature, and stained with primary anti-

bodies diluted in the blocking buffer for approximately 

40 h at 4 °C. �e primary antibodies used in this study 

include: anti-GFAP (Cell Signaling Technologies, cat#: 

3670S, 1:500), anti-Aβ42 (BioLegend, cat#: 803001, 

1:2000), anti-NeuN (Cell Signaling Technology, cat#: 

24307S, 1:500), anti-IBA1 (Fujifilm, cat#: 019-19741, 

1:500), anti-c-FOS (Cell Signaling, cat#: 2250, 1:750), 

anti-AQP4 (Millipore, cat#: AB3594, 1:400), and anti-

LYVE1 (Abcam, cat#: ab14917, 1:400). After 3 × 10 

min washes in PBS with 0.4% TritonX-100, the sections 

were stained with secondary antibodies diluted in the 

blocking buffer for 2 h at room temperature, followed 

by additional washes before mounting onto glass-slides. 

For whole mount meninges staining, after perfusion, the 

meninges were postfixed in PBS with 2% paraformalde-

hyde at 4 °C overnight, and stained with primary anti-

bodies overnight at 4 °C. Deep cervical lymph nodes 

were also harvested after perfusion, post-fixed in PBS 

with 4% paraformaldehyde at 4 °C overnight, and after-

wards 30 μm sections were collected and mounted on 

glass-slides. �e boarder of indicated brain areas was 

defined based on the mouse atlas of the 2nd edition of 

“the Mouse Brain in Stereotaxic Coordinates” published 

by Paxinos and Franklin [53]. �e schematic diagram 

of dura mater was referenced based on previous report 

[54]. Images were taken by an epi-fluorescent micro-

scope (Nikon Eclipse Ni-U) or a confocal microscope 

(Zeiss LSM800), and analyzed by ImageJ (version 1.52p, 

NIH, US). For the analysis of intraneuronal Aβ, we did 

immunofluorescence co-staining of neuronal marker 

NeuN with Aβ antibody (6E10) and only analyzed Aβ 

fluorescence signals within the NeuN-positive area. For 

the calculation of cell density, we measured the total 

cell number in specific brain regions and divided the 

number by the area size. For tracer analysis, the fluo-

rescence intensity (arbitrary units) of intracisternally 

injected tracer (10 kDa Dextran-Alexa Fluor 647) within 

the mPFC, SSS + TS areas of dura mater, or dCLN was 

measured, and total intensity of tracer was divided by 

the area of region of interest [29, 44]. For quantification 

of aquaporin 4 (AQP4) polarity in the medial prefrontal 

cortex, we used high-stringency threshold of ImageJ to 

define the perivascular end feet area of AQP4 staining 

(high AQP4 staining intensity) as described previously 

[25]. AQP4 polarity was calculated as follows: [(fluores-

cence intensity of perivascular end AQP4)/(fluorescence 

intensity of total AQP4)].

Statistical analyses

Data were presented as mean ± SEM. Statistical analy-

ses were carried out using Graphpad Prism (version 8, 

GraphPad Software, San Diego, CA, USA). One-way 

ANOVA followed by Tukey’s multiple comparisons test 

were used to compare multiple groups. Unpaired two-

tailed Student’s t-test was used to compare two groups. 

A p value of less than 0.05 was considered statistically 

significant.

Results
rTMS prevents the loss of long-term memory in 5xFAD 

mice

We first evaluated the therapeutic effects of rTMS on 

the cognitive functions of 5xFAD mice, a familial AD 

mouse model which overexpresses five familial AD 

mutations on human APP and PSEN1 genes. �e 5xFAD 

mice develop aggressive amyloid pathology and showed 

cognitive deficits across multiple domains around 4–5 

months of age [18, 24, 36, 52]. To examine if rTMS treat-

ment improved memory performance of 5xFAD mice, 

(See figure on next page.)

