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Abstract—Let G be a directed edge-weighted graph and let
P be a shortest path from s to t in G. The replacement paths
problem asks to compute, for every edge e on P, the shortest
s-to-t path that avoids e.

Apart from approximation algorithms and algorithms for
special graph classes, the naive solution to this problem –
removing each edge e on P one at a time and computing the
shortest s-to-t path each time – is surprisingly the only known
solution for directed weighted graphs, even when the weights
are integrals. In particular, although the related shortest paths
problem has benefited from fast matrix multiplication, the
replacement paths problem has not, and still required cubic
time.

For an n-vertex graph with integral edge-lengths between -M
and M, we give a randomized algorithm that uses fast matrix
multiplication and is sub-cubic for appropriate values of M.
We also show how to construct a distance sensitivity oracle in
the same time bounds. A query (u,v,e) to this oracle requires
sub-quadratic time and returns the length of the shortest u-to-
v path that avoids the edge e. In fact, for any constant number
of edge failures, we construct a data structure in sub-cubic
time, that answer queries in sub-quadratic time. Our results
also apply for avoiding vertices rather than edges.

I. INTRODUCTION

In a network G where edges occasionally fail, a shortest
path P between two vertices s and t may have to change
accordingly. The replacement paths problem asks to com-
pute, for every edge e in P , the shortest s-to-t path that
avoids e. This generalization of the fundamental shortest
paths problem is strongly motivated by two applications.
In auction theory, the replacement paths problem is used
to compute the Vickrey pricing of edges owned by selfish
agents [1], [2]. Another application is that of computing
the k shortest simple paths between a pair of vertices. This
problem reduces to running k executions of a replacement
paths algorithm, and has many applications itself [3]. The
all pairs generalization of replacement paths (also called
distance sensitivity oracles in the literature) asks to construct
a data structure that upon query (u, v, e) outputs the length
of a shortest u-to-v path that avoids the edge e. Other
generalizations include avoiding more than one edge, or
avoiding vertices rather than edges.

Replacement Paths: The naive solution to the re-
placement paths problem is to remove each edge e on

P , one at a time, and compute the shortest s-to-t path
each time. This can be done in O(mn + n2 log n) time.
Except for the slight improvement of Gotthilf and Lewen-
stein [4] to O(mn + n2 log log n), assuming non-negative
weights, no faster algorithms are known for weighted, di-
rected graphs. Similarly, the fastest algorithm for finding
k shortest simple paths, given by Yen [5] and Lawler [6],
uses k replacement path computations and therefore runs in
O(k(mn + n2 log log n)) time. Hershberger et al. [7] gave
an Ω(m

√
n) lower bound for both these problems in the

path-comparison model of Karger et al. [8].
Overcoming the o(mn) bound for the replacement paths

problem (and the o(kmn) bound for k shortest simple paths)
has received a lot of attention recently. There were two
directions taken. The first was to consider special graph
classes. For undirected graphs, the problem is significantly
easier. Malik et al. [9] presented an Õ(m) time algorithm
for the replacement paths problem, that was later extended
to avoid vertices rather than edges [10]. Nardelli et al. [11]
gave an O(mα(m,n)) time algorithm for the problem, in
a stronger model of computation, using the linear time
single source shortest paths algorithm of Thorup [12]. For
directed unweighted graphs, Roditty and Zwick [13] gave
an Õ(m

√
n) time randomized algorithm. Finally, for the

class of directed planar graphs, Emek et al. [14] gave
an O(n log3 n) time algorithm, improved in [15] and later
in [16] to O(n log n).

The second way of overcoming the o(mn) bound was
to settle for approximate distances. Roditty [17] showed
that approximation can in fact beat the O(kmn) bound
for k shortest simple paths. In particular, Roditty presented
an Õ(km

√
n)-time 3/2-approximation algorithm for finding

the k shortest simple s-to-t paths in directed graphs with
positive edge lengths. Bernstein [18] improved this to a
(1 + ε)-approximation algorithm requiring Õ(km/ε) time.
Bernstein also gave the first approximation algorithm for the
replacement paths problem. His replacement path algorithm
is a (1 + ε)-approximation running in Õ(m log(nC/c)/ε)
time, where C is the largest edge length in the graph and c
is the smallest.

