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Abstract: In the last decades three-dimensional (3D) in vitro cancer models have been proposed as a
bridge between bidimensional (2D) cell cultures and in vivo animal models, the gold standards in
the preclinical assessment of anticancer drug efficacy. 3D in vitro cancer models can be generated
through a multitude of techniques, from both immortalized cancer cell lines and primary patient-
derived tumor tissue. Among them, spheroids and organoids represent the most versatile and
promising models, as they faithfully recapitulate the complexity and heterogeneity of human cancers.
Although their recent applications include drug screening programs and personalized medicine,
3D in vitro cancer models have not yet been established as preclinical tools for studying anticancer
drug efficacy and supporting preclinical-to-clinical translation, which remains mainly based on
animal experimentation. In this review, we describe the state-of-the-art of 3D in vitro cancer models
for the efficacy evaluation of anticancer agents, focusing on their potential contribution to replace,
reduce and refine animal experimentations, highlighting their strength and weakness, and discussing
possible perspectives to overcome current challenges.

Keywords: 3D in vitro cancer models; spheroids; patient-derived organoids; drug efficacy assessment;
preclinical-to-clinical translation; 3R principles of animal experiments; mathematical modeling
and simulation

1. Introduction

Cancer is one of the major leading causes of human death, and oncology represents
the largest therapeutic area in the pharmaceutical industry in terms of number of projects,
clinical trials and research investments. The development of new anticancer agents is a
complex, time-consuming and expensive process that is associated with an high attrition
rate [1,2]. The typical development process of (anticancer) drugs includes a preclinical
phase followed by three clinical phases. Currently, the preclinical studies required by
regulatory authorities are mainly based on bidimensional (2D) cell cultures and animal
models, which remain one of the pivotal experimental approaches of translational cancer
research [3].

In 2D in vitro experiments, cell cultures are exposed to drug candidates, usually at
constant concentrations for a fixed period. The aim is to screen and rank a large number of
test compounds, assessing if they have an anticancer effect, typically quantified by mea-
suring cell viability. Other endpoints, such as target engagement and downstream effects,
can also be assessed as part of these studies to provide information on the potency and on
the mode of action of the candidates. Compounds that show promising efficacy profiles in
2D in vitro systems progress to in vivo tests in animal models. Despite 2D cell cultures are
the most commonly used in vitro models for drug screening due to their easy handling,
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reproducibility and low cost, they are unable to fully reproduce the properties of in vivo
solid tumors [4,5]. Indeed, in vivo, tumors grow in three-dimensional (3D) conformation
with a specific organization and architecture that is not modeled in 2D cell cultures. Grow-
ing in a 2D plastic substrate, tumor cells have equal and unlimited access to nutrients and
oxygen and are uniformly exposed to drug treatment. Consequently, numerous processes,
such as diffusion-limited distribution of oxygen, nutrients and metabolites as well as drug
penetration, are lost in 2D cell cultures. In addition, the physical organization in mono-
layers greatly limits cell–cell interactions, which are responsible for cell differentiation,
proliferation, vitality, expressions of genes and proteins, drug metabolism and other cellular
functions. This leads to higher proliferation rates compared to in vivo cancer cells, which
often results in higher drug sensitivity. As a result, the capabilities of 2D cell cultures
of predict anticancer drug efficacy is impaired [6,7] and a large number of agents (also
showing low efficacy) proceed to the subsequent in vivo phase, which contributes to an
overuse of animals, thereby increasing the overall length and cost of the drug development
process [8,9].

In in vivo experiments, the selected compounds are administered to animal mod-
els to investigate the pharmacokinetics (PK) and to assess efficacy and safety. In this
context, ectopic xenografts are the most popular animal models [10]. They consist of
immunosuppressed animals, usually mice or rats, in which human cancer cells are inocu-
lated subcutaneously (s.c.) in the flank. Alternative and more complex xenograft models,
differing in the transplant site (orthotopic xenograft) or in the source of tumor cell lines (syn-
geneic xenograft or patient-derived xenograft, PDX), have been well-established, too [11].
Xenografted animals are divided into several arms receiving placebo or anticancer agents
following different administration protocols. Anticancer activity is typically assessed by
monitoring tumor volume over time and computing tumor growth delay and/or tumor
growth inhibition (TGI) as efficacy metrics. The investigated compounds are ranked ac-
cording to the efficacy assessment, and precedence is given to agents showing the greatest
antitumor activity. However, the aim of animal experiments is not only to discriminate
“effective/not-effective” agents but also to anticipate the concentration levels and the doses
which are expected to exert a therapeutic effect in patients. Indeed, for compounds that
progress to the clinical phases, drug concentration levels showing a certain activity in a
panel of xenograft models are typically used to identify a range of target concentrations in
humans, thereby contributing to the dose selection for the First-In-Human (FIH) studies.

Despite the undeniable importance of animal models and their cornerstone role in
translational cancer research, they have some serious drawbacks. Promising results from
preclinical animal studies are often not confirmed in cancer patients, and candidate agents
effective in animal models do not proceed to clinical development, due to the different ge-
netic, cellular and immunological characteristics of animals compared with humans [12,13].
Further, xenograft experiments are very resource- and time-consuming and are encumbered
with ethical/regulatory limitations. Indeed, replacing, reducing and refining (3Rs) animal
experiments in scientific research has become an international priority, and regulatory
agencies and industry are working toward a decrease in animal use [14].

3D in vitro cancer models are emerging as a promising method to bridge the gap
between 2D in vitro cell cultures and animal models, due to their ability to more faithfully
mimick in vivo tumors [9,15,16]. Various 3D in vitro cancer models have been developed,
including spheroids and organoids, which differ in terms of tumor cell sources, culture
protocols and time required for establishment [16]. They have distinct and overlapping
purposes, among which are studies in cancer biology, drug screening, anticancer efficacy
assessment as well as personalized medicine.

In this review, we describe the state of the art in the use of 3D in vitro cancer models
for the evaluation of drug anticancer efficacy. We will focus on the two most common 3D
in vitro models used in cancer research, i.e., spheroids and organoids. For both of them,
methodologies for generation, techniques for the assessment of anticancer activity, translata-
bility to the in vivo setting and examples of applications in the drug development will be
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presented. We will highlight strengths and weaknesses of spheroids and organoids as tools
for the anticancer efficacy assessment. Finally, we will discuss the possible contribution of
such cancer models to replace, reduce and refine the use of animal models in anticancer
drug development, as well as the need to exploit mathematical modeling and simulation
(M&S) to reach this goal.

2. Types of 3D In Vitro Cancer Models

3D in vitro cancer models are regarded as a promising alternative to animal models,
due to their ability to mimic several features of in vivo tumors such as natural tumor
architecture, cell–cell interactions, nutrient and oxygen gradients, drug penetration and
resistance and, with a varying degree of faithfulness, tumor microenvironment (TME). TME
consists of malignant cells, non-malignant cells (cancer-associated fibroblasts, stem cells,
endothelial cells and immune cells) and non-cellular components (extracellular matrix,
cytokines, chemokines and growth factors), and plays a crucial role in tumor development
and progression [17].

Several methods to assemble 3D in vitro cancer models have been developed (see
Tables 1 and 2 and Figure 1). They are usually categorized into scaffold-free and scaffold-
based systems in accordance with the presence or not of a support for cell culture. Scaffold-
free (or liquid-based) models include all the systems for which no external artificial plat-
forms are used to promote or induce cell growth and aggregation. In these systems, the 3D
architecture is obtained through a cellular self-assembling, in which cancer cells synthe-
size their own extracellular matrix (ECM), allowing for natural modeling of cell–matrix
interactions [18]. Up to now, there are five main scaffold-free techniques, i.e., agitation-
based [19–21], hanging drop [22,23], liquid overlay [24,25], magnetic levitation [26–28] and
microfluidic techniques [29,30] (see Table 1). In scaffold-based 3D systems, cell cultures
are developed on exogenous structures, made of synthetic or naturally derived polymers,
which provide a support for cell growth and mimic ECM conditions. Improving scaffold
properties allows optimizing the exchange of nutrients, gasses and waste materials of
cancer cells, thus creating conditions similar to those in vivo tumors. In relation to the
geometry and production technique, there are different types of scaffolds (see Table 2): hy-
drogels (such as Matrigel) [31,32], decellularized scaffolds [33,34], fibrous scaffolds [35,36],
microsphere scaffolds [37,38] and 3D bioprinted scaffolds [39,40].

Table 1. Scaffold-free techniques.

Techniques Description Applications

Agitation-based
Cells aggregate under continuous stirring to avoid adherence
to surfaces
and to induce self-assembly.

Spheroids [19,20]
Organoids [41]

Liquid overlay Cells are seeded in low-adhesive surface plates or plates coated with
materials that prevent cell attachment.

Spheroids [42,43]
Organoids [44]

Microfluidics

Microfluidics are chips composed of microchannels
and microchambers
where cells suspended in media can circulate and accumulate in the
chambers, so forming aggregations.

Spheroids [45,46]

Hanging drop Cell liquid drops are suspended on a lid that is then inverted; surface
tension and gravity induce aggregation. Spheroids [47,48]

Magnetic levitation

Cells are magnetized through a mixture of magnetic nanoparticles
and subsequently incubated under magnetic forces to overcome
gravitational force, allowing levitation and, consequently,
cellular aggregations.

Spheroids [49]



Biomedicines 2023, 11, 1058 4 of 36

Table 2. Scaffold-based techniques.

Scaffold Type Description Applications

Hydrogels 3D polymer networks with high water content, similar in bioactivity,
viscoelasticity and mechanical properties to native ECM.

Spheroids [31,50]
Organoids [51,52]

Decellularized
Scaffold consists of a decellularized ECM that is obtained from native
(or regenerated) tissue by removing the cellular components through
physical, chemical and enzymatic means.

Spheroids [53,54]

Fibrous
Fibrous matrix creates an environment that supports the proliferation,
growth and migration of cancer cells. The most common technique to
obtain nano fibers is electrospinning.

Spheroids [35,55]

Microsphere
Cancer cells are encapsulated in engineered microspheres composed
of porous tissue which are geometrically similar in size and shape to
tumor spheroids.

