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How should a manager make replacement decisions for a chain of machines over time if each is maintained by an optimal
control model addressing uncertainty of machine breakdowns? A network representation of the problem involves arcs with
interdependent costs. A solution algorithm is presented and replacement considerations under technological change are
incorporated into a well-known optimal control model for maintenance under uncertainty (that of Kamien and Schwartz
1971). The method is illustrated by an example.
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1. Introduction
In an optimal control framework, this paper addresses the
question of how a machine should be maintained and when
it should be replaced by another (possibly of a different
technology) if deterioration and breakdowns follow a con-
tinuous probability distribution. The next section provides
a background for some of the related literature. Section 3
describes some application areas for a well-known opti-
mal control model of Kamien and Schwartz (1971) for the
maintenance of a single machine and outlines a numer-
ical solution procedure. A stochastic dynamic program-
ming formulation is provided to simultaneously address
maintenance-replacement decisions. Section 4 presents a
network formulation with probabilistic routes and decision
nodes, for more general models. Optimal control mod-
els are imbedded into each other, and then into a larger
dynamic programming mode, and a solution method is pro-
posed. The implications of the framework are illustrated
for the model of Kamien and Schwartz in §5. The paper
concludes with a numerical illustration for machines with
Weibull failure rate and a discussion of avenues for future
research.

2. Background
There exists a large body of literature on maintenance
and replacement policies under Markovian deterioration.
The paper of Derman (1962) on sequential decisions and
Markov chains opened the door for a stream of research,

beginning with that of Klein (1962) and leading to works
such as those of Hopp and Wu (1990) and Hopp and Nair
(1994), which addressed Markovian deterioration and tech-
nological change.
In a different setting, Kamien and Schwartz (1971) (in

short, K-S) developed an optimal control model for the
maintenance and sale date of a single machine. Though
limited to the narrower scope of Pontryagin’s principle, the
K-S model could address a wide range of continuous prob-
ability distributions. In the extensive review of Pierskalla
and Voelker (1976), the K-S model stood as the main opti-
mal control formulation that addressed uncertainty.
If coverage of a method in textbooks is an indicator

of popularity, then two such optimal control models for
maintenance decisions are Thompson’s (1968) determin-
istic model and Kamien and Schwartz’s (1971) proba-
bilistic model. (See, for example, Rapp 1974, Tu 1991,
Kamien and Schwartz 1991, Sethi and Thompson 2000.)
Both models addressed the maintenance and sale date
of a single machine. Deterministic maintenance models
have been extended to a multitude of replacement deci-
sions over time. Building upon Thompson’s (1968) model,
Sethi and Morton (1972), Tapiero (1973), Sethi and Chand
(1979), and Chand and Sethi (1982) addressed determinis-
tic maintenance models integrated into a chain of machine
replacements allowing probabilistic technological break-
throughs. The computational burden limited the applicabil-
ity of modeling probabilistic technological change (Sethi
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and Thompson 1977, 2000, p. 259). More recently, build-
ing on Kamien and Schwartz’s ideas, Mehrez and Berman
(1994) and Mehrez et al. (2000) developed deterministic
maintenance models allowing for as much as three replace-
ments over time. Their approach allowed for the introduc-
tion time of the new machine with new technology to be
Markovian. A common feature of all these models was
deterministic maintenance. A key characteristic of these
deterministic maintenance models is the following: The
machine does not fail to get scrapped during the period
for which a given maintenance policy is established; it can
deteriorate, but still continues to produce at some level.
Therefore, when a machine is installed, we know exactly
when it will retire under the given maintenance policy.
Probabilistic maintenance, on the other hand, addresses

the possibility of the cessation of production due to break-
down. Recent control models for maintenance under uncer-
tainty include the works of Boukas and his colleagues
(Boukas and Haurie 1990, Boukas et al. 1995, Boukas and
Liu 2001 and references therein), who made use of Davis’s
(1984, 1993) piecewise deterministic Markov process and
Sethi and Zhang (1994). In the earlier models of Boukas
and his colleagues, transition probabilities (to failure) of
their continuous-time, finite-state Markov chains depended
directly on the age of the machine as a continuous variable.
More recently, Boukas and Liu (2001, p. 1455) stated for
these models “� � � the age variable � � � greatly increases the
computational burden and may lead to the curse of dimen-
sionality.” Removing the continuous age variable, they
approximated the model by four states of a continuous-
time Markov chain: good, average, bad, and failure. In
general, their models encompass a rich spectrum of vari-
ables, including varying production and inventory levels to
meet stochastic demand for different products produced on
a number of machines. On the other hand, replacement of
present or failed machines by those of newer technology is
not considered. In the optimal control literature, we have
not been aware of probabilistic maintenance models that,
in addition to maintenance, also simultaneously take into
account possibilities of a chain of replacements under given
scenarios of technological change.
The purpose of this paper is to extend the probabilistic