Fig. 1 rTMS prevents the loss of long-term memories of 5xFAD mice for novel objects and locations. a The experimental timeline of rTMS 

treatment, behavioral tests, injection of 10kD Dextran tracer into the cisterna magna (i.c.m.), and perfusion. b Schematic of the novel object 

recognition task. A and B indicates different objects. c Representative heatmaps of animals’ paths during the test session of the novel object 

recognition task. d The discrimination index (DI%) and the total time spent on exploring both objects (total exploration time) during the training 

and the test sessions in the novel object recognition task (n = 10–11 mice per group). e Schematic of the novel object location task. Both Cs are 

identical objects. f Representative heatmaps of animals’ paths during the test session of the novel object location task. g The discrimination index 

(DI%) and the total time spent on exploring both objects (total exploration time) during the training and the test sessions in the novel object 

location task (n = 10–11 mice per group). All data are presented as mean ± SEM and analyzed by one-way ANOVA followed by Tukey’s multiple 

comparisons test. WT-Ctrl: wildtype littermates received sham treatment, AD-Ctrl: 5xFAD mice received sham treatment, AD-rTMS: 5xFAD mice 

received rTMS treatment
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high frequency rTMS (20 Hz) with magnetic stimula-

tion intensity at 1.38 T was delivered to mice for 14 

consecutive days, followed by behavioral tests includ-

ing novel object recognition and novel object location 

tasks (Fig.  1a). �e parameters and stimulus intensity 

of rTMS protocol used in this study was similar to that 

used in a clinical study by Cotelli et  al., which showed 

beneficial effects of rTMS on language performance in 

AD patients [10]. We found that rTMS treatment signifi-

cantly prevented the decline of long-term memories for 

both object identity and locations in 5xFAD mice at 4–5 

months of age (Fig. 1b–g).

Working memory deficit has been reported pre-

viously in 5xFAD mice [17, 18, 52]. We then used 

Y-maze to assess the effects of rTMS on the spatial 

working memory of 5xFAD mice. Our data showed 

a trend towards impaired spatial memory of 5xFAD 

mice, which however was not improved by rTMS 

treatment (Additional file  1: Supplementary Fig.  1a). 

Moreover, increased anxiety has been reported in AD 

patients, though the reports from AD mouse models 

are still controversial, possibly due to a variety of fac-

tors including the dosage of transgenes and genetic 

backgrounds of the mice [20, 31, 34, 51]. In our study, 

we observed that 5xFAD mice with sham treatment 

showed increased anxiety-like behaviors, as demon-

strated by avoiding traveling to the center zone in an 

open field, which was not improved, however, by rTMS 

treatment (Additional file 1: Supplementary Fig. 1b-c). 

Notably, rTMS treatment significantly decreased the 

locomotion of 5xFAD mice in the open field test (Addi-

tional file 1: Supplementary Fig. 1c).

Taken together, our findings confirmed that the 20 Hz 

rTMS treatment prevented decline of long-term memory 

performance but was not effective in improving impaired 

spatial working memory or increased anxiety of 5xFAD 

mice.

rTMS decreases Aβ accumulation in the 5xFAD brains

Accumulation of amyloid plaque in the brain is a patho-

logical hallmark for AD [42, 60]. �e 5xFAD mice rap-

idly develop amyloid pathology at the age of 2 months 

[52]. Since rTMS effectively prevented the loss of long-

term memory in 5xFAD mice, we wondered whether 

such change was accompanied by a decrease of paren-

chymal Aβ deposits. We examined the medial prefron-

tal cortex (mPFC) and the dorsal hippocampus (dHC), 

two regions whose dysfunction are critically involved in 

the cognitive impairment during AD progression [23, 

24, 59]. As Aβ deposits have been reported to appear 

early in the deep layers of the primary sensory cortex 

(S1) of 5xFAD mice [52], we also included the S1 cortex 

in our analyses. Consistent with previous reports [52], 

accumulation of plaque-like Aβ deposits were detected 

in all regions, with most robust deposits observed in 

the mPFC, the dentate gyrus (DG) of dHC and the S1 

cortex (Fig.  2a). rTMS treatment significantly reduced 

both intraneuronal Aβ and plaque-like Aβ deposits in 

the mPFC, DG and cornu ammonis 3 (CA3) of the dHC 

and the S1 cortex as compared with untreated 5xFAD 

mice (Fig. 2b–c). �ere was also a trend towards reduc-

tion of intraneuronal Aβ and Aβ deposits in the cornu 

ammonis 1 (CA1) of the dHC after rTMS treatment 

(Fig.  2b–c). �ese data suggest that rTMS treatment 

effectively alleviated the development of pathological 

Aβ deposits in the 5xFAD brains.

