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ABSTRACT
Context aware applications provide users with an increasingly rich
set of services. From services such as interactive maps to restau-
rant guides and social networking tools, the use of information in-
cluding location, activity and time can greatly enhance the ways
users interact with their surroundings. Unfortunately, the dissemi-
nation and use of such information also potentially exposes private
information about the user themselves. In this paper, we present
Themis, a framework for developing two-party applications capa-
ble of making decisions based on context sensitive information
without revealing either participants’ inputs. Themis uses private
stream searching to replace the memory and computationally in-
tensive oblivious computation associated with related techniques.
We compare the security guarantees and performance profile of our
approach against Fairplay and show not only as much as a 96% im-
provement in execution time, but also the ability to efficiently run
applications with complex inputs on both desktop computers and
mobile phones. In so doing, we demonstrate the ability to create
efficient context-sensitive applications based on private searching.

1. INTRODUCTION
Context sensitive applications enhance interaction between users

and their environments. From restaurant guides tailored to location
and category to social networking and friend finders, these appli-
cations leverage information specific to individual users to dynam-
ically deliver content or make decisions. These applications have
become particularly popular on mobile devices, where context such
as location and user activity change very rapidly.

Contextual information is often sensitive by its very nature. Lo-
cation not only reveals a user’s physical presence, but may also
inform the observer of their activity (e.g., stadium, grocery store,
adult entertainment complex). For applications including Google
Latitude [15] that share such sensitive information with a poten-
tially large number of other people, users are entirely reliant upon
the correct implementation of policy in the application developer’s
servers for their privacy. Should these resources be compromised or
the policies of the developer change, sensitive user data may need-
lessly be exposed. Secure Function Evaluation (SFE) addresses
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many of these issues and can be used to answer questions based on
sensitive information without revealing the data itself or requiring
the intervention of a third party. Unfortunately, these operations are
computationally and memory intensive and have therefore not been
widely explored for use in a constrained mobile setting.

In this paper, we develop Themis1 an efficient means of answer-
ing context sensitive questions without revealing the potentially
sensitive inputs used to make such decisions. Our approach differs
from traditional SFE as it replaces expensive oblivious computation
with more efficient private stream searching. In particular, we en-
code the context sensitive questions of an application as encrypted
queries that operate on the receiver’s data. Because of the homo-
morphic properties of the underlying encryption algorithms, our
approach can be used to solve both direct comparison (e.g., which
user is taller) and optimality (e.g., which restaurant is the mutu-
ally most favorable) questions without revealing the participants’
inputs.

We make the following contributions:
• Substitute Oblivious Computation with Private Search:

We demonstrate that computations in a context sensitive ap-
plication can be transformed into search. We design a privacy
preserving framework for matching and optimization based
two-party applications using private search.

• Implement and Characterize Themis: We design, imple-
ment and measure the performance profile of Themis for both
matching and optimization problems. Our analysis occurs
using both a desktop and a G1 mobile phone running An-
droid.

• Compare Security and Performance Against Fairplay: We
show that Themis provides equivalent security properties as
Fairplay under the honest-but-curious adversary model. We
then demonstrate that Themis can perform significantly bet-
ter than Fairplay, which is unable to run some applications
with more than trivial inputs on the mobile phone.

The remainder of this paper is organized as follows: Section
2 presents an overview of important related work; Section 3 pro-
vides some definitions and preliminaries of the cryptography used
in Themis; Section 4 describes the protocols for matching and op-
timization based applications; Section 5 offers the security guar-
antees of our framework; Section 6 gives the results of our perfor-
mance analysis; Section 7 explores potential applications of Themis;
Section 8 offers concluding remarks.

2. RELATED WORK
1Themis is the Greek goddess of blind justice and truth.
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The functionality of an application can be significantly extended
by considering a user’s contextual information. Data including lo-
cation, identity, activity and time [8] are already used to enhance
web [7] and mobile [21, 3, 6] applications. As such informa-
tion is frequently sensitive, there have been a number of frame-
works proposed to preserve user privacy [9, 28, 2, 12, 13, 11, 1, 4]
for such applications. Many of the available frameworks depend
on techniques including k-anonymity or spatial cloaking, which
often provide limited guarantees of privacy or require significant
computational or communication overhead [18, 16]. Finally, some
frameworks require the participation of a trusted third party [28, 2],
which may not always be available. Accordingly, efficient solutions
with strong guarantees are needed in this space.

Secure Function Evaluation (SFE) allows two parties to com-
pute the result of a potentially sensitive function without exposing
either participant’s inputs. For instance, two millionaires seeking
to determine who has greater total wealth can use SFE to answer
this question without involving a trusted third party. While a num-
ber of publicly available software libraries now help developers
implement the complex cryptographic functions underlying these
functions [23, 29, 14, 22, 19], the significant computational and
memory overheads associated with SFE have slowed its adoption
in many domains.

Another popular means of obtaining user data privacy is Private
Information Retrieval (PIR). PIR allows a user to retrieve data from
an untrusted server without revealing the search query. Various im-
plementations of PIR have been proposed in the past [20, 5, 10,
27]. PIR’s search-only property and single-side privacy provision
in two-party communications restricts its usage in context sensitive
applications. Nevertheless, there have been attempts to build pro-
tocols for context aware applications using PIR where these prop-
erties are sufficient [17, 24]. The protocol proposed in this paper
transforms the private search procedure into computation by using
intelligent search queries and properties of the query such as size.
We couple PIR with noise addition techniques to assure fairness
and privacy to both parties involved in a communication.

3. DEFINITIONS AND PRELIMINARIES
In this section, we define and explain private searching in a two-

party communication between Alice and Bob. We briefly review
the Paillier and ElGamal cryptosystems underlying the Themis frame-
work. Appendix A provides more details about the Paillier cryp-
tograsystem.

3.1 Private Search Function Definitions
Private or blind searching allows Alice to execute search queries

on Bob’s data without revealing the queries. If Alice and Bob are
communicating, Alice initially generates an encrypted query con-
taining the search keywords she is interested in. She sends the en-
crypted query to Bob, who then runs a search algorithm on his data
and finds the resulting records matching Alice’s search keywords.
This encrypted result is returned to Alice who decrypts them and
finds the result to her query. The important property of the scheme
is that Bob can execute the search procedure even though he has no
information of the keywords in Alice’s search queries. The private
search scheme depends on homomorphic public key cryptography.
Her private searching procedure on Bob’s data consists of the fol-
lowing operations:

3.1.1 Query Generation : QGen(T, F, Z, k+
A)

Alice runs QGen(T, F, Z, k+
A) to generate the encrypted query

QA of size Z. The input parameters contain the table T , which
consists of the records/keywords over which Alice wants to search.

The mapping function F is used to align records in T and Bob’s
table. k+

A is Alice’s public key. Alice sends the encrypted query
QA to Bob along with the additional parameters F , Z and public
key k+

A .