Spheroids [37,56]

3D bioprinted Complex and viable 3D geometric shapes, generated by
computer-aided projects. Spheroids [57,58]
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In the following sections, we will focus on spheroids and organoids, the two most
common and versatile 3D in vitro cancer models, highlighting differences and summarizing
culture methods.

2.1. Spheroids

Spheroids are the simplest 3D in vitro cancer model consisting of spherical aggregates
of tumor cells that are either self-assembling or forced to aggregate. Structure and morphol-
ogy of spheroids are influenced by a multitude of factors, which include cell types, culture
methods and media, cell seeding density and mechanical stress. Generally, spheroids
with a diameter > 500 µm exhibit similar properties to in vivo avascular tumors, such as
heterogeneous cell populations and pathophysiological gradients. Indeed, large spheroids
are typically characterized by an external proliferating layer, a middle quiescent layer and
an inner core of hypoxic and necrotic cells, caused by the limited distribution of oxygen,
nutrients and metabolites in these areas. Spheroid volume generally follows an S-shape
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growth pattern over time with an initial exponential phase followed by a linear one and
then a plateau [59].

Spheroids exhibit strong cell–cell interactions that are enforced by the secretion of
ECM proteins. These cell–cell and cell–ECM interactions significantly affect cancer cell
proliferation, survival and response to therapy. Indeed, they increase spheroid density,
forming a physical barrier that prevents and limits the transport of drugs into the spheroid
mass. All these properties strongly influence the therapeutic effects of drugs, increasing
drug resistance and improving the reliability of drug screening in cancer spheroids [8].

Spheroids can be divided into several sub-categories. However, the terminology used
to indicate the different types of spheroid models is confounding and inconsistent through
the literature [9,60,61]. As a strict classification is out of the scope of this paper, we only
discern between cell-line derived spheroids, i.e., spheroids generated from immortalized
cancer cell lines, and patient-derived spheroids, which are obtained from primary tumor
tissue [62].

Immortalized cancer cell lines have often acquired genetic modifications during the
immortalization process. Consequently, cell line-derived spheroids are generally easier to
handle but less representative of the human native tumors. Hundreds of cancer cell lines
from different tumor types have been tested for spheroid formation, showing different
degrees of efficiency [42,59,63,64]. For example, Selby et al. explored the possibility of
generating spheroids from the 60 cancer cell lines present in the National Cancer Institute
(the NCI-60 panel) using ultra-low attachment (ULA) plates, optimizing cell seeding density
to obtain a structure of a prespecified diameter (300–500 µm) and providing a classification
of generated spheroids based on their morphological characteristics, i.e., the degree of
intercellular adhesion [63].

In contrast, patient-derived spheroids maintain the histological and genetic character-
istics of the original tumor, and, thus, better recapitulate the inter-individual variability
of cancer biology and treatment response observed in cancer patients. However, they ex-
hibit several limitations common to other patient-derived in vitro models, such as variable
establishment rates and limited lifespans [62]. Spheroids were successfully grown with
varying success from primary tissue of brain [65], breast [66–68], colorectal [69], lung [70],
ovarian [47,71], uterine endometrial [72] and prostate [73] cancers, and used to test efficacy
of anticancer agents, also in the context of personalized medicine.

Further, we can distinguish homotypic spheroids, i.e., cultures of only one type of
tumor cells, from heterotypic spheroids, i.e., co-cultures of tumor and stromal cells, such
as cancer-associated fibroblasts (CAF) [68] or their precursors [74,75], cells of the immune
system [62,76,77] and endothelial cells [78]. Heterotypic spheroids are of great relevance
to mimic the cellular heterogeneity of solid tumors and the drug resistance mediated by
tumor-stromal cell interactions [8,79–81]. In addition, they provide a useful tool for testing
new immuno-oncological agents [62,76,77] or novel compounds targeting the stromal
components [74,75]. However, co-cultures enhance the complexity of the in vitro model
and require optimization of the tumor-stromal cell ratio to correctly recapitulate specific
tissue composition as well as of the media components to adequately support growth of
both cell types [61].

Spheroids can be obtained after 1 to 7 days of culture, depending on the cells and
culture methods. Different approaches are used to generate spheroids, including both
scaffold-free and scaffold-based methods (see Tables 1 and 2). The choice of the generation
technique to use is extremely important and is influenced by several factors, such as the
research question to address, the used cancer cell type, the expertise of the research team
as well as the available equipment and budget. For example, the liquid overlay and the
hanging drop techniques are easy and cheap to operate and do not require specialized
equipment, thus being compatible with high-throughput drug screening [82–84]. Other
methods, such those based on microfluidic or bioprinting techniques, may require special-
ized equipment and expertise that may not be available in all research laboratories [85].
Cancer cell type is a determining factor in the choice of the spheroid formation method. For
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example, the hanging drop method or the liquid overlay technique in ULA plates might
be inadequate to form spheroids from cells such as the Panc-1 and Mia-PaCa pancreatic
cancer cells or the CAKI-I renal cancer cells, with a low ability to self-aggregate [63]. For
these cell types, alternative methods, for example based on co-culture with supportive cells
or embedment in a 3D matrix, such as a hydrogel, may be more appropriate.

Finally, it has been demonstrated that spheroids from the same cancer cell lines can
exhibit different properties and responses to therapy depending on the technique used
for their generation [64]. This observation is of great relevance, especially because well-
established guidelines for spheroid generation are missing and culturing protocols can
vary significantly across spheroid studies also involving the same cancer cells. As a result,
a high heterogeneity in the spheroid size, shape and cell density, as well as in the cell
differentiation degree and physiological behavior is generally observed, which can affect
the reliability of study results. Establishing standardized and reproducible protocols for
spheroid formation is, therefore, essential to increase uniformity and reproducibility of
results across multiple spheroid studies [59].

2.2. Organoids

Organoids are complex self-organizing and self-renewing 3D in vitro cultures derived
from embryonic stem cells, induced pluripotent stem cells or adult stem cells (ASCs) [86].
The possibility of growing organoids from ASCs originated in 2009 with the seminal work
of the Clevers group [87] and was subsequently introduced to cancer research [88]. This
paved the way to generate organoids from patient-derived tumor tissue, which gener-
ally contains a large number of ASCs. Since then, cultures of patient-derived organoids
(PDOs) were established for a multitude of primary and metastatic cancers, including
prostate [89], colorectal [90], pancreatic [91], liver [92], breast [93], bladder [94], gastric [95],
esophageal [96], lung [97] and ovarian [98] cancers.

Cancer PDOs are generally derived from tumor tissue specimens directly obtained
from patients via biopsy or surgical resection. The success rate of organoid establishment
varies significantly among cancer types (see Table 3), ranging from 70–100% for colorectal
cancer (CRC) to 15–20% for prostate cancer [99,100]. The derivation time can be significantly
different, too, taking up weeks to months. Before being cultured, tumor tissue from
human donors has to be first cut into small fragments and then undergo (mechanical or
enzymatic) digestion processes. Different techniques for processing tumor fragments as
well as different protocols for cancer PDO culture have been proposed. Classically, cell
suspensions are embedded within a suitable support that provides an ECM facsimile and
a medium containing a cocktail of growth factors. In the vast majority of the studies,
cancer organoids are cultured in hydrogel-based scaffolds, typically involving the use
of the animal-derived Matrigel, a protein mixture secreted by mouse sarcoma cells. The
use of Matrigel for organoid culture is well described and protocols are available [101].
However, due to its natural origin, the Matrigel composition is affected by batch-to-batch
variability that might impair the quality control, reliability and reproducibility of organoid
studies. Additionally, Matrigel contains animal growth factors that might influence PDO
culture and reduce the similarity with the human physiological settings. Alternatively,
synthetic hydrogels, which are fully defined and growth-factor-free, can be used [102]. For
example, Mosquera et al. demonstrated that synthetic hydrogel-based ECMs can regulate
the growth and activity of prostate cancer organoids in a way that is different from that of
Matrigel, significantly impacting organoid response to therapeutic drugs [103]. Recently,
the possibility of using scaffold-free approaches for organoid cultures has been investigated.
For example, organoids have been formed in suspension cultures using ULA plates [44] or
through agitation-based techniques [41].
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Table 3. Success rates for PDO establishment.

Cancer Type Sample Size Efficiency Reference

Bladder 17 70% [94]

Breast >100 80% [93]

Colorectal
20 90% [90]
55 ~100% [104]
8 70% [105]

Esophageal 32 31% [96]

Gastric NR 50% [95]

Liver 7 100% * [92]

Lung 23 87% [97]

Ovarian 33 85% [98]

Pancreatic
8 80% [91]

83 62% [106]
19 42% [107]

Prostate 7 15–20% [89]
NR = not reported; * tissue samples containing > 5% of proliferating cells.

Cancer PDOs display a tumor-like cellular morphology, with typically multiple polar-
ized epithelial structures, that more faithfully mimics the original tumor architecture and
functionality than spheroid models [108,109]. Consistent with the primary tumors, cancer
PDOs exhibit a range of morphological phenotypes and different cellular architectures [110].
Cohesive organoids are characterized by the presence of multiple structures of different
sizes, which can be dense and solid or hollow and cystic, as well as spherical or more
irregular in shape. Differently, discohesive organoids form solid cell clusters, some of
which have a loose aggregation, giving a “grape-like” appearance. This morphological
heterogeneity recapitulates the histological features of the original patient tissue and tumor
subtype, but it is also affected by extrinsic factors, such as various oxygenation levels or the
composition of the ECM.