rTMS improves the drainage e�ciency of the glymphatic/

meningeal lymphatic systems

The reduction of Aβ deposits by rTMS could be medi-

ated by two processes: reduced Aβ production and/

or facilitated Aβ clearance. Indeed, consistent with 

previous reports [8, 47, 65], we observed a significant 

reduction in the intraneuronal Aβ levels in the mPFC, 

dHC and S1 cortex, indicating that rTMS treatment 

Fig. 2 rTMS decreases Aβ accumulation in the 5xFAD brains. a Representative images of Aβ and NeuN immunofluorescence staining in the mPFC, 

the DG, CA3 and CA1 subregions of dorsal hippocampus and the S1 cortex. Coronal positions of the brain sections shown on the top corresponds 

to the immunofluorescence staining results below. Red: 6E10 staining. Green: NeuN staining. Scale bar: 200 μm. b Quantitative analyses of Aβ 

fluorescence intensity within the NeuN-positive cells (intraneuronal Aβ) across different regions, comparing 5xFAD mice received sham treatment 

(AD-Ctrl) and 5xFAD mice received rTMS treatment (AD-rTMS) (n = 8–13 mice per group). c Quantitative analyses of the density of extracellular 

plaque-like Aβ deposits across different regions, comparing AD-Ctrl and AD-rTMS groups (n = 8–13 mice per group). All data are presented as 

mean ± SEM and analyzed by unpaired two-tailed Student’s t-test. mPFC: medial prefrontal cortex, DG: dentate gyrus, CA3: cornu ammonis 3, CA1: 

cornu ammonis 1, S1: primary sensory cortex

(See figure on next page.)
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suppressed Aβ production (Fig. 2c). Could rTMS also 

facilitate Aβ clearance? The recently discovered/redis-

covered glymphatic system in the brain parenchyma, 

and the meningeal lymphatics in the dura mater, which 

further connect to the deep cervical lymph nodes 

(dCLNs), are important paths for removing macromol-

ecules from the brain [13, 45]. To examine and evalu-

ate the drainage efficiency of the glymphatic system 

and meningeal lymphatics in the 5xFAD mouse brains 

as demonstrated previously [14, 29], we injected 10 

kD Dextran tracer conjugated with Alexa Fluor 647 

into the cisterna magna. Mice were sacrificed 30 min 

later and the brain parenchyma, the meninges, and the 

dCLNs were collected for analysis. In the wild-type 

mice, the fluorescent tracer was found accumulated in 

the mPFC, hypothalamus and mid-brain regions, with 

relatively low amount of tracer observed in the dHC 

and the S1 cortex (Fig.  3a). We therefore focused on 

the mPFC for the subsequent analyses of tracer dis-

tribution in rTMS- and sham-treated 5xFAD mice. 

Compared with the wild-type littermates, the amount 

of tracer trapped in the mPFC of 5xFAD mice was sig-

nificantly elevated, whereas rTMS treatment amelio-

rated the accumulation of tracer (Fig.  3b–c). As the 

glymphatic system connects to the meningeal lym-

phatics, to examine whether the accumulated tracer 

in the mPFC of 5xFAD brains may be due to reduced 

drainage efficiency of the glymphatic system and 

meningeal lymphatics, we examined the distribution 

of tracer in the dura mater where meningeal lymphat-

ics were identified, and in the dCLNs which connect to 

meningeal lymphatics [2, 46]. Significant reduction of 

tracer was detected in the dura mater and the dCLNs 

of the 5xFAD mice as compared to their wild-type 

littermates, whereas rTMS treatment significantly 

prevented such changes (Fig. 3d–g). Notably, reduced 

drainage efficiency in the 5xFAD was not associated 

with the expression level or polarization of Aqua-

porin-4 (AQP4), a known regulator of the glymphatic 

system, in the mPFC (Additional file  2: Supplemen-

tary Fig.  2). There was also no significant difference 

in the expression level of meningeal lymphatic marker 

Lyve1 among wild type, rTMS-treated and non-treated 

5xFAD mice, suggesting that rTMS enhanced the func-

tion of glymphatic system and meningeal lymphatics 

without inducing lymphagenesis (Fig. 3d, e).

