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A sample provides only an approximate estimate of the magnitude of an effect,

owing to sampling uncertainty. The following methods address the issue of

sampling uncertainty when researchers make a claim about effect magnitude:

informal assessment of the range of magnitudes represented by the confidence

interval; testing of hypotheses of substantial (meaningful) and non-substantial

magnitudes; assessment of the probabilities of substantial and trivial

(inconsequential) magnitudes with Bayesian methods based on non-

informative or informative priors; and testing of the nil or zero hypothesis.

Assessment of the confidence interval, testing of substantial and non-

substantial hypotheses, and assessment of Bayesian probabilities with a non-

informative prior are subject to differing interpretations but are all effectively

equivalent and can reasonably define and provide necessary and sufficient

evidence for substantial and trivial effects. Informative priors in Bayesian

assessments are problematic, because they are hard to quantify and can bias

the outcome. Rejection of the nil hypothesis (presented as statistical

significance), and failure to reject the nil hypothesis (presented as statistical

non-significance), provide neither necessary nor sufficient evidence for

substantial and trivial effects. To properly account for sampling uncertainty

in effect magnitudes, researchers should therefore replace rather than

supplement the nil-hypothesis test with one or more of the other three

equivalent methods. Surprisal values, second-generation p values, and the

hypothesis comparisons of evidential statistics are three other recent

approaches to sampling uncertainty that are not recommended. Important

issues beyond sampling uncertainty include representativeness of sampling,

accuracy of the statistical model, individual differences, individual responses,

and rewards of benefit and costs of harm of clinically or practically important

interventions and side effects.
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Introduction

Read the abstract of any sample-based study and you will see

that authors almost invariably use the data in their sample to

make a claim about whether or not there is an effect. This

dichotomization of outcomes appears to be a consequence of

the widespread and often mandated use of statistical significance

and non-significance, with which authors interpret significant as

real, meaningful, worthwhile, important, useful, beneficial,

harmful, or otherwise substantial, whereas they interpret non-

significant as meaningless, worthless, useless, unimportant,

inconsequential, or otherwise trivial. Non-significant is even

sometimes presented as no effect whatsoever, the nil or zero

in the null-hypothesis significance test (NHST), in which the null

hypothesis is that there is no effect. (I will therefore refer to

NHST as the nil-hypothesis significance test, to distinguish it

from tests of other magnitudes.) Whether they understand it or

not, authors are using statistical significance and non-

significance as a method to account for uncertainty arising

from sampling variation: another sample would give a

different value of the effect (and a different p value for

NHST), and it is only when samples are very large that the

sample values would always be practically the same and therefore

accurately represent the population or true value, provided of

course that the sample properly represents the population.

Are authors justified in claiming that significant means the

effect is real and non-significant means no effect? Such claims are

consistent with the plain-English meanings of significant and

non-significant. The design of NHST also leads authors to make

such claims, because it is based on using a sample size that would

give a reasonably high chance (usually 80%, the power of the

study) of obtaining statistical significance (usually p < 0.05),

when the true effect is the smallest important (sometimes

referred to as the minimal clinically important difference).

Unfortunately, statistical significance and non-significance do

not directly address the evidence that an effect is substantial or

trivial. Other approaches do, and as I will explain, they show that

significance and non-significance are not fit for purpose.

The fundamental and irreparable problem with statistical

significance and non-significance is the nil-hypothesis test: if you

are interested in whether an effect is substantial or trivial, testing

whether the effect could be nil or zero self-evidently misses the

point. Instead, if you believe that hypothesis testing is the basis of

the scientific method, you should test the hypotheses that the

effect is substantial and trivial, then make decisions about

magnitude based on rejection of the appropriate hypotheses.