3.1.2 Private Search : PSearch(QA, F, Z, k+
A)

Bob maintains his own set of records/keywords in table Tb and
performs a private search on Tb on behalf of Alice. Bob uses the
same mapping function F on the entries in Tb to align his records’
indices with Alice’s table. Thus, an identical record in T and Tb
maps to the same index in QA. Bob selects all the entries in QA
which correspond to the records in Tb and finds the matching en-
tries in T and Tb. The result of the search proceudre R and QA
are both hidden from Bob, because they are encrypted with Alice’s
public key. Bob sends R to Alice.

3.1.3 Reconstruction : Reconstruct(R, k−A)

Alice extracts the matched keywords in T and Tb from R. She
decrypts R with her private key k−A and reconstructs the output
of the matching keywords. There have been several efforts in the
past to build private searching frameworks [5, 25]. We will use
the above definitions to explain the private search in the rest of the
paper.

3.2 Cryptosystems in Themis
The cryptosystem used by Themis depends on the class of appli-

cation to be built. Themis requires the use of public key cryptogra-
phy with homomorphic and probabilistic encryption properties.

3.2.1 Homomorphic Encryption
An encryption algorithm E() is homomorphic if given E(x) and

E(y) for plaintexts x and y, it is possible to compute E(x ⊥ y)
without decrypting E(x) and E(y), where⊥ can be addition or mul-
tiplication.
• Multiplicative homomorphism : An encryption algorithm is

multiplicative homomorphic when E(x)·E(y) = E(x·y). El-
Gamal and RSA are examples of cryptosystems with multi-
plicative homomorphic properties.

• Additive homomorphism : An encryption algorithm is addi-
tive homomorphic when E(x)·E(y) = E(x+y). The Paillier
and Benaloh cryptosystems are examples of additive homo-
morphic cryptosystems.

3.2.2 Probabilistic encryption
Probabilistic encryption is an important property required by cer-

tain public key cryptosystems. The adversary has access to the pub-
lic key of the target user. When the adversary observes a ciphertext
C encrypted by the target user, he can attempt a chosen-plaintext
attack. If the encryption algorithm is deterministic, the adversary
can quickly determine the contents of all of the entries in QA. To
combat this attack, some public key cryptosystems use a random
factor in the encryption ensuring that each plaintext maps into one
of the large number of possible ciphertexts. Thus, given a plaintext
p, there exist many different representations of E(p).

The Paillier cryptosystem is a public key cryptosystem with prob-
abilistic and additive homomorphic properties. ElGamal is a public
key, probabilistic and multiplicative homomorphic cryptosystem.
Both the cryptosystems satisfy the required properties of Themis.
Based on whether additive or multiplicative homomorphic proper-
ties are required, we choose either the Paillier or ElGamal cryp-
tosystem to implement protocols using Themis as explained in the
next section.
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Figure 1: Matching based protocol : Information Flow
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Figure 2: Matching based protocol : Query Generation at Alice
for Millionaires’ Problem application

4. PROTOCOL DEFINITION
The Themis framework is used to develop protocols, which pre-

serve user data privacy in two-party context sensitive applications.
It replaces the computations required in an application by private
search. Being a search based framework, Themis requires the par-
ticipants of an application to generate search tables containing their
contextual data. Both the participants execute a private search op-
eration on each other’s data tables. To provide privacy to both par-
ticipants involved in the communication, Themis introduces some
noise to the search results. After processing the garbled search re-
sults, the initiator of the application exposes the output first. Themis
introduces some fairness in the protocol by requiring both the par-
ticipants to query each other and executing the protocol synchronously
as shown in Figure 1 and Figure 6. Note that the search queries, re-
sults as well as the private search and noise procedures vary based
on the application. Themis can be used to construct protocols for
two types of applications : matching based and optimization based.
In the following subsections, we will explain these two types of
protocols with the help of example applications.

4.1 Matching Based Protocol
Matching based protocols can be used in applications where the

output is binary (either TRUE or FALSE). An example of a match-
ing based application is the Millionaires’ Problem, where two mil-
lionaires wish to determine who is richer without disclosing their
actual wealth. Themis can solve this problem by performing a
matching procedure on the participants’ search tables consisting of
their wealth information. It executes the private search and noise
addition procedures to output a 1 bit result depicting which one
of them is richer. For the ease of understanding, we will use the
millionaires’ problem as a reference to explain the matching based
protocols possible using Themis.

4.1.1 Query generation (initial setup) at Alice
Let us suppose that Alice has 2 million dollars and Bob has 3

million dollars. They build search tables containing their wealth.
Let the wealth table of Alice be denoted by Ta and that of Bob by
Tb. Thus, Ta = {1, 2} and Tb = {1, 2, 3}. Let the size of Alice’s
query be 5. Alice generates a pair of public k+

A and private k−A keys
using ElGamal.

E(2)
E(2)
E(1)

QA(0)

QA

E(1)
E(1)

 Alice's query

E(1)

RA

ResultMultiplication with Bob's
highest denomination

E(1)F(3) = 2

QA(4)

Discard

Discard

Figure 3: Matching based protocol : Private search at Bob’s
end in Millionaires’ Problem application

Figure 2 depicts the query generation at Alice’s end, when the
size of query isZ = 5. Alice calls the algorithmQGen(Ta, F, Z, k

+
A)

to generate her query QA as explained in the background section.
The function F maps each of the denominations in Ta toQA. Both
Alice and Bob use F to align the entries in their data tables. Al-
ice has a predefined function FA for the millionaires’ problem to
assign values to entries in query QA.

for i←1 to Z do
if ∃ d ∈ Ta : F (d) = i then
/* If some denomination maps to entry i, set i to E

k+
A

(2) */
QA(i) = E

k+
A

(2)

else
QA(i) = E

k+
A

(1)

end
end

If an entry in the wealth table is mapped to some index in the
query, the value at that index is encryption of two. All the entries
in QA, where no denomination maps, are set to encryption of one.
Alice sends QA, F , k+

A and Z = 5 to Bob.

4.1.2 Private search at Bob
After receiving Alice’s query, Bob performsPSearch(QA, F, Z, k+

A)
on his data in Tb. Figure 3 represents the private search operation
using Bob’s function FB .

Data: HD is the highest denomination in Tb. RA is the result
of the application.

for i←1 to Z do
if Tb(i) ==HD then
/* If selected denomination is HD, generate RA */

x = F (Tb(i))
RA = QA(x) ∗ E

k+
A

(1)

else
/* Discard all the other entries in QA */
Discard QA(i)

end
end

The function FB selects the entry in QA corresponding to the
highest denomination of Bob. It multiplies the selected entry with
E
k+

A
(1) to get result RA. It discards all the other values in QA. In

Figure 3, Bob’s highest denomination is 3. He calculates F (3) = 2
and multiplies the corresponding entry inQA with E

k+
A

(1). The re-
sult RA is a single encryption value E

k+
A

(1) and it represents the
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output of the application. The multiplicative homomorphic prop-
erties of ElGamal are exploited to obtain the output of the appli-
cation by only one multiplication. Alice’s query contains E

k+
A

(1)

and E
k+

A
(2) values representing her wealth. Bob multiplies one of

these values with an E
k+

A
(1). Thus, by the multiplicative homo-

morphic properties of ElGamal, the only possible values of RA are
either E

k+
A

(1) or E
k+

A
(2). Each of the output values correspond to

the following:

• 1 : A ‘1’ inRA implies that Bob’s highest denomination was
not present in Alice’s input query QA. The denominations at
Alice and Bob are in ascending order. If Bob has a denomi-
nation in Tb which is not present in Ta, we can deduce that
Bob is richer than Alice.