An intrinsic limitation of the ASC-derived cancer organoids is that they are com-
posed almost solely of tumor epithelial cells and do not include non-neoplastic stroma
components, especially from the immune system. Incorporating TME components into
cancer organoid models could be of great relevance especially for some cancer types,
such as pancreatic ductal adenocarcinoma (PDAC), which normally includes up to 90% of
the stroma component in the tumor mass. To fill this gap, two culturing strategies have
been developed [16,111]. In the first approach, the TME is reconstructed by co-culturing
well-established organoids with exogenous stroma cells, such as native or reconstituted
autologous CAFs or different types of immune cells [109,112]. For example, Tsai et al.
generated co-cultures of PDAC organoids with autologous CAFs and T-cells [109]. Addi-
tionally, Luo et al. successfully established a co-culture system of CRC PDOs and CAFs
by embedding both cell types in a hydrogel-based matrix [113]. Characterization of this
in vitro system demonstrated that the co-culturing was able to promote the growth of can-
cer PDOs, recovering biological pathways that are absent in the conventional PDO cultures
but present in patient tissues. The second approach aims to generate cancer organoids that
preserve the endogenous TME by culturing tumor epithelium together with endogenous
stromal and immune cells as a cohesive unit without the need of reconstitution [111]. This
can be achieved through the air-liquid interface (ALI) method, in which minced primary
tissue fragments, containing both tumor and stromal cells, are embedded in a collagen
matrix within an inner transwell dish, where the top of the collagen gel is exposed to the
air, allowing the cells access to oxygen [114]. Alternatively, 3D microfluidic devices can be
used to construct organotypic tumor spheroids in collagen hydrogels that retain the native
immune cells [115].
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An attractive feature of cancer PDOs is that, as the traditional cancer cell lines, they
can be passaged, cryopreserved, shipped frozen in vials across the world, thawed, and
quickly restored to a proliferative culture (Figure 2). Consequently, since the first collection
of well-established PDOs were reported in 2015 [90], several living biobanks of cancer
and matched healthy PDOs have been established [41,51,93,95,104,116,117]. Across these
studies, it was demonstrated that PDOs preserve the histological and genetic diversity of
the original tumors, even after long-term culture [118]. This faithful representation has
been reported for a multitude of cancer types [95,97,98,105,106], demonstrating that PDOs
can provide a useful tool to explore both inter- and intra-tumoral heterogeneity. In this
regard, it is important to highlight that cancer PDOs are generally derived from single
biopsies or small fragments of surgically resected tissue and, therefore, might not fully
encompass the original tumor diversity [100].
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Further, PDOs can be orthotopically or s.c. transplanted into immunodeficient
mice [91,94,98,107,119]. In a reciprocal fashion, organoids can be derived from PDX
mice [120–122], taking advantage of the already available large PDX libraries. However,
the generation of PDX-derived organoids (PDxOs) could be difficult due to the presence
of mouse stromal components in the tumor samples that have to be adequately removed.
Guillen et al. were able to derive 40 PDxO lines from breast cancer PDXs with a success
rate of 85% and cultured them for more than 200 days [121]. Genomics analysis of several
PDxO lines revealed high concordance with the original human tumors, also after long
propagation. In addition, when the PDxOs were reimplanted in mice their tumor growth
rates were not statistically different from the growth rates of the parental PDX, even when
implanted after different time points in culture.

Given the organoid relevance to cancer research, large efforts are undertaken to make
PDOs available to the scientific community. The first was the establishment of a large PDO
collection, the Hubrecht Organoid Technology (HUB) living biobank [123], resulting from
the collaboration between the US NCI, the UK Wellcome Trust Sanger Institute and the HUB
foundation, known as the Human Cancer Models Initiative. The HUB biobank contains
and generates hundreds of PDOs from healthy and tumor tissues together with baseline
clinical data from the original patients that are accessible for both industry and academia.
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3. Efficacy Assessment in 3D In Vitro Cancer Models

An accurate quantification of the anticancer efficacy of a drug or a therapeutic inter-
vention is a critical aspect of the development process. However, in the context of the
3D in vitro cancer models, there are no well-established and standardized approaches to
evaluate the response to an anticancer treatment [16,124]. As a result, researchers can apply
a variety of different assays and techniques to characterize the anticancer drug efficacy [61],
including assays evaluating cell viability, proliferation or apoptosis as well as approaches
based on microscopy imaging. Many of these techniques are common to both spheroids
and organoids. However, some assays are more frequently used and have to be preferred
over others, depending on the final scope of the study, on the 3D culture system under
consideration, and on the characteristics of the cells composing the system [125–127].

In this review, we will focus on assays based on cell viability and on microscopy
imaging. For both of them, we will shortly describe the main characteristics, report the
most relevant applications stratified in spheroids and organoids, and, lastly, introduce the
efficacy metrics typically derived from these measurements.

3.1. Cell Viability-Based Assays

Cell viability assays evaluate the well-being of cells in response to drug exposure
by measuring the proportion of living cells or of their fluorescent/luminescent signals.
They can be classified in dye exclusion assays, colorimetric assays, fluorometric assays
and luminometric assays [128] (see Table 4). Dye exclusion assays use dyes to differentiate
between live and dead cells, exploiting their different membrane permeability. Indeed, live
cells have intact membranes that prevent the dyes from entering, while dead cells do not
present this barrier, and so allow the dye passage [129]. Colorimetric assays measure the
metabolic activity of cells by detecting color changes of a specific compound. These assays
use reagents that undergo a measurable color change in the presence of live cells as an
indication of their biochemical activity [130]. Fluorescent viability assays utilize specialized
dyes or probes that emit fluorescence when exposed to certain wavelengths of light. These
assays are relatively simple to perform and can be more sensitive than colorimetric assays
in detecting subtle changes in cell viability [131]. Finally, luminometric assays measure
the amount of light emitted by cells, based on the principle that living cells have an active
metabolism and produce a constant amount of ATP [132].

Table 4. Viability assays commonly applied in spheroid and organoid studies.

Type of Viability Assay Assay Applications

Dye exclusion assay Trypan Blue Spheroids [133,134]
Organoids [135]

Colorimetric assay MTT Spheroids [136]

Fluorimetric assay

alamarBlue Spheroids [137,138]

Calcein AM, Propidium iodide, Hoechst 33,342 Spheroids [83]

Calcein AM, EthD-1, Hoechst 33,342 Spheroids [139]

EthD-1, Calcein AM Spheroids [140]
Organoids [141]

CellTiter-blue Spheroids [142,143]

Luminometric assay CellTiterGlo-3D Spheroids [144–147]
Organoids [148–151]

Cell viability assays generally require the destruction of the 3D in vitro models. Con-
sequently, they are classified as endpoint assays, as they provide a snapshot of what is
occurring at a single time point and do not capture the entire time course of drug response.
Because the response to treatment could vary over time, the results of cell viability assays
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could be dependent on the time at which they are performed. This could lead to misspeci-
fications of treatment effects, which could be especially relevant when the time required
to obtain a response to treatment is not yet well-established or when some resistance
mechanisms arise during drug exposure.

3.1.1. Spheroids

A variety of techniques and assays to assess the cell viability in cancer spheroids has been
used. Most of them are derived from the methods applied for the traditional 2D in vitro cell
cultures with no or only minimal modifications. For example, Kochanek et al. used the fluoro-
metric CellTiter-Blue assay to quantify the effects of 19 different approved anticancer drugs
on spheroids derived from five head and neck squamous cell carcinoma cell lines [143].
Kessel et al. performed a fluorimetric assay using the Calcein AM, propidium iodide
and Hoechst 33342 to determine cell viability of glioblastoma spheroids derived from the
U87 cell line and treated with Tanespimycin, Paclitaxel, Temozolomide or Doxorubicin for
drug-screening application [83]. Differently, a dye exclusion assay, the Trypan Blue, was
used by Xu et al. to assess the effectiveness of Atorvastatin in combination with Celecoxib
and Tipifarnib on spheroids derived from the pancreatic cancer Panc-1 cell line [133].

However, because these assays were originally designed for 2D monolayer cultures
and used outside their original intended use, they could not be efficient when applied
to spheroids, due, for example, to decreased penetration of dyes/reagents in large 3D
structures, decreased lytic activity due to the presence of an extracellular matrix and the
tight cell–cell junctions of the 3D cellular aggregates [132]. Therefore, the application of a 2D
viability assay to 3D in vitro cancer models requires an accurate optimization of the viability
protocol as well as an extensive validation of its accuracy. For example, Piccinini et al.
compared the repeatability and the reproducibility of viability results obtained through
the Trypan Blue assay on 2D cell cultures and 3D spheroids from two different cancer cell
lines (the A549 lung carcinoma and PANC-1 pancreatic carcinoma cell line) [152]. Viability
measurements independently obtained by two biologists who analyzed 105 different
samples were compared, highlighting an approximate variability of 5%, similar for 2D
and 3D cultures. Further, Eilenberger et al. optimized the standard alamarBlue viability
protocol for the application to spheroid cultures to enhance the assay precision [153]. Key
modifications involved the increase of the incubation period from the original 2–3 h to 24 h.
Cell viability of 2D cultures and spheroids from the HepG2 liver cancer cell line exposed to
sorafenib treatment was measured and compared. For spheroids, an extended incubation
period resulted in a tremendous increase in the assay precision with an overall reduction of
the standard deviation range to 4–10%. In comparison, 2D monolayer cultures displayed a
similar comparable precision and reliability for any alamarBlue incubation time.

To overcome the limitations of 2D-derived viability assays, methods specifically de-
signed for the 3D in vitro systems were developed. Among the commercially available
assays, one of the most widely used is the CellTiterGlo-3D (CTG-3D), an ATP-based lu-
minescent assay, whose application is documented for spheroids derived from different
cancer types and cultured with different techniques [144,145]. Few works compared vi-
ability measurements obtained with 2D-derived and 3D-specific assays, demonstrating
that methods specifically designed for 3D in vitro models generally perform better. For
example, Zanoni et al. tested the Trypan Blue assay and two 3D-specific viability assays,
including the CTG-3D, to evaluate the effect of increasing concentrations of an anticancer
agent on large spheroids [64]. All the assays showed a decrease in cell viability in treated
spheroids compared to controls. However, the Trypan Blue assay failed to capture the
dose-dependence of drug effect and exhibited a high variability of viability results (CV
= 42.7). Differently, the two 3D-specific assays correctly identified the dose-dependent
treatment effect and showed a similar and low variability (CV = 7.53 and 7.23). Further,
Dominijanni et al. assessed and compared the accuracy of various commercially available
cell viability assays developed for 2D or 3D applications (including MTS and CTG-3D) on
different 3D hydrogel constructs derived from the HCT-116 human CRC cells [132]. An
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important variability in the viability results was found, with CTG-3D exhibiting the most
accurate readouts overall regardless of construct size, cell density and hydrogel makeup.