Alternatively, if you dislike the dichotomization of hypothesis

testing and believe instead that estimation is the basis of

empirical science, you should estimate the probabilities that

the effect has substantial and trivial magnitudes, then make

decisions based on threshold probabilities. You can even avoid

making overt decisions and simply present qualitative and

quantitative statistics representing either the range of possible

effect magnitudes or level of evidence for or against effect

magnitudes. In this article I will show that these alternative

approaches are effectively equivalent, when they are understood

in terms of the confidence interval or the sampling distribution

from which it is derived. In the Discussion section, I also critique

three more recent proposals for dealing with sampling

uncertainty: surprisal values, second-generation p values, and

the hypothesis comparisons of evidential statistics. The article is

an updated version of a discussion paper on sampling

uncertainty that I circulated to Frontiers and other journal

editors in the disciplines of exercise and sport science

(Hopkins, 2021a).

The confidence or compatibility
interval

The best measure of sampling uncertainty is probably the

confidence interval. The interval is usually interpreted in terms of

precision of estimation, with larger samples producing narrower

intervals that represent more precise estimates. This interpretation

is the basis of a qualitative approach to sampling uncertainty

promoted by Ken Rothman in his epidemiological texts (e.g.,

Rothman, 2012) and by psychologist Geoff Cumming in his

“new statistics” (e.g., Cumming, 2014). These authors interpret

the interval as a range of values of the effect, but they avoid

describing the range as possible true values of the effect–an

interpretation that requires a Bayesian analysis, as described

below. The authors also offer little guidance on what level of

confidence is appropriate, but Rothman’s examples feature 90%

intervals three times more frequently than 95% intervals. Figure 1

shows the six different conclusions about the magnitude of an

effect, depending on the disposition of the confidence interval in

relation substantial and trivial magnitudes defined by the smallest

important values. The resulting conclusion are properly phrased in

terms of compatibility or incompatibility of those values with the

data and model; for this reason, compatibility interval is perhaps a

better term than confidence interval (Rafi and Greenland, 2020).

Rothman and Cumming emphasize that their method is a

replacement for statistical significance. For example, Rothman

(2012) states “Estimation using confidence intervals allows the

investigator to quantify separately the strength of a relation and

the precision of an estimate and to reach a more reasonable

interpretation. . . In most instances, there is no need for any tests

of statistical significance to be calculated, reported, or relied on,

and we are much better off without them.”

Tests of substantial and non-
substantial hypotheses

The idea of testing whether an effect is substantial or trivial

rather than nil has been promoted for many years in the guise of
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(non-)inferiority, (non-)superiority, equivalence, and one-sided

interval-hypothesis testing (e.g., Allen and Seaman, 2007), but

the approach is still rarely used. The compatibility interpretation

of the confidence interval provides a straightforward way to

understand how the tests work (Figure 1). If the interval falls

entirely in, say, substantial positive values, non-positive values

are not compatible with the data and statistical model, so the

hypothesis that the effect is non-positive can be rejected.

Conclusion: the effect is substantial positive (or strictly, not

non-positive). With a 90% compatibility interval, the p value

for the test (pN+) would be < 0.05, the exact p value being

provided by the sampling distribution from which the

compatibility interval is derived. If the interval falls entirely in

trivial values, two one-sided hypotheses are rejected: the

hypothesis that the effect is substantial positive and the

hypothesis that the effect is substantial negative.

Conclusion: the effect is trivial (or strictly, not substantial

positive and negative). With a 90% compatibility interval, the

p values for each test (p+ and p−) are both < 0.05, and the

exact p values are provided by the sampling distribution.

Compatibility intervals that include trivial magnitudes and

substantial magnitudes of one sign imply rejection of the

hypothesis of magnitudes of the other sign, and compatibility

intervals that include substantial magnitudes of both signs

imply rejection of no hypotheses. The correspondence

between qualitative interpretations of compatibility

intervals and the outcome of tests of substantial and non-

substantial hypotheses should now be obvious.

Rejecting an hypothesis about a magnitude is decisive about

the magnitude in a necessary sense. If the true effect is substantial,

you must be able to reject the hypothesis that the effect is non-

substantial at whatever chosen alpha level (p-value threshold) of

the hypothesis test, although you might need a large sample size.