• 2 : A ‘2’ inRA implies that Bob’s highest denomination was
present in Ta. The denominations at Alice and Bob are in
ascending order. If Bob has a denomination in Tb which is
already present in Ta, it can be inferred that Alice is richer
than Bob.

The standard Millionaires problem never provides any output if
both Alice and Bob have the same wealth. This is because when
the protocol outputs equal wealth, they get to know each other’s
inputs. Our aforementioned protocol sticks by the generic million-
aires’ problem. However, we can address the problem of equal
wealth with a minor modification in the protocol.

Noise Addition : As already explained, the initiator of the appli-
cation does not obtain the output of the application first. If RA is
sent back to Alice without modification, she will know the result of
the application immediately and may not continue with the proto-
col execution. To avoid this, Themis adds noise to RA. For noise
addition in the millionaires’ application, Bob generates an even ran-
dom number n and encrypts n with Alice’s public key. RA is then
multiplied by E

k+
A

(n) to obtain E
k+

A
(n ∗ |RA|)2. Alice needs to

know the output of the application sometime in the future, which
requires her to know the value of noise added by Bob to obtain the
solution. However, Bob has to make sure that he receives the output
of the application from Alice first. To achieve this, Bob encrypts
the noise factor and a timestamp using some symmetric encryption
algorithm to get CB as shown in Figure 1. CB is Bob’s commit-
ment depicting that he added noise to the result at a particular time.
CB prevents Bob from sending a fake noise value to Alice at a later
point and also ensures that Alice cannot get the result before Bob.

As already discussed, Themis requires both the participants to
query each other’s data for fairness. After completion of the pri-
vate search operation, Bob generates a query QB using his public
and private key pair k+

B and k−B . He creates the encryptions of
E
k+

B
(1) and E

k+
B

(2) and executes QGen(Tb, F
′, Z, k+

B) using the
algorithm in 4.1.1. Bob sends the newRA value, CB and his query
QB to Alice.

4.1.3 Reconstruction at Alice
Alice decrypts RA using k−A to get (n ∗ |RA|). She cannot deci-

pher the output of the protocol from this value as (n ∗ |RA|) is al-
ways even and she knows that n is even. The plaintext of |RA| can
be odd or even. To obtain the key to CB and the result, Alice has to
send output to Bob’s query first. She runsPSearch(QB , F ′, Z, k+

B)
algorithm to obtain RB . She does not add any noise to RB as Bob
needs to obtain the output first to send her the key to decrypt the
commitment CB .
2|RA| = plaintext value of RA.

4.1.4 Final result generation
When Bob receives RB , he decrypts it to determine whether or

not he is richer than Alice. After learning the output, he sends the
symmetric key for commitment CB to Alice. She decrypts CB us-
ing the received key to obtain the noise value added to the plaintext
of RA. She divides the plaintext resulting from RA by the noise
value to finally obtain the output of the protocol. The next subsec-
tion runs through the millionaires’ problem protocol using example
values to prove its correctness.

4.1.5 Quick check example
Let Alice’s wealth be 4million and that of Bob be 2million.

Therefore, initially Alice’s table Ta contains {1, 2, 3, 4} and Bob’s
table Tb contains {1, 2}. Let the size of the query table be Z = 5.
Let the mapping function F map each of the denominations to an
index one less than their integer value in the query table.

Alice’s query QA consists of encryptions of (2, 2, 2, 2, 1) in or-
der. After reception of QA, Bob maps his highest denomination 2
to QA(1). He multiplies E

k+
A

(2) at QA(1) with E
k+

A
(1) to get RA

= E
k+

A
(2). Bob adds noise factor 8 to RA to obtain E

k+
A

(8 ∗ 2)

= E
k+

A
(16). He then creates the commitment CB by encrypting 8

with some symmetric encryption algorithm. Using the same map-
ping function F , Bob constructs query QB of size 5. QB contains
encryptions of (2, 2, 1, 1, 1) in order, encrypted using Bob’s pub-
lic key k+

B . Bob sends QB , RA and CB to Alice. Alice maps her
highest denomination 4 to QB(3). She then multiplies E

k+
B

(1) at
QB(3) with E

k+
B

(1) to get RB = E
k+

B
(1). Alice decrypts RA to

get the value 16. She cannot decipher the actual output by just us-
ing this value. Alice sends RB to Bob who decrypts it to find that
Alice is richer. On obtaining the output, Bob sends the key to the
commitment CB to Alice. Alice decrypts the commitment to get
8. She divides the plaintext of RA that is 16 by 8 to get the final
answer 2, which confirms that she is richer than Bob.

The synchronous information flow in the matching based pro-
tocol using Themis is depicted in Figure 1. Both Alice and Bob
get the result of the application without knowing each other’s exact
wealth. Many other protocols for applications requiring binary re-
sults are possible using Themis using a similar scheme. We assume
that Alice and Bob are semi honest users. We discuss the security
assumptions and guarantees of Themis in Section 5.

4.2 Optimization based protocol
The matching based protocol can be used only in simple appli-

cations such as the millionaires’ problem. Certain other classes
of applications require an optimal solution generation over a set
of data elements. For example, finding the closest Italian restau-
rant with the highest rating. The optimization based protocols built
using Themis can be used in such applications. Let us consider an-
other application example, where Alice and Bob need to set up an
appointment at a mutually convenient Coffeebucks without know-
ing each other’s locations. Initially, both participants are required
to generate search tables containing the top n Coffeebucks loca-
tions geographically closest to them. However, only finding the
common Coffeebucks locations does not lead to the optimal solu-
tion identifying the most convenient Coffeebucks. Therefore, the
matching protocol is not sufficient for such scenarios. We will use
this optimization application as a reference to explain the working
of optimization based protocols. There are two steps in this par-
ticular optimization application. First, both Alice and Bob find the
common Coffeebucks locations out of their individual lists of n.
Secondly, Alice and Bob compute the optimal Coffeebucks loca-
tion, where overall travel time is minimized.
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Figure 4: Optimization based protocol : Query generation at
Alice for Coffeebucks application

Depending on the participants’ individual schedules and perceived
importance of the meeting, their willingness to wait for the meeting
will be different. For example, if Alice is the CEO of a company
and Bob is meeting her for a job interview, Alice may be ready
to wait only for 15 minutes for the meeting to start. On the other
hand, Bob would be willing to wait for 45 min. Let us call this
value as individual wait time w. Let Ta and Tb be the initial data
tables at Alice and Bob respectively with entries (a1, a2..an) and
(b1, b2...bn). The n entries correspond to the top n geographically
closest Coffeebucks to each Alice and Bob. Each entry contains the
location of a Coffeebucks, time to reach the Coffeebucks and Aw
or Bw. For example, if Alice can reach S1 in seven minutes and is
ready to wait for the next eight minutes at S1 for Bob to arrive, then
a1 = {S1, 7min, 15min}. In the following subsections, we will
explain the Coffeebucks application result generation when Alice
queries on Bob’s data. Bob follows exactly the same procedure
with a different set of keys.