Despite their popularity, the viability-based methods are unable to fully grasp the
whole spectrum of spheroid responses to treatment. For example, morphological changes of
the 3D spheroid structure induced by the treatment cannot be captured [143]. Consequently,
measuring cell viability alone might provide an incomplete picture of the drug impact on
spheroids, potentially resulting in an underestimation of the actual drug efficacy.

3.1.2. Organoids

Cancer organoids exhibit a more complex morphological structure than cancer spheroids,
further challenging the assessment of cell viability. As a result, the use of specialized
viability assays, specifically designed for 3D in vitro models, is of great relevance to accu-
rately assess the overall viability of organoid cultures. The previously introduced CTG-3D
luminescent assay is the most widely used method in organoid studies [148–151].

Despite this consideration, the use of viability assay techniques not specifically de-
signed for 3D in vitro models is still documented in some organoid studies. For exam-
ple, Mazzocchi et al. used the dye exclusion assay based on calcein-AM and ethidium
homodimer-1 [141], while Fusco et al. used the Trypan Blue assay [135]. Such examples are,
however, less frequent and popular compared to spheroids.

As for spheroids, the use of viability-based methods for the drug efficacy assessment
presents some limitations also when applied to organoid cultures. In addition to previously
discussed issues, viability assays provide only a well-level quantification of organoid re-
sponse to treatment and fail to capture the contributions of inter- and intra-heterogeneity
of PDO cultures. Consequently, the presence of cell subpopulations with varying drug
sensitivities cannot be detected through cell viability assessment [127,154]. Additional tech-
niques, such as imaging-based assays, must be used to better understand the heterogeneity
of cancer organoid response to drug treatment.

3.1.3. Efficacy Metrics

Cell viability is typically measured at multiple concentrations of drugs or treatments
and used to build the concentration–response curve, illustrating the relationship between
the drug concentration and the corresponding percentage of cell viability compared to the
control, i.e., untreated culture. From the obtained concentration–response curve, different
parameters can be derived to quantify the potency of drug treatment (see Figure 3). The
most popular metrics of drug efficacy are the half-maximal inhibitory concentration, IC50,
and the area under the curve, AUC [155]. The first one represents the concentration of drug
required to reduce the cancer cells by 50% with respect to the control. It is a simple and easy-
to-understand parameter that, providing a clear threshold value to discriminate between
effectiveness or ineffectiveness, allows a quick comparison of different drugs or treatments.
However, IC50 accounts for the effect of a drug or treatment only at a single concentration
point, without considering the anticancer activity at different concentrations. Conversely,
AUC, measuring the area under the concentration–response curve, integrates results across
a wide range of drug concentrations, thereby providing a more comprehensive picture of
the overall drug effectiveness. However, AUC is a more complex metric that can be difficult
to interpret and compare across different drugs or treatments and does not provide a clear
threshold value to discern between effective or ineffective treatment [156].
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It has been demonstrated that IC50 and AUC are both influenced by the growth rate
of cancer cells. For example, rapidly growing cells may require a higher drug concentration
to be reduced by 50% than slowly growing cells. To account for this issue, in 2016 Hafner
et al. proposed to replace the concentration–viability curve with the concentration–growth
rate inhibition curve [157]. First, the growth rates are simply computed from endpoint
measurements of cell viability in treated and untreated samples, given the initial cell
number. Then the growth rate inhibition, GR, is defined as the ratio between growth
rates under treated and untreated conditions, normalized to a single cell division. The
corresponding efficacy metrics are the concentration at which the growth rate is inhibited
by 50%, GR50, the area under the concentration–GR curve, GRAUC, and the area over the
concentration–GR curve, GRAOC (see Figure 3).

Finally, it is important to underline that all the previous efficacy metrics inherit the
limitations of the viability assays from which they are derived. In particular, they are
dependent on the time at which the viability assays are performed. Therefore, if the
response to treatment varies over time, the efficacy metrics based on cell viability assays
could be not suitable to quantify the treatment effects on spheroids or organoids. In
addition, this time-dependence hampers the comparison across different studies if the
assays are performed at different time points.

3.2. Image-Based Assays

Image-based techniques provide alternative tools to evaluate the effects of anticancer
treatments [158], in particular on 3D in vitro cancer cultures. These techniques allow the
size, morphology and metabolic status of 3D in vitro cancer models to be monitored at
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multiple time points, thus enabling real-time assays of responses to treatment exposure. Sev-
eral imaging techniques are available, ranging from the simplest and cheapest brightfield
microscope analysis to complex and expensive advanced microscopy techniques.

Each technique is characterized by its own advantages and specific applications (see
Table 5). Brightfield and fluorescence microscopy can be used to analyze the structure
and cell organization of the 3D in vitro cancer models and of their surrounding TME [159].
Fluorescence microscopy combined with suitable cell labeling can allow the assessment of
cell viability and proliferation. Confocal microscopy can create high-resolution images of
thick samples, providing information on the internal 3D structure. Live-cell imaging allows
to monitor the cell activity in real-time. Super-resolution microscopy provides detailed
images of cancer cells and their microenvironment. Additionally, other imaging-based
methods, such as automated imaging, label-free biosensors, and imaging mass cytometry,
can provide insights into different aspects of cancer biology and drug activity [160].

Microscopy techniques have to be coupled with appropriate software for image-data
processing. Depending on the nature of the 3D in vitro model, on the images to process
and on the level of accuracy and precision required, several specialized tools are available,
ranging from simple image processing software to more advanced algorithms. There are
both commercial products, such as Imaris (Bitplane AG, Zurich, Switzerland) and Amira
(Visage Imaging Inc., Carlsbad, CA, USA), and open-source solutions, such as ReViSP [161]
and its updated version ReViMS [162], OpenSegSPIM [163] or OrganoID [164].

Table 5. Image-based assays commonly applied in spheroid and organoid studies.

Type of Image-Based Technique Monitored Quantity Applications

Brightfield imaging Morphology, dimension Spheroids [165,166]
Organoids [148]

Fluorescence imaging Dimension, viable cells, cell density Spheroids [143,167]
Organoids [168]

Confocal live cell imaging Morphology, internal 3D
architecture

Spheroids [169]
Organoids [170]

Live cell imaging Cell activity in real-time,
morphology, dimension

Spheroids [171]
Organoids [170]

Optical metabolic Imaging Fluorescence intensity and lifetime of NADH and FAD Organoids [154,172,173]

Image-based approaches to analyze 3D in vitro cancer models is a wide research
field under further development, and currently, there is no gold standard. A compre-
hensive review of all the available techniques and applications is out of the scope of this
paper. In the following, we will report an overview of the most relevant and frequently
applied approaches.

3.2.1. Spheroids

In spheroid studies, the applications of image-based techniques typically aim to
monitor the temporal dynamics of the 3D morphology over several days in order to
identify possible changes induced by the treatment. To this end, multiple morphological
features, such as the volume, shape, perimeter, density and diameter, are tracked before,
during and after drug exposure. Symmetrically to the in vivo settings, a reduction of
spheroid volume is generally considered as the primary endpoint of treatment efficacy [64].
Therefore, tracking the temporal dynamic of spheroid volume is a crucial task.

The selection of the imaging techniques depends on the spheroid morphology and on
the measurement accuracy that is considered acceptable. 2D brightfield imaging, coupled
with appropriate software for image-data processing [161,165], could be sufficient to ac-
curately reconstruct the 3D structure of sphere-like spheroids. Instead, for more irregular
structures, advanced 3D imaging systems, able to acquire data of the whole 3D surface, are
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needed to obtain reliable results. A study by De Santis et al. compared the performances of
different open-source software in calculating spheroid volume from light-sheet fluorescence
microscopy images, with the aim of providing guidelines for researchers on which is the
“best software” according to the characteristics of the 3D in vitro model to analyze [174].

Several applications of image-assay techniques in spheroid studies can be found in
the literature. In the study of Takuri et al., an inverted fluorescent microscope was used
to evaluate the volume changes in CRC spheroids treated with four different drugs [167].
The PrestoBlue cell viability reagent was used to stain the living cells, and the intensity
of fluorescent signal was monitored through microscopy imaging and used to derive
spheroid volume based on the strong correlation between volume and cell viability. Another
interesting example is provided by the study of Kochanek et al. [143], in which the treatment
effects on spheroids from head and neck squamous carcinoma were assessed by using
various techniques, including an automated imaging system that tracks changes in the
spheroid shape, perimeter, density and diameter on a daily basis. Further, Chen et al.
investigated the treatment impact on breast cancer spheroids by monitoring their growth
over a period of 30 days [166]. The spheroid size and volume were determined through a
combination of brightfield microscopy and ImageJ software (National Institute of Health,
USA). Finally, in the study of Rodallec et al. [175], a fluorescent microscope was used to
monitor cell growth in untreated and treated spheroids generated from bioluminescently-
labeled breast cancer cells. Microscopy imaging was used to quantify the antiproliferative
activity of investigated treatments that resulted, depending on cell type, treatment schedule
and spheroid size.

3.2.2. Organoids

Image-based assays play a crucial role also in efficacy assessment in cancer organoids.
The imaging techniques used to monitor the treatment response of organoids are similar
to those applied to spheroids. For example, Yao et al. used an inverted microscope in a
brightfield setting to monitor the temporal size changes of 80 PDOs derived from patients
with locally advanced rectal cancers [148]. Images were taken every three days for a 24-day
period after drug treatment and analyzed using Image-Pro Plus 6.0 (Media Cybernetics,
Inc., Rockville, MD, USA), a commercial dedicated software. The areas of all the living 3D
structures composing the PDOs were derived and gathered to characterize the organoid
size at well-level. This method was found to be as informative as monitoring cell viability
over the same time period.

However, it is important to underline that image analysis of cancer organoids is more
challenging compared to spheroids due, for example, to the presence of multi-objects
per well, their movements across focal planes as well as their heterogeneity in size and
shape, which can be particularly irregular. Hence, advanced imaging approaches could
be necessary for a robust quantitative analysis of organoid cultures. For example, Z-stack
technology, i.e., a continuous scan of the same field at different Z-axis levels and merging
of the images from different layers into a final one, could be fundamental to capture all the
3D structures composing the organoid culture and gather their maximum cross-sections
into a single image [176].