Collectively, our findings indicate that rTMS treatment 

may reduce Aβ deposits by improving the drainage effi-

ciency of Aβ by the glymphatic system and meningeal 

lymphatics in the 5xFAD brains.

rTMS reduces glial activation and prevents the decline 

of neuronal activity in the 5xFAD brains

Aβ deposits have been shown to induce glial activation 

as indicated by increased microglial number and soma 

size, as well as increased Glial Fibrillary Acidic Protein 

(GFAP) expression in astrocytes in both AD patients 

and mouse models [26]. As we found rTMS effectively 

reduced Aβ deposits in multiple brain regions of 5xFAD 

mice, we further examined whether such changes were 

accompanied with altered activation of microglia and 

astrocytes. Consistent with previous reports [52], acti-

vation of microglia indicated by increase in cell num-

ber and soma size of ionized calcium-binding adapter 

molecule 1 (IBA1)-positive cells was observed in the 

mPFC, hippocampal CA3 and S1 cortex of 5xFAD mice 

at 4–5 months of age, which was reduced by rTMS 

intervention (Fig.  4, density of IBA1-positive cells, 

(See figure on next page.)

Fig. 3 Reduced deterioration in the drainage efficiency of glymphatic system and meningeal lymphatics in the 5xFAD mice treated with rTMS. a 

Left: Schematic of the injection of 10 kDa Dextran-Alexa Fluor 647 tracer into cisterna magna (i.c.m.) and timeline of perfusion. Right: Representative 

images of tracer (red) distribution and DAPI staining (blue) in the wildtype brain parenchyma. Coronal positions of the brain sections shown on 

the top corresponds to the tracer staining results below. Scale bar: 100 μm. b The atlas of the brain coronal section containing mPFC, and the 

representative images of the tracer (red) in the mPFC of different groups. Scale bar: 200 μm. c Quantitative analyses of the fluorescence intensity 

of the tracer in the mPFC across groups. (n = 8–12 mice per group). d Left: the schematic diagram of dura mater, with dotted red line bordering 

the superior sagittal sinus (SSS) area as well as the transverse sinus (TS) area chosen for image analyses. Right: the representative images of Lyve1 

staining (green) and the tracer (red) in the SSS and TS of the dura mater. Scale bar: 450 μm. e Quantitative analyses of the fluorescence intensity of 

the tracer and Lyve1 staining in the dura mater (SSS + TS areas) across groups (n = 7–10 mice per group). f Representative images of the tracer (red) 

and DAPI (blue) in the deep cervical lymph nodes (dCLN). Scale bar: 150 μm. g Quantitative analyses of the fluorescence intensity of the tracer in 

the dCLN across groups (n = 10–11 mice per group). All data are presented as mean ± SEM of the fold change of the WT-Ctrl group and analyzed 

by one-way ANOVA followed by Tukey’s multiple comparisons test. WT-Ctrl: wildtype littermates received sham treatment, AD-Ctrl: 5xFAD mice 

received sham treatment, AD-rTMS: 5xFAD mice received rTMS treatment
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mPFC, WT-Ctrl: 203 ± 15 cells/mm2; DG, WT-Ctrl: 

286 ± 21 cells/mm2; CA3, WT-Ctrl: 254 ± 24 cells/

mm2; CA1, WT-Ctrl: 231 ± 19 cells/mm2; S1 cortex, 

WT-Ctrl: 273 ± 29 cells/mm2; soma size of IBA1-pos-

itive cells, mPFC, WT-Ctrl: 48 ± 3 μm2; DG, WT-Ctrl: 

65 ± 6 μm2; CA3, WT-Ctrl: 61 ± 6 μm2; CA1, WT-Ctrl: 

55 ± 3 μm2; S1 cortex, WT-Ctrl: 62 ± 6 μm2). Similarly, 

activation of GFAP-positive astrocytes was shown in 

the mPFC, dHC and S1 cortex of 5xFAD mice, which 

was also reduced by rTMS (Fig. 5). �ese data therefore 

suggest that rTMS treatment alleviated microglia and 

astrocyte activation in the brain parenchyma of 5xFAD 

mice.