All Pairs Replacement Paths: The more general all
pairs replacement paths problem asks to construct a distance



sensitivity oracle for answering queries (u, v, e) seeking the
length of the shortest u-to-v path that avoids the edge e. For
directed weighted graphs, Demetrescu et al. [19] presented a
distance sensitivity oracle that can be constructed in Õ(mn2)
time and O(n2 log n) space, has constant query time, and
can also handle queries for avoiding vertices rather than
edges. Bernstein and Karger improved the preprocessing
to O(n2

√
m) [20] and then further to Õ(mn) [21], with

unchanged constant query time. For the case of two failures
(vertices or edges) Duan and Pettie [22] construct an oracle
in polynomial time and Õ(n2) space, whose query time is
O(log n). For more than two failures, Chechick et al. [23]
showed that if we are willing to settle for approximate
distances then an oracle constructed in polynomial time can
handle f failures in Õ(f) query time.

Finally, we mention the (harder) related problem of main-
taining all pairs shortest path queries while updating the
graph (deleting and inserting edges and vertex). Demetrescu
and Italiano [24] presented a data structure to maintain
all pairs shortest path queries in O(1) time with Õ(n2)
amortized update. Their algorithm was slightly improved by
Thorup [25]. For unweighted undirected graphs, Roditty and
Zwick [26] obtained a (1+ε)-approximation algorithm with
an expected amortized update time of Õ(mn/t) and worst-
case query time of O(t). Thorup [27] obtained O(n2.75)
worst case updates.

Our Results: Although several algorithms exploiting
fast matrix multiplication are known for shortest path prob-
lems it was unknown how to use fast matrix multiplication
for the tightly-connected replacement paths problem. We
show how to exploit fast matrix multiplication for the
replacement paths problem in directed graphs with integral
(positive and negative) edge lengths. Our first main result
is a randomized algorithm whose bounds are given by the
following theorem.

Theorem 1 The replacement paths problem can be solved
in Õ(Mn1+ 2

3ω) = O(Mn2.584) time with very high prob-
ability on an n-vertex directed graph with integral edge-
lengths in {−M, . . . ,M}.

There are a few things to notice about the bounds of
Theorem 1. Using the current matrix multiplication exponent
ω < 2.376 [28] we get a bound of O(n2.584) for fixed
M , and sub-cubic time for any M < n0.416. A surprising
outcome is that if ω < 2.25, as may turn out to be the case,
we get, for general graphs, better bounds than the Roditty-
Zwick O(n2.5) algorithm that can only handle unweighted
graphs, or graphs with small positive weights. In particular,
if ω = 2 we get O(Mn2.333).

We further show how to extend our method to the all
pairs replacement paths problem, by constructing a distance

sensitivity oracle1 with sub-cubic construction and sub-
quadratic (notably, sub-Dijkstra) query time as stated by the
following theorem.

Theorem 2 For any 0 < α < 1, a distance sensitivity ora-
cle can be constructed in Õ(Mn1−α+ω) time on an n-vertex
directed graph with integral edge-lengths in {−M, . . . ,M}.
A query (u, v, e) to this oracle requires Õ(n1+α) time and
returns the length of the shortest u-to-v path that avoids the
edge e.

Using the same ideas of Theorem 2 we can get a more
general distance sensitivity oracle that can handle multiple
failures with the following bounds.

Corollary 1 For any 0 < α < 1, a distance sensitiv-
ity oracle for avoiding f edges, can be constructed in
Õ(Mn1−α+ω) time on an n-vertex directed graph with
integral edge-lengths in {−M, . . . ,M}. A query (u, v, S)
to this oracle requires Õ(n2−(1−α)/f ) time and returns the
length of the shortest u-to-v path that avoids all the edges
in S.

Finally, we mention that both our replacement paths
algorithm and our distance sensitivity oracle can be made
to work, in the same time bounds, for the case of failed
vertices rather than edges.

Technique: In contrast to the naive replacement paths
algorithm that performs O(n) shortest path computations,
we compute shortest paths on o(n) random subgraphs. We
start with random subgraphs Gj that with very high prob-
ability capture all short replacement paths. We then choose
a random subset of vertices B such that with very high
probability any long replacement path in Gj decomposes
into short subpaths with endpoints in B. These subpaths are
captured by the all-pairs distances between vertices of B.