Single-object tracking is also crucial to account for the intra-organoid variability of
size, shape, growth pattern and response to treatment and, thus, to overcome the limitation
of a well-level quantification of treatment efficacy. To this regard, Skala et al. showed that
normalizing growth to the pretreatment size for each organoid structure decreased the
measurement noise, highlighting the importance of monitoring each organoid individu-
ally [127]. Kim et al. proposed a very complete quantification workflow, based on dynamic
confocal live cell imaging, to monitor tumor growth and drug response in CRC PDOs at
single-object level [170]. Organoids were fluorescently labeled with Lentivirus H2B-GFP
and imaged with DRAQ7 vital dye across multiple time points during drug treatment
to track cell birth and death events in the individual 3D organoid structures. From the
same images, they derived morphological features of the 3D objects, including volume,
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sphericity and ellipticity, using Imaris. A strong correlation was found between organoid
live cell count and volume.

Single-object tracking of organoid cultures across multiple time-lapse images could be
labor-intensive to obtain. Indeed, several platforms for organoid image-data processing
require manual labeling of all the 3D structures in each image. Conversely, the automati-
zation of the tracking process is often based on the labeling of the cellular nuclei, which
increases experiment time and complexity and may modify cellular dynamics. Implement-
ing machine learning algorithms could significantly reduce the time needed for the image
analysis. For example, OrganoID is a software platform based on a convolutional neural
network that is able to identify and track the individual 3D structures composing organoid
cultures from a wide range of cancer tissue types in time-lapse imaging experiments [164].

Finally, temporal monitoring of organoid size and morphology could not be able to
account for additional treatment-induced effects. For example, drug exposure may cause
changes in the cellular composition of organoids that are not reflected by alteration of
growth or morphology [86]. The Optical Metabolic Imaging (OMI) provides 3D imaging
of single cell-metabolism, thus representing a particularly attractive approach to track the
metabolic response to treatment within PDOs at both single-cell and single-object level. It
exploits the natural cellular autofluorescence of NAD(P)H and FAD through the optical
redox ratio, defined as the ratio between NAD(P)H and FAD fluorescence intensity [172,173].
The OMI method has been recently applied in some PDO studies [154,172,173,177]; among
them, a good representative example is provided by Pash et al., who assessed both the
changes of organoid size and optical redox ratio [177].

3.2.3. Efficacy Metrics

A variety of efficacy metrics can be derived from results obtained with image-based
assays. Among them, the difference in growth rate between treated and untreated 3D
structures is the most commonly used. This metric has already been introduced based
on cell viability assays, where GR has been defined from viability assessments at a single
time point. In contrast, in the context of image-based assays, the growth rate inhibition
is computed from multiple measurements in both untreated and treated cultures and can
be defined based on several morphological parameters, such as volume, surface area or
live cell count. For example, Kim et al. compared growth rates derived from volume and
surface area with those computed from the live cell numbers in treated and untreated CRC
PDOs [170]; a good consistency was found, although the volume–growth rate had a slightly
better correlation.

The growth rate inhibition metric is commonly used in both cancer spheroid and
organoid studies. However, for the second application it is important to keep in mind
that growth rate differences could not be due to drug treatment effects but can result from
the inter- and intra-organoid variability of the growth pattern. In the organoid studies
including the single-object tracking, the distributions of morphological parameters and/or
of the optical redox ratio in untreated and treated organoid cultures can be considered
and compared [177,178], allowing the intra-organoid variability in both tumor growth and
treatment response to be accounted for. The Glass’s Delta index [179] can be computed to
summarize the treatment effect. It is defined as the mean difference between the treated
and control group divided by the standard deviation of the control group, thus considering
the treatment change as a function of the distribution of the control organoids.

4. Are 3D In Vitro Cancer Models Good Predictors of In Vivo Anticancer
Drug Efficacy?

The relevance of spheroids and organoids as preclinical models for anticancer efficacy
testing is determined, at least partially, by the extent to which the 3D in vitro results can be
extrapolated to the in vivo situation (Figure 4). Therefore, a rapidly increasing number of
studies are addressing the potentiality of the 3D in vitro models, and especially of PDOs,
as predictive tools for in vivo response to anticancer drug treatment.



Biomedicines 2023, 11, 1058 16 of 36

Biomedicines 2023, 11, x FOR PEER REVIEW 16 of 37 
 

control group divided by the standard deviation of the control group, thus considering 
the treatment change as a function of the distribution of the control organoids.  

4. Are 3D In Vitro Cancer Models Good Predictors of In Vivo Anticancer Drug Efficacy? 
The relevance of spheroids and organoids as preclinical models for anticancer effi-

cacy testing is determined, at least partially, by the extent to which the 3D in vitro results 
can be extrapolated to the in vivo situation (Figure 4). Therefore, a rapidly increasing 
number of studies are addressing the potentiality of the 3D in vitro models, and especially 
of PDOs, as predictive tools for in vivo response to anticancer drug treatment.  

In this section, we will provide an overview of the current evidence on transferability 
of the 3D in vitro results to the in vivo, animal and human, settings. 

 
Figure 4. Assessment of predictive value of treatment response in 3D in vitro cancer models for the 
in vivo (animal and human) response. 

4.1. Spheroids 
Several studies have investigated the treatment responses in cancer spheroids com-

pared to 2D cell cultures, highlighting significant differences when the same cancer cell 

Figure 4. Assessment of predictive value of treatment response in 3D in vitro cancer models for the
in vivo (animal and human) response.

In this section, we will provide an overview of the current evidence on transferability
of the 3D in vitro results to the in vivo, animal and human, settings.

4.1. Spheroids

Several studies have investigated the treatment responses in cancer spheroids com-
pared to 2D cell cultures, highlighting significant differences when the same cancer cell
lines were treated with the same compounds in 2D or 3D conditions [139,142,180–183].
According to the majority of the literature reports, many anticancer compounds lose efficacy
in spheroids compared to cell monolayers [63,142,180,181], for example due to insufficient
drug penetration into the inner core of the 3D structures. However, this observation cannot
be generalized. Indeed, it has been shown that in some cases spheroids can be more sensi-
tive than 2D cell cultures due to the drug-specific mechanisms of action [42,139,183]. For
example, it has been reported that kinase inhibitors are more effective on spheroids, while
cell cycle inhibitors are more effective on 2D in vitro models [8,42,139].

Based on disparity in testing outcomes between spheroids and 2D cell cultures,
many studies concluded that drug response in spheroids better predict the in vivo ef-
ficacy, compared to those of 2D cultures. However, only a few studies included an actual
in vivo validation of the spheroid results by performing confirmatory xenograft experi-
ments [47,74,75,175,184–186].
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For example, in the work of Erlichman et al., doxorubicin cytotoxicity was assessed
on the MGH-U1 human bladder carcinoma line grown as monolayer, spheroids, and as
xenografts in immunodeficient mice [185]. The MGH-U1 spheroids exhibited five-fold
resistance to doxorubicin compared to 2D cell cultures, due to the limited drug penetration
in the inner core. Indeed, as demonstrated by fluorescence analysis, cells near the spheroid
surface were more sensitive to doxorubicin, while drug resistance increased through the
inner layers of the spheroids and became maximal near the necrotic core. Doxorubicin
treatment of MGH-U1-bearing xenograft mice resulted in low cytotoxicity, consistent with
the spheroid model that more closely predicts the in vivo effects than monolayer culture.

More recently, Brodeur et al. conducted a comparative study to investigate the car-
boplatin response in epithelial ovarian cancer cell lines grown as 2D monolayers and 3D
spheroids (and also as ex vivo system, i.e., 3D micro-dissected tumors) and compared them
to the in vivo response in xenograft mice [186]. Six cell lines were considered and classified
as “sensitive”, “intermediate” or “resistant” based on chemosensitivity to carboplatin quan-
tified through IC50 metrics in in vitro models and TGI in in vivo models. In vivo results
from the mouse models correlated with 2D cell culture and 3D spheroid responses in 3/6
and 4/6 cell lines, respectively. This study suggested that the carboplatin response of 3D
in vitro models was in line with in vivo results even if 3D spheroids demonstrated higher
carboplatin resistance compared to xenograft mice in two cell lines, OV4453 and OV4485.

Another interesting study, evaluating the ability of 3D in vitro spheroids to predict
in vivo efficacy in xenograft mice, was conducted by Rodallec et al. [175]. In this work, the
effect of a new candidate immunoliposome combined with trastuzumab was evaluated in
spheroids generated from two HER2-positive breast cancer cell lines (MDA-MB-453 and
MDA-MB-231) before testing it in vivo. Fluorescence microscope imaging was used to
monitor cell growth in untreated and treated spheroids and, thus, to assess antiprolifera-
tive efficacy of the treatments. Antiproliferative activity resulted dependent on cell type,
spheroid size and treatment scheduling, and showed that immunoliposomes performed
better (higher cell growth reduction) than current anti-HER2 breast cancer strategies. Con-
firmatory experiments were then performed in mice orthotopically xenografted with cells
from the same cancer lines. A higher efficacy in terms of TGI and prolonged survival was
obtained with immunoliposomes compared to two reference treatments, demonstrating the
predictivity of 3D spheroids when testing nanoparticles in experimental oncology [187].

Finally, in some studies patient-derived spheroids were developed to predict the
patient responses to treatment at individual level. Clinical validation of the in vitro results
is reported only in a small set of studies [184]. As an example, in the work of Raghavan
et al., spheroids were generated using primary ovarian cancer stem cells derived from
three patient ascites and treated with cisplatin alone or in combination with a novel
investigated compound [47]. Spheroids from distinct patients showed different responses
to drug treatment (based on cell viability at 72 h after drug treatment) that correlated with
patient clinical history for platinum response. In addition, two spheroid models were
used to initiate tumors in mice. Spheroid-derived xenografts revealed similar responses to
chemotherapeutics to the corresponding 3D in vitro model, demonstrating the predictive
potency of spheroid-based therapeutic assays compared with those conducted in vivo in
spheroid-derived xenograft models.