4.2.1 Query generation (initial setup) at Alice
Alice generates a pair of public k+

A and private k−A keys using
the Paillier cryptosystem. Figure 4 depicts the query generation at
Alice’s end. We call each of theZ entries inQA a ‘block entry’ rep-
resenting a Coffeebucks location. Each block entry consists of Z′

subentries representing the time parameter of the application. Alice
executes QGen(Ta, F, Z, k

+
A). Each Coffeebucks location record

in Ta is mapped to QA using function F to align it with Bob’s data
during the private searching step. Alice holds a predefined function
FA specific to the Coffeebucks application, to populate the entries
inQA. LetQvA(u) denote the uth subentry in block v inQA. There
are two rules in FA, which determine the values in the subentries
in QA.

If Alice can be available at the Coffeebucks corresponding to
block entry QvA at time u, the subentry QvA(u) contains E

k+
A

(1).
Alice can be available at the concerned Coffeebucks after her tran-
sit time and before the expiration of her wait time Aw. All the
other subentries in the the query table are set to E

k+
A

(0). Consider

the example in Figure 4. Z = 50, Z′ = 60 and n = 10. Each
subentry represents one minute, thus Z′ = 60 represents an hour
from the current time. Coffeebucks S1 is mapped to block three
using F . Alice takes two minutes to reach the coffee shop and can
wait for two minutes after arrival. Therefore, the subentries Q3

A(1)
and Q3

A(3) are set to E
k+

A
(1). The other subentries in Q3

A are as-

signed E
k+

A
(0). The entire table containing Z ∗ Z′ subentries in

Data: QvA(u) represents the uth subentry in block v in QA.
Ta is the table containing n Coffeebucks location
records for Alice. Aw is the total wait time for Alice.
Ta(m).ttr is the time to travel to the mth Coffeebucks
location record in Ta. n << Z.

for i←0 to Z do
if ∃ Ta(m) : F (Ta(m)) = i then
/* If some Coffeebucks location maps to block i */

for j ←0 to Z′ do
if j + 1 ≤ Ta(m).ttr ‖ j + 1 > Aw then
/* Set subentries before travel time and after wait
time to E

k+
A

(0) */

QiA(j) = E
k+

A
(0)

else
/* Set subentries corresponding Alice’s
availability at m to E

k+
A

(1) */

QiA(j) = E
k+

A
(1)

end
end

else
for j ←0 to Z′ do
/* If no Coffeebucks maps to i, set all subentries to
E
k+

A
(0) */
c =
QiA(j) = E

k+
A

(0)

end
end

end

QA is filled using the above rules. Each subentry is either E
k+

A
(0)

or E
k+

A
(1). Due to the probabilistic encryption property of Paillier,

the ciphertext E(p) can have several different representations for
one plaintext p. This property eliminates the possibility of an ad-
versary correctly guessing the plaintext corresponding to a target
ciphertext. Alice sends {QA, F, Z, k+

A} to Bob.

4.2.2 Private search at Bob
Search : Bob performs PSearch(QA, F, Z, k+

A) on his data using
the information received from Alice as shown in Figure 5. Bob’s
context information table Tb contains top n Coffeebucks locations
close to Bob, his time to reach them and his waiting time Bw. Bob
runs the predefined functionFB to generate the private search result
as follows:

Data: Tb is the table containing n Coffeebucks location
records for Bob. Bw is the total wait time for Bob.
Tb(m).ttr is the time to travel to mth Coffeebucks
location record in Tb. RB [n] is the array of result
values. n << Z.

for i←0 to n do
F (Tb(i)) = pos
j = Tb(i).ttr
c = QposA (j)
while j ≤ Bw & j ≤ Z′ do

c = c ∗QposA (j)
j = j + 1

end
RB [i] = c

end
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Figure 5: Optimization based protocol : Private Search at Bob
for Coffeebucks application

Bob aligns his Coffeebucks location records in Tb to QA using
function F received from Alice. For the meeting to take place, both
Alice and Bob have to be available at a certain Coffeebucks at the
same time. Bob does not have information about Alice’s availabil-
ity because her query is encrypted. However, he knows that their
inputs are aligned because of function F . Therefore, Bob can ob-
tain the correct output by only inputing his availability for search-
ing on QA and finding overlaps with Alice’s inputs. To achieve
this, Bob selects subentries from QA corresponding to the times at
which he can be available at the Coffeebucks locations in his ta-
ble. Following the query generation process, Alice’s availability is
represented by an E

k+
A

(1). Therefore, if Alice has any intersecting
times for certain Coffeebucks location with Bob, some or all of the
selected subentries for that Coffeebucks will be E

k+
A

(1). If Bob se-
lects an entry QvA(u) containing E

k+
A

(1), it implies that both Alice
and Bob can be present at Coffeebucks v at time u from the current
time. If Bob selects an entry QvA(u) containing E

k+
A

(0), it implies
that Bob can be present at Coffeebucks v at time u from the current
time and Alice cannot. This may be because either Alice’s table
does not contain Coffeebucks v or she cannot be available at v at
time u.

In case of multiple matches of Coffebucks in Ta and Tb, Bob will
select E

k+
A

(1) subentries from QA for more than one Coffeebucks
locations. He will then require to calculate the optimal Coffeebucks
location which minimizes his and Alice’s transit time. We leverage
the fixed wait times Aw and Bw to arrive at the optimal solution as
follows :

Bob executes the selection procedure on each block inQA corre-
sponding to the entries in Tb. After the completion of the selection
procedure, Bob multiplies all the values selected per block entry to
get a single encrypted result entry for each block corresponding to
entries in Tb. Bob obtains n results after the selection and multi-
plication operations as the size of Tb is n. We claim that the result
entry containing ciphertext of the highest plaintext value is the op-
timal solution. Let us take an example to prove the correctness of
this claim.

Consider a block v inQA corresponding to Coffeebucks Sv . The
wait timesAw andBw represent a participant’s willingness of wait-
ing for the combined time of transit to Sv and waiting time at Sv
before the other party arrives and the meeting begins.

∀ Sa ∈ Ta : Transit time to Sa + availability time at Sa ≤ Aw
∀ Sb ∈ Tb : Transit time to Sb + availability time at Sb ≤ Bw

Alice’s availability at Sv is denoted by E
k+

A
(1) in the subentries

corresponding to her available times. Let F (Sv) = v. An E
k+

A
(1)

in a subentry QvA(u) implies that Alice has already arrived at Sv
and is waiting for Bob. Using the above equations we can infer that
the transit time for Alice to Sv is less than or equal to u. If a block v
inQA contains the maximum number of E

k+
A

(1) values, we can in-
fer that Alice is available for the maximum time at Sv . Given that
her fixed total wait time Aw is the summation of her transit time
and her available time, maximum available time at Sv implies min-
imum transit time to Sv as compared to other Coffeebucks. This
simple observation can lead us to the optimal solution.