To compute these B×B distances, we use fast matrix mul-
tiplication and tweak an algorithm of Yuster and Zwick [29]
so that it computes all |B|2 distances faster than computing
each distance individually. Solving the replacement paths
problem then boils down to computing an s-to-t shortest
path in a new graph with B vertices and (unbounded)
edge-lengths corresponding to the minimal B×B distances
between a few Gjs. To compute the s-to-t shortest path in
this new graph, we can use a (costly) shortest path algorithm
that can handle unbounded (and negative) lengths. We show
how to reweigh the graph so that Dijkstra’s algorithm can
be used instead.

II. THE REPLACEMENT PATHS ALGORITHM

In the replacement paths problem we are given a directed
graph G = (V,E) with integral (and possibly negative)

1We slightly abuse the term oracle here as oracles are usually thought
of as having constant or logarithmic query time.



edge-lengths in {−M, . . . ,M} and two distinct vertices s
and t. Let P = (s = v0, v1, . . . , vk = t) be a shortest path
from s to t where 1 ≤ k < n (we assume no negative
cycles; such cycles will be detected if they exist). We wish
to compute paths P1, . . . , Pk such that Pi is a shortest path
from s to t in the graph G\ei where ei is the edge (vi−1, vi).
In this section, we show how to solve the replacement paths
problem in the bounds of Theorem 1. We begin with a high
level outline of our replacement paths algorithm. We then
give a detailed description and analysis.

A. Outline of the Algorithm.

The naive solution to the replacement paths problem
would be to consider the subgraphs G \ ei for i = 1, . . . , k,
and compute an s-to-t shortest path in each of them. As
the edge lengths are bounded by M , every s-to-t path
can be found in Õ(Mnω) time using the single-source
shortest-paths (SSSP) algorithm of Yuster-Zwick [29], or
in Õ(

√
nm) = Õ(n2.5) time with the SSSP algorithm of

Goldberg [30]. However, k executions of an SSSP algorithm
are too costly as k can be O(n).

The Random subgraphs Gj: Instead of k = O(n)
graphs, we wish to construct r = Õ(n1−α) graphs for some
0 < α < 1 to be chosen later. These graphs, G1, . . . , Gr,
are random subgraphs of G that are generated independently
as follows: Each random subgraph Gj is obtained from G
by removing every edge with probability nα−1.

Let Fe denote the set of graphs Gj that do not contain
the edge e. We would like to have the property that with
very high probability, for every i, the edges of Pi are all
present in at least one Gj ∈ Fei . This way, we could run an
SSSP algorithm on every Gj and report Pi as the minimal
s-to-t shortest path in all Gj ∈ Fei . It turns out, that by
choosing the appropriate r, the property holds for every Pi
that is sufficiently short (shorter than n1−α). The problem
is how to handle the long Pis. For these Pis, the desired
property is not guaranteed to hold with high probability. It
does however hold for short subpaths of Pi.

We define an interval as a subpath of Pi consisting of
n1−α consecutive vertices, so every Pi induces at most n
(overlapping) intervals for a total of n2 intervals. We show
that with very high probability, the edges of any interval
induced by Pi are all present in at least one Gj ∈ Fei .
However, we cannot assure that all the intervals of Pi are
in the same Gj . To overcome this, we pick a random subset
B ⊆ V of Õ(nα) vertices and make sure that s, t ∈ B. We
show that with very high probability each of the n2 possible
intervals has at least one vertex in B. This way, every Pi
decomposes into disjoint intervals whose endpoints are both
in B.

For every i = 1, . . . , k we construct the dense distance
graph GiB as follows: Its set of vertices is B, and the weight
of the edge (u, v) is the length of the shortest u-to-v path in
all Gj ∈ Fei . The shortest s-to-t path in GiB will give us the

replacement path Pi. We are thus left with two challenges:
How to construct the GiBs, and how to compute the shortest
s-to-t path in every GiB .