Lastly, since neuronal hypoactivity has been 

reported in memory-associated brain regions in the 

AD mouse models [11, 36], we wondered whether 

the aforementioned changes by rTMS treatment may 

prevent the decline of neuronal activity in the 5xFAD 

brains. As compared to the wild-type littermates, we 

found that the number of c-FOS-positive neurons (as 

an indicator of neuronal activity [21, 61]) was signifi-

cantly decreased in the mPFC and the CA3 sub-region 

of dHC, and a trend towards decreased c-FOS expres-

sion was also observed in the DG and S1 cortex of 

5xFAD mice (Fig.  6, density of c-FOS-positive cells, 

mPFC, WT-Ctrl: 178 ± 16 cells/mm2; DG, WT-Ctrl: 

98 ± 8 cells/mm2; CA3, WT-Ctrl: 102 ± 7 cells/mm2; 

CA1, WT-Ctrl: 91 ± 11 cells/mm2; S1 cortex, WT-

Ctrl: 154 ± 23 cells/mm2). Notably, rTMS treatment 

significantly increased c-FOS-positive neurons in the 

affected brain regions (Fig. 6). Therefore, our findings 

revealed the decrease in neuronal activity was effec-

tively prevented by rTMS intervention in the 5xFAD 

brains.

Discussion
In the current study, we provided new evidences show-

ing that early intervention by rTMS treatment could 

effectively reduce the loss of long-term memory per-

formance and alleviate AD-related pathological devel-

opment, including Aβ deposition and glial activation, 

in the 5xFAD mouse model. Importantly, our findings 

indicate that such improvement may be mediated by 

the increased drainage efficiency of brain parenchyma 

through the glymphatic system and meningeal lym-

phatics. Based on our findings, we proposed a new 

mechanistic model that rTMS may reduce the develop-

ment of Aβ deposits by facilitating Aβ clearance along 

with reduced Aβ production, and together with the 

alleviation of glial activation, result in the prevention 

of further decline of neuronal activity and cognitive 

function.

�e recently discovered/rediscovered glymphatic sys-

tem in brain parenchyma and the meningeal lymphat-

ics are considered as major pathways for clearance of 

toxic molecules from the brain. �e glymphatic system 

was reported by Iliff et  al. [29] as an interstitial com-

partment surrounding the cerebral vasculature and 

aligned by astrocyte end-feet. �e polarized distribu-

tion of AQP4 protein in astrocytic end-feet is critically 

implicated in regulating glymphatic function, and Aqp4 

knockout mice showed impairment in efflux of intrac-

erebral injected Aβ, suggesting an important role of 

the glymphatic system in mediating Aβ clearance [29]. 

�e glymphatic system further connects to the menin-

geal lymphatics in the dura mater, which tunnels down 

to peripheral dCLNs [2, 45, 46]. It has been previously 

proposed that Aβ may be transported to the subarach-

noid space through the intracerebral glymphatic sys-

tem and then through the meningeal lymphatics to the 

Fig. 4 rTMS decreases microglial density and soma size in the 5xFAD brains. a Representative images of the microglia marker IBA1 staining in the 

mPFC. Top right insert: enlarged images demonstrating the soma size of the microglia. Scale bar: 100 μm. b Quantitative analyses of the density 

and the soma size of IBA1-labelled microglia in the mPFC across groups (n = 8–10 mice per group, 124 ± 4 cells per section were sampled for the 

analysis). c. Representative images of the microglia marker IBA1 staining in different subregions of dorsal hippocampus. Top right insert: enlarged 

images demonstrating the soma size of the microglia. Scale bar: 100 μm. d Quantitative analyses of the density and the soma size of IBA1-labelled 

microglia in different subregions of hippocampus across groups (n = 8–10 mice per group, 154 ± 7, 134 ± 16 and 200 ± 28 cells were sampled 

from DG, CA3 and CA1 brain regions for analysis). e Representative images of the microglia marker IBA1 staining in the S1 cortex. Top right insert: 

enlarged images demonstrating the soma size of the microglia. Scale bar: 100 μm. f Quantitative analyses of the density and the soma size of 