4.2. Organoid

A rapidly increasing number of studies investigated the PDO ability to predict ther-
apeutic efficacy in patients by comparing PDO treatment data with clinical responses
of the original patient donors. Although these studies were typically designed with the
primary aim of personalized medicine, they provided strong evidence of PDO translational
potential. These works were already systematically reviewed in [188–190], resulted to be
heterogeneous for a multitude of factors. They differed in (i) investigated tumor type and
anticancer treatments, (ii) patient cohort size, (iii) study design, (iv) definition of treatment
response in PDOs as well in patients, (v) inclusion of parallel PDXs, and (vi) strength of the
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applied statistical methods and correlation significance. The majority of these studies only
provided a descriptive comparison between the organoid and clinical response, generally
based on extremely small patient cohorts [188]. Few studies, to date, have performed a
rigorous and quantitative clinical comparison that resulted in a statistically significant
correlation and/or predictive value [116,148,150,191,192].

The first attempt to rigorously demonstrate the predictive potential of cancer PDOs
was provided by the work of Vlachogiannis et al., where the effect of a library of anticancer
agents in PDOs (n = 21) derived from heavily pretreated colorectal and gastroesophageal
cancer patients were compared to their clinical response [191]. The authors found 100%
sensitivity, 93% specificity, and 88% and 100% positive and negative predictive values,
respectively. However, the criteria to define responses in PDOs and patients were not
specified in the work that was carried out retrospectively.

Ooft et al. reported the results of a prospective observational study (the TUMOROID
trial) investigating the use of cancer PDOs as a predictive test for chemotherapeutic reg-
imens, including 5-FU in combination with oxaliplatin (i.e., FOLFOX) or irinotecan, or
irinotecan alone, in metastatic CRC patients [150]. The temporal dynamics of PDO areas
were monitored through microscopy imaging. The inhibition of growth rates after six days
of treatment were derived and correlated to the best RECIST response in patients consider-
ing the lesions from which PDOs were obtained. Organoids (n = 22) correctly predicted the
response to irinotecan-containing therapies (irinotecan single or combination treatment)
in more than 80% of patients. However, PDOs failed to correctly predict outcomes of
FOLFOX treatment for which no correlation with patient responses was found. The absence
of correlation for oxaliplatin-based therapy was confirmed also by the APOLLO trial in
metastatic CRC [193], where FOLFOX sensitivity in nine PDOs (quantified by the AUC
derived from the concentration–viability curve) failed to clearly separate patients who
had disease control (i.e., partial responses or stable disease) versus progressive disease
(PD). Conflicting results were reported in the work of Ganesh et al., in which the AUCs for
FOLFOX (and 5-FU) treatment in seven CRC PDOs correlated well with progression-free
survival (PFS) in the corresponding patients (Spearman r = 0.86 and p = 0.024) [51].

The phase III CinClare trial, evaluating the predictive value of PDO response to
neoadjuvant chemoradiation (i.e., radiation combined with 5-FU with or without irinotecan)
in 80 locally advanced rectal cancer patients [148], represented an exception to the generally
small size of patient cohorts. PDOs were separately treated with radiations, 5-FU or
irinotecan and the least of the ratios of PDO size changes at day 24 to day 0 after treatments
was used as predictor of clinical outcome (tumor regression grade upon resection). Of
the patients, 85% (n = 68) achieved a good clinical response and, accordingly, the parallel
organoids were sensitive to at least one of the three treatment components; nine patients
had a poor response even if the matched PDOs were sensitive to one or two of the treatment
components, and three patients had a good response while the matched organoids resulted
resistant to all the treatments. Overall, the combined PDO data highly correlated with
patient clinical outcomes, with 84.43% accuracy, 78.01% sensitivity and 91.97% specificity.

The HOPE trial was a prospective clinical study aiming to generate PDOs from PDAC
patients and to evaluate the correlation between their drug sensitivity and clinical out-
comes [194]. Sensitivities to gemcitabine, 5-FU, oxaliplatin, irinotecan, paclitaxel and other
drugs were quantified in 12 PDOs, based on cell viability. Independent AUC assessments
(n = 49) were calculated for each tested drug and PDO line. For each patient, normalized
AUCs were then compared to develop a personalized drug rank that resulted consistent
with clinical responses. In addition, a method for classifying PDOs as sensitive or resistant
to chemotherapy combination regimens was developed with predictive purpose. PDO
AUCs were annotated with clinical outcomes, matching the lowest AUC of the combination
with patient response, i.e., disease control or PD. A break of 0.56 segregated PDO AUCs
matching to patient disease control from the ones matching PD. Accordingly, organoids
were classified as “sensitive” to a combination treatment regimen if at least one of the drugs
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in the regimen yielded an AUC < 0.56, and “resistant” if all of the drug components yielded
an AUC ≥ 0.56.

A different predictive score for response to combined regimens was proposed and
validated by Beutel et al. on pancreatic cancer PDOs [192]. Single chemotherapeutic
agents (gemcitabine, 5-FU, oxaliplatin, irinotecan, paclitaxel) were separately tested in
PDOs, and AUCs for each compound were derived. AUCs were then classified into three
groups (high, intermediate and low response) and a score was assigned to each of them
(1 = high, 2 = intermediate, 3 = low). For each PDO and tested combination, the mean
score was considered as a predictor for the effectiveness of the drug combination: a score
≤ 2 indicated an efficacious combinational chemotherapy, while a score ≥ 2 denoted an
inefficacious combination. The comparison with clinical response, classified in disease
control or PD, revealed that PDOs successfully predicted outcomes in treatment-naïve
patients with an accuracy of 91.1% for first-line (n = 11) and 80.0% for second-line regimens
(n = 5). The prediction accuracy declined to 40% in pretreated patients (n = 5).

In the CinClare and HOPE trials as well as in the work of Beutel et al. [148,192,194],
the PDO responses to combination therapies were based on the independent assessments
of each drug composing the combinations. A different strategy was followed in the work
of Witte et al., where the responses to combination treatments were directly evaluated
in vitro [116]. In this study, seven PDOs derived from five patients with different sub-
types of ovarian cancer were exposed to cotreatment of 5-FU and paclitaxel. Obtained
AUCs showed a statistically significant correlation with clinical responses defined based
on chemotherapy response score (p < 0.001), biomarker normalization (p = 0.004) and
RECIST (p = 0.0092). However, AUCs did not correlate with long-term clinical response
(i.e., recurrence and PFS).

To date, the majority of clinical studies on cancer PDOs were observational and in-
volved standard-of-care treatments. Very few studies involved investigational agents and
were of interventional design. For example, Tiriac et al. tested a panel of investigational
targeted agents on a set of PDAC PDOs on which all the standard-of-care chemotherapeu-
tics for pancreatic cancer had previously been ineffective [195]. This allowed alternative
treatment options to be identified that, however, were not validated in clinics. In the already
mentioned APOLLO study, two patients started off-label drug treatment based on PDO re-
sults, upon failure of standard treatments; one of them had a partial response [193]. Finally,
the SENSOR trial, a prospective intervention trial in metastatic incurable CRC patients
which progressed after standard-of-care treatments, aimed to evaluate the feasibility of
PDOs to allocate patients for treatment with off-label or investigational agents [196]. In
this study, 25 PDOs were treated with five FDA-approved drugs and three agents under
development exhibiting substantial responses to one or more drugs in 19 cases. Six patients
underwent treatment based on PDO results; none of them obtained significant and durable
clinical responses.

Beyond the correlation between organoid and clinical response, some studies inves-
tigated the concordance between paired PDO and PDX models derived from the same
patients [52,92,98,107,121,197,198]. For example, Schütte et al. collected a large biobank
of PDOs and PDXs from CRC patients [198]. Nineteen tumors were modeled in both the
systems, allowing a comparative analysis of drug response in PDO/PDX sibling pairs for
eight anticancer agents. Treatment outcomes were classified into four categories (strong-,
moderate-, minor-response or resistance) based on the IC50 value for PDOs and on rel-
ative tumor volume of the treated group versus the matched untreated control in PDXs.
Responses were defined to be concordant between PDX/PDO siblings if they did not differ
by more than one rank. A general concordance was found, with only two exceptions
(AZD8931 and 5-FU). However, comparisons with clinical outcomes were missing.

In a recent study [107] eight PDAC PDOs were treated with commonly used ther-
apeutic agents among which was gemcitabine, showing a different sensitivity than that
which resulted from cell viability assessment. The organoid responses to gemcitabine were
then examined in vivo through s.c. transplantation of PDOs into immunodeficient mice.
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Responses to gemcitabine obtained in the PDO-derived xenografts were well correlated
with those obtained in vitro, further confirming that organoids can be used to anticipate
in vivo drug response. In addition, a library of kinase inhibitors was tested on PDOs
allowing a compound able to induce TGI in a gemcitabine-resistant PDO-derived xenograft
model to be identified.

Conversely, Guillen et al. investigated the ability of PDxOs to mirror the responses of
the matched PDX mice for birinapant, a drug for the treatment of triple-negative breast can-
cer [121]. Seven patient-derived breast cancers, spanning a range of birinapant sensitivity,
were considered in vivo and in vitro. Lines that were shown to be insensitive to birinapant
as PDxOs also showed a progressive disease similar to controls in xenograft mice, whereas
lines predicted to be sensitive resulted in tumor shrinkage. A similar comparative analysis
was performed in the work of Xu et al. [122], where the correlation between the in vitro
response in PDxO and the in vivo outcome in PDX was investigated in a large panel of
13 paired PDxO/PDX models across four cancer types for a library of five standard-of-care
chemotherapies and seven targeted agents. Drug effects were categorized as either sensitive
or insensitive based on the IC50 value in PDxO and TGI in PDX. Statistical analysis of
30 data points indicated that the PDxO in vitro response has an overall good predictive
power for the corresponding PDX in vivo outcome (accuracy = 86%, positive predictive
value = 75%, negative predictive value = 91%).

5. Applications of 3D Cancer In Vitro Models to Drug Development

The potential of cancer spheroids and organoids to be incorporated into the main-
stream development process of new anticancer therapeutics is increasingly recognized,
owing to their resemblance to in vivo solid tumors [184,199–201]. Despite this trend, their
actual inclusion in the assessment of the anticancer efficacy is still sparsely reported [201].
In such examples, in vivo experiments were not completely replaced by spheroids and/or
organoids that, instead, were used to screen and further test candidate therapeutics in a
more relevant environment compared to 2D cell cultures before starting animal studies [202]
(Figure 5). Some interesting applications are reported here.
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5.1. Spheroids

Cancer spheroids have been available for decades and their potential to either elim-
inate poor drug candidates at pre-animal stage or to identify promising drugs that had
failed in classical 2D cell assays has been widely emphasized [199]. However, to date
spheroid experiments have not been yet included in the routinely performed anticancer
drug development plans.