The Dense distance graphs Gi
B: Constructing the

GiBs boils down to computing, for every Gj the distance
between any two vertices in B. Naturally, this can be
achieved by computing all-pairs shortest-paths on Gj , but
notice that we are only interested in the B×B subset shortest
paths. The algorithm of Yuster-Zwick [29] performs this task
faster. It constructs, in Õ(Mnω) time, an n × n matrix D
which has the property that the distance between any pair
of vertices u, v is equal to min`∈V {D[u, `] + D[`, v]} and
can therefore be computed from D in O(n) time. The entire
B × B distances can thus be naively computed from D in
O(|B|2n) time.

We present an even faster way of doing this. We first
extract from D the rows (D1) and columns (D2) that
correspond to B. We then prove that it is safe to only
consider entries in D1 and D2 whose absolute value is
bounded by Mn1−α. Finally, the distance product D1 ?D2,
that gives us exactly the B × B distances we need, is
computed using the Alon et al. [31] algorithm for distance
product of matrices with an associated bound on the entries,
which uses a related idea of Yuval [32].

s-to-t shortest paths in Gi
B: We are left with the final

challenge of computing the s-to-t shortest paths in every
GiB . Notice that the edge-lengths of GiB may be positive
or negative, but they are no longer bounded. Therefore, to
compute the shortest s-to-t paths, we may run Goldberg’s
SSSP algorithm multiple times, once for each GiB . This
algorithm can handle large negative lengths. However, the
similarity between the various GiBs suggests a more effi-
cient computation using the well known method of reduced
lengths.

This method is useful in transforming a shortest-path
problem involving positive and negative lengths into one
involving only nonnegative lengths, which can then be
solved using Dijkstra’s SSSP algorithm. Traditionally, the
edges of a given graph G are first reweighed so they
become nonnegative. Then, multiple runs of Dijkstra are
performed on the same graph G (now with nonnegative
edge-lengths) but with different sources s. We introduce
a variant of this method, where we reduce the lengths
once and then Dijkstra is performed multiple times but on
different graphs. Namely, once on each GiB .

We next fill out the missing details and analysis of the
above outline. We focus on computing the length of the
replacement paths, the actual paths can be easily found in
the same time bounds.

As a first step, we compute some shortest s-to-t path in G
in order to identify e1, . . . , ek. This can be done in Õ(Mnω)
time using the SSSP algorithm of Yuster-Zwick.



B. The Random Subgraphs Gj .

We generate the subgraphs G1, . . . , Gr where Gj is
obtained from G by removing every edge with probability
nα−1. We choose r = 42n1−α log n, and since G may have
n2 edges, generating these subgraphs requires O(rn2) =
Õ(n3−α) time. Recall that Fe denotes the set of graphs
Gj that do not contain the edge e, and let fe = |Fe|. We
start with the following lemma, stating that with very high
probability fe is roughly equal to log n for all e ∈ E.

Lemma 1 The probability that 21 log n < fe < 70 log n for
all e ∈ E is at least 1− 2/n.

Proof: We first show that for a single edge e, the
probability that fe > 21 log n is at least 1 − 1/n3. To
see this, notice that the expectation of fe is precisely
E[fe] = rnα−1 = 42 log n. So by Chernoff’s bound (cf.
[33]) we know that

Pr[fe < E[fe]− 21 log n] < e
−(21 logn)2

2E[fe] <
1
n3
.

We therefore have, by union bound, that with very high (1−
1/n) probability fe > 21 log n for all e ∈ E. Similarly, by
Chernoff’s bound stating that for a ≥ (2/3)E[fe] we have
Pr[fe < E[fe] + a] < e−2E[fe]/27 we have

Pr[fe < E[fe] + 28 log n] < e−2E[fe]/27 <
1
n3
.

So again, by union bound, we have that with very high (1−
1/n) probability fe < 70 log n for all e ∈ E.

Recall that Pi is a shortest path from s to t in the graph
G \ ei, and an interval is a subpath of some Pi consisting
of n1−α consecutive vertices. We say that an interval of Pi
survives if all the edges of this interval are present in some
Gj ∈ Fei . We now show that all the n2 possible intervals
survive with very high probability as stated by the following
lemma.

Lemma 2 The probability that all the intervals survive is
at least 1− 2/n.

