
158 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 2, APRIL 2000

Replacement Policies for a Proxy Cache
Luigi Rizzo, Member, IEEE,and Lorenzo Vicisano

Abstract—In this paper, we analyze access traces to a Web proxy,
looking at statistical parameters to be used in the design of a re-
placement policy for documents held in the cache. In the first part
of this paper, we present a number of properties of the lifetime and
statistics of access to documents, derived from two large trace sets
coming from very different proxies and spanning over time inter-
vals of up to five months. In the second part, we propose a novel
replacement policy, called LRV, which selects for replacement the
document with the lowest relative value among those in cache. In
LRV, the value of a document is computed adaptively based on in-
formation readily available to the proxy server. The algorithm has
no hardwired constants, and the computations associated with the
replacement policy require only a small constant time. We show
how LRV outperforms LRU and other policies and can signifi-
cantly improve the performance of the cache, especially for a small
one.

Index Terms—Caching, communication networks, policies, re-
placement, Web.

I. INTRODUCTION

T HE caching of Web documents is widely used to reduce
both latency and network traffic in accessing data.

Browsers generally implement a first-level cache, using some
amount of memory and disk space to store frequently accessed
documents. Being used by a single client, the browser's cache
is mainly useful to store images (backgrounds, icons, etc.) that
occur frequently in a set of related documents. A second-level
cache is provided by caching proxy servers (proxies), which
retrieve documents from the original site (or another proxy)
on behalf of the client. Proxies serve a large set of clients and
concentrate different sources of traffic. Hence they are able to
exploit not only the temporal locality but also the geographical
locality of the requests. In addition to this, the aggregation
of requests coming from different clients allows proxies to
have a large sample of references, giving useful information
on documents' popularity and for implementation of caching
strategies. Several proxy caches have been developed in recent
years. Among them,cern_httpd [9], harvest [4], and its
successorsquid [11] are popular programs that are available
in source format. The latter two use a number of ingenious
solutions to improve performance, and they introduce the
concept of cooperating proxies allowing setup of distributed
scalable proxy systems.

Manuscript received March 16, 1998; approved by IEEE/ACM
TRANSACTIONS ONNETWORKING Editor S. Pink.

L. Rizzo is with the Dipartimento di Ingegneria dell'Informazione, Università
di Pisa, Pisa 56126, Italy (e-mail: luigi@iet.unipi.it).

L. Vicisano was with the Department of Computer Science, University Col-
lege London, London WC1E 6BT, U.K. He is now with Cisco Systems, San
Jose, CA 95134 USA (e-mail: lorenzo@isco.com).

Publisher Item Identifier S 1063-6692(00)03316-1.

As proxies have finite storage capacity, it is eventually nec-
essary to replace less useful documents with more useful ones.
A replacement policy is, in fact, required in every caching tech-
nique. Cache memories, placed between processors and main
memory, are well-known and widely studied examples from
computer architecture. Other popular examples are in the fields
of operating systems and distributed file systems. Web caching
started borrowing the results of the studies in these fields and
applying the same techniques, but recently, researchers began to
study this issue as a separate problem [3], [7], [10], [12], [13].
The caching of Web documents has some peculiarities that jus-
tify the development of its own techniques. The main charac-
teristics differentiating the Web case from its predecessors are
variable object sizeand larger time scales,which lead to the
need/possibility of employing more sophisticated/expensive re-
placement algorithms than LRU, the algorithm commonly used
in most other contexts.

A. Related Work

Some useful hints on Web caching algorithms can be derived
from similar results in the field of file-system caching. Com-
monly used policies include discarding the least recently used
(LRU) among the objects present in cache, the least frequently
used (LFU), policies based on the size of objects—which dis-
card the largest objects—or combinations of these. One of the
main weaknesses of LRU (see [6]) is that the cache can be
flooded by documents that are referenced only once, flushing
out documents with higher probability of being reused. This sit-
uation is very likely to occur in Web caches, where references
to objects accessed only once account for a large fraction (2/3 in
our traces) of the total. The authors of [6] observed that the prob-
ability of an object’s being referenced again quickly grows after
the second reference, as occurred in the case of Web caching
(see [3]). That accounts for the good behavior of LFU policy.
Nevertheless, LFU alone prevents “dead” documents with large
reference counts from being purged. This causes the so-called
cache pollutionphenomenon and yields a reduction of the ef-
fective cache size. An aging policy is often used to cope with
this problem.

The problem of determining an efficient replacement algo-
rithm for a proxy cache has been studied in [12] and [13]. The
authors present a taxonomy of removal policies, based on the
observation of traces corresponding to five different workloads.
They analyze the use of hierarchical keys to keep documents
sorted in the cache and conclude that document size outperforms
all other possible keys, as far as cache hit rate (HR) is concerned.
Looking at bit hit rate (BHR), the key based on the number of
previous access (LFU) performs best, and the key based on the
documents' size is the worse. However, they use relatively short

1063–6692/00$10.00 © 2000 IEEE

RIZZO AND VICISANO: REPLACEMENT POLICIES FOR A PROXY CACHE 159

periods of observation and a limited number of different clients,
and the cache size (10% of the total size of accessed documents)
used in the experiments probably exceeds by far the set of live
documents.1 In policies based on the size of a document, there
is little or no chance that small documents can be discarded; as
a consequence, in the long term, the cache fills up with small,
old documents, and its performance decays. A similar observa-
tion holds for LFU. The phenomenon is only visible when such
garbage brings the useful space in the cache well below the size
of live documents, while the parameters used in [12] and [13]
cannot evidence this phenomenon. As also noted by the authors,
a problem with hierarchical keys is that it is difficult to sort the
keys by importance, and a key can be effectively used only if all
the previous ones give rise to frequent ties. As a consequence,
often only the first key is effective.