single-machine K-S model (which can have a continuous-
time variable as input for the hazard rate, for aging) into
a wider setting, allowing maintenance decisions to take
into account the implications of the possibilities of a mul-
titude of replacements over time. The way this problem
differs from replacement models that use deterministic
(optimal control) maintenance segments such as, say, those
of Sethi and Morton (1972) or Mehrez et al. (2000), can be
summarized as follows. In contrast to deterministic mod-
els that explicitly lend themselves to dynamic programming
with clear-cut regeneration nodes, the stochastic mainte-
nance model presents additional challenges. Due to uncer-
tainty of breakdowns, the planned (targeted) regeneration
node for the replacement of a machine may be differ-

ent than the actual regeneration node. The implication to
the maintenance (optimal control) model is that the objec-
tive function terms change in the span of the optimiza-
tion horizon for each individual machine. Put differently,
the optimal control model has numerous discontinuities
in its objective function integrand. When the problem
is broken into smaller pieces, the costs of each remain
interdependent. Local optimal control models’ maintenance
policies affect the breakdown probabilities of downstream
ones. Treating the problem in smaller pieces with uniform
objective function expressions over the “local” optimiza-
tion period leads to numerous maintenance (optimal con-
trol) problems in tandem that would need to be optimized
together with the dynamic programming calculations for
the replacement decisions. The next section prepares the
setting to address these issues.

3. The Problem
The single-machine optimal control model of Kamien and
Schwartz (1971) begins with the cumulative distribution
function of lifetime. Let Fj�t� denote the probability that a
machine of vintage j (bought when there were j periods to
go until the end of the planning horizon) fails at or before
t units of time from its purchase date. The term failure,
or breakdown, is limited in this paper to those dysfunc-
tions that require the ceasing of production and replacement
of the machine. The effective hazard rate of this machine
equals the natural hazard rate hj�t� = �dFj�t�/dt�/�1 −
Fj�t�� multiplied by (1− u�t�), the latter indicating addi-
tional maintenance efforts to reduce the probability of
failure at time t. In other words, the natural hazard rate hj
embodies the basic minimum maintenance requirements of
the machine, while u represents what else can be done to
reduce the probability of breakdown that leads to scrapping.
Cost of this additional maintenance effort is Mj�u�t��hj�t�.

3.1. Some Areas of Application

The control variable u�t� not only may include improve-
ments within the machine itself, but also around its external
environment. It includes preventive as well as predic-
tive measures that may prolong the life of the machine.
Optimal control models are especially suited for han-
dling continuous-time-varying decisions on temperature and
moisture. Durability and strength of typical continuous-
fiber composites can be significantly affected by heat
as well as by even a minute presence of moisture, as
demonstrated in Reifsnider and Case (2002, pp. 242–243).
Other applications include monitoring of electrical clos-
ets in high-voltage distribution, monitoring of buildings
via infrared thermography, vibration monitoring, and pro-
cess parameter monitoring, all with the objective of favor-
ably altering the probability distribution of lifetime of the
system (Levitt 2003). Another consideration is usage of
more electric power: better illumination of the location
(or for longer periods), if it may reduce the probability of
accidents at the expense of more kilowatt hours used.
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Extending the natural hazard rate hj�t� by the con-
trol variable u�t� may also, for some pay-scale structures,
encompass usage of operators or supporting-services per-
sonnel with higher pay, and lower probabilities of acci-
dents. This also reduces “defects due to improper use” (in
the terminology of Gertsbakh and Kordonskiy 1969, p. 6).
For a machine operated, say, seven hours a day, for

five days a week, the time parameter t may indicate
“in-business” time. Maintenance operations are run after
the in-business day, or do not show as a downtime of the
machine that reduces the production day. Other choices of
time scale may also be appropriate, as noted in Kordonsky
and Gertsbakh (1993), Gertsbakh (2000, Chapter 6), and
Lawless (2002, p. 241), depending on the source of fail-
ures. For example, if corrosion is the major culprit, then
calendar time may be preferable. The applicability of the
K-S model is limited to problems in which increase in the
maintenance effort u does not reduce the standard produc-
tion time of the machine.

3.2. The Kamien and Schwartz Optimal
Control for Maintenance

The K-S model addresses the expected value of net cash
flow. This can be viewed as the average net present value
per machine if the experiment is independently repeated for
a large number of times. In this context, Fj�t� may also be
viewed as the fraction of vintage j machines up and operat-
ing at time t of the experiments. Rj is the revenue net of all
costs except maintenance u�t�. Lj denotes the junk value
of a failed machine. In contrast to planned retirement, if
the unexpected scrapping causes certain extra costs, these
can be included in the Lj term as well. Breakdown leading
to scrapping does not necessarily mean the physical oblit-
eration of the machine. It can simply mean that produc-
tion is terminated in such a way that a new replacement is
in order. Maintenance costs are continuously differentiable
with respect to u, with Mj�0�= 0�dMj�u�t��/d�u�t�� > 0,
and d2Mj�u�t��/d�u�t��

2 > 0� Cash generated at time t
involves Rj −Mjhj if the machine is up and Lj if down.
Its net expected present value is

w= e−rt
{
�Rj −Mj�u�t��hj�t���1− Fj�t��+Lj

dFj�t�

dt

}

at the interest rate r . Letting Sj�T � denote the resale value
of a working machine at time T � the optimal control model
of Kamien and Schwartz (1971) chooses u�t� for t ∈ �0� T �
so as to maximize

J ∗ =max
u�t�

∫ T

t=0
wdt+A�Fj�T �� T �

with A� �= e−rT Sj�T ��1− Fj�T �� (1)

subject to

dFj�t�

dt
=�1−u�t��hj�t��1−Fj�t��

with 0�u�t��1 and initial condition Fj�0�=0�
(2)

At time t, by the original design of the machine, hj�t�
is fixed: It is a given formula. Therefore, in (2), varying
u�t� only affects dFj�t�/dt, and thus future values of Fj�t�.
On the other hand, setting u�t�= 0 for all t would let the
machine proceed according to the original hj�t�.
In optimal control theory, a solution is achieved by

choosing u�t� for each point in time, so as to maximize
the Hamiltonian H =w+��t���1− u�t��hj�t��1− Fj�t���,
where ��t� denotes the adjoint variable (shadow price) such
that ��T �= �A�Fj�T �� T �/�Fj�T �=−e−rT Sj�T � and
d��t�

dt
=− �H

�Fj�t�

= e−rt�Rj −Mj�u�t��hj�t�+Lj�1− u�t��hj�t��

+��t��1− u�t��hj�t�� (3)

Let c�u� t� denote the terms in the Hamiltonian H that con-
tain u. Expanding w in H , we get c�u�t�� t�≡−Mj�u�t��−
�Lj +��t�ert�u�t�. Here, Mj�u�t�� is a nonlinear function
of u�t� and optimal u�t� is a continuous function of time
as shown by K-S. Thus, in the K-S approach, for each t
the optimal control is the value of u�t� that maximizes the
expression for the optimal c below:

c∗�t�= max
0�u�t��1

{−Mj�u�t��− �Lj +��t�ert�u�t�
}
� (4)

3.3. A Numerical Procedure

Because optimal u�t� is continuous and because ��t� is
continuous (Pontryagin et al. 1962), the right side of
Equation (3) is continuous. Therefore, the adjoint variable
��t� must be smooth (continuously differentiable). Further-
more, due to the special structure of the model, the state
variable appears neither in the adjoint Equation (3) nor in
the optimality condition (4). Taking advantage of all these
properties, we use numerical methods. In a backward sweep
starting from time t = T , with values of ��t� and u�t� on
hand and obtaining �′�t� from (3), one can compute numer-
ically ��t−�t� using a method such as Runge-Kutta, and
then obtain u�t − �t� from (4), and decrement the clock
by �t again. After successive calculations, t = 0 shall be
reached with all values of u�t� on hand. With these val-
ues on hand, a forward sweep beginning from Fj�0� at
increments of �t using (1) and (2) can yield the numerical
solution.

3.4. Dynamic Programming Formulation
for Replacements

If during a given planning horizon one is allowed to replace
a machine with a newer and more modern one, what
would then be the optimal maintenance policy for each
individual one, and when should the replacements take
place? In stochastic models the overall planning horizon is
often divided into T equal-size periods, allowing replace-
ments only at the nodes indicating the end of the period
(see, for example, Wagner 1975, pp. 715–718; Hopp and
Nair 1991, p. 205; or Bylka et al. 1992, p. 490).
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Define f�0� = 0, and for n� 1 let f�n� = net present value
of an optimal regeneration and maintenance policy when
there are n periods to go until the end of the planning
horizon. Thus, subscripts in parentheses indicate the stage
number of dynamic programming calculations rather than
equipment vintage. Suppose that at stage n (time= T − n)
the values of f�n−1�, f�n−2�� � � � � f�1� are already at hand.
Let V �n�K� denote the optimal expected net present value
for a vintage “n” machine obtained at time T − n, at cost
of Dn dollars with the intention of keeping it for K peri-
ods (K � n� and subsequent replacements (if any). Ln will
now cover not only the junk value of a failed machine,
but also any special switching costs from a “failed-and-
scrapped” machine to the new replacement. This is because,
as noted in Jorgenson et al. (1967, p. 71), cost of in-
service failure may exceed the cost of replacement planned
well ahead as a preventive action against future failures. If
there exist tighter bounds on u�t� due to technology used,
these will be denoted by Un and 	Un. In such a setting, the
following forms of optimal control problems need to be
solved:

V �n�K�

=max
u�t�

K−1∑
$=0

∫ $+1

$

{
e−rt

{
�Rn−Mn�u�t��hn�t���1−Fn�t��

+Ln�1−u�t��hn�t��1−Fn�t��
}

+e−r�$+1�f�n−$−1��1−u�t��hn�t�

·�1−Fn�t���
}
dt

+e−rK�1−Fn�K���Sn�K�+f�n−K��−Dn (5)

subject to

dFn�t�

dt
= �1− u�t��hn�t��1− Fn�t��

with 0�Un � u�t�� 	Un � 1 (6)

and initial condition Fn�0�= 0. If there are alternative tech-
nologies available at time T −n, then (5)–(6) can be solved
for each, and the alternative with the largest expected net
present value may be chosen.
An economic interpretation of (5) can be observed by

rearranging its terms into

V �n�K�

=max




K−1∑
$=0

∫ $+1

t=$
w�t�dt

+
K−1∑
$=0

∫ $+1

t=$
e−r�$+1� fn−$−1

dFn�t�

dt
dt

+e−rK�1−Fn�K���Sn�K�+f�n−K��−Dn




=max




∫ K

t=0
w�t�dt

+
K−1∑
$=0

e−r�$+1�f�n−$−1��Fn�$+1�−Fn�$��

+e−rK�1−Fn�K���Sn�K�+f�n−K��−Dn



�

In the last equation, the first expression (the integral)
describes the expected present value of direct cash flow
from operating and maintaining the machine, over the
time interval [0, K]. For $ = 0�1� � � � �K − 1, the second
expression describes the sum of present values of optimal
maintenance/replacement policy when there are n− �$+1�
periods to go, multiplied by the probability of breakdown
of a vintage n machine, in the just preceding period. The
last expression before the Dn term describes the present
value of the salvage revenue from the machine that was
sold in operating condition and subsequent optimal policy,
multiplied by the probability that the machine of vintage n
did not break down during the K periods it was intended
for use.
Into how many periods (T ) should the overall planning

horizon be divided? In answering this question—in other
words, in choosing the length of a unit period—the fol-
lowing consideration needs to be taken into account. In the
above model, when a machine breaks down in the middle
of a period, purchase of a new machine will have to wait
until the next regeneration point. If the firm replaces its
machines rather quickly, then T needs to be chosen appro-
priately large, i.e., length of a unit period= 1/T needs to
be reduced.
After the above values of V �n�K� are obtained for

each K, then f�n� can be obtained from

f�n� = max
K=1� ���� nK

�V �n�K��� n= 1�2� � � � � T � nK � n� (7)

nK is the upper bound on intended machine life for vin-
tage n, as dictated by technical, safety, and managerial
considerations. If there is no such limit, then one can set
nK = n. To obtain the values of V �n�K�, one has to con-
sider the objective function in (5), which has discontinuities
from t = 0 to K due to different values of f�n−$−1�. The
next section of the paper addresses this issue.

4. A Network Representation for
Imbedded Optimal Control Models

In a network representation of Equation (5), one way to
cope with the changing integrands over the span of the
optimization time from t = 0 to t = K is to break the tar-
geted life span of the machine into arcs that are each a
single period long. Here, an arc indicates the operation
of a machine for the duration between the times repre-
sented by its starting and ending nodes. This network can
conveniently allow dynamic programming if costs of indi-
vidual arcs between the nodes are independent of others.
Independence of arc costs is not the case, however. The
maintenance decisions are intertwined, and lead to the exis-
tence of a series of arcs with sequence-dependent costs.
The network addressed here involves optimal control

over the arcs and dynamic programming decisions at cer-
tain nodes. As an example, a four-period dynamic program-
ming network is illustrated in Figure 1.
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Figure 1. Replacement options for a four-period
problem.

1
0

0 1 2 3 4

→4
2

0→4

2
1→ 4

3
1→ 4

2
1→ 3

3
0→4

3
2→4

1
0→2

1
0→3

2
0→3

Notes. The dotted arc from node 2
0→4 to node 2 indicates that the

machine which had been intended for use between nodes 0 to 4 has broken
down and been scrapped during the second period, hence, the purchase of
a new machine at t = 2. Replacements take place only at nodes that do
not have dotted arrows emanating out from them.

The path over the three nodes 2, 3
2→4 , and 4 indicates

purchase of a machine at t = 2, intended for use for two
periods, and to be salvaged at t = 4. If an unplanned break-
down and scrapping occur during its first period of usage,
then the vertical (dotted) arc 3

2→4 , 3 leads us to the pur-
chase of a new machine at time t = 3. The intensity of
maintenance during the first period (arc 2, 3

2→4 � will influ-
ence the condition of the machine in its second period
(arc 3

2→4 , 4), as well as the probability of taking the dotted
arc (indicating breakage and scrapping) out of node 3

2→4 .
Any solution approach needs to handle such interdepen-
dencies between maintenance and replacement costs in this
probabilistic environment.
A backward-sweep dynamic programming solution of

the problem in Figure 1 begins by relabelling the nodes
to indicate time left until the end of the planning hori-
zon. The node t = 4 becomes n= 0, node t = 3 becomes
node n= 1� � � � , until the beginning node n= 4, indicating
that there are four periods to go. Nodes that have dotted

lines emanating out labeled t
t1→t2 (with t1 < t2) will now

be denoted as n
n1→n2 (with n1 > n2). For example, the old

node 3
0→4 will be relabeled as 1

4→0 , indicating that it is
located at a time when there is one period to go, and that it
is on the path from n= 4 to n= 0. Single-index nodes such
n = 1�2� � � � , are where dynamic programming decisions
are taken for purchase of a new machine. Multi-index nodes