Proof: Consider some specific interval I of Pi, and
some Gj ∈ Fei . The probability that all the |I| − 1
edges of I survived in Gj is precisely (1 − nα−1)|I|−1 ≥
(1 − nα−1)n

1−α−1 > 1/e. So the probability that I does
not survive in any Gj ∈ Fei is less than (1 − 1/e)fei .
By Lemma 1, we can assume that fe > 21 log n and so
(1 − 1/e)fei < (1 − 1/e)21 logn < (1/e)4 logn < 1/n4.
In particular, by union bound, we get that with probability
1− 1/n2 all the possible n2 intervals survive.

After establishing that all intervals survive, we need to
show that with very high probability every interval has at
least one vertex in B. We choose B to be a random subset
of 3nα log n vertices of G and also require that s, t ∈ B.

Lemma 3 With probability at least 1 − 1/n every interval
contains some vertex in B.

Proof: Since B is chosen randomly, the probability that
a specific vertex v does not belong to B is exactly 1 −
|B|/n = 1 − 3nα−1 log n. So an entire interval does not
belong to B with probability (1−3nα−1 log n)n

1−α
< 1/n3.

There are at most n2 intervals overall so by union bound we
get that with probability 1 − 1/n every interval contains a
vertex in B.

C. Constructing the Graphs Gi
B .

Recall that GiB is a graph whose vertex set is B (that
includes s and t), and the weight of the edge (u, v) is the
length of the shortest u-to-v path in all Gj ∈ Fei . We can
therefore construct GiB by computing for every Gj the B×B
matrix Bj storing the distances between any two vertices in
B. Once we have B1, . . . , Br every edge-weight in GiB can
be computed by examining a single entry in every Bj such
that Gj ∈ Fei . By Lemma 1 we know that |Fei | < 70 log n
and so GiB can be constructed in O(|B|2 log n) time. So we
can construct all GiBs in O(|B|2n log n) = Õ(n2α+1) time.

We are left with the problem of computing B1, . . . , Br.
We focus on computing a single Bj of the n-vertex graph
Gj . For two vertices u, v let c(u, v) denote the smallest
number of edges on a shortest path from u to v and let
δ(u, v) denote the distance from u to v.

Lemma 4 ([29]) Given an n-vertex graph, the Yuster-Zwick
algorithm constructs in Õ(Mnω) time, an n× n matrix D
with the following properties: For any pair of vertices i, j
there exists a vertex k on a shortest path realizing c(i, j)
so that D[i, k] = δ(i, k), D[k, j] = δ(k, j), and D[i, k] +
D[k, j] = δ(i, j).

We first run the Yuster-Zwick algorithm on Gj construct-
ing the matrix D as in Lemma 4. Consider the sub-matrix D1

of D which consists of taking only the rows that correspond
to B. Let D2 be the sub-matrix of D that consists only of
the columns that correspond to B. It is easy to see that
Bj is exactly the distance product D1 ? D2 (the distance
product C = A ? B of two matrices A and B is defined as
C[i, j] = mink{A[i, k]+B[k, j]}). To compute the distance
product D1 ?D2 we use the following result, first stated by
Alon et al. [31], following a related idea of Yuval [32].

Lemma 5 ([31]) Let A be an nr × ns matrix and let
B be an ns × nt matrix, both with elements taken from
{−L, . . . , L} ∪ {+∞}. Then, the distance product A ? B
can be computed in Õ(Lnω(r,s,t)) time, where ω(r, s, t) is
the matrix multiplication exponent of multiplying an nr×ns
matrix with an ns × nt matrix.

We would like to compute D1 ? D2 using the bounds of
Lemma 5. The problem is that the elements of D1 and D2



are not bounded, in fact L can be as large as Mn. However,
we claim that we only need to consider elements of D1 and
D2 whose absolute value is less than Mn1−α, the rest of
the elements can be replaced by +∞. This idea, together
with the above lemmas, give the following.

Lemma 6 Every matrix Bj can be computed in time
Õ(Mnω +Mn1−αnω(α,1,α)).