IBA1-labelled microglia in the S1 cortex across groups (n = 7–10 mice per group, 554 ± 60 cells per section were sampled for analysis). All data are 

presented as mean ± SEM of the fold change of the WT-Ctrl group and analyzed by one-way ANOVA followed by Tukey’s multiple comparisons 

test. WT-Ctrl: wildtype littermates received sham treatment, AD-Ctrl: 5xFAD mice received sham treatment, AD-rTMS: 5xFAD mice received rTMS 

treatment. mPFC: medial prefrontal cortex, DG: dentate gyrus, CA3: cornu ammonis 3, CA1: cornu ammonis 1, S1: primary sensory cortex

(See figure on next page.)
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deep cervical lymph nodes [14, 29, 43]. In agreement 

with this model, disruption of meningeal lymphatics 

was reported to enhance Aβ accumulation in the brain 

parenchyma and dura mater of 5xFAD mice, support-

ing the idea that the brain drainage system plays an 

important role in parenchymal Aβ clearance and its 

impairment aggravates the development of Aβ-related 

pathology [15].

Our findings are in agreement with previous reports, 

that rTMS treatment resulted in the reduction of Aβ 

deposit in the hippocampus of AD mouse models [8, 

47, 65]. Although previous studies have shown that 

rTMS may suppress the expression of APP and APP 

cleavage enzyme, β-secretase 1 (BACE1), therefore 

reduce the production and processing of Aβ in the 

AD mouse brains [27], however, merely reducing Aβ 

production may not be sufficient for the pathologi-

cal improvement and cognitive benefits observed in 

rTMS-treated AD animal models and patients. Our 

results now provide evidences showing that, con-

comitant with reduced Aβ deposits in multiple brain 

regions as compared with untreated 5xFAD mice, 

two weeks of high frequency rTMS regime also sig-

nificantly prevented the decline of cognitive func-

tion, likely through the improved drainage efficiency 

through the glymphatic system and meningeal lym-

phatics, which may facilitate the clearance of intersti-

tial Aβ as suggested by recent studies [14, 16, 29, 30, 

67]. Therefore, the therapeutic effects of rTMS on 

preventing the progression of Aβ pathology in the AD 

brains are likely two-fold: on one hand by suppressing 

Aβ production, and on the other hand by enhancing 

clearance of extracellular Aβ, rendering it an effective 

treatment for early stage AD. Further examinations of 

the promoting effects of rTMS on Aβ clearance may 

be tested directly by comparing the Aβ levels in deep 

cervical lymph nodes of AD mice with or without 

rTMS treatment, or indirectly by measuring the clear-

ance rate of tracer-labeled Aβ peptides injected into 

AD mouse brains with or without rTMS treatment 

by in  vivo two photon imaging [25]. It remains to be 

determined the molecular mechanisms of how drain-

age efficiency is regulated by rTMS in the AD brains.

Our study showed that in the mPFC of 5xFAD mice, 

significantly increased accumulation of 10 kDa Dex-

tran-Alexa Fluor 647 was observed at 30 min after a 

single intracisternal injection of the fluorescent tracer. 

While such differences may be interpreted as a result 

of either impaired efflux or enhanced influx of the 

fluorescent tracer, however, our data demonstrated the 

significantly increased tracer in the brain parenchyma 

of 5xFAD mice was concomitant with reduced tracer 

in the meningeal lymphatics and dCLNs, suggesting 

impaired efflux of the drainage system in the 5xFAD 

brains. Of note, previous reports on the distribution 

of intracisternally injected tracer in the AD mouse 

models have been mixed [15, 29]. The discrepancy 

may be due to the distinct time points examined after 

tracer injection, and different types of tracers used 

in other studies. Moreover, often only brain paren-

chyma or meninges/dCLNs were investigated for the 

distribution of intracisternally injected tracer, thus 

lacking a comprehensive information about the kinet-

ics of drainage efficiency between the AD and nor-

mal brains. To further evaluate functional changes of 

parenchymal drainage system in the AD, whole brain 

time-lapsed imaging may help to resolve the issues and 

discrepancies.