In a recent study [3], Cao and Irani have presented an algo-
rithm calledGreedyDual-Size. The basicGreedyDualalgorithm
sorts documents according to their measured retrieval cost.
The document with the minimum value for is the candidate
for replacement, and when a replacement occurs, all the doc-
uments get aged by the current valueof the purged docu-
ment. In GreedyDual-Size, parameter is slightly different,
being set to the ratio (retrieval cost/size) of the document, to
account for the variable size of Web objects. The performance
of GreedyDual-Size and other algorithms is evaluated in [3]
on some traces, including a small subset of one of the traces
also used for our evaluation, showing their algorithm to per-
form slightly better than a former, nonfully adaptive version of
LRV [8]. Compared to LRV, this performance comes at addi-
tional costs for taking replacement decisions. In fact, updating
the cache state at each reference has cost , requiring a
list search. On the contrary, as we will see, replacement deci-
sions in LRV only require constant time.2

B. Contribution of this Paper

In this paper,3 we develop a novel replacement strategy,
which we call LRV, explicitly intended for the Web and based
on maximizing an objective function for the whole cache. The
objective function is computed using a cost/benefit model that
determines the relative value of each document in the cache,
allowing the replacement algorithm to select the document
with the lowest relative value. The value of each document is
obtained on the basis of statistical parameters collected by the
server, and converted on-line into the coefficients used in the
evaluation of document importance. All the computations are
performed at negligible cost, allowing replacement decisions
to be taken in time rather than the time required
by some advanced algorithms.

This paper is organized as follows. Section II defines the
problem and introduces the cost/benefit model on which our

1For a formal definition of “live documents,” see Section II.
2This is partly because LRV does not use the retrieval cost as a parameter,

since we believe it can bias the cache's behavior against fast servers.
3An earlier version of this paper, describing the LRV algorithm, has been

available as a DEIT Technical Report [8] since 1996, and some papers in the
literature refer to that earlier version of LRV. In this paper, we have extended
our study to include the DEC trace set, and have modified the LRV algorithm
to make it fully adaptive by removing hardwired constants in the computation
of P (t) (see Section III-B).

work is based. Section III analyzes the probabilistic parame-
ters that influence the value of each document, discussing how
they affect already-known replacement algorithms. Section IV
presents the LRV algorithm together with a discussion of its im-
plementation. The performance of LRV, compared to other algo-
rithms, is finally presented based on real traces and for a number
of different cache sizes.

II. PROBLEM'S DEFINITION

Proxies aim to improve the performance offered by the Web,
providing end users with faster access to its resources. A number
of performance metrics can be identified for caching in the Web,
which can be divided in two main classes:user-perceivedper-
formance andnetwork-perceivedperformance. Web users per-
ceive the goodness of the system as the time it takes to retrieve a
document; that depends on the time it takes to get the document
from the local cache, the time it takes to transfer the document
from the original site, and whether the document is present or
not in the local cache. From the network perspective, the main
goal is to contain the traffic on its link, avoiding the unnecessary
use of resources.

Both the user-perceived access time and the network traffic
can be hardly quantified in terms of cache performance indexes.
However, they are strongly dependent on two objective perfor-
mance parameters: thehit rate (HR) andbyte hit rate(BHR),
which reasonably describe the effectiveness of a cache. HR and
BHR indicate the fraction of documents and bytes, respectively,
which are served from the cache instead of requesting them
from the network. BHR is a direct measure of the savings in
network traffic measured at the cache from/to the outside, so it
also strongly influences the response time in serving documents.
BHR is a significant performance index: in fact, under some re-
alistic assumptions (see Appendix A), thespeedupin retrieving
documents achievable with a cache can be expressed as

BHR

For these reasons, in the rest of this paper, we will use BHR
as the main performance index, but we will also look at HR,
being useful for comparing our results with previous works that
mainly concentrate on HR. In evaluating these performance
metrics, we will discard those documents that can be identified
asuncacheablea priori, such as those generated as a program
output or marked as uncacheable by the server.

With reference to a given time, we callhistory the history
of accesses to a proxy made before. Accesses issued after
are calledfuture historyor simply future. The history is known
to proxy servers, which can keep logs recording past requests
including information on the URL, size, type, requestor, and
transfer time for a document. Obviously, the future is not known
to a proxy at runtime, so we will use this definition only to clas-
sify documents requested to the proxy, as follows:

• Accesseddocuments are all documents whose URL’s ap-
pear in the history.

• Deaddocuments are accessed documents that do not ap-
pear in the future history. Document die because they are
deleted at the source, change their content (thus effectively

160 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 2, APRIL 2000

becoming new documents), or simply because no one ac-
cesses them anymore.

• Live documents are accessed documents that also appear
in the future history.

Let be the set of documents accessed at leasttimes and
the size of the set. A parameter that we will often use is

corresponding to the probability that a document is accessed
again after theth access. is a direct indication of the per-
centage of documents for which caching is useful at all.

In order to increase the hit rate, a proxy might try to prefetch
documents, anticipating clients' requests, so that even the
first request for a given document is served by the cache. In
principle, this approach might have no influence on the total
amount of network traffic, bring the hit rate to 100%, and reduce
the latency experienced by clients in accessing documents.
In practice, anticipating clients' requests is nontrivial, prone
to errors, and usually has high costs in terms of additional
network traffic and storage use. In [10], Padmanabhan and
Mogul propose a prefetching scheme in which clients and
servers cooperate, achieving a substantial reduction in latency
at the cost of an increase in the network traffic. However, their
algorithm requires modifications both on the server and on the
client and some minor additions to the HTTP protocol. In this
paper, we will not consider prefetching proxies.

Consistency problems always arise when using caches. Con-
sistency in Web caching is handled using some support provided
by the HTTP protocol [2] and some heuristics implemented in
the caches [9], [4], [11]. An analysis of consistency issues can
be found in [7]. In the following, we do not deal with the consis-
tency problem, as it is orthogonal with respect to replacement
policies: we view the Web as a read-only system and consider
modified objects as brand new ones.