Proof: We need to show that any element of D1 and D2

whose absolute value is greater than Mn1−α can be thought
of as +∞. To see this, consider a shortest path between two
vertices i, j ∈ B. Recall that we assume every interval of
n1−α vertices has at least one vertex in B. Therefore, we
are only interested in the i-to-j shortest path if the number
of its edges c(i, j) ≤ n1−α. In this case, by Lemma 4,
there must be some k ≤ n such that c(i, k) ≤ n1−α, and
c(k, j) ≤ n1−α, and D[i, k] + D[j, k] is the length of the
i-to-j shortest path. Since the absolute value of every edge-
length is bounded by M , we get that D[i, k] ≤Mn1−α and
D[j, k] ≤ Mn1−α. So the corresponding entries in D1 and
D2 are bounded by Mn1−α.

By Lemma 6, we can compute all the Bj matrices in total
time Õ(rMnω + rMn1−αnω(α,1,α)). Recalling that r =
Õ(n1−α), that α ≤ 1, that ω ≥ 2, and that ω(α, 1, α) ≤
ωα + 1 − α (See, e.g., Huang and Pan [34]), we have that
Õ(rMnω + rMn1−αnω(α,1,α)) = Õ(Mn1−α+ω).

Corollary 2 All the GiB graphs can be constructed in total
time Õ(Mn1−α+ω + n2α+1).

D. Computing s-to-t Shortest Paths in GiB
Finally, we need to compute the shortest s-to-t path

in every GiB . Notice that the edge-lengths of GiB may
be positive or negative, but they are no longer bounded
by M . We may run Goldberg’s SSSP algorithm (which
can handle large integral negative lengths) on every GiB .
However, we would like to use the faster Dijkstra algorithm.
This algorithm can handle unbounded lengths but can not
handle negative lengths. So, in order to use Dijkstra we
must reweigh the edges so they become nonnegative, without
changing the shortest s-to-t path. We achieve this by using
feasible price functions and reduced lengths.

For a directed graph G = (V,E) with (possibly negative)
edge-lengths w(·), a price function is a function φ from the
vertices of G to the reals. For an edge (u, v), its reduced
length with respect to φ is wφ(u, v) = w(u, v) + φ(u) −
φ(v). A price function φ is feasible if wφ(u, v) ≥ 0 for all
edges (u, v) ∈ E. The idea behind feasible price functions
is that for any two vertices s, t ∈ V , for any s-to-t path P ,
wφ(P ) = w(P )+φ(s)−φ(t). This shows that an s-to-t path
is shortest with respect to wφ(·) iff it is shortest with respect
to w(·). Moreover, the s-to-t distance with respect to the

original lengths w(·) can be recovered by adding φ(t)−φ(s)
to the s-to-t distance with respect to wφ(·).

The most popular feasible price function comes from
single-source distances. Let x be new vertex added to G
with an edge from x to every other vertex of G having
weight 0. Let d(v) denote the length of the shortest path
from x to v in G ∪ {x}. Then for every edge (u, v) ∈ E,
we have that d(v) ≤ d(u) + w((u, v)), so wd((u, v)) ≥ 0
and thus d(·) is feasible. This means that knowing d(·), we
can now use Dijkstra’s SSSP algorithm on G ∪ {x} (with
reduced lengths) from any source we choose and obtain the
SSSP with respect to the original G. However, we would like
to run Dijkstra not on G but on every GiB . The following
lemma states that we can use the same price function d(v)
on all GiBs.

Lemma 7 The function d(·) is a feasible price function for
every GiB .

Proof: Consider an edge (u, v) in some graph GiB . We
need to prove that wd((u, v)) ≥ 0. We know that w(u, v)
is the length of the shortest u-to-v path in all Gj ∈ Fei .
In particular, w(u, v) is the length of some (not necessarily
shortest) u-to-v path P in G. Consider the x-to-v path in G
that is composed of the shortest x-to-u path in G and the
path P . The length of this x-to-v path is d(u)+w(u, v) and
therefore d(v) ≤ d(u) +w(u, v) so wd((u, v)) = w(u, v) +
d(u)− d(v) ≥ 0.

Notice that we can compute d(v) for every v ∈ G in
Õ(Mnω) time using the Yuster-Zwick algorithm (in fact, if
every vertex is reachable from s then we can just use x = s
and recall that we have already computed the SSSP from
s in the beginning of the algorithm to identify e1, . . . , ek).
Running Dijkstra on GiB is done in O(|B|2) time so on all
GiBs in O(n|B|2) = Õ(n1+2α) time.