Similarly, if the true effect is trivial, you must be able to reject the

two substantial hypotheses. Rejecting hypotheses about

magnitude is also decisive in a sufficient sense. Rejecting a

substantial positive or negative hypothesis is sufficient to

decide that the magnitude is not substantially positive or

negative, with an error rate defined by the alpha of the test.

Similarly, rejecting a non-substantial-positive or non-

substantial-negative hypothesis is sufficient to decide that the

true effect is substantial positive or substantial negative, and

rejecting both substantial hypotheses is sufficient to decide that

the true effect is trivial, with error rates defined by the alphas.

Hypothesis testing is not guaranteed to be decisive for a given

effect in a given study: rejecting the appropriate hypothesis (and

thereby reaching the right conclusion) when the true effect is

substantial or trivial will require a sample size that gives a

compatibility interval narrow enough to exclude the

hypothesized magnitude most of the time. I have addressed

the issues of sample-size estimation with these tests elsewhere

(Hopkins, 2020).

A problem with hypothesis testing, as with the compatibility

interval, is choosing the appropriate alpha or compatibility level

for a given kind of effect in a given setting. The Bayesian

approach with probabilities of substantial and trivial

magnitudes offers a solution to this problem.

Probabilities of substantial and trivial
magnitudes

For some researchers, dichotomization is an undesirable aspect

of hypothesis testing: you conclude that the effect is definitely not

something. Admittedly, the dichotomizing is softened somewhat

by the up-front error rate represented by the p-value threshold.

However, the p value represents evidence against a magnitude, and

the test therefore does not lend itself easily to a more accessible

expression of level of evidence for a magnitude. Bayesian analysis

provides such evidence in the form of probabilities that the effect is

FIGURE 1
Conclusions about effects determined by coverage of the confidence or compatibility interval (CI), by tests based on rejection of one-sided
interval hypotheses, and by Bayesian probabilities, for six qualitatively different dispositions of 90% CI (bars) relative to substantial and trivial
magnitudes. +ive, substantial positive; −ive, substantial negative.

Frontiers in Physiology frontiersin.org03

Hopkins 10.3389/fphys.2022.962132

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.962132


substantial in a positive sense, substantial in a negative sense, and

trivial (substantial in neither sense).

In a Bayesian analysis, the uncertainty in the true effect is

defined by a posterior probability distribution of the true effect,

which is derived by combining the sample data with prior belief

or information about the uncertainty in the effect. A full Bayesian

implementation is challenging, since a prior probability

distribution has to be found and justified for every parameter

in the statistical model used to derive the effect. All these

parameter priors can be imagined coalescing into a single

prior uncertainty in the true effect, which is then combined

with the data. Greenland’s (2006) simplified Bayesian method

uses this approach, which is at once more intuitive than a full

Bayesian analysis and easily implemented (e.g., with a

spreadsheet: Hopkins, 2019). The probabilities of substantial

and trivial magnitudes are derived as the areas of the

posterior distribution falling in substantial and trivial values.

Informative priors based on belief are difficult to justify and

quantify, and the more informative they are, the more they are

likely to bias the effect. They therefore offer the researcher an

opportunity to bias the effect towards a desired or expected

magnitude, by using a prior centered on that magnitude.

Researchers can avoid these problems by opting for a prior

sufficiently diffuse (weakly informative) that the posterior is

practically identical to the original sampling distribution,

which can then be interpreted directly as the probability

distribution of the true effect. This approach to sampling

uncertainty has been promoted by various authors (Burton,

1994; Shakespeare et al., 2001; Albers et al., 2018), including

the progenitors of magnitude-based inference (MBI: Batterham

and Hopkins, 2006; Hopkins and Batterham, 2016), also known

as magnitude-based decisions (MBD; Hopkins, 2020). Formally,

the approach is Bayesian assessment with a weakly informative

prior taken to the limit of non-informative.