A. Cost/Benefit Model

Given the history of accesses to a proxy, we can compute
HR and BHR —respectively the maximum hit rate and
the maximum byte hit rate achievable, for a certain access pat-
tern. Such hit rates can be easily achieved by a cache with suffi-
cient storage to hold all the accessed documents (but this would
probably require an unbounded amount of storage). In principle,
given sufficient disk space, it suffices to hold in cache all the live
documents: ideally, the replacement policy would purge dead
documents and keep all live documents. Clearly, such a deci-
sion could only be taken if the future history of accesses were
known. Such a caching policy would still be able to achieve both
BHR and HR .

If the cache is not large enough to store all live documents,
optimal policies can still be defined as those maximizing HR or
BHR and can be used as a reference in evaluating the goodness
of a cache replacement algorithm. Note that even if the future
history were known—which it is not—an optimal policy can
still be computationally too expensive to implement and thus
not interesting.

A suboptimal approach for replacing documents aims at op-
timising a given objective function, which expresses quantita-
tively how valuable the whole cache contents is, according to
some metric. If we had an additive function to compute the value
of each single document in the cache, then the whole cache value
could be obtained adding the individual document values. Re-
placing the document with thelowest relative value(its value
over the cache space occupied) would then maximize the whole
cache content value. In the following, we will define such a
function and will show how to compute it quickly.

Purging a documents from the cache has a benefit and a cost.
The benefit essentially comes from the amount of space freed,
which is roughly proportional to the size of the document plus
its metadata, possibly rounded to a multiple of the file system's
block size.

The cost can be expressed as the costof fetching the doc-
ument from the original site, multiplied by , the probability
that the document is accessed again in the future. Several dif-
ferent metrics are commonly used to compute.

• Connections:Each retrieval of a document has the same
cost, so we can assume . This is only appropriate
when the cost of setting up a communication with the
server dominates over other costs. However, it tends to
overestimate small documents, and it is not a very real-
istic metric in many cases.

• Time: In this case, the cost of a retrieval is ,
i.e., proportional to the time needed to fetch the document.
This number corresponds roughly to the size of the doc-
ument divided by the bandwidth toward the server. This
metric is useful when we want to minimize the delay in
serving documents to clients. However, there are several
drawbacks in the adoption of this metric. First, the transfer
time depends a lot on the congestion of the network at the
time of the transfer, thus presenting large variations even
for the same server at different times. Second, this metric
privileges documents coming from very slow (in terms of
bandwidth) servers, so it might be a source of unfairness
in the behavior of the proxy. For these reasons, we do not
believe this to be an appropriate metric.

• Traffic: In this case, size document overhead,
i.e., the amount of traffic needed to establish a communi-
cation, request the document, and get the response. This
metric is appropriate when the communication speed is
independent from the source of a document, or communi-
cation costs are based on the number of bytes transferred.

Given the cost and benefit inpurginga document, we want to
determine howvaluableis the document for the proxy. To this
purpose, we can define the valueof a document as

The computation of and is relatively easy, as it only de-
pends on the size of the document and possibly the bandwidth
toward the server; these values are readily available to the proxy.
Using a metric based on traffic, which we believe to be the most
appropriate in the case of Web caching, is approximately
constant and independent of the size of the document.

RIZZO AND VICISANO: REPLACEMENT POLICIES FOR A PROXY CACHE 161

TABLE I
MAJOR CHARACTERISTICS OF THETRACE SETS

USED IN OUR STUDY

The computation of is more complex. is in general
different for each document and is time dependent. In the next
sections, we investigate how to estimateby looking at the
document itself (size, type, server, etc.) and at the history of
previous accesses to the document, as seen by the proxy.

III. T RACE EVALUATION

In this work, we have used two different trace sets collected
from two proxy servers runningsquid. The first set (UNIPI)
comes from our departmental proxy and covers a period of five
months, the second (DEC [5]) was collected at Digital Equip-
ment Corporation during a period of 25 days. In Table I, the
characteristics of the two sets are shown; in the computation of
these values, and throughout the rest of this paper, we have dis-
carded all uncacheable documents.

In the following, we will analyze the traces to extract sta-
tistical information that will be used to compute . We will
mainly consider the UNIPI trace set, since it covers a longer in-
terval of time and can give more information on document his-
tory. The DEC trace set will be used in the performance evalua-
tion part, and also to determine whether a given property applies
to different trace sets.

The UNIPI set—about 1 300 000 accesses—includes about
1000 clients, 20 000 servers, and 450 000 different URL’s.
The set of all accessed documents amounts to about 7 GB of
data. Only a small fraction of the documents is accessed more
than once (), but HR , meaning that
documents accessed more than once feature a large number
of accesses. BHR HR means that short documents
are reaccessed more frequently. The DEC set refers to a much
larger client host population—about 17 000—and records a
larger number of references—about 22 000 000 with 66 GB of
data provided—even though it comprises a shorter period—25
days. It presents appreciably larger values of BHR and
HR , which might be due to a better aggregation of refer-
ences originated by different hosts and to a more stable client
host population.

A. Live Documents

It is unreasonable to think that a cache can store all of the
accessed documents, no matter how big its disks are. In fact, the
number (and total size) of accessed documents grows with time

Fig. 1. Total size of live documents versus requests, UNIPI traces. The various
curves show how live size changes when the maximum lifetime of a document
is limited to1 . . . 10 weeks.

and with the number of clients. However, it is only necessary
that the cache retain live documents to achieve the maximum hit
rate. Live documents are a small fraction of the total, and they
reach—in the UNIPI dataset—a maximum occupation of 450
MB (Fig. 1), when computed on the whole length of our traces.
As we will show (see Fig. 5), about 50% of the documents with
more than one access have a reaccess time larger than one day;
so, keeping documents in cache for less than one day (because
of limited cache space) might dramatically increase the miss
rate; on the other hand, less than 10% of the documents are
reaccessed in more than two to three weeks, suggesting that a
document can be considered dead after such a time with little
influence on the cache performance.