Neuroinflammation has been considered the main 

contributor to progressive neural damage and blood–

brain barrier disruption in neurodegenerative dis-

eases [1]. Our findings demonstrated the regulatory 

effects of rTMS on suppressing glial activation in the 

5xFAD mouse brains, which may be explained by 

(See figure on next page.)

Fig. 5 rTMS reduces activation of astrocytes in the 5xFAD brains. a Representative images of GFAP staining in the mPFC. Scale bar: 100 μm. b 

Quantitative analyses of the fluorescence intensity (normalized to the area of region-of-interest) of GFAP staining in the mPFC across groups 

(n = 8–10 mice per group). c Representative images of GFAP staining in different subregions of the dorsal hippocampus. Scale bar: 100 μm. d 

Quantitative analyses of the fluorescence intensity (normalized to the area of region-of-interest) of GFAP staining in different subregions of the 

hippocampus across groups (n = 8–11 mice per group). e Representative images of GFAP staining in the S1 cortex. Scale bar: 150 μm. f Quantitative 

analyses of the fluorescence intensity (normalized to the area of region-of-interest) of GFAP staining in the S1 cortex across groups (n = 8–11 mice 

per group). All data are presented as mean ± SEM of the fold change of the WT-Ctrl group and analyzed by one-way ANOVA followed by Tukey’s 

multiple comparisons test. WT-Ctrl: wildtype littermates received sham treatment, AD-Ctrl: 5xFAD mice received sham treatment, AD-rTMS: 5xFAD 

mice received rTMS treatment. mPFC: medial prefrontal cortex, DG: dentate gyrus, CA3: cornu ammonis 3, CA1: cornu ammonis 1, S1: primary 

sensory cortex
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direct modulatory effect of rTMS on glial activities, or 

by the indirect consequences of rTMS on the reduc-

tion of Aβ plaques or the release of neurotransmitters 

from activated neurons[12, 50]. Previous findings have 

shown that rTMS may suppress or induce glial activa-

tion via different frequency and strength used and may 

be context-dependent. For example, rTMS treatment 

(gamma oscillations, 30-40 Hz) for 4 weeks has been 

reported to attenuate cuprizone-induced microglia acti-

vation and pro-inflammatory cytokine expression in the 

frontal cortex and hippocampus of the affected mouse 

brains [68]. In a rat model of spinal cord injury, high fre-

quency (25 Hz) rTMS treatment for 8 weeks was found 

to suppress astrocyte activation [35]. On the contrary, 

a transient increase of astroglial GFAP expression has 

been reported in the ischemic injury rat model by 50 

Hz rTMS treatment for 7 days, and in the demyelina-

tion lesion Mongolian gerbil model by 1 Hz rTMS for 

14 days [19, 57]. �e different effects of rTMS on glial 

activation and neuroinflammation therefore suggest the 

indirect regulatory mechanisms through other rTMS-

influenced cells in the affected area. Whether it is the 

reduction of Aβ plaques or some other factors driven 

by the rTMS treatment that lowered glial activation and 

improved neuronal activity and cognition remains to be 

determined.