The optimal solution corresponds to the Coffeebucks to which
both Alice and Bob have minimum transit times and are therefore
able to begin the meeting at the earliest. Thus, the block inQA cor-
responding to a Coffeebucks, where the intersection of the avail-
ability time of Alice and Bob is the maximum will be the solution.
This indicates that the block in QA, which has the maximum num-
ber of E

k+
A

(1) (available times) after Bob’s selection procedure is
complete, corresponds to the optimal solution. If Bob multiplies
all the selected entries from each block, he will get the ciphertext
of the addition of all the plaintexts (additive homomorphism). The
block containing the maximum number of E

k+
A

(1) will produce ci-
phertext with the maximum plaintext value and will correspond to
the optimal solution. Therefore, Bob executes matching and multi-
plication operations on Alice’s query entries to obtain n blocks in
result RA. The maximum valued entry in RA is the optimal solu-
tion for the application.

Noise addition using result sampling :
Several privacy concerns arise if Bob sends RA to Alice immedi-
ately after executing private search. Any entry in RA containing
a non-zero value corresponds to a matched Coffeebucks location.
Alice can maintain the mapping of the Coffeebucks locations in Ta
to QA using F at the time of query generation. If Bob sends result
RA to Alice as it is, Alice can decipher which Coffeebucks loca-
tions matched after decrypting RA and doing a reverse lookup in
the mapping table. Moreover, by analyzing the result of a matched
block entry in RA and the values in her corresponding block entry
in QA, Alice may be able to infer Bob’s availability. The knowl-
edge of Bob’s availability times at multiple Coffeebucks can allow
Alice to triangulate Bob and estimate his actual location. For ex-
ample, if Alice sends five E

k+
A

(1) subentries in a block entry and
gets a three in the corresponding result entry in RA, she can infer
Bob’s time preferences.

In some situations, even if Alice cannot guess the matched Cof-
feebucks locations, just knowing the total number of Coffeebucks
matches can leak some information to her. This problem will occur
when Alice and Bob are geographically very close to each other and
thus all or most of the locations in Ta and Tb match. For example,
if Alice queries for five Coffeebucks locations and after decryption
she gets four non-zero block entries, she can deduce that four out
of five Coffeebucks locations match with Bob. Even though she
does not know which ones matched, the number of available possi-
bilities of picking four out of five Coffeebucks is only

`
5
4

´
= 5. She

will have to try only these five combinations to triangulate Bob. Fi-
nally, sending RA without any modification allows Alice to query
Bob privately and get results of the application before Bob. Themis
does not allow the initiator of an application to get the results first.

To avoid these security issues, Bob adds noise to RA before
sending it to Alice. The aim of noise addition is to prevent Alice
from triangulating Bob and to maintain fairness by providing Bob
with some control over Alice’s queries. However, the optimal so-
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lution in the result must not be lost after noise addition. The noise
addition should only preclude Alice from obtaining the final result,
while allowing her to correctly deduce the intermediate optimal so-
lution after decryption. Therefore, Bob uses result sampling during
the private search procedure to add noise. We will explain the noise
addition part with the help of Figure 5:

1. Bob selects the subentries in Alice’s table corresponding to
his availability for each Coffeebucks, while executing pri-
vate search. He then multiplies all the subentries to generate
the result for the block. Let us suppose that Bob picks en-
tries (k1, k2, k3) from block T and their multiplication gives
E
k+

A
(k). Let E

k+
A

(k) correspond to the optimal solution. If
Bob can conform the plaintext value of noise entries to less
than k, the optimal solution will not be lost. Addition of ran-
dom entries may mislead Alice to select the incorrect maxi-
mal value as the optimal result. Moreover, if the random val-
ues look very different from the expected output, Alice can
differentiate between noise and real data with probability 1.
Therefore, Bob samples the candidate entries for multiplica-
tion in Alice’s table and adds them back as noise. He picks
only x of the actual candidates, where x is less than or equal
to the total entries chosen in that block. He multiplies these
noise candidates together to get a value which is definitely
not greater than the total value of multiplication candidates.
For example, in Figure 5, the candidate values for multipli-
cation are (k1 = 1, k2 = 1, k3 = 0). The total sampling
options possible are (k1, k2, k3, k1∗k2, k2∗k3, k3∗k1, k1∗
k2 ∗ k3). The different possible values for the noise will be
between E

k+
A

(0) and E
k+

A
(2). Even if any one of these sam-

pling options is chosen, it never has greater value than the
optimal solution. Let us call the noise value noiseval.

2. Bob creates a new entry at the end of RA and copies the
noiseval into the new entry. He multiplies the new entry with
E
k+

A
(0) to ascertain that the ciphertext noiseval appears dif-

ferent than the ciphertexts used for its generation. This pro-
cedure helps in preventing a co-relation attack on the result
by Alice.

3. Bob repeats the first two steps n times, one each for the Cof-
feebucks location records in Tb during private searching. The
result table size after noise addition is 2n.

4. Bob shuffles all the result entries inRA to prevent Alice from
simply discarding the noise values added toRA after the first
n results. He maintains the mapping of the original and new
indices which he uses for final result generation in section
4.2.4.

Bob sends RA to Alice.

4.2.3 Intermediate optimal result at Alice
After Alice receives RA from Bob, she decrypts it using k−A to

obtain a table containing integer values. She knows that a subset of
the non-zero values corresponds to matched Coffeebucks locations.
However, due to the addition of noise in the result, Alice cannot
differentiate between the exact matched Coffeebucks locations and
the false ones. Furthermore, she cannot determine the total number
of matched Coffeebucks locations because the noise addition can
add a zero or a non-zero entry to the result. As explained in Section
4.2.2, the optimal solution corresponds to the maximum value in
the result table. Thus, Alice simply selects the entry which has the
maximum plaintext value and sends its index information back to
Bob.

1. QA

6. Unshuffle, generate 
    final result

4. Unshuffle, generate 
    final result

Alice

2. QB, RA

3. RB, RA(Optimal_Indices)

5. RB (Optimal_Indices)

Bob

Figure 6: Information flow in the optimization based protocol
with Themis

4.2.4 Final result generation
Bob matches the index of the optimal solution with the already

saved mapping data during shuffling to find the original index of
the result entry. Because of the noise addition or in some cases le-
gitimately, there can be more than one indices of optimal solution.
When Bob gets the indices, he discards the ones which were added
as noise using the mapping maintained during noise addition. If he
is left with more than one solutions after that, he uses some pre-
defined tie-breaker algorithm based on street names or any other
parameter to finalize the optimal solution. This algorithm has to be
known to both Alice and Bob. Bob determines the optimal Coffee-
bucks location Sj ∈ Tb by doing a reverse mapping using function
F .

In the optimization based protocol, all the above steps are per-
formed from Bob’s end as well. Bob generates a pair of public and
private keys k+

B and k−B . He formulates query QB using Tb and
runs it on Alice’s data in Ta. Alice finds RB and sends it back to
Bob. Bob decrypts RB , computes the optimal solution and sends
the solution to Alice. The synchronous information flow in the op-
timization based protocol is depicted in Figure 6. After both Alice
and Bob obtain the final result, both of them travel to the resulting
Coffeebucks location. They possess no information of when the
other party will arrive. However, the protocol guarantees that the
meeting begins before the lesser of their time to wait (Aw or Bw)
expires.