One of the most common and relevant applications of cancer spheroids is drug screen-
ing. Several works documented the use of spheroids from different cancer types for the
selection of the most promising candidates among several new ruthenium complexes, a new
generation of metal anticancer drugs which have awoken a lot of interest in the scientific
community [203–205]. The interest in spheroids for testing ruthenium complexes resulted
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from their ability to, at least partially, resemble the tumor ECM, which carries out an
important role in the activity of ruthenium-derived compounds. For example, De Grandis
et al. synthetized a series of novel lawsone-containing ruthenium complexes and screened
their antitumor effects against spheroids from the human prostatic DU-145 cells [203].
Anticancer activity was assessed through morphological changes and cell viability, from
which the IC50 value was derived. DU-145 spheroids generally resulted in more resistance
to ruthenium complexes compared to the 2D-cultured cells. Among the tested agents,
complex (4) showed the highest anticancer activity inducing disruption of cell aggregations.
Based on the IC50 value, the investigated compound showed a cytotoxic potency 18-fold
higher than cisplatin and was selected as a promising candidate for further evaluation.
Similarly, Santi et al. evaluated the efficacy of new ruthenium-arene compounds on 3D
spheroids of head and neck cancers with or without human papillomavirus infection and
compared their effects to the gold standard for this family of compounds [204].

Cancer spheroids also allow fast and affordable large-scale drug screening. Very re-
cently, an automated high-throughput screening of 150,000 compounds in a pancreatic
cancer spheroid model directly established from biopsy has been presented and was able
to identify leads with potential for further development and clinical applications [206].

In some studies, cancer spheroids have been used to study the mechanisms involved in
drug activity or resistance, which also supports the identification of synergistic drug combi-
nations [207,208]. For example, Dubois et al. developed spheroids from two triple-negative
breast cancer cell lines (i.e., MDA-MB-231 and SUM1315) and used them to determine the
effectiveness of co-treatment with Olaparib and fractionated irradiation with the aim of op-
timizing the balance between Olaparib cytotoxicity and resistance [146,180,207]. Spheroids
allowed long-term culture and, thus, longer exposure time than monolayers (up to 10 days),
faithfully mimicking the potential in vivo treatment strategy. Monitoring of spheroid size
and metabolic activity revealed a higher efficacy of the low-dose Olaparib compared to the
high dose, suggesting the perspective of a low dose and long-term Olaparib administration
alongside fractionated irradiation for triple-negative breast cancers.

Co-culture of tumor spheroids with immune cells were recently applied to evaluate
the effects of novel immunotherapies [77]. For example, Courau et al. developed a spheroid
model by co-culturing CRC cells and immune cells to test the therapeutic potential of im-
munomodulatory antibodies targeting the NKG2D/MICA-B axis [76]. Treatment enhanced
immune-dependent destruction of tumors, increasing immune cell infiltration into tumor
spheroids. Results were further validated in clinically relevant 3D in vitro models obtained
by co-culturing patient-derived spheroids and autologous tumor-infiltrating lymphocytes
from the same CRC patient.

In addition, scaffold-based models, such as embedded-cultures of tumor spheroids
within a hydrogel ECM, could provide useful in vitro tools for the evaluation of tumor
invasiveness, whose assessment could enhance the spheroid prediction of drug efficiency.
For example, Huang et al. developed tumor spheroids embedded within a Matrigel-based
ECM to monitor the drug responses of two invasive cell lines from non-small cell lung
cancer and CRC to sotorasib (AMG510) under normoxia and hypoxia conditions [209].

Finally, two interesting applications that integrate the use of cancer spheroids for the
assessment and the in vitro-to-in vivo extrapolation of anticancer efficacy of new thera-
peutics in a more complete drug development pipeline were reported [74,75]. In both the
studies an investigational compound was evaluated in 3D heterospheroids consisting of
pancreatic cancer cells and pancreatic stellate cells (PSCs), before embarking on animal ex-
periments. PSCs have become the therapeutic targets of several novel anticancer strategies,
as they are the precursors of CAFs, the most prevalent cell type in the TME and among the
major drivers of tumor growth and progression. Schnittert et al. used 3D heterospheroids
comprised of PSC and cancer cells from the Panc-1 line to assess the antitumor effect of
LXA4, an endogenous bioactive lipid inhibiting the differentiation of human PSCs [75]. In
addition, spheroids generated only from Panc-1 cells were considered. LXA4 treatment
significantly decreased the size and the growth rate of PSC/Panc-1 spheroids while no
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effect was observed on the Panc-1 models, confirming that the anticancer activity was
due to the PSC inhibition and not to a direct effect on the tumor cells. Based on these
findings, the therapeutic efficacy of LXA4 was further examined in a xenograft mice model
co-injected with Panc-1 and PSCs, resulting in a highly comparable inhibition profile. Simi-
larly, Kuninty et al. investigated the therapeutic potential of AV3, a novel agent inhibiting
PCS activation, in combination with gemcitabine in 3D heterospheroids from co-culture
of PSC and Panc-1 or MIA-PaCa-2 tumor cells [74]. Heterospheroids treated with the
combination showed a substantial reduction in cell viability, which was much higher than
the decrease induced by AV3 or gemcitabine alone. Unlike in homotypic spheroids com-
posed only of tumor cells, adding AV3 did not enhance tumor volume reduction induced
by gemcitabine. Spheroid results were then confirmed in co-injected (PSCs + PANC-1 or
MIA-PaCa-2) xenograft models and in a PDX of pancreatic cancer. In vivo gemcitabine
alone induced a significant TGI, but cotreatment with AV3 reduced the tumor growth more
markedly. These two studies provided a further demonstration of correlation between
results from 3D in vitro and in vivo models and showed how spheroids can be used to
reduce and inform animal studies in a drug development pipeline.

5.2. Organoids

Currently, the major promising applications of PDOs to oncological drug development
are (personalized) drug-screening to prioritize candidate agents for in vivo evaluation and
drug-gene associations. Indeed, well-established organoid biobanks can be exploited for
drug-sensitivity testing, allowing potential active agents to be identified from among newly
developed compounds or novel indications for already approved drugs (drug repurposing).
In addition, organoid cultures can also be used to investigate the potential beneficials of
drug combinations and reversal of drug resistance.

Verissimo et al. first demonstrated the potentiality of PDO libraries in evaluating
targeted agents, alone or in combination, in a preclinical setting [210]. They employed
a previously established biobank of colorectal cancer PDOs [90] to investigate the effect
of multiple clinically advanced targeted inhibitors against the EGFR-RAS-ERK pathway,
either alone or in combinations. Based on organoid results, the presence of mutant RAS
strongly correlated with resistance to these targeted therapies. In addition, they found a
beneficial effect of a combinatorial EGFR inhibition on organoid viability in RAS-mutated
cancers, possibly providing an alternative treatment strategy for this subtype of cancer.

A further proof-of-concept exercise demonstrating that drug sensitivity testing in
cancer organoids can inform anticancer drug development was performed in a small
library of PDOs from liver cancer patients [92]. Study results provided initial evidence
that ERK inhibitors could have a beneficial effect on a subset of liver cancer patients, a
therapeutic indication that had not been explored in clinical trials.

Carrera et al. exploited CRC PDOs at different passages to study the effect of plo-
cabulin, a novel antitumor agent of marine origin that was undergoing phase II clinical
trials [211]. In organoids derived from three therapy-naive individuals, plocabulin was
more cytotoxic than SN38, the active derivative of irinotecan, a chemotherapeutic drug
widely used in CRC treatment. Moreover, plocabulin maintained its strong cytotoxic activ-
ity in wash-out experiments, where short pulse treatment was as efficient as continuous
treatment. Reported results in PDOs reinforced preliminary efficacy evidence from clinical
studies, increasing interest in this novel anticancer agent and encouraging further studies.

From previous examples, it is clear that PDOs offer great promise as preclinical
cancer models to improve drug development in oncology. However, their actual use is
still in its infancy and, as of now, there have been no drugs approved using screening
with organoids technology. Only recently, with the simplification of the protocols and
high-throughput availability, promising drug candidates have been identified through
PDOs [119]. Herpes et al. published the first peer-reviewed work in the oncology field
to demonstrate the feasibility of using PDOs to screen a library of compounds and to
progress a lead agent from early-stage discovery to clinical trials. More than 500 therapeutic
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bispecific antibodies were functionally evaluated on a heterogeneous PDO biobank from
CRC and paired healthy colonic mucosa samples from the HUB biobank. This led to the
identification of MCLA-158, a bispecific antibody that binds the LGR5 marker and the
EGFR on cancer stem cells, inducing a robust blocking of growth in organoids. Results
obtained in the PDOs were then validated in in vivo models. MCLA-158 induced TGI and
damped metastasis formation in organoid-derived PDX obtained by engraftment of PDOs
in mice. This promising new agent is currently under evaluation on patients in clinical
trials. Notably, the development of the lead agent was accomplished in about five years, a
significantly shorter timeframe than a classic drug discovery and development pipeline.

6. 3D In Vitro Cancer Models as an Alternative to Animal Testing: Advantages and
Current Challenges

One of the major obstacles in the development of anticancer drugs in a time- and
cost-effective manner is the lack of translatability of preclinical results, generally obtained
in 2D cell cultures and xenograft models, from bench to bedside. Therefore, there is an
urgent need of incorporating more predictive in vitro cancer models throughout the drug
discovery and development pipeline to both increase the translational success of preclinical
studies, which ultimately results in better treatment options for cancer patients, and to
reduce the animal use, in alignment with the 3Rs commitment. 3D in vitro cancer models, in
the form of spheroids or organoids, offer a new and exciting preclinical platform potentially
able to provide more translatable data to the clinics, while ensuring the 3Rs of animal use.