such as n
n1→n2 serve to indicate the possibility of break-

age and enter dynamic programming indirectly, through the
optimal control calculations.
In the above context, the objective function (5), sub-

ject to constraint (6), relates to paths that begin and end
with single-index nodes, and have solely multi-index nodes
in between. Optimal control for a path between two such

single-index nodes n and n + K can proceed recursively
by imbedding the immediate downstream arc’s value of the
objective function in the salvage value term of the model
being calculated. Consider an arc on this path representing
the life segment of a machine from age $ to $ + 1. For the
maintenance model related to this arc, $ denotes the start-
ing time of the local optimal control problem. K represents
the number of periods the machine was intended to be used
when it was bought. Fn�$� is the initial value of the state
variable, which is a given number between zero and one.
The imbedded recursive optimal control problem is of the
form

J ∗�n� $�K�Fn�$�� f�n−$−1�� � � � � f�0��

=max
u�t�

J �n� $�K�Fn�$�� f�n−$−1�� � � � � f�0�� u�t��

=max
u�t�

∫ $+1

t=$
Wn�n�u�t�� Fn�t�� f�n−$−1�� t�dt

+ Ā�n� $ + 1�K�Fn�$ + 1�� (8)

with $ <K and

A�n�$+1�K�Fn�$+1��

=




e−r�$+1��Sn�K�+f�n−K���1−Fn�K��
for $=K−1�

J ∗�n��$+1��K�Fn�$+1��f�n−$−2������f�0��
for $=K−2�����0

subject to

dFn�t�

dt
= g�u�t�� Fn�t�� t� hn�t�� (9)

with 0�Un � u�t�� 	Un � 1, initial value of the state vari-
able Fn�$� given, and Fn�$ + 1� free.
Wn�n�u�t�� Fn�t�� f�n−$−1�� t� and g�u�t�� Fn�t�� t� hn�t��

are continuously differentiable with respect to u� Fn, and t.
These two functions are not completely specified, and
therefore (8)–(9) cover a general family of problems in
which Kamien and Schwartz (1971) is a special case.
This general problem, if solved recursively for $ =
K− 1� � � � �0, should eventually yield J ∗�n�0�K�0� f�n−1��.
Now V �n�K� can be obtained from V �n�K� = −Dn +
J ∗�n�0�K�0� f�n−1��.
For K > 1 and $ � K − 2, each time one attempts to

solve problem (8)–(9), in the salvage value term A�n� $+1,
K�Fn�$ + 1�� for $ < K − 1, J ∗�n� $ + 1�K�Fn�$ + 1�,
f�n−$−2�� � � � � f�0�� needs to be represented as an analyti-
cal function of Fn�$ + 1�. When a closed-form expression
is not available, one may express it approximately by a
regression equation �J �Fn�$ + 1�� from the results of the
previous step of the recursion as follows. Because in a
given recursion, n, $ , K, and f�n−$−1� are given and fixed,
problem (8)–(9) can be solved several times for different
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Figure 2. Example of a relation between the starting
value of Fn and the resulting J

∗ for a “general”
costfunctionWn.

0

50

100

150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fn

J*

values of Fn�$� ranging from zero to one. The correspond-
ing values of J ∗�n� $�K�Fn�$�� f�n−$−1�� � � � � f�0�� can be
regressed against Fn�$�. The estimated function will be
called �J �Fn�$ + 1�� because it is to be used for the next
step of the recursion, after $ gets decremented by one.
Alternatively, a more flexible function may be fitted to all
the calculated points, implying interpolation for the ranges
between the available data.
A possible relation between J ∗�n� $�K�Fn�$��

f�n−$−1�� � � � � f�0�� and Fn�$� for a general cost function is
illustrated as an example in Figure 2.

5. A Property of the Imbedded
Kamien-Schwartz Model for
Replacement Decisions

If an unknown nonlinear relation is approximated by some
function, then as the number of stages in a recursion
increases, the errors of approximation shall build up. One
way to harness the size of the error is to increase the num-
ber of data points at the expense of more computational
efforts. On the other hand, if a model yields a perfect fit to
the functional form chosen, then the solution of imbedded
optimal control and dynamic programming will yield exact
results without incurring extra computational efforts, mak-
ing it more attractive, as shown in the following theorem.

Theorem. Imbedded recursions of (8) and (9) with the
Kamien and Schwartz (1971) model yield a perfect fit in
the regression equation for �J �Fn�$ + 1��.