Limiting the lifetime of documents is extremely useful in
terms of cache storage savings. Fig. 1 shows the size of live
documents when limiting the lifetime of a document to
weeks: reducing the lifetime of documents to two weeks reduces
the size of live documents to 1/3; it is noticeable that HRand
BHR computed with such a lifetime have a relative decrease
of about 10%. Fig. 2 shows the same curves for the DEC dataset.
Besides the larger traffic volume, here we can note a more reg-
ular shape with a large flat area in the curve relative to one-week
lifetime. Lifetime limits larger than two weeks are not consid-
ered in Fig. 2 because the DEC trace set is only 25 days long.

The number of active clients over time is shown by Fig. 3, for
UNIPI dataset, and Fig. 4, for the DEC dataset. These graphs
also show curves computed by considering inactive a client,
which does not issue requests for longer thanweeks (

in the UNIPI dataset, in the DEC dataset).
The curves representing the size of live documents and number
of clients have a similar shape; this suggests that the size of live
documents is mainly a function of the number of clients. In Fig.
4 we can see that if the lifetime of documents and clients is lim-
ited, this function remains relatively constant over time for a
fixed number of clients. Note that considering the curves rela-
tive to week, the storage size is roughly equal to .5 MB
per active client both in the DEC and UNIPI datasets. This re-
sult anyway depends on the number of users per client host and

162 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 2, APRIL 2000

Fig. 2. Total size of live documents versus requests, DEC traces. The various
curves show how live size changes when the maximum lifetime of a document
is limited to one and two weeks.

Fig. 3. Number of active hosts versus requests, UNIPI traces. The curves are
computed varying the time after which a client is considered inactive.

Fig. 4. Number of active hosts versus requests, DEC traces. The curves are
computed varying the time after which a client is considered inactive.

can vary over time, as the Web is rapidly evolving, and docu-
ments are becoming larger and more structured as clients' band-
widths increase and browser capabilities improve. Furthermore,

the amount of information available on the Web is constantly in-
creasing. Thus, reasoning about live documents over large time
intervals is extremely difficult since traffic features vary.

Another noticeable effect is that over time, new documents
are generated and old ones die with roughly the same, constant,
rate. The actual rate (approximately 1/3 of all requests in our
case) should depend on the type and number of clients. A low
birth/death rate means either large overlaps in requests coming
from different clients or the ineffectiveness of the first-level
cache implemented in clients. Our data suggest that the latter
is true, since further trace analysis has shown relatively little
overlap among the interests of our 1000 clients. This is different
for the DEC trace set, where a larger HR suggests a better
client request aggregation.

Having characterized the information contained in our log
files, we can start now the analysis of the parameters that influ-
ence the probability of a new access to the same document.
In the next section, we compute the conditioned probabilities
of a document’s being accessed again, depending on various
information (known to the proxy at runtime, thus usable in a
replacement policy) such as the time from the previous access,
the number of previous accesses, the server of the document, the
client originating the first request, etc. Our goal is to find the pa-
rameters that show the best correlation with the probability of
reaccess.

B. Interaccess Times

Figs. 5 and 6 show distribution and the probability den-
sity function (pdf) of times between consecutive requests
to the same document. The time axis is logarithmic to ease the
reading of the graphs. Although our analysis will be based on
Fig. 5, as it covers a longer period of time, note the similarity
in the shapes of the curves with those of Fig. 6; the differences
between the two sets (mostly consisting in a heavier tail in the
UNIPI traces) are mostly due the fact that DEC traces cover a
shorter temporal interval.

We can identify at least two distinct regions: the first one
covers up to one day from the previous access, while the second
one covers the remaining time scale. Globally, about 60% of
accesses occur within one day, with a marked peak around 24
hours, and a relatively flat area between eight and 18 hours. This
is not surprising because our users reside within the same time
zone, and most of accesses occur during office hours. About
20% of accesses occur in the first 15 minutes, and 10% in the
first minute. This is probably an indication of frequent reloads.
In the second area (from one day to the end), there is an approx-
imately exponential decay of interaccesses. The daily peaks are
still visible (especially in) but have a decreasing amplitude.

Fig. 5 also shows the distribution of interaccess times at the
th access. Despite some unavoidable differences (documents

with more accesses present a heavier tail in), the curves
retain approximately the same shape. That allows us to assume
that is approximatively independent from the number of
previous accesses.

is also the pdf of the next access time conditioned to
the fact that the document gets requested again. Letbe the
probability that a document gets reaccessed, evaluated at the
time of the previous access. Assuming the independence stated

RIZZO AND VICISANO: REPLACEMENT POLICIES FOR A PROXY CACHE 163

Fig. 5. DistributionD(t) and probability density functiond(t) of interaccess
times (UNIPI trace).D(t) is computed both for theith access and for all
accesses to the same document.

above, then the pdf of the next access time can be expressed as
, and can be computed as

The above equation expresses the dependency ofon time.
With being a distribution function, always decreases
with time, independently from the shape of ; thus, a policy
such as LRU discards document with the smallest. According
to our model, LRU is the best replacement policy, if we only
consider the time from the last access.

However, we are interested in because we want to use
it together with other parameters that influence. For practical
purposes, an approximation of must be used, com-
puted adaptively by the proxy based on the available informa-
tion (the access pattern). We need to be fast to evaluate,
since it must be used one or more times for each document to
be replaced. To have a suggestion on how to approximate,
we can look at its derivative (the pdf of interacces times).
It turns out that can be reasonably approximated with
in the first part (day), while in the last part it is better
approximated by .

Fig. 6. DistributionD(t) and probability density functiond(t) of interaccess
times (DEC trace).

A function whose derivative has this behavior, giving a good
approximation of , is the following:

(1)

where

and are in the range of s and 5 10 ,
respectively. Note that for , resulting in

, as we expect. Appendix B discusses this approxi-
mation and shows how the parameters and can be easily
computed by the cache on the fly. In the following paragraphs,
we will concentrate on finding a good estimate for the proba-
bility (probability of reaccess evaluated at the moment of the
previous access).