The example applications mentioned in this section were used
for the ease of understanding the protocol creation. Appendix A
offers details of more example applications. All the operations in
a protocol built using Themis change depending on the class of the
application using it. However, the basic concept of using private
search and noise to provide user privacy remains the same across
all applications. Because the concepts of building the protocols
remain the same, the security guarantees provided by Themis are
equivalent for all protocols as described in the next section.

5. SECURITY ANALYSIS

5.1 Assumptions and Security Guarantees
Themis prevents exposure of context sensitive data in two-party

communications. The framework uses existing concepts of private
searching coupled with noise addition procedures to generate ef-
ficient privacy preserving protocols. The Themis framework pro-
vides security guarantees based on the following assumptions:

• The participants are honest-but-curious. Participant may log
all the data exchanged during the course of the application
but execute the protocol correctly. We assume that the par-
ticipants do not alter the data in their search tables during the
protocol execution.
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• Private search using both ElGamal and Paillier cryptosys-
tems is secure. Private searching scheme guarantees that a
client can search a server’s data privately without the server
determining the contents of the query or its results. We also
assume that AES is a secure block cipher when used for gen-
erating commitment value in the matching based protocol.

• Both participants have polynomially bound computational
resources.

The security guarantees provided by Themis model are :

• Both Alice and Bob are guaranteed that the other party will
not learn more information about them than what is exposed
through the output. For example, in the millionaires’ prob-
lem, both parties learn their wealth relative to the other par-
ticipant, but never the actual value of the other participant’s
wealth.

• The probability that Alice or Bob can cheat is negligible be-
cause of our assumption regarding the security provided by
PIR schemes.

• In any application protocol built using Themis, the partic-
ipant who does not initiate the application always gets the
results first. Like Fairplay, we do not provide fair termina-
tion. If the receiving participant quits before sending the fi-
nal message to the initiator, the initiator can not complete the
protocol successfully. No simple solutions exist to address
this issue.

When Alice initiates a Themis protocol, Bob adds noise to the
result of Alice’s blind query to ensure that he receives the output
of the application first. This noise addition must ensure that Alice
can guess the output with a very small probability or with the same
probability before the start of the protocol. We discuss the proba-
bility of Alice guessing the result after noise addition in each of the
sample applications:

5.1.1 Matching application
The millionaires’ problem has two possible solutions: either Al-

ice is richer or Bob is richer.3 The probability of Alice guessing
the correct output is therefore 0.5 + ε. Let the plaintext of Alice’s
private search result on Bob’s table be n1 and the plaintext of the
noise added by Bob be n2. If n2 is always even, the output of
the multiplication of n1 and n2 will always be even irrespective of
whether n1 is odd or even. By solely observing only n1 ∗n2, Alice
can tell with 0.5 + ε probability whether n1 is odd or even. Our
protocol therefore does not increase Alice’s probability of guess-
ing the result even after receiving the garbled output of her private
search. As Alice can not determine the plaintext values correspond-
ing to Bob’s query, the decrypted response that Bob receives will
be correct assuming that Alice has entered her wealth truthfully.

5.1.2 Optimization application
For simplicity, we assume that there is only one possible optimal

solution for the private search optimization problem. Let n be the
number of Coffeebucks in Alice and Bob’s data tables. When Alice
initiates the protocol, her probability of guessing the optimal solu-
tion in case of a match is 1

n
+ ε. After receiving Alice’s encrypted

query, Bob executes a private search on his data on her behalf to
get result RA. To prevent Alice from retrieving the output of the
3The case in which their wealth is equal is generally not considered
as this would reveal the inputs to the participants

application first, Bob adds noise to RA. As discussed in Section
4.2.2, Bob adds noise to RA by sampling the subentries in Alice’s
table. The subentries selected for sampling represent the times at
which he can be present at the corresponding Coffeebucks. Bob
multiplies all the selected subentries to determine the total time for
which both him and Alice can be present at the Coffeebucks. Let
us suppose that Bob picks subentries (k1, k2 · · · , km) from block
QXA . The Coffeebucks corresponding to X may or may not be
present in Alice’s query. If it is not present, Alice will have zero
E
k+

A
(1) in block X and therefore the sampling will always give a

zero. However, if there is an overlap between Alice and Bob’s pref-
erences in block X , the total time for which both of them can be
present at the concerned Coffeebucks may be non-zero. This result
would be obtained by

Qm
n=1 ki. While calculating

Qm
n=1 ki, Bob

also creates samples of the result to generate noise values. The total
number of samples S possible over (k1, k2 · · · , km) in QXA is:

S =
Pm
i=1

`
m
i

´
The value in each of (k1, k2 · · · , km) can be either a zero or a

one. The range of possible plaintext values for noise after com-
bining each of the additive homonorphic ciphertexts in a sample
would be from zero to

Pm
i=1(ki). After the noise addition for each

result block, Bob shuffles the entries to get an RA of size 2n and
sends the result to Alice. When she decrypts RA, she is unable to
identify the actual matches and even the total number of matches
over the noise. She only sees an array of zero and non-zero values.
However, Alice can not filter out any of the values from RA as all
appear to be legitimate. This is because the noise can range from
zero to

Pm
i=1(ki). Alice can be certain that the maximum value of

the plaintexts returned does represent the optimal value given the
sampling method and can therefore return the corresponding index
to Bob who in turn can learn the optimal location.

5.2 Comparison with Fairplay
Fairplay [22] is an existing implementation of Secure Function

Evaluation (SFE). SFE allows two honest-but-curious participants
to perform computation on their private data without necessarily
revealing it. In Fairplay, only one of the two parties generates the
required circuits and keys. The other party performs only circuit
evaluations and is completely oblivious to the evaluation opera-
tions. This property makes the Fairplay protocol unfair to one of
the users as it gives additional advantage to the user who generates
the keys and circuits. To prove this point, let us assume that Bob
generates all the keys and circuits, and Alice evaluates the circuits.
Alice initializes the application by requesting for m circuits from
Bob. She then selects one circuit out of m to evaluate the final out-
put. This step allows Bob to lie with a probability of 1

m
. However,

because all the circuits are oblivious to Alice, she can lie with neg-
ligible probability. Thus, Fairplay is generally unfair to the initial-
izer of an application. In comparison, both Alice and Bob execute
the same blind search operations on each other’s data in Themis
and can lie with negligible probability under an honest-but-curious
model. The approach of both participants executing the same op-
erations provides fairness in Themis. Both the participants need
comparable amount of memory and processing power for an ap-
plication execution. In Fairplay, the generator of keys and circuits
incurs more processing and memory overhead than the evaluator.

As discussed in the protocol section, Themis generates similar
information leakage to Fairplay. For matching applications such as
the millionaires’ problem, only a single binary bit is output. Opti-
mization applications expose only the optimal solution to the par-
ticipant and conceal all other response values with noise.