Total time complexity: From the above description,
the total time complexity of our replacement paths algo-
rithms is

Õ(Mnω + n3−α +Mn1−α+ω + n1+2α).

Taking α to be ω/3 gives total time complexity Õ(Mn1+ 2
3ω)

thus proving Theorem 1.

III. EXTENSIONS TO ALL PAIRS REPLACEMENT PATHS

In this section we describe the required changes to turn
our replacement paths solution into an all pairs replacement
paths solution. We begin with the case of avoiding a single
edge. We present a distance sensitivity oracle that upon
query (u, v, e) outputs the length of the shortest u-to-v path
that avoids the edge e. We then show how to extend our
distance sensitivity oracle to handle multiple failures. A
query (u, v, S) to this oracle returns the length of the shortest
u-to-v path that avoids all the edges in S.



A. Handling a Single Failure

We now describe a distance sensitivity oracle for single
edge failure in the bounds of Theorem 2. We divide the
algorithm from the previous section into a preprocessing
stage and a query stage. In the preprocessing stage, without
yet knowing what edge will fail, we construct the random
subgraphs Gj . We also choose the random subset of vertices
B and compute the B×B shortest path matrices Bj . In the
query stage, knowing (u, v, e), we first identify the set Fe
of all Gjs that exclude e. We then add u and v to B and
accordingly extend every matrix Bj such that Gj ∈ Fe.
Using these extended Bj matrices we can construct the
graph GeB . Finally, we use reduced lengths and run Dijkstra’s
algorithm on GeB (a graph with B vertices, where the weight
of the edge (u, v) is the length of the shortest u-to-v path
in all Gj ∈ Fe).

The preprocessing stage is done exactly as in the previous
section so the graphs Gj are constructed in Õ(n3−α) time.
In particular, Lemmas 1, 2, 3, and 6 still hold and so
computing all Bj matrices can be done (as in Section II-C)
in Õ(Mn1−α+ω) time and O(r · |B|2) = Õ(n1+α) space.

In the query stage, computing the set Fe of all Gjs that
exclude e can be done in O(r) = Õ(n1−α) time by checking
each of the Gjs in constant time. We then need to modify
every matrix Bj where Gj ∈ Fe. By Lemma 1, there are
only O(log n) such Bj matrices as |Fe| = O(log n). Every
such Bj currently holds the B ×B distances in Gj and we
would like to add to it the {u}×B and B×{v} distances.
To do so, we recall that during the construction of Bj in the
preprocessing stage, we got an n × n matrix D such that
D?D is the all pairs distance matrix of Gj . We compute the
{u}×B and the B×{v} distances from D. Each distance is
computed in O(n) time for a total of O(|B|n) = Õ(n1+α)
time. The next step is to construct GeB . We compute each of
its |B|2 edge-lengths by looking at a single entry in |Fe|
matrices Bj for a total of O(|B|2|Fe|) = Õ(n2α) time.
Finally, a single execution of Dijkstra is done on the graph
GeB using reduced lengths in O(|B|2) time. The overall
running time of the query stage is, therefore, Õ(n1+α).

B. Handling Multiple Failures

We would like to extend our distance sensitivity oracle
from avoiding one edge to avoiding any fixed number of f ≥
2 edges. A query (u, v, S) now asks for the shortest u-to-v
path that avoids all edges in the set S (where f = |S|). The
oracle is essentially the same as the one we just described for
avoiding a single edge. We outline the differences leading
to the bounds of Corollary 1.

We begin with the randomized analysis. We now gen-
erate the random subgraphs G1, . . . , Gr by removing ev-
ery edge with probability n(α−1)/f . This time we choose
r = 42fn1−α log n. Let FS denote the set of graphs Gj
that do not contain any edges in S, and let fS = |FS |:

• Lemma 1 should now state 21f log n < fS < 70f log n.
The expectation E[fS ] = r(n(α−1)/f )f = rnα−1 just as
before and the proof of Lemma 1 holds. We also change
the length of an interval to be n(1−α)/f . An interval is
now said to survive if all its edges appear in some Gj ∈
FS .