Spheroids and organoids have distinct and overlapping features, which result in
distinct and overlapping applications. Spheroids are of low complexity in mirroring
in vivo tumor organization and generally showed little histological resemblance to the
original tumor. However, they faithfully mimic metabolic and proliferating gradients of
the in vivo tumors and develop clinically relevant resistance to anticancer treatment. The
simplicity and low cost of generation, together with these features, make spheroids an
extremely useful model for efficacy testing in drug screening programs. Organoids are more
complex in vitro systems that histologically and genetically resemble the original tumors
from which they are derived, thereby allowing modeling of the inter- and intra-tumor
heterogeneity observed in cancer patients. Organoids can be generated from a very small
amount of human tissue, expanded for long-term culture and cryopreserved in biobanks
which could serve as a source of biomaterial for world-wise use and be an oasis for rare
cancer types. These characteristics allow their use for a wide range of applications, which
include anticancer drug efficacy assessment. Moreover, additional TME components can be
incorporated in both the 3D in vitro systems using co-culturing techniques, thus providing
relevant in vitro tools to test the anticancer activity of agents targeting the stroma cells,
including immunotherapy.

Despite the excellent properties of spheroid and organoids, several challenges still
hamper their actual use as preclinical tools for therapeutic efficacy evaluation in the devel-
opment programs of new anticancer agents [59,126].

The first and major issue relates to the absence of standardized culture protocols. The
wide variability and inconsistency of methods to generate both spheroids and organoids,
together with the often low methodological transparency of published experiments, leads
to a lack of reliability and reproducibility of results across studies [59,100,126,212]. For
example, culture technique, medium composition and cell seeding density significantly
affect spheroid formation, resulting in difficulties in consistently producing 3D structures of
homogeneous shape and size [8,59,64]. This represents an important bottleneck for the anti-
cancer efficacy assessment in cancer spheroids, as differences in the morphological features
will result in different therapeutic responses. Similarly, the current use of non-standardized
and ill-defined culture techniques across PDO studies introduces an additional and con-
founding source of variability, preventing a faithful representation of the intrinsic cancer
biological heterogeneity. The origins of technical variabilities can include cancer tissue
sources (primary or metastatic lesions) and subsequent processing techniques, medium for-
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mulation as well as heterogeneous and animal-derived matrices [100]. Therefore, there is an
urgent need for standardized methods and guidelines and/or for a transparent knowledge
base for the generation and culture of both spheroid and organoid models.

Another relevant drawback encompasses the lack of quantitative and robust evaluation
methods for drug efficacy [59]. As previously discussed, a plethora of different assays,
based on both cell viability and microscopy imaging, have been employed to characterize
drug efficacy in 3D in vitro cancer models. Each technique is characterized by its own
advantages and limitations, so that a reference has not yet been established. In addition,
several techniques have been inherited from 2D in vitro cultures and, although considerable
progress has been made to adapt them to the 3D models, many challenges remain to be
addressed, including an accurate optimization of the viability protocols as well as an
extensive evaluation of their accuracy. Finally, several efficacy metrics used to summarize
the response to treatment, such as IC50, AUC, GR50, etc., are strongly affected by tumor
growth rate and experimental settings, such as drug exposure duration, concentration
level and time at which the assays are performed, thus often providing biased estimates of
treatment efficacy.

Additionally, because of these open challenges, the full potentiality of 3D in vitro
cancer models to predict the in vivo, in animal and in human, drug efficacy is poorly out-
lined. Some studies pointed out that spheroids more closely resemble the in vivo treatment
response observed in xenograft mice than monolayer cultures, including confirmatory
experiments in animals. However, only a qualitative comparison between in vitro and
in vivo treatment responses was ever carried out, based on few cancer cell lines and/or
drug treatments. A more systematic analysis that includes a wide panel of cancer cell
lines and anticancer agents might be needed. Available data on drug sensitivity in the
NCI60 cell lines, as both monolayer cultures and in vivo models, could allow for a stronger
assessment of predictive power of 3D spheroids in forecasting the in vivo drug efficacy in
cancer animal models [63]. Regarding cancer organoids, a multitude of works qualitatively
compared the treatment responses in paired PDOs and PDXs with the clinical responses in
the original patient donors, highlighting a good consistency. However, the small sample
size of the PDO studies together with the incompletely matching conditions, such as tested
drug concentrations, exposure duration as well as treatment efficacy criteria, considered in
PDOs, PDXs and patients, affected the strength of the results. In addition, the experimental
design, the protocols for PDO generation, the assays to quantify treatment efficacy in PDOs
and the readouts to define both the in vitro and in vivo responses significantly differed
among these studies. This heterogeneity avoids gathering results from different studies and
performing a pooled analysis in order to quantitatively derive an estimate of the overall
PDO performance in predicting in vivo (in animal and human) responses. More compre-
hensive studies and quantitative data are necessary to make an accurate assessment of PDO
predictivity [188]. Finally, the majority of these studies were performed retrospectively and
involved only gold-standard treatments and not investigational agents. Cancer PDOs were
generally asked to retrospectively categorize compounds into “active/not-active” as well
as patients into “respondent/not respondent”, while their capability in prospectively antic-
ipating the conditions, i.e., dose or concentration levels, needed to achieve a therapeutic
effect and to support the drug development process, has not yet been investigated.

When the current issues relating spheroids and organoids are addressed, including
standardization of culture protocols and assay techniques, establishment of quantitative
evaluation methods for drug efficacy and validation of drug response predictions, these 3D
in vitro cancer models will provide a powerful platform for the preclinical evaluation of
anticancer drug candidates. The recent passage of the FDA Modernization Act 2.0 [213],
which allows for the replacement of certain animal studies by using alternative models such
as spheroids and organoids, could cause a surge in the popularity of these 3D in vitro cancer
models, leading to an improved standardization of the methodologies [214]. Up to now, it
still seems unfeasible that 3D in vitro cancer models could completely replace in a short
time in vivo animal models for testing anticancer efficacy. More realistically, in the near
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future, their use could become a mandatory step between 2D in vitro and in vivo animal
models. Identifying and eliminating those treatments that did not show any interesting
efficacy in 3D in vitro cultures will reduce animal use and, thus, the relating costs and
ethical issues. If the predictive ability of 3D in vitro cancer models was confirmed to be
greater than current preclinical cancer models, the integration of spheroid and organoid
studies in the drug development pipeline could enhance the transferability of preclinical
results from bench to bedside. This could speed up the number of effective candidate drugs
that reach clinical development, thereby reducing the number of enrolled patients receiving
ineffective treatments and increasing the success rate of clinical studies. In addition, the
more easy and cost-effective generation of patient-derived cancer models, such as PDOs,
could facilitate an early identification of target patients who benefit most from a specific
treatment, moving a step forward to the adoption of a more personalized approach in
oncological clinical trials.

7. M&S May Enhance 3D In Vitro Cancer Models

M&S may enhance the use of 3D in vitro cancer models in translational oncology,
contributing to the establishment of spheroids and organoids as preclinical tools for the
assessment of anticancer drug efficacy, in conformity with a model-informed approach to
drug discovery and development (MID3) [215,216].

Mathematical models represent the most comprehensive approaches for extracting,
summarizing and integrating information obtained in the often less-than-optimally de-
signed experiments performed in the preclinical phase of oncology drug development [217].
Up to now, M&S has been of little impact in the field of 3D in vitro cancer models [218–222].

In contrast, a multitude of mathematical modeling approaches, which describe the
anticancer treatment effect on 2D in vitro cell cultures and xenograft animals, have been
developed [217], proving an impressive proof-of-concept of the M&S potential to improve
the power of preclinical cancer models. In particular, mathematical models quantitatively
linking the drug concentration time curve to TGI are of extremely relevant value [223–227].
Among them, the Simeoni TGI model [223] has been applied by several international
research groups on a huge panel of xenograft studies as well as in vitro data [228] involving
a multitude of different cancer cell lines and anticancer agents, becoming a reference in the
field. Several features determined the popularity of this model (Figure 6): (1) it provides
quantitative measurements of the anticancer drug efficacy that, differently from simple
efficacy metrics directly computed on experimental data (i.e., in vivo TGI percentage), are
tumor/compound-specific and independent of experimental conditions (i.e., dose, time
and dosing regimen) [229], allowing a drug ranking; (2) it is able to predict outcomes of
administration schedules not experimentally tested, reducing in vivo studies; (3) it provides
estimates of the minimal drug concentration level needed to guarantee tumor eradication
in xenograft mice [230] that strongly correlated to doses administered in patients [231],
anticipating the minimal efficacious exposure to be targeted in clinics and supporting the
study design of early clinical studies during the drug development process [232,233].

In the field of xenograft experiments, M&S has created a unique opportunity for
supporting anticancer drug development. The challenge ahead is now to exploit M&S to
address open challenges of 3D in vitro models, thereby boosting and improving their use
for anticancer drug activity assessment in translational cancer research [15,212,234]. Mathe-
matical modeling may provide an analysis-assisting tool, filling the lack of a quantitative
evaluation method to characterize tumor growth and anticancer drug efficacy in spheroids
and organoids. In addition, once adequately qualified, mathematical models may be effi-
ciently used to predict outcomes of conditions not experimentally tested via simulations,
reducing wet-laboratory experiments and the associated costs [212]. More relevantly, M&S
can increase the quantity and quality of information obtained from spheroid and organoid
studies, enabling a more efficient translation of 3D in vitro results to the in vivo settings.
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In summary, integration of M&S could significantly contribute to the refinement of 3D
in vitro cancer models, increasing their potential to better inform the subsequent in vivo
step, in alignment with 3R principles [235].

8. Conclusions

3D in vitro cancer models, such as spheroids and organoids, represent a promising
preclinical platform for anticancer drug efficacy evaluation that is potentially able to in-
crease the translational success of preclinical studies, thereby resulting in better treatment
options for cancer patients, and to reduce the animal use, in alignment with the 3R commit-
ments. Up to now, some issues relating to spheroids and organoids remain unaddressed,
including the standardization of culture protocols and assay techniques, the establishment
of quantitative evaluation methods for drug efficacy and a complete validation of their
predictive capabilities of in vivo treatment response. M&S could significantly contribute to
addressing these open challenges, thereby boosting and improving the establishment of
the 3D in vitro cancer models as preclinical tools for the anticancer efficacy assessment in
translational cancer research.
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