C. Number of Previous Accesses

If we look at , the probability of a document’s being reac-
cessed when it has been accessedtimes, we see (Fig. 7) that its
value grows significantly with, up to 0.9 and more for .
Hence, the number of previous accesses appears to be a good

164 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 2, APRIL 2000

Fig. 7. Top curve: the probability of more accesses afteri previous ones
(P (i)). Middle curve:P (i) computed without considering new accesses issued
after 15 days. Bottom curve: percentage of documents with at leasti accesses.

indicator of the probability of a new access. From Fig. 5, we see
that depends weakly on the number of previous accesses,
so we can consider the two parametersand as independent
ones, and can be approximated as

meaning that documents with the same number of accesses re-
tain the LRU ordering. This is an important property for the im-
plementation of the replacement algorithm.

As the largest set of documents—those with one access—be-
longs to the same class, we would like to make further distinc-
tion among them based on some other parameter. Documents
with only a single access carry the following information: size,
document's URL (which can be decomposed in protocol, server,
document type), and the client originating the request. In the
following sections, we will look at the dependency of on
these parameters.

D. Document Size

Fig. 8 shows the dependency of on the size of a docu-
ment . It is well known that short documents tend to
be preferred over long ones, especially by clients working over
slow connections. This explains why a large fraction of requests
refers to documents with a size of 5 KB or less (Fig. 8, access
pdf), for which the delays in transferring the document over a
slow modem line are still bearable. Below this threshold, differ-
ences in size do not affect significantly the behavior of clients.
Large documents, taking much longer to download, might dis-
courage clients from accessing them, but in some cases they are
still popular (e.g., this is the case of software distributed over
the net). This also influences the shape of : as shown by
the graph, is slightly larger for KB, while doc-
uments in the 30 KB–1.5 MB range are definitely less popular.
The peak around 2 MB corresponds to large software packages
distributed through the Web.

The dependency on the size is a useful parameter to make
a selection among documents with one access for at least two

Fig. 8. Top curve: percentage of documents with at least two accesses versus
document size. The curve with cross marks shows the access pdf versus
document size. The curve with square marks shows the percentage of bytes
transferred versus size.

reasons. First, small documents (those with a relatively higher
) take less space in the cache, so that we have more room

for documents with two or more accesses, for which the proba-
bility of reaccess is generally higher. Second, this parameter par-
titions documents in groups of comparable sizes with different

, so that its use has more influence on the performance of
a replacement algorithm.

E. Other Parameters

We have investigated the dependency ofon other param-
eters, as described in the next paragraphs, but none of them has
proven to be a significant indicator for our purposes. As a con-
sequence, they are not used in the LRV algorithm.

1) Document's Source:The dependency of on the
source of the document has been evaluated using the fol-
lowing technique. For each server, we keep the value

, i.e., the value computed on
documents coming from . Documents are then partitioned
in ten groups, depending on the of their server at the
time of the first access to the document. Finally, the is
computed for each group.

Fig. 9 shows the dependency of on the . If doc-
uments were allocated to a group after the second access to the
document, the graph would be a straight line between and

. In practice, the graph deviates from the linear behavior
since the value of for a given document is computed at
the time of the first access. In general, a high for a server
means a high chance that a document coming from that server
is accessed again. Note that we have used rather than the
hit rate to classify servers: with the latter, even a single, very
popular, document could bring the parameter arbitrarily close
to one, whereas parameter gives the same weight to all
documents.

While there appears to be some correlation between and
, the problem with this parameter is that a large number of

documents comes from servers with too little information to get
reliable statistics (Fig. 9, “access pdf” shows the percentage of

RIZZO AND VICISANO: REPLACEMENT POLICIES FOR A PROXY CACHE 165

Fig. 9. Percentage of documents with at least two accesses(P (1)) computed
on a per-server-class basis. Documents are grouped based on the averageP (1)
computed on the set of documents coming from the same server(P (1)).
Below, the percentage of documents in each class. The marks on the left refer
to nonclassifiable documents.

Fig. 10. Percentage of documents with at least two accesses(P (1)) computed
on a per-client-class basis. Documents are grouped based on the averageP (1)
computed on the set of documents requested by the same client(P (1)).
Below, the percentage of documents in each class. The marks on the left refer
to nonclassifiable documents.

documents belonging to each class), thus making this parameter
not very useful for practical purposes.

2) Client Requesting the Document:The dependency of
on the client that first requests a document has been evaluated
with a technique similar to the one used for servers. Fig. 10
shows the dependence of on the computed for doc-
uments requested by the same client. As in the case of ,
the graph has been computed by only considering clients with a
sufficiently large number of requests.

Here, a low means a properly working cache on the
client (which requests most documents only once), while a large
value is a clear indication that the cache on the client is ineffec-
tive. Documents requested by clients with a low appear
to have a marginally higher , but the difference is too small
to be useful. On the other hand, clients with a large are
simply not reliable because what they try to do is to use the
proxy as their first level cache, an approach which is not scal-
able and thus should not be used to influence the behavior of the
proxy.

3) Type of Document:We have computed the value of
per type of document. Almost 40% of the requested documents
are graphic files, and for them , slightly higher
than the average. Overall, the vast majority of documents have
a similar . These results are consistent with those found in
[1] and [12]. This parameter is not useful in building a cache
replacement policy since the only documents that have a signif-
icantly different (and lower) are archive files, which have
a large average size and are already acted upon by size-based
decisions.

F. Summary

At this point, it is worth summarizing what we believe are
general enough features of accesses to a proxy server.

• The distribution of interaccess times for the same docu-
ment decays rapidly with time. A significant fraction of
reaccesses is concentrated in a few minutes' interval. Also,
some daily periodicity appears to exist in access patterns.

• The probability of reaccess appears to depend heavily on
the number of previous accesses, and more weakly on the
size of the document.