Conclusions
In summary, our data suggested that rTMS alleviated 

the pathological changes and cognitive impairment in 

5xFAD mice, likely through enhanced drainage effi-

ciency of the glymphatic system and meningeal lym-

phatics, which in turn facilitated toxic Aβ removal 

and suppression of glial activation. The effectiveness 

of high-frequency rTMS treatment has been examined 

in clinical studies. Notably, patients diagnosed with 

early stage AD received rTMS stimulation bilaterally 

to the dorsal lateral prefrontal cortex showed cogni-

tive improvement relative to their baseline state while 

patients with sham treatment showed no improve-

ment [32, 58]. Together with our findings that rTMS 

treatment prevented the cognitive decline in 5xFAD 

mice, we hypothesize that the still limited accumula-

tion of toxic Aβ, neuroinflammation and neuronal 

damage at early stage of AD may allow for better ther-

apeutic effect of rTMS. It is also worth noting that 

the clearance efficiency of the glymphatic/meningeal 

lymphatic systems can now be measured by clinically 

available imaging techniques like intrathecal injection 

of Gadobutrol-based contrast tracer in combination 

with dynamic contrast enhanced magnetic resonance 

imaging techniques [4, 33, 39], therefore could serve 

as the prognostic marker of the disease and the effec-

tiveness of rTMS treatment. Further exploration of 

Fig. 6 rTMS prevents decline of neuronal activity in the 5xFAD brains. a Representative images of c-FOS staining in the mPFC. Scale bar, 100 

μm. b Quantitative analyses of the density of c-FOS positive cells in the mPFC across groups (n = 8–10 mice per group, 98 ± 16 cells per section 

were sampled for the analysis). c Representative images of c-FOS staining in different subregions of dorsal hippocampus. Scale bar, 100 μm. d 

Quantitative analyses of the density of c-FOS positive cells in different subregions of hippocampus across groups (n = 8–11 mice per group, 95 ± 6, 

89 ± 22 and 95 ± 21 cells were sampled from DG, CA3 and CA1 brain regions for analysis). e Representative images of c-FOS staining in the S1 

cortex. Scale bar, 150 μm. f Quantitative analyses of the density of c-FOS positive cells in the S1 cortex across groups (n = 8–11 mice per group, 

414 ± 28 cells per section were sampled for the analysis). All data are presented as mean ± SEM of the fold change of the WT-Ctrl group and 

analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. WT-Ctrl: wildtype littermates received sham treatment, AD-Ctrl: 5xFAD 

mice received sham treatment, AD-rTMS: 5xFAD mice received rTMS treatment. mPFC: medial prefrontal cortex, DG: dentate gyrus, CA3: cornu 

ammonis 3, CA1: cornu ammonis 1, S1: primary sensory cortex

(See figure on next page.)
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the mechanistic targets of rTMS is warranted for its 

therapeutic potential for patients with AD and other 

neuropsychiatric disorders.
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 Additional �le 1: Supplementary Fig. 1. The effect of rTMS on spatial 

working memory and anxiety-like behaviors. a. Left: schematic of the 

Y-maze task. A, B and C are the 3 arms of the Y-maze. Right: Quantitative 

analyses of the spontaneous alternation (% alternation) and the number 

of total arm entries across groups (n = 10-11 mice per group). b. Repre-

sentative heatmaps of animals’ paths in the open field test. c. Quantita-

tive analyses of the time spent in the center zone as percentage of the 

total time, the distance travelled in the center zone as percentage of the 

distance travelled, and the total distance travelled in the open field across 

groups (n = 11-12 per group). All data are presented as mean ± SEM and 

analyzed by one-way ANOVA followed by Tukey’s multiple comparisons 

test. WT-Ctrl: wildtype littermates received sham treatment, AD-Ctrl: 

5xFAD mice received sham treatment, AD-rTMS: 5xFAD mice received 

rTMS treatment. 

Additional �le 2: Supplementary Fig. 2. rTMS does not change AQP4 

expression or polarization in the mPFC. a. Representative images of AQP4 

staining in the medial prefrontal cortex (mPFC). Scale bar: 150 μm. b. 

Quantitative analyses of the fluorescence intensity (normalized to the area 

of mPFC) of AQP4 staining and AQP4 polarity (defined as the fluorescence 

intensity of AQP4 staining on the perivascular end divided by the fluores-

cence intensity of total AQP4 staining) in the mPFC across groups (n = 8-9 

mice per group). All data are presented as mean ± SEM of the fold change 

of the WT-Ctrl group and analyzed by one-way ANOVA followed by 

Tukey’s multiple comparisons test. WT-Ctrl: wildtype littermates received 

sham treatment, AD-Ctrl: 5xFAD mice received sham treatment, AD-rTMS: 

5xFAD mice received rTMS treatment.
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