The security guarantees provided by Themis are comparable to
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Figure 7: Themis’ performance for the millionaires’ problem
application for different key sizes and constant table size (500
rows) in the PC and the smartphone. As expected, the use of
larger keys increases the time required by the application. Also
notice that the total time and the setup time are very similar for
both platforms.
those of Fairplay. We will investigate the relative performance of
these protocols in the next section.

6. PERFORMANCE EVALUATION
In this section we analyze the performance of Themis using two

applications: the Millionaires’ problem (matching) and the Cof-
feebucks application (optimization). Both applications were im-
plemented using C language. For additive homomorphism, we
used the Paillier Library4 and for multiplicative homomorphism we
used our own implementation of ElGamal cryptographic functions.
For comparison purposes, we also implemented these two applica-
tions using the Fairplay (SFE) framework. All the source code and
supporting material used in our experiments can be downloaded
from the following location: http://www.cc.gatech.edu/
grads/c/camrutk/themis

Our evaluation used two platforms: a desktop PC and a smart-
phone. The desktop PC has a dualcore 2.50 GHz x86 processor,
2 GB of memory and Ubuntu 9.0.4 (Linux kernel 2.6.28) operat-
ing system. The smartphone is an Android G1 phone with a 528
MHz ARM processor, 98 MB of memory and Android 1.6 (Linux
Kernel 2.6.29) operating system. For testing in the smartphone, the
Themis-based applications were cross-compiled from x86 to ARM
using the toolchain included in the Android source code. Fairplay-
based applications were first compiled in a desktop PC to create the
applications’ circuit files. These circuit files and the Fairplay Java
code were ported to the smartphone to test performance.

During our performance evaluation, each test was executed at
least 10 times to ensure the soundness of the results. We use aver-
age values in our analysis and a 95% confidence interval is provided
in most of the graphs. Note that these bounds are often difficult to
observe in our graphs as the values are very close to the mean.

Our first test evaluates the processing time of the Themis-based
millionaires’ problem using different key sizes: 512, 768, 1024 and
2048 bit ElGamal keys and a constant table size of 500 rows. The
results for the PC and smartphone are presented in Figure 7. As ex-
pected, the use of larger key sizes increases the setup and execution
time of the application in both platforms (exponential increase).
The setup is the most time consuming operation because it involves
n public key encryption operations, where n is the size of the query
table (e.g.,QA). On the other hand, the execution time is signifi-
cantly faster than the setup time because the former only requires
2 public key encryption operations for any key size. For example,

4http://acsc.cs.utexas.edu/libpaillier/
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Figure 8: Themis’ performance for the millionaires’ problem
application for different table sizes and constant key size (1024
bit) in the PC and the smartphone. Increasing the table size
also increases the setup time but has no effect on the execution
time. Also notice that the total time and the setup time are very
similar for both platforms.

for 1024 bit key, the setup time is 41.01 s and the execution time is
115.58 ms in the smartphone. In the PC, the operations are faster
but the trend is similar: 4.76 s and 13.43 ms for setup and execu-
tion respectively. These results explain why the total time (setup +
execution time) is very close to the setup time (both lines overlap
in Figure 7 for both platforms). However, the cost of the setup time
can be avoided if the encryption operations are performed in ad-
vance (e.g., generate and store the encrypted values periodically).
As a result, precomputing the encryption values used during setup
will reduce the time required by the application considerably. With
this optimization, it is possible to solve the millionaires’ problem
in mobile devices efficiently (only execution time, ≈ 115ms).

In the next test, we vary the table size (256, 512, 768, 1024,
2048, 4096 and 8192 rows) while keeping the same key size (1024
bit) for the millionaires’ problem application. Figure 8 depicts the
results for the PC and the smartphone. As in the previous tests, the
setup time is significantly larger than the execution time for both
platforms. Similarly, the setup time and the total time lines overlap
in this figure for both platforms too. However, while the setup time
also grows exponentially with larger table sizes, the execution time
remains constant. The reason is that for the setup time, a larger
table represents a larger number of public key encryption opera-
tions, while for the execution time, only two public key encryption
operations are required independent of the table size.

Pre-computing the ciphertexts required during setup operations
to optimize performance is not a difficult requirement. For exam-
ple, a smartphone can generate the encrypted values (e.g., encryp-
tion of 1’s and 2’s) while it is being charged everyday. Therefore,
the user will not notice changes in energy consumption or CPU
utilization. In addition, smartphone’s memory will not be affected
significantly. In our implementation, each encrypted value occu-
pies 24 bytes of memory space. Therefore, for a table of size 500,
approximately 12 KBytes of memory will be required. Because
this is the biggest data structure in the application, we can assume
that this is approximately the memory that our application will re-
quire. Therefore, we can conclude that the memory requirements
of Themis are modest.

In Figure 9 we compare the Themis implementation of the mil-
lionaires problem with the Fairplay implementation for different bit
sizes inputs (4,6,8 and 10 bits inputs) in the smartphone. The lines
in Figure 9 represent the execution time for each implementation
(Themis, Fairplay). The Figure clearly shows that the execution
time of the Fairplay implementation increases with the number of
input bits, while it remains constant for the Themis implementa-
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Figure 9: Comparison of Fairplay and Themis (1024 bit key)
execution time for the millionaires’ problem application in the
smartphone. Increasing the input size increases Fairplay exe-
cution time but has no effect on Themis execution time.
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Figure 10: Themis’s performance for the Coffeebucks applica-
tion for different key sizes and constant table size (600 rows)
in the PC and the smartphone. Coffeebucks is a more complex
application that requires higher setup and execution times than
the millionaires’ problem. However the trends are similar.

tion. The use of larger number of bits in the input requires larger
circuit sizes for Fairplay and bigger tables for Themis. However, as
explained before, the table size does not affect the execution time
in Themis (only the setup time). Thanks to the mapping function
in Themis, we can map different range of inputs without requiring
larger table sizes (only granularity is affected). However, if bigger
tables are required, the execution time is not affected.

We run similar tests using the Coffeebucks application, a more
complex application that performs optimization in addition to match-
ing operations. The only difference with the previous tests is that
we use a different range of table sizes: 300, 600, 900 and 1200
rows. Each row corresponds to a five minute time interval. Each
Coffeebucks location has 12 subentries (rows) for an hour. The re-
sults are shown in Figures 10 and 11 for different key sizes and dif-
ferent tables sizes experiments respectively. Overall, the behavior
is similar to what we observed in the millionaire’s problem eval-
uation: increasing the key or the table size causes an exponential
grow in the time required by the application. Also, the difference
between the setup and execution time is smaller but still consider-
able. We can observe that with larger table sizes, the execution time
now also grows exponentially (it was constant for the millionaires’
problem). The reason is that the Coffeebucks execution operations
are more complex (For example, table operations) than the opera-
tions required by the millionaires’ problem. Finally, even for this
complex application the execution time is acceptable in a mobile
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Figure 11: Themis’ performance for the Coffeebucks applica-
tion for different table sizes and constant key size (1024 bit) in
the PC and the smartphone. In this test, the execution time also
increases with larger table sizes.
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Figure 12: Comparison of Fairplay and Themis (1024 bit key)
execution time for the optimization application in the smart-
phone. Even for very small inputs on a slightly complex prob-
lem, Fairplay’s execution time increases exponentially.

device: approximately 32.68 sec for a table size of 600 and 1024
bits public key encryption. These results show how Themis allows
the implementation of efficient privacy preserving applications that
can even run in devices with limited hardware resources such as
smart phones.