Some authors have claimed that MBI is not Bayesian, because

a non-informative prior is not “proper” (it cannot be included in

Bayesian computations, because it has zero likelihood for all

values of the effect), and because such a prior implies a belief that

unrealistically large values of the effect have the same likelihood

(albeit zero) as realistic small values (Barker and Schofield, 2008;

Welsh and Knight, 2015; Sainani et al., 2019). These criticisms

have been addressed (Hopkins and Batterham, 2008; Batterham

and Hopkins, 2015; Hopkins and Batterham, 2016; Batterham

and Hopkins, 2019), most recently with the above argument that

a realistic weakly informative normally distributed prior makes

no practical difference to the posterior probabilities of the true

effect for any reasonable sample size (Hopkins, 2019). For those

with any lingering doubt, I would point out that even a full

Bayesian analysis produces a posterior that is practically identical

to the original sampling distribution, when the sample size is

large enough to overwhelm the information in the prior. The

sampling distribution can then be interpreted as the probability

distribution of the true effect, yet the analysis and interpretation

are still Bayesian. Equally, instead of making the sample size

large, the prior can be made so weakly informative that it is

overwhelmed by the data. The sampling distribution can then be

interpreted as the probability distribution of the true effect, yet

the analysis and interpretation are still Bayesian. There is no

requirement with this argument for the weakly informative prior

to be realistic, but as I have already stated, even realistic weakly

informative priors make no practical difference with the small

sample sizes typically encountered in exercise and sport science.

It is therefore illogical for detractors to continue to state that MBI

is not Bayesian.

With really small sample sizes, a weakly informative prior

“shrinks” the posterior compatibility interval substantially and

shifts it towards the middle of the prior. Researchers are welcome

to apply such a prior, although in my view it is better to present

the effect unbiased, with all its wide uncertainty, as a reminder to

the researcher and the reader that the sample size in the study was

woefully inadequate. Researchers may also wish to use reasonably

informative priors to shrink the posterior even with the usual

sample sizes. The resulting bias towards the prior will make the

compatibility limits look more realistic, if that is a problem, but I

would caution that the cost is downward bias and a resulting

reduction of the chances of discovering a substantial effect.

It has also been claimed that MBI has a high Type-I or false-

positive error rate (Welsh and Knight, 2015; Sainani, 2018).

Those who make this claim interpret a possibly or likely

substantial effect as a decisively substantial effect, then show

that a high proportion of such effects are not statistically

significant when sample sizes are small. There are two flaws

with this claim. First, it is only when an effect is very likely

substantial that the effect is considered decisively substantial (the

compatibility interval falls entirely in substantial values).

Secondly, as argued in this article, statistical significance is not

a criterion for substantial. When errors are defined in terms of

declaring a true trivial effect to be substantial and declaring a true

substantial effect to be trivial, the error rates of the various forms

of MBI were shown by simulation to be acceptable and generally

superior to those of NHST for various effect magnitudes and

sample sizes in controlled trials (Hopkins and Batterham, 2016).

Interestingly, the same simulations showed that publication rates

(of “clear” effects in MBI and statistically significant effects in

NHST) and resulting publication bias of the various forms of

MBI were also superior to those of NHST. All these findings

applied not only to the usual sample size required for 5%

significance and 80% power with NHST, but also to much

smaller sample sizes: 10 + 10 in a controlled trial, when 50 +

50 were required for adequate precision with MBI and ~150 +

150 were required for NHST. Naturally, small sample sizes often

produce unclear outcomes, but these are not false positives or

false negatives; rather, the conclusion is that more data are

needed to resolve the uncertainty about the magnitude.

The most recent criticism of MBI is that it is misused by

authors interpreting possibly and likely substantial as decisively
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substantial (Lohse et al., 2020). Close examination of the

publications showed that most authors were not misusing

MBI in this manner (Aisbett, 2020). Such misuse, when it

occurs, should be easy to identify and correct during the

process of peer review.

Magnitude-based inference goes further than its Bayesian

predecessors by providing qualitative interpretations of the

probabilities of substantial and trivial magnitudes and by

suggesting different decision thresholds for the probabilities in

non-clinical and clinical or practical settings (which can also be

done in a full Bayesian analysis). Briefly, magnitudes in a non-

clinical setting are considered decisive when they are very likely

(probability > 0.95 or chances > 95%), corresponding to rejection

of one or other non-substantial hypotheses (pN+ < 0.05 or pN− <
0.05) or to rejection of both substantial hypotheses (such that p+
+ p− < 0.05); equivalently, the 90% compatibility interval falls

entirely in substantial values or the 95% compatibility interval

falls entirely in trivial values. See Figure 1. I established the

mathematical equivalence of MBI and hypothesis testing by

considering areas under normal probability distributions and

error rates (Hopkins, 2020).