• Some parameters, such as document's source, or the client
requesting the document, appear to influence somehow
the probability of reaccess. However, using these param-
eters is unsafe because they apply only to a small set
of documents, and dangerous because of the risk of bi-
asing the policy to the advantage of some client/server.
As an example, we might favor clients without properly
working first level cache, with obvious fairness and scal-
ability problems.

• The probability of reaccess depends on the file type, but
this parameter gives approximately the same information
as the file size.

IV. THE LRV ALGORITHM

In Section II-A, we introduced the relative value of a docu-
ment (V) as a function of , the probability that a document
is accessed again. In Section III, we discussed how various pa-
rameters can be used to compute.

In this section, we present the LRV algorithm, based on the
relative value (V) of a document, and we show how to obtain an
approximation of V suitable for our purposes. The LRV algo-
rithm simply selects the document with the lowest relative value
as the most suitable candidate for the replacement. As already
seen, the relative value V of a document is proportional to;
thus, in the end, the issue is evaluating this probability.

Section III has evidenced some of the features of the accesses
to a proxy server. It has been shown howis strongly influ-
enced by the time from the previous access, but also other pa-
rameters have some impact on this probability. A class of doc-
uments that is particularly difficult to handle is the one con-
taining documents that have been accessed only once: it com-
prises many documents that generally have a low probability of
being accessed again.

To simplify the problem of computing , we have made the
assumption that the variables defining the document state are
independent; this way, we can expressas the product of the

166 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 2, APRIL 2000

various probabilities. Moreover, in order to keep the algorithm
simple, we have only used those parameters that, in the trace
evaluation, have shown a significant influence in, and are not
correlated—thus not violating our assumption of independent
variables. Also, we have neglected the dependence ofon
some of the chosen parameters in certain circumstances.

Finally, as we will show in Section IV-C, the algorithm has
been designed so that it is very fast to compute, and all of its
parameters are computed adaptively at runtime. This avoids the
use of precomputed probabilities biased on our traces, which
might not suit all situations.

The parameters that we have selected are the following.

• Time from the last access, for its large influence on the
probability of a new access. As shown in Section III-B, the
dependence of on the time from the last access can be
expressed as 1 . Appendix B shows how to compute
the parameters that influence adaptively based on the
history of previous accesses.

• Number of previous accesses. From Fig. 7, we see that
this parameter allows the proxy to select a relatively small
number of documents with a much higher probability of
being accessed again. The computation of can be
done very easily by the server, and only a small number
of distinct classes is necessary as tends to saturate
for small values of. Simulations have shown that the use
of this parameter has a great benefit on the performance
of the cache.

• Document size. This seems to be the most effective pa-
rameter to make a selection among documents with only
one access. Thus we use it only for these documents. As
the policy based on document size tends to discard large
documents, this also allows us to employ less storage
for document with one access, saving space for the other
documents (which generally have a higher probability of
being reaccessed). As in the case of can be
computed adaptively by the proxy at little cost.

We compute as follows:

if
otherwise.

Note that we neglect the dependence of on when
. This allows us to compute and using the simple

technique shown in Section IV-C: documents are partitioned
in a small number of sets according to their size or number of
accesses, so that the actual probabilities are computed for each
set and can then be used in the formula.

For a proper implementation of LRV, especially for the com-
putation of , it is required that metadata for documents are
retained longer than the associated documents. Since metadata
take on average about 1–2% of the space taken by documents,
this does not constitute a problem.

A. Performance

The performance of LRV, compared to other algorithms, such
as LRU, LFU, size, and FIFO, has been simulated based on
both the UNIPI and the DEC trace set. A random replacement
policy has been considered as well. Initial evaluations have been

Fig. 11. Values of BHR and HR for different policies versus the cache size,
UNIPI trace set.

done using a general purpose simulator for networks of coop-
erative proxies. Subsequent experiments have been done with
specialised C programs, much more efficient in processing the
large traces we have used. One of these programs contains a full
implementation of LRV and all the other policies that have been
evaluated. The various programs process sanitised traces where
strings (e.g., URL, client names, etc.) are replaced by unique
numbers, thus allowing very fast processing.

The performance, for different cache sizes, is shown in Figs.
11 and 12. For UNIPI trace set, it must be kept in mind that
the set of documents accessed at least once amounts to 7 Gb of
data, while the set of live documents is always lower than 450
MB (see Fig. 1). Hence we have used comparable cache sizes
(100 MB 1 GB); we have done the same for the DEC trace
set, considering that the data volume is roughly ten times larger.
For simplicity, and compatibility with existing proxy caches, we
have run the replacement algorithm when the cache occupation
reached a high-water mark (100% in our case) and continued
to purge documents until occupation reached a low-water mark
(90% in our case). This hysteresis somewhat reduces the ex-
ploitation of the available storage, but it is used in some algo-
rithms where finding the candidates for replacement is expen-
sive, e.g., requires sorting documents. Increasing the gap be-
tween high- and low-water marks reduces the overhead for the
above computations but also reduces the effectiveness of use of

RIZZO AND VICISANO: REPLACEMENT POLICIES FOR A PROXY CACHE 167

Fig. 12. Values of BHR and HR for different policies versus the cache size,
DEC trace set.

the available storage. LRV can easily determine which docu-
ment(s) to purge on demand in a small constant time.

Figs. 11 and 12 show the values of HR and BHR for dif-
ferent policies and cache sizes. As can be seen, LRV features
a consistently higher BHR than other policies in all conditions.
The same happens for the HR, except in the case of the SIZE
policy with large caches (but this is not accompanied by a com-
parable BHR). Reducing the cache size causes the SIZE policy
to worsen because of the pollution of the cache with small doc-
uments, which are never replaced. This phenomenon does not
appear with larger cache sizes because filling the cache with
dead documents requires more time.