Proof. Using g�u�t�� Fn�t�� t� hn�t��= �1−u�t��hn�t��1−
Fn�t�� and

Wn� �= e−rt
{
�Rn−Mn�u�t��hn�t���1− Fn�t��

+Ln�1− u�t��hn�t��1− Fn�t��(

+ e−r�$+1�f�n−$−1�)�1− u�t��hn�t��1− Fn�t��
}

for problem (8)–(9), the terminal value of the adjoint vari-
able ��t� associated with (9) for $ =K−1 at terminal value
of t (t = $ + 1=K� is ��K�=−e−rK�Sn�K�+ f�n−K�� and

d��t�

dt
= e−rt

{
Rn−Mn�u�t��hn�t�+Ln�1− u�t��hn�t�

}

+ e−r�$+1�f�n−$−1��1− u�t��hn�t�

+��t��1− u�t��hn�t��

At time t = $ + 1, none of these terms are a function of
Fn�$�. Therefore, neither is u�$ + 1� which at t = $ + 1 is
obtained by choosing u�t� that maximizes the following:

max
Un�u�t��	Un

{−Mn�u�t��− �Ln+ e−r�$+1−t�f�n−$−1�

+��t�ert�u�t�
}
� (10)

This means that values of ��t−�t� numerically computed
as a function of ��t��d��t�/dt� u�t� do not have Fn�$�
as an argument for t = $ + 1� $ + 1 − �t, and $ + 1 −
2�t� � � � ��t+$ . When u�t−�t� has been computed for all
these values of t, the next phase is a forward sweep of dif-
ferential Equation (9) and the integral (8) using a fixed value
of Fn�$� as the given initial condition. Differential Equation
(9) is linear and nonhomogenous of the form dFn�t�/dt =
a�t�− a�t�Fn�t�, and therefore its solution is of the form
Fn�t�= Fn�$� · p�t�+ q�t�, where Fn�$� is a constant. The
integral in (8) for J ∗�n� $�K�Fn�$�� f�n−$−1�� � � � � f�0�� is of
the form

∫ $+1
t=$ �1− Fn�$�p�t�− q�t��z�t�dt, and therefore

is a linear function of Fn�$�. The same is true for the sal-
vage value in (8) for $ = K − 1� The essential point here
is that p�t� and q�t� do not depend on the initial condition
Fn�$�. This means that the data for the regression come
from a linear function and have to yield a perfect fit.
The maximum and minimum values of Fn� � are 1 and 0,

respectively, and when Fn�$� = 1� J ∗ = 0. Therefore, in
the salvage value term of A�n� $ + 1�K�Fn�$ + 1�� in
Equation (8), J ∗�n� $ + 1�K�Fn�$ + 1�� f�n−$−2�� � � � � f�0��
can be replaced by J ∗�n� $ + 1�K�0� f�n−$−2�� � � � � f�0�� ·
�1 − Fn�$ + 1�� and is now an analytical function of
Fn�$ + 1� and does not need to be estimated as a regression
equation.
To begin the case for $ < K − 1, we now have the ter-

minal value of �:

��$ + 1�= � A
�Fn�$ + 1�

=−J ∗�n� $ + 1�K�0� f�n−$−2�� � � � � f�0��� (11)

The arguments used above for the case of $ =K − 1 now
apply in a similar fashion and lead again to a linear function
and, therefore, a perfect fit.
These results mean that the solution of the recursion (7)

yields an exact solution for the Kamien-Schwartz main-
tenance model when J ∗�n�0�K�0� f�n−1�� � � � � f�0��−Dn is
used for the term V �n�K�. Q.E.D

In contrast to the nonlinear relation in Figure 2, the just-
proven single block of a straight line relation for the K-S
model is illustrated in Figure 3.

6. An Illustrative Example
Because future technologies and their maintenance
requirements are usually not known with certainty, one
way to prepare is to consider alternative scenarios and
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Figure 3. An illustration of the straight line relation
between Fn and J ∗ for Kamien-Schwartz
model.
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determine the maintenance-replacement plans required by
each.
As an example for one such scenario, consider a six-

period problem. The vintage index j , identifying when the
machine was purchased, will be measured by the number
of periods from the time of purchase to the end of the plan-
ning horizon. Suppose that r = 0�05, Uj = 0� 	Uj = 0�9,
Mj�u�t��=mj�e

cju�t�−1�, and Sj�T �= sje
−0�5T ; the under-

lying probability distribution function behind the natural
hazard rate is Weibull such that hj�t� = bjt

bj−1, L = 0�1,
and that the technologies of the different vintages yield the
cash-flow parameters given in Table 1.
Initial resale value is 12% less than original cost Dj ,

namely, sj = 0�88Dj . The difference Dj − Sj�T ��T=0 =
Dj − sj includes ordering cost and installation cost, as well
as the difference between the price of a brand-new machine
versus that of a new but pre-owned one.
The primary algorithm is the dynamic programming

recursion of (7) for stages j = 1� � � � �6. In each stage j ,
the standard K-S model is used for K = 1; for K > 1, the
imbedded optimal control model is used according to (8)
and (9) (in these equations n is replaced here with j).
The numerical procedure in §3.3 applies to this problem

with the following modifications: 0 � Un � u�t� � 	Un � 1
and Equation (10) are used for choosing the optimal value
of u�t�. For salvage value, A�n� $ + 1�K�Fn�$ + 1�� is
used as defined in Equation (8). For cases with $ <K− 1,
the expression obtained in §5 for the value of A�n� $ + 1,
K�Fn�$+1�� is used in Equation (11) to compute the value
of ��$ + 1� at the right end of the “local” optimal control
problem from $ to $ + 1.
Stage 1 of dynamic programming consists of the numer-

ical solution of a standard Kamien-Schwartz maintenance

Table 1. Revenue and cost parameters for a machine
purchased j periods before end of the planning
horizon.