In a clinical or practical setting, an effect that is possibly

beneficial (probability > 0.25 or > 25%) is considered potentially

implementable, provided harm is most unlikely (probability <
0.005 or < 0.5%). Equivalently, the 50% compatibility interval

overlaps beneficial values, or the beneficial hypothesis is not

rejected (pB > 0.25), while the 99% compatibility interval overlaps

no harmful values, or the harmful hypothesis is rejected (pH <
0.005). The different probability thresholds or compatibility

intervals for benefit and harm in clinical MBI accord more

importance to avoiding harm than to missing out on benefit.

A less conservative version of clinical MBI, in which an effect is

considered potentially implementable when the chance of benefit

far outweighs the risk of harm (odds ratio > 66), does not have

equivalent hypothesis tests.

If the probabilities of substantial and trivial magnitudes are

such that no hypotheses are rejected, the outcome in MBI is

described as unclear or indecisive, meaning that precision is

inadequate and a larger sample size, better design, and/or better

analysis are required. Once a substantial hypothesis is rejected,

the qualitative probabilities of the other substantial and/or of

trivial magnitudes are reported, as shown in Figure 1. The scale

for these qualitative probabilities (25%–75%, possibly; 75%–95%,

likely; 95%–99.5%, very likely; > 99.5%, most likely; Hopkins

et al., 2009) is similar to but a little more conservative than that of

the Intergovernmental Panel on Climate Change (Mastrandrea

et al., 2010), who use their scale to communicate plain-language

uncertainty in climate predictions to the public.

I have presented Bayesian analysis as an alternative to

hypothesis testing, but as a reviewer pointed out, the Bayesian

posterior credibility interval obtained with an informative prior

can be used to test hypotheses (e.g., Gelman and Shalizi, 2013). In

other words, the compatibility intervals shown in Figure 1 work

equally well for testing hypotheses or for qualitative

interpretation of magnitude when they are Bayesian

posteriors. Researchers can therefore combine informative

priors with data in a Bayesian analysis while maintaining the

Popperian philosophy of falsification. The only problem is

trustworthy quantification of informative priors.

The nil-hypothesis significance test

An effect is statistically significant at the 5% level when the nil

or zero hypothesis is rejected (p < 0.05); equivalently, the nil value

of the effect is not compatible with the data and statistical model,

so a 95% compatibility interval does not include the nil. The

effect is statistically non-significant when the nil hypothesis is not

rejected, so the 95% compatibility interval includes the nil.

If you allow that coverage of 90% compatibility intervals or

the corresponding interval-hypothesis tests provide conclusive

evidence about magnitudes, Figure 2 shows the scenarios where

conclusions of substantial for significance and trivial for non-

significance are appropriate: the 90% interval has to fall entirely

in substantial or trivial values, respectively. Figure 2 also shows

scenarios where these conclusions are not appropriate. These

scenarios should convince you that significance is not sufficient

for the effect to be decisively substantial (some significant effects

could be trivial or even decisively trivial), while non-significance

is not sufficient for the effect to be decisively trivial (some non-

significant effects could be substantial or even decisively

FIGURE 2
Compatibility intervals (thin bars, 95%; thick bars, 90%)
illustrating significant effects where it would be appropriate (=) and
inappropriate (≠) to conclude the effect is substantial, and non-
significant effects where it would be appropriate and
inappropriate to conclude the effect is trivial. The arrowhead
indicates both compatibility intervals extending much further to
the left.
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substantial). Two of the examples show that significance and

non-significance are not even necessary respectively for

decisively substantial and decisively trivial: decisively

substantial can be not significant (the last example in the

figure), and decisively trivial can be not non-significant,

i.e., significant (the fourth example). In short, significant and

non-significant are sometimes not the same as decisively

substantial and decisively trivial.