Our final test evaluates the performance of the Coffeebucks ap-
plication with Fairplay. The results are presented in Figure 12.
As already established, the Fairplay circuits become considerably
complex even with a slight increase in the complexity of the appli-
cation. The graph shows the execution times in seconds for Fair-
play and Themis for extremely small input values of 2 to 8. The
input values correspond to the number of candidate Coffeebucks
locations in the application. For 8 inputs values, Fairplay takes
520.75 s as compared to 21.76 s taken by Themis. The constant
time 21.76 s is for input value of 25 which is much greater than
8. Therefore, Themis improves the performance by 96% which
proves that it is more appropriate for complex context sensitive ap-
plications.

7. CONCLUSION
With the proliferation of computing in the physical world, con-

text aware applications are becoming popular. However, one of the
biggest hurdles in fully exploiting the functionalities of such ap-
plications is the challenge of providing user privacy. In this paper,
we designed and developed Themis, a framework that offers user
privacy guarantees in two-party context aware applications. Our
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framework substitutes private search in place of computationally
intensive oblivious communication protocols. The security guaran-
tees provided by Themis are comparable to the existing oblivious
communication protocols such as Fairplay, while maintaining bet-
ter performance on hardware constrained devices. We built and
characterized two real world applications using our framework to
demonstrate its practical validity. We proved that replacing com-
putation with search is not only feasible but also more efficient in
terms of performance. In conclusion, Themis is more appropriate
for privacy preserving context aware applications on hardware con-
strained devices as compared to existing cryptographic solutions
available in this space.
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APPENDIX
A. PALLIER CRYPTOSYSTEM

The paillier cryptosystem [26] is a probabilistic asymmetric al-
gorithm for public key cryptographic. The cryptosystem is based
on the hypothesis that computing n-th residue classes is difficult.
Informally this means that given a composite n and an integer z, it
is hard to decide whether z is a n-th residue modulo n or not. i.e.
Whether there exists a y such that z=yn mod n2.

A.1 Paillier Algorithm
In this section, we will give more details on the functionalities of

the Paillier algorithm.

Key Generation.

1. Choose two large primes p and q such that gcd(pq,(p-1)(q-1))
= 1. If both p and q are of the same length, this property is
assured. []

2. Compute n=pq. (p-1).(q-1) is called the Euler’s totient (φ(n))
of n. The Carmichael’s function on n is defined as λ = lcm(p-
1,q-1)

3. Select a random integer g where g ∈ Z?n2

4. Check the existence of modular multiplicative inverse : µ =
(L (gλ mod n2))−1 mod n. where function L is defined as :
L(x) = x−1

n
This check ensures that n divides the order of g.

5. (n,g) serve as the public parameters. The private key is (λ, µ)
which depend on (p,q).

Encryption.
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1. Let m denote the plaintext to be encrypted, m ∈ Zn.
2. Select a random element r ∈ Z?n
3. Ciphertext c = gm.rn mod n2.

Decryption.

1. Ciphertext c ∈ Z?n2

2. Plaintext m = L(cλ mod n2) . µ mod n

Homomorphic properties of Paillier cryptosystem.
The Paillier encryption functions are additively homomorphic. It

leads to the following properties :

1. The product of two ciphertexts gives the sum of their plain-
texts on decryption.
D(E(m1,r1) . E(m2,r2) mod n2) = (m1 + m2) mod n.

2. The product of a ciphertext with a plaintext raised to g gives
the sum of their plaintexts on decryption.
D(E(m1,r1) . gm2 mod n2) = (m1+m2) mod n.

3. An encrypted message raised to a constant k gives the product
of their plaintexts on decryption.
D(E(m1, r1)k mod n2) = (k.m1) mod n.

4. An encrypted plaintext raised to the power of another plain-
text gives the product of the two plaintexts on decryption.
D(E(m1, r1)m2 mod n2) = (m1.m2) mod n.

A.2 Security of Paillier cryptosystem
The Paillier cryptosystem provides security against chosen-plaintext

attacks (IND-CPA). Because of the above mentioned homomor-
phic properties of the system, it is susceptible to adaptive chosen-
ciphertext attacks (IND-CCA2). Though having malleability is not
good in cryptographic research, these homomorphic properties can
be leveraged in a number of applications. An improved cryptosys-
tem that incorporates the combined hashing of message m with ran-
dom r is IND-CCA2 secure.

B. APPLICATIONS
The Themis framework is highly extensible and can be adapted

for a wide range of context sensitive applications. We explain two
such applications in detail in this section.

B.1 Setting an Appointment
A student and a professor attempting to establish a meeting time

wish to do so without revealing their entire calendars. The opti-
mization protocol can be adapted for this application. The student
generates a blind query containing preferences for his free times on
a particular date and time. The ciphertext values in the student’s
query are his preferences for each free time slot in his calendar and
zero at unavailable slots in the query. The professor generates his
own table of free times and their respective preferences and runs
the student’s query against these values.

The professor adds some noise entries to the result table and
shuffles the result. He then sends the result with his correspond-
ing preferences for each slot matched. The student decrypts the
result to get a table containing integer values and finds the optimal
solution by finding the entry which has the highest addition and has
least difference between the preferences. The student sends the top
x solutions back to the professor (1 ≤ x ≤ size(result)). The
professor can verify that the top slot was indeed one of his selec-
tions and approve the meeting.

B.2 Medical Alert Service
Existing medical alert services inform loved ones of the person

in need, in case of an emergency. However, physical distance may
preclude specific loved ones from helping. We design a protocol
using Themis for medical services that does not expose the loca-
tions of the participants.

Our medical alert application selects the person to contact based
on the their physical location and their status within the sender’s
community of interest (i.e., the frequency with which calls are ex-
changed). The provider and Alice’s loved ones willingly participate
in the application. The telephony provider holds records of all the
customers’ locations and their talk times with the people on Al-
ice’s contact list. The medical alert server maintains a white-list of
people on Alice’s contact list, with whom she is willing to share
her medical emergency information. When in need of medical aid,
Alice sends a request to the medical alert server through her cell
phone. The medical alert server then creates blind queries contain-
ing the names of people on the white-list and some conditions such
as the potential helpers should reach Alice in less than 15 minutes.

The provider allows the medical server to execute blind queries
only on Alice’s records in the billing and location database. Us-
ing private search, the medical server can obtain the list of people
who belong to the white list and are geographically and personally
close to Alice. The telephony provider hides the sensitive informa-
tion of these matches from the application server using the noise
addition procedure. It sends the garbled results back to the medical
alert server for decryption and intermediate optimal solution gener-
ation. The medical server sends the intermediate optimal solution
to telephony service provider, who in turn sends alert messages to
the subset of people satisfying all the conditions of optimality.
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