B. Wrong Decisions

Not knowing the future, any replacement algorithm is subject
to make errors and discard documents that will be accessed in
the future. These errors are unavoidable if the size of live doc-
uments exceeds the cache size, while in principle they might
be avoided if the cache size is even marginally larger than live
documents. Thus, it is interesting to evaluate the number of er-
rors made by the various replacement policy in discarding docu-
ments that will be accessed again, when the cache size is slightly
larger than the set of live documents. We have run this experi-
ment on the UNIPI trace set (whose maximum live document
set amounts to 450 MB) using a cache size of 500 MB.

Fig. 13. Cumulative number of wrong choices in discarding documents versus
number of accesses to the document; cache size is 500 MB (UNIPI traces).

In Fig. 13, we show the cumulative number of errors made
by various policy. As expected, the LFU policy is never wrong
about documents with a large number of accesses, but has many
errors on documents with fewer accesses. It is also expected that
the largest number of errors is made by the RANDOM policy,
which makes no use of the available information. The best per-
forming policies in this graph are LRV and SIZE. It should be
noted that the absolute number of errors is not directly compa-
rable among different policies, since the total number of replace-
ments might also vary. Additionally, the effect of each error on
the overall cache performance depends on the size of the doc-
ument that has been discarded. In our case, the SIZE policy is
significantly different from others, since it tends to discard large
documents. As a consequence, SIZE makes fewer replacements
than other policies, thus explaining a smaller number of errors.

In Fig. 14, the errors on each document class (with the same
number of accesses) are weighted on the total number of re-
placements for that class, giving more insight on the actual be-
havior of each policy. In fact, we believe that this is an extremely
useful indicator for tuning an algorithm. Other parameters, such
as BHR or HR, often present very little sensitivity to the parame-
ters of the algorithm, and, especially, do not help in identifying
the situations where the algorithm performs poorly. From the
graph, we see that all policies but LFU and LRV tend to make
a large percentage of errors on documents with many accesses.
On the other hand, LFU does not perform well on documents
with one access—which is a significant set of documents—be-
cause the lack of an aging mechanism effectively reduces the
cache size for new documents.

C. Implementation Details

Proxy implementors are often concerned by the computa-
tional complexity of a replacement policy because of the high
load on the proxy. In this section, we discuss how LRV can be
implemented very efficiently so that its overhead poses no con-
cerns.

Documents with one access are classified in a small number
of groups, say, 10, based on their size. Documents with two or
more accesses are classified based on the number of previous

168 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 2, APRIL 2000

Fig. 14. Percentage of wrong choices in discarding documents versus number
of accesses to the document; cache size is 500 MB (UNIPI traces).

accesses, with the last group containing those documents with
more than about ten accesses (because saturates). The
metadata associated with documents are held in doubly linked
FIFO queues, one for each group.

Since (1-) is a monotonic function of, the document to
be replaced can be selected by simply computingfor the first
document of each queue and selecting the one with the smallest
value. As the number of queues is small, we see immediately
that the decision only requires a small constant time, not de-
pendent on the number of documents in cache. The queue man-
agement related to each new request reduces to a simple queue
extraction and tail insertion, both constant-time operations.4 On
document removals, it is simply necessary to store the record
associated with the document in a pool of storage holding meta-
data for documents not in cache anymore.

Removal costs can be further reduced as follows. First, be-
cause of the granularity of the measurements, it is certainly not
necessary to compute the for each queue (and sort the com-
puted values) more than once per second. Second, if more doc-
uments must be purged at once to make room in the cache (e.g.,
when a watermarking technique is used), it is only necessary
to recompute one for every additional deletion. So, in prac-
tice, we can assume that the implementation of LRV will have
a maximum overhead of one computation of and one scan
of a short (20 30 entries) array for each replacement. As a
practical indication, on a Pentium-class CPU, a straightforward
computation of requires about 3 s per document, resulting
in about 50 100 s/s (a negligible fraction of CPU time) plus
5 s per deletion.

We remark the fact that all parameters involved in the compu-
tation of LRV are computed adaptively from the cache. and

can be derived by keeping a pair of counters per group,
with the relevant pair being updated at each access.coeffi-
cients are computed dynamically too, as shown in Appendix B:

4We neglect the time necessary to locate the metadata associated with the
newly requested document, since this operation is always necessary indepen-
dently of the cache replacement algorithm being used and can be done using
hashing or other fast techniques.

the overhead associated with their computation is negligible, as
it occurs infrequently.

V. CONCLUSION

We have presented a detailed analysis of traces of accesses
to Web proxies, in search of statistical parameters that could be
used in the design of a cache replacement policy. The traces we
have analyzed cover a period of up to five months and include
a very large number of accesses, thus allowing us to draw sig-
nificant conclusions even on the long-term behavior of proxy
accesses and document lifetime. The main goal of our analysis
was to relate the probability of a document’s being reaccessed to
the history of previous accesses and discriminate among useful
and useless dependences.

Based on these dependences, and on a cost/benefit model
for Web documents, we have designed a replacement policy
calledlowest relative valueto achieve a better selection of doc-
uments to purge. LRV computes documents' values using a fully
adaptive, easy-to-compute formula. We have shown how LRV
overcomes some limitations of LRU and other policies, and
that it can outperform them in all cases. LRV proves to be par-
ticularly useful in the presence of small caches. LRV can be
easily inserted in existing proxy servers, and we have shown
how its implementation can be highly efficient. With a proper
organization of data, keeping documents sorted by value re-
quires constant-time operations on data held in main memory,
thus allowing replacement to be performed on demand rather
than using watermarking techniques, which empty the cache
below a low-watermark level whenever its occupancy exceeds
the high-watermark level.

We believe the characterization of proxy accesses presented
in Section III to be reasonably general, because it has been de-
rived from relatively large traces covering almost 20 000 clients
and 200 000 servers. Of course, the features of Web documents
and Web usage are rapidly changing over time, and monitoring
the evolution of these features over time will be necessary. We
can certainly expect an increase in average document size (be-
cause of the availability of faster networks and richer docu-
ments, including streaming media), and perhaps a reduction in
the hit rate because of the increasing use of personalized doc-
uments. Although we do not expect such changes to have sig-
nificant impact on the behavior of the LRV algorithm because
of its full adaptivity, it might well be possible that specific Web
access patterns arise that could provide more useful parameters
to be used in cache-replacement decisions.