The prevalence of appropriate conclusions about magnitude

based on significance and non-significance in a given discipline

will depend on the magnitude and uncertainty of effects relative

to smallest important values. In a sample of studies related to

athletic injury or performance at a recent sport-science

conference, substantial was an appropriate conclusion for only

52% of significant effects, while trivial was appropriate for none

of the non-significant effects, on the basis of coverage of 90%

intervals or non-clinical MBI (Hopkins, 2021b). The proportion

of significant effects that were potentially beneficial or harmful

on the basis of clinical MBI was higher (65%), especially with

odds-ratio MBI (87%), but again, none of the non-significant

effects were decisively trivial with clinical MBI. I know of no

other study where the misuse of significance and non-

significance has been quantified in this fashion, but from my

own experience, the misuse of significance and non-significance

in peer-reviewed journals is no better than at this conference. As

such, NHST should be “retired” (Amrhein et al., 2019).

Discussion

A figure showing the disposition of a 90% compatibility

interval relative to smallest important and other substantial

magnitudes is the simplest tool for authors and readers to

avoid making unrealistic conclusions about the magnitude of

an effect and its uncertainty. The conclusion can be presented as

the range in magnitudes represented by the lower and upper

compatibility limits, and substantial can be further modified as

small, moderate, etc. For example, an interval that begins in

trivial values and ends in large positive values could be presented

as trivial to large +ive (or trivial to large ↑, for factor effects), and
the interval obligates the conclusion that the effect could be trivial

to large positive and could not be substantially negative. The

meanings of could be and could not be are defined by the level of

the compatibility interval and can be expressed either in terms of

rejection or failure to reject hypotheses or in terms of

probabilities of the magnitudes. Indeed, some readers may

prefer to see a more quantitative assessment of sampling

uncertainty, so it seems reasonable for authors to also present

hypothesis tests and probabilities of magnitudes. I have provided

a relevant template for authors to include or cite in the methods

section of their manuscripts, along with advice on the smallest

and other important magnitude thresholds and on reporting

effects in text, tables and figures (Hopkins, 2020). Use of

probabilities is perhaps the best approach, because it

represents a desirable move away from dichotomization and

towards level of evidence, which could be described as modest or

some evidence for a possible magnitude, good evidence for a likely

magnitude, very good evidence for a very likely magnitude, and

strong evidence for a most likely magnitude. Use of probabilities

also allows better assessment of effects with clinical or practical

relevance: a symmetric 90% interval does not capture the notion

that strong evidence is needed against harm, while only modest

evidence is needed for benefit. Furthermore, “you need only a

modest probability of benefit, but you need a really low

probability of harm” seems a more reasonable and accessible

basis for proceeding to evaluate implementability than “you need

failure to reject the hypothesis of benefit at some liberal p-value

threshold and rejection of the harmful hypothesis at some

conservative p-value threshold.”

I doubt whether the problems with NHST will be solved by

editors allowing authors to provide the p value for NHST while

prohibiting use of the terms significant and non-significant: most

researchers will probably still think that p < 0.05 and p >
0.05 somehow provide additional or even criterion evidence

for the presence and absence of effects. If p values are to be

shown, they should be the Bayesian probabilities of substantial

and trivial magnitudes, which as themselves or their complement

(1 minus p) double as p values for hypothesis tests. The demise of

NHST would also mean no more post-hoc tests conditioned on

the statistical significance of predictors with more than two levels

(e.g., group or time main effects or interactions). The magnitude

and uncertainty of specific contrasts, pre-planned or otherwise,

are what matter, regardless of the magnitude and uncertainty of

any statistic summarizing the effect of all the levels (F ratios,

variance explained, and so on). Any concern about an increase in

error rate with multiple effects can be addressed by using higher

levels of confidence for the compatibility intervals, smaller

p-value thresholds for hypothesis tests, or more extreme

probability thresholds for decisions.