t 5 4 3 2 1 0
j 1 2 3 4 5 6
Rj 71 70 64 40 37 35
mj 1�2 1�3 1�9 1�9 2�2 2�5
cj 4 4 4 3 2 1�5
Dj 45 35 30 28 28 20
bj 1�3 1�28 1�26 1�22 1�2 1�15

problem for j = 1, with K = 1 and $ = 0, below:

max
u�t�

∫ 1

t=0
e−0�05t

{
�71− 1�2�e4u�t�− 1��1�3t0�3���1− F1�t��

+ 0�1�1− u�t���1�3t0�3��1− F1�t��
}
dt

+ e−0�05�0�88��45e−0�5��1− F1�1��

subject to

dF1�t�

dt
= �1− u�t���1�3t0�3��1− F1�t���

0� u�t�� 0�9� and F1�0�= 0�

Beginning with the terminal value of ��1� =
−e−0�05�0�88��45e−0�5� = −22�8472 and substituting it to
(10), the optimal value of u�1�= 0�402 is obtained. Apply-
ing the numerical method of §3.3 for a backward sweep
followed by a forward pass and subtracting D1 yields the
following result: f�1� = V �1�1� = J ∗�j = 1� $ = 0�K = 1�
F1�0�= 0� f�0� = 0�−D1 = 19�879.
Stage 2 solves for f�2� =max�V �2�1��V �2�2��. For the

case of K = 1, using standard Kamien-Schwartz optimal
control yields V �2�1�= J ∗�j = 2� $ = 0�K = 1� F2�0�= 0,
f�1� = 19�879� − D2 = 44�218. As for the other alterna-
tive (two periods of planned usage), i.e., K = 2, V �2�2� is
obtained by the imbedded model of Equations (8) and (9).
The first step solves for

max
u�t�

∫ 2

t=1
e−0�05t

{
�70− 1�3�e4u�t�− 1��1�28t0�28���1− F2�t��

+ 0�1�1− u�t���1�28t0�28��1− F2�t��
}
dt

+ e−0�1�0�88��35e−1��1− F2�2��

subject to

dF2�t�

dt
= �1− u�t���1�28t0�28��1− F2�t���

0� u�t�� 0�9� and F2�1�= 0

and yields a maximum value of 44.7523. This, as a salvage
value, is imbedded into the next step as J ∗�j = 2� $ = 1,
K = 2� F2�1��0� = 44�7523�1 − F2�1�� and requires the
solution of

max
u�t�

∫ 1

t=0

{
e−0�05t

{
�70−1�3�e4u�t�−1��1�28t0�28���1−F2�t��

+0�1�1−u�t���1�28t0�28��1−F2�t��
}

+ e−0�05�19�879��1−u�t���1�28t0�28��1−F2�t��
}
dt

+44�7523�1−F2�1��

subject to

dF2�t�

dt
= �1− u�t���1�28t0�28��1− F2�t���

0� u�t�� 0�9� and F2�0�= 0
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and yields a maximum value of 84.1246. Subtracting from
it the purchase price of $35, J ∗�j = 2� $ = 0�K = 2�
F2�0�= 0� f�1� = 19�879�− 35= V �2�2�= $49�125� Thus,
f�2� =max�44�218�49�125�= $49�125 with stage 2’s opti-
mal K = 2.
Similarly, for the remaining stages one obtains: f�3� =

maxK=1�2�3�V �3�K�� = $68�66 with optimal K = 1. The
maximum value of f�4� = $72�62 is obtained from K = 1.
Continuing in the same fashion, f�5� = $84�36 for K = 2
and f�6� = $108�348 for K = 3 completes the solution.
These values imply the following. The machine on

hand, planned for replacement at t = 3 with a vintage
3 machine to be kept for one period, and then replaced
at the fourth period with a new machine that would be
planned for use for two periods, would yield the maxi-
mum value: an expected net present value of $108.348.
The corresponding maintenance effort (obtained from the
imbedded Kamien-Schwartz model of stage 6 dynamic
programming computations for K = 3) in the first period
begins at t = 0 with u�0� = 0�9, and remains the same
for first two periods. In the middle of the third period,
the value of u begins to decline, and at t = 3 reaches
u�3� = 0�014. The course of action under failure is pre-
scribed in the dynamic programming results of the pre-
vious two paragraphs. For example, if the first machine
fails at, say, t = 0�8, then there will be no production (and
no revenues) for 1�0 − 0�8 = 0�2 time units. At t = 1�0,
results of stage 5 calculations apply—namely, a new
(replacement) machine begins production with intended
(planned) use time of two periods, i.e., K = 2.
The computational effort involves the following com-