APPENDIX A
AVERAGE RETRIEVAL TIME

The retrieval time of a given documentof size depends
on its presence in cache. For cached documents, the retrieval
time is , where is the actual bandwidth between the
cache and the client; if the document must be fetched from the
original site, the retrieval time is , where is
the actual bandwidth to the server providing the document. In
these expressions, we have neglected the overheads needed to
establish the connection and to issue the request.

RIZZO AND VICISANO: REPLACEMENT POLICIES FOR A PROXY CACHE 169

In many cases, clients have a high bandwidth to the proxy,
which is often connected to the rest of the network by a
slower link. So, we can safely assume that . The
expected retrieval time through the cache can be expressed as

, with being the probability
of finding document in cache. If we now consider a large
sample of documents and assume that bandwidth to the
source is independent from the document size, we can compute
the average speedup achievable by the cacheas the ratio
between the retrieval times with and without cache

Recalling that, by definition, BHR , we
have

BHR BHR BHR

where the last approximation holds when .

APPENDIX B
ADAPTIVE COMPUTATION OF APPROXIMATION

In Section III-B, we introduced the approximation of as

where

accounts for the periodicity of frequent references to popular
documents, while accounts for the long-term decay. As we
noticed experimentally, and are far apart from each other,
so the following approximation holds for when :

(2)

(recall from Section III-B that is very large, say,).
This allows us to compute and by evaluating in two
points and and solving the nonlinear
system

(3)

By rewriting (3) as follows:

(4)

the system can be solved iteratively by starting from a given
and substituting the value obtained from the first equa-

tion in the other. This way of proceeding always converges to
the correct values of after few iterations. Finally, we can
compute remembering that

which gives

Fig. 15. D(t) Approximation for both UNIPI and DEC trace set.

The speed of convergence and the goodness of the approx-
imation of with depend on the choice of and

. Although we could devise some sophisticated procedure to
find optimum values, our experiments show that the values of

s and s, empirically chosen, allow a good
approximation and a fast convergence in the computation of
and , which is on the order of ten iterations. Fig. 15 shows the
results obtained in both our trace sets.

Finally, it is worth mentioning that and can be
computed as and .

and are three accumulators: is updated
each time a document gets referenced again, whileand
are updated when a document is referenced again withinor

s, respectively, from the previous access.

ACKNOWLEDGMENT

The authors wish to thank P. Lorenzetti for his initial work on
the LRV algorithm and J. Crowcroft for his comments. They are
also grateful to DEC for making the traces of their Web proxy
available for simulation purposes.

REFERENCES

[1] M. F. Arlitt and C. L. Williamson, “Web server workload characteriza-
tion: The search for invariants,” inProc. SIGMETRICS 96, Philadelphia,
PA, May 1996, pp. 126–137.

[2] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext transfer pro-
tocol—HTTP/1.0,” RFC 1945, May 1996.

[3] P. Cao and S. Irani, “GreedyDual-size: A cost-aware WWW proxy
caching algorithm,” inProc. 2nd Web Caching Workshop, Boulder, CO,
June 1997.

[4] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Wor-
rell, “A hierarchical internet object cache,” inProc. 1996 USENIX Tech.
Conf., San Diego, CA, Jan. 1996, pp. 153–163.

[5] Digital's Web Proxy Traces [Online]. Available: ftp://ftp.dig-
ital.com/pub/DEC/traces/-proxy/webtraces.html.

[6] R. Karedla, J. S. Love, and B. G. Wherry, “Caching strategies to improve
disk system performance,”IEEE Computer, vol. 27, pp. 38–46, Mar.
1994.

[7] J. Gwertzman and M. Seltzer, “World wide web cache consistency,”
in Proc. 1996 USENIX Tech. Conf., San Diego, CA, Jan. 1996, pp.
141–151.

[8] P. Lorenzetti, L. Rizzo, and L. Vicisano. (1996, July) Replacement
Policies for a Proxy Cache. DEIT, Univ. di Pisa. [Online]. Available:
http://www.iet.unipi.it/~luigi/caching.ps.

170 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 2, APRIL 2000

[9] A. Luotonen, H. Frystyk, and T. Berners-Lee. W3C httpd. [Online].
Available: http://www.w3.org/hypertext/WWW/-Daemon/Status.html.

[10] V. N. Padmanabhan and J. C. Mogul, “Using predictive prefetching to
improve World Wide Web latency,”ACM Comput. Commun. Rev., vol.
26, no. 3, pp. 22–36, July 1996.

[11] Squid Internet Object Cache [Online]. Available: http://www.nlanr.net
/Squid/.

[12] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and E. A. Fox,
“Removal policies in network caches for world-wide web documents,”
ACM Comput. Commun. Rev., vol. 26, Aug. 1996.

[13] , “Errata for ‘Removal policies in network caches for World-Wide
Web documents’,”ACM Comput. Commun. Rev., vol. 27, no. 3, pp.
118–119, July 1997.

Luigi Rizzo (M’98) received the Ph.D. degree in
electronic engineering from the SSSUP S. Anna,
Pisa, Italy, in 1993.

Since 1991, he has been with the Dipartimento
di Ingegneria dell'Informazione, University of
Pisa, Pisa, Italy, where he currently is an Associate
Professor. His current research interests are mul-
ticast, reliable multicast, and congestion control
algorithms.

Lorenzo Vicisano received the Laurea degree in
electronic engineering and the Ph.D. degree in
information engineering from the University of Pisa,
Pisa, Italy, in 1993 and 1997, respectively.

He is a Software Engineer with Cisco Systems, San
Jose, CA, where he does design and development in
the field of IP Multicast. He is co-chair of the IETF
working group on reliable multicast transport and has
research interests in multicast reliability and conges-
tion control.