In an effort to wean researchers off the dichotomization

inherent in any hypothesis test, Greenland (2019) has promoted

transformation of the p value of the test into an S or “surprisal”

value, given by −log2(p), which is the number of consecutive head

tosses of a fair coin that would have probability p. Researchers

would present an S value rather than a p value, then assess a large

S value as strong evidence against the hypothesized magnitude. I

do not recommend S values for assessing sampling uncertainty,

because they represent evidence against hypotheses, while the

probabilities for magnitudes seem to me to be more accessible

measures of evidence, especially when expressed as the plain-

language terms possibly, (un)likely, very (un)likely, andmost (un)

likely.

A reviewer who rejected the manuscript on first review

opined that “the second-generation p-value (SGPV) approach

[is] more quantitative than the way offered by the author.” In one

of the references cited by this reviewer to support this opinion
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(Stewart and Blume, 2019), there is the following succinct

statement: “SGPVs measure the overlap between an

uncertainty interval for the parameter of interest and an

interval null hypothesis that represents the set of null and

practically null hypotheses.” As such, SGPVs are similar to

the p values of interval-hypothesis tests. Indeed, Lakens and

Delacre (2020) have shown that the SGPV gives practically

identical outcomes as equivalence testing achieved with two

one-sided tests of substantial hypotheses “under optimal

conditions,” but otherwise “the second generation p-value

becomes difficult to interpret.” The p values for testing

substantial and non-substantial hypotheses, and their

complements (1 minus the p value) appear to be at least as

good as SGPVs and probably retain the desirable qualities

claimed for SGPVs (e.g., Stewart and Blume, 2019), when they

are used to make inferences about whether the magnitude of an

effect is substantial, non-substantial, or trivial. I therefore do not

recommend the use of SGPVs.

I have limited this opinion piece to the issue of sampling

uncertainty in settings where the form of the statistical model and

the variables to include in it have been decided. In some research

disciplines (e.g., ecology), models may be complex, their

development is a primary consideration, and there are methods

for choosing amongst competingmodels. Suchmethods are part of

evidential statistics, an approach promoted as a successor to NHST

and Bayesian statistics (e.g., Taper and Ponciano, 2016). Once a

model has been selected with this approach, likelihood ratios are

used to compare hypotheses about effects. In my view, formal

comparison of hypotheses adds nothing to the necessary and

sufficient evidence for magnitudes provided by the

compatibility interval, the substantial and non-substantial

hypotheses, and/or the relevant Bayesian probabilities.

I have also limited this opinion piece to a comparison of

methods for making assertions about the likelihood of

magnitudes of effects. In clinical or practical settings, where

substantial magnitudes of effects of interventions represent

benefit and harm, the likelihoods could be combined

qualitatively or quantitatively with the perceived or actual

rewards of benefit, the perceived or actual costs of harm, and

with the likelihoods, rewards and costs of any beneficial and

harmful side effects. These are considerations of decision theory

that are beyond the intended scope of this article. My aim has

been only to provide and justify better alternatives to NHST.

Whichever approach to sampling uncertainty you use, always

be aware that your conclusions are usually about magnitudes of

population mean effects. Effects on individuals are bound to be

different, owing to individual differences and responses. You

should include relevant subject characteristics as moderators in

your statistical model or perform subgroup analyses to try to

account for individual differences and responses, but there will

always be residual errors representing unexplained variation, at

least some of which arises from differences between individuals.

The residual error can be used to make probabilistic assertions

about the effects on individuals in sample-based studies

(Hopkins, 2018; Ross et al., 2019) and when monitoring

individuals (Hopkins, 2017).

Finally, a conclusion, decision or probabilistic statement

about the magnitude of an effect derived from a sampling

distribution is conditioned on assumptions about the data and

the statistical model (Rafi and Greenland, 2020). The way in

which violation of these assumptions could bias the outcome

should be discussed and, where possible, investigated

quantitatively (Lash et al., 2014). A straightforward method is

sensitivity analyses, in which the width and disposition of the

compatibility interval relative to smallest importants are

determined for realistic worst-case violations (Hopkins, 2021b).
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