ponents: (1) The recursion of the dynamic programming
Equation (7) is a polynomial function of T (Dreyfus and
Law 1977, Chapter 2). If the total length of the planning
horizon is kept constant while the number of replacement
opportunities is increased, i.e., as the number of nodes
T is increased, the increase in the computational effort
does not rapidly become prohibitive. (2) Computational
effort also depends on the method used for numerical inte-
gration. In the above example, fourth-order Runge-Kutta
was used. Here, the choice of �t determines the number
of calculations and the precision of the results. The num-
bers given above are for �t = 0�001. To compare, other
alternatives were tested. Using �t = 0�01 yielded an f�6�
value that was less than 0.05% off from its corresponding
one for �t = 0�001. Throughout the six dynamic program-
ming stages based on the control model with �t = 0�01,
none of the objective function values were more than 0.2%
off from their counterparts of the case �t = 0�001. Push-
ing the approximation more crudely by setting �t = 0�1
yielded differences of less than 2% in each of the six
stages of dynamic programming. The final value of f�6�
obtained using �t = 0�1 was less than 0.5% off from the
f�6� obtained using �t = 0�001. As �t was being varied,
the sensitivity of the values of f�n� tended to be less for
larger values of n.

Programming the method in True BASIC and choos-
ing �t = 0�001, the computation times observed on a
Pentium 4 processor for problem sizes ranging from T = 10
to T = 50 replacement opportunities were fitted into two
different models: runtime (in seconds)= 0�0375925 T 2�89915

and runtime (in seconds)= 3�7211−0�7983T +0�1334T 2+
0�02298T 3. Both models provided fit with deviations of
no more than four seconds to any observation. Choosing
�t = 0�01 reduced the computation time by a factor of 10.
A problem with T = 50 required 317 seconds. The same
problem solved using �t = 0�001 required 3,169 seconds.
The respective objective function values were different by
less than 0.01%.

7. Summary and Avenues for
Future Research

For a given scenario of technological change over time,
what is the optimal control solution for replacement and
maintenance of equipment with known natural hazard
rates? While deterministic maintenance versions of this
problem have been addressed during the last three decades,
the probabilistic one lingered unsolved. The method pre-
sented above broke the time horizon into T replacement
opportunities. For a duration between replacement oppor-
tunities at times, say, $ and $ + 1, the objective function
of the control model (8), encompassed the expected net
present value of the cash flow. In the differential equation
constraint (9), the control variable u�t� simply modified the
original probability distribution function of the lifetime of
the machine through extra maintenance effort. For any rect-
angular node in Figure 1, the difference Fj�$ + 1�− Fj�$�
of the incoming arrow determined the probability of which
downstream arrow to take. We addressed how, via imbed-
ding, the individual optimal control segments between
times $ and $ + 1 should be pasted together through $ =
0�1� � � � �K − 1. The overall dynamic programming effort,
polynomial in T , wrapped the whole package. By choosing
an appropriate value of T , the granularity of the problem
may be adjusted to the specific application in industry.
The method proposed here solves the integrated

replacement-maintenance problem and opens avenues for
future research. The problem addressed in this paper was
limited to a fixed planning horizon. The length of the
planning horizon and its effects on the maintenance and
replacement decisions, especially for the early periods, have
practical implications to management. Because forecasting
technologies can involve larger error margins as one looks
further into the future, the minimum forecast horizons for
robust decisions regarding the early periods of the planning
horizon can be of importance and stand out as an avenue
for future research in the spirit of the studies of Bylka et al.
(1992), Hopp and Nair (1991, 1994), and some of the stud-
ies listed in the bibliography of Chand et al. (2002). As new
periods approach, newly available information may require
recomputation of the optimal policy with the updated data.
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Decision making over such rolling horizons needs to be
studied, and the present maintenance-replacement model
may serve as one of the building blocks in such research.
Terms such as Rj were assumed to be constant over time,

and Sj depended only on the age of the machine. One may
wish to relax such assumptions and take into account, for
example, fluctuations of the business cycle. Modification
of the basic K-S model may also be explored for cases
where Rj is a function of u�t�. An example to study may
be Elsayed’s (2003) data for oil refineries, where reduced
operating temperatures of the industrial furnace prolong the
residual lifetime of major production units, at the expense
of reduced output.
The natural hazard rate may be modified to take season-

ality into account. For example, for some products, win-
ter conditions may be associated with more accidents than
summer. In locations without climate control, items that
are vulnerable to dampness may have a higher deteriora-
tion risk in winter. For other products it may be vice versa:
Summer conditions may be more hazardous and may need
(climate) control.
Another area to explore is alternative cost functions for

the control variable u. If rapid variations in the control
variable over a short period of time may cause additional
costs, this may need to be included in the cost function in
forms such as M)u�t�� �u�t�−u�t−�t��2(� More versatile
models may incorporate control variables subject to state
variable constraints using nonsmooth analysis and differen-
tial inclusions (Clarke et al. 1998, Vinter 2000).
In conclusion, alternative functional forms, cost struc-

tures, and constraints may expand the application areas of
the model of Kamien and Schwartz (1971), and incorporat-
ing replacement decisions to optimal-control-maintenance
models expands the time horizon of the problem. These in
turn provide numerous avenues for future research.
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