• In Lemma 2, we now get that an interval I survives in
Gj with probability (1 − n(α−1)/f )|I|−1 > 1/e. So the
probability that I does not survive in any Gj ∈ FS is less
than (1 − 1/e)fS < 1/n6f . Notice that the total number
of possible intervals is no longer n2, it is now n3+f since
there are n2 pairs of vertices, each pair is responsible for
nf replacement paths, and each replacement path has up
to n intervals. Lemma 2 holds because, by union bound,
we get that with probability 1 − n3+f/n6f > 1 − 1/n2

all the possible n3+f intervals survive.
• Finally, for Lemma 3, we change |B| to be

3fn1+(α−1)/f log n. A specific vertex v does not belong
to B with probability 1− |B|/n = 1− 3fn(α−1)/f log n.
So an entire interval does not belong to B with probability
(1 − 3fn(α−1)/f log n)n

(1−α)/f
< 1/n3f . There are at

most n3+f intervals overall so by union bound we get
that with probability 1 − n3+f/n3f > 1 − 1/n every
interval contains a vertex in B. Lemma 3 follows.

In the preprocessing stage, when computing Bj (Sec-
tion II-C), since an interval length is now n(1−α)/f we
now only need to consider elements of D (See Lemma 4)
whose absolute value is bounded by Mn(1−α)/f . This
fact is used to bound L = Mn(1−α)/f in Lemma 5. In
the same lemma, since |B| is now 3fn1+(α−1)/f log n,
the distance product of a B × n matrix and an n × B
matrix is computed in Õ(Lnω(r,s,t)) time with ω(r, s, t) =
ω(1 + (α − 1)/f, 1, 1 + (α − 1)/f). Lemma 6 should now
state that constructing a single Bj requires time Õ(Mnω +
Mn(1−α)/fnω(1+(α−1)/f,1,1+(α−1)/f)). Multiplying this by
r (recalling that r = Õ(n1−α), that α ≤ 1, that ω ≥ 2, and
that ω(x, 1, x) ≤ ωx + 1 − x) we get that the total time to
construct all Bjs is Õ(Mn1−α+ω). The total space required
for all Bjs is O(r · |B|2) = Õ(f3n3−α+(2α−2)/f ).

In the query stage, computing the set FS can be done
in O(fr) = Õ(n1−α) time by checking each of the Gjs
in O(f) time. We then need to modify every matrix Bj
where Gj ∈ FS . There are only O(f log n) such Bj
matrices as |FS | = O(f log n). Adding the {u} × B and
B × {v} distances to all Bjs is done as in Section III-A
in O(|FS | · |B|n) = Õ(f2n2−(1−α)/f ) time. Finally, we
construct GSB : Its set of vertices is B, and the weight
of the edge (u, v) is the length of the shortest u-to-v
path in all Gj ∈ FS . The construction of GSB and the
execution of Dijkstra is done similarly to Section II in
O(|B|2|FS |) = Õ(f3n2−2(1−α)/f ) time. The total query
time is thus Õ(fn1−α+f2n2−(1−α)/f +f3n2−2(1−α)/f ) =
Õ(n2−(1−α)/f ). Corollary 1 follows.



IV. CONCLUDING REMARKS

We have presented an algorithm for the replacement path
problem in weighted directed graphs. Our algorithm uses
fast matrix multiplication and runs in Õ(Mn1+ 2

3ω) time on
an n-node graph with weights in {−M, . . . ,M}. We also
showed how to extend this solution to an Õ(Mn1−α+ω)-
time constructible oracle that upon query (u, v, S) returns
the length of the shortest u-to-v path that avoids all the
edges in the set S in Õ(n2−(1−α)/f ) time.

Both of these solutions can be made to work in the
case of avoiding vertices rather than edges. To achieve
that, each random subgraph Gj is now obtained from G
by removing every vertex (and its adjacent edges) with
probability nα−1. Notice that the vertices of B might also be
removed. However, by a similar argument to Lemma 2, all
the vertices of an interval survive in some Gj . In particular,
by Lemma 3, some vertex of B is contained in the interval
and is thus not removed.

The main open question is whether we can solve the
replacement paths problem in subcubic time on directed
graphs with unbounded (i.e, independent of M ) weights.
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