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Replacing the Soft-Decision FEC Limit Paradigm
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Alex Alvarado, Senior Member, IEEE, Erik Agrell, Senior Member, IEEE, Domaniç Lavery, Member, IEEE,

Robert Maher, Senior Member, IEEE, and Polina Bayvel, Fellow, IEEE, Member, OSA

(Invited Paper)

Abstract—The FEC limit paradigm is the prevalent practice for
designing optical communication systems to attain a certain bit er-
ror rate (BER) without forward error correction (FEC). This prac-
tice assumes that there is an FEC code that will reduce the BER
after decoding to the desired level. In this paper, we challenge this
practice and show that the concept of a channel-independent FEC
limit is invalid for soft-decision bit-wise decoding. It is shown that
for low code rates and high-order modulation formats, the use of
the soft-decision FEC limit paradigm can underestimate the spec-
tral efficiencies by up to 20%. A better predictor for the BER after
decoding is the generalized mutual information, which is shown to
give consistent post-FEC BER predictions across different chan-
nel conditions and modulation formats. Extensive optical full-field
simulations and experiments are carried out in both the linear and
nonlinear transmission regimes to confirm the theoretical analysis.

Index Terms—Bit error rate, forward error correction, gen-
eralized mutual information, mutual information, soft-decision
decoding.

I. INTRODUCTION AND MOTIVATION

F
ORWARD error correction (FEC) and multilevel modula-

tion formats are key technologies for realizing high spec-

tral efficiencies in optical communications. The combination of

FEC and multilevel modulation is known as coded modulation

(CM), where FEC is used to recover the sensitivity loss from

the nonbinary modulation. While in the past optical communi-

cation systems were based on hard-decision (HD) FEC, modern

systems use soft-decision FEC (SD-FEC).

Current digital coherent receivers are based on powerful digi-

tal signal processing (DSP) algorithms, which are used to detect

the transmitted bits and to compensate for channel impairments

and transceiver imperfections. The optimal DSP should find the

most likely coded sequence. However, this is hard to realize

in practice, and thus, most receivers are implemented subopti-

mally. In particular, detection and FEC decoding are typically
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decoupled at the receiver: soft information on the code bits is

calculated first, and then, an SD-FEC decoder is used. We refer

to this receiver structure as a bit-wise (BW) decoder, also known

in the literature as a bit-interleaved coded modulation (BICM)

receiver [1], [2], owing its name to the original works [3], [4],

where a bit-level interleaver was included between the FEC en-

coder and mapper. In the context of optical communications,

BW decoders have been studied, e.g., in [5]–[10].

An alternative to BW decoders is to use iterative demapping

(ID) and decoding, i.e., when the FEC decoder and demap-

per exchange soft information on the code bits iteratively. This

structure is known as BICM-ID and was introduced in [11]–

[13]. BICM-ID for optical communications has been studied

in [14]–[16], [7, Sec. 3], [17, Sec. 3], [18, Sec. 4]. Due to the

inherent simplicity of the (noniterative) BW receiver structure,

BICM-ID is not considered in this paper.

For simplicity, researchers working on optical communica-

tions typically use offline DSP. In this case, and to meet higher-

layer quality of service requirements, the bit-error rate (BER) af-

ter FEC decoding—in this paper referred to as post-FEC BER or

BERpost—should be as low as 10−12 or 10−15 . Since such low

BER values cannot be reliably estimated by Monte-Carlo sim-

ulations, the conventional design strategy has been to simulate

the system without FEC encoding and decoding, and optimize

it for a much higher BER value, the so-called “FEC limit” or

“FEC threshold”. The rationale for this approach, which we call

the FEC limit paradigm, is that a certain BER without coding—

here referred to as pre-FEC BER or BERpre—supposedly can

be reduced to the desired post-FEC BER by previously verified

FEC implementations.

The use of FEC limits assumes that the decoder’s performance

is fully characterized by BERpre , and that different channels

with the same BERpre will result in the same BERpost using

a given FEC code. Under some assumptions on independent bit

errors (which can be achieved by interleaving the code bits), this

assumption is justifiable, if the decoder is based on HDs. This is

the case for HD-FEC, where the decoder is fed with bits mod-

eled using a binary symmetric channel (BSC). The use of FEC

limits, however, has not changed with the adoption of SD-FEC

in optical communications, which has made the “SD-FEC limit”

increasingly popular in the optical communications literature.

The application of SD-FEC in optical communications dates

back to the pioneering experiments by Puc et al. in 1999 [19],

who used a concatenation of a Reed–Solomon code and a con-

volutional code. Other early studies of SD include block turbo

codes (TCs)[20], [21] and low-density parity-check (LDPC)

0733-8724 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Dual-polarization CM transceiver with SD-FEC under consideration. The transmitter for each polarization consists of two cascaded binary FEC encoders
followed by an M QAM mapper. The receiver is a BW receiver: L-values are calculated by the demapper (ignoring the intersymbol and interpolarization
interference), which is followed by an SD-FEC decoder and an HD-FEC decoder.

codes [22]–[24]. Another concatenated code suitable for SD de-

coding was defined for optical submarine systems by the ITU in

the G.975.1 standard [25]; see [26], [27], and references therein

for further details on SD-FEC in optical communications.

Tables and plots of BERpost versus BERpre were presented

in, e.g., [21], [24], and [25], under specific choices for the chan-

nel, modulation format, and symbol rate. Although this was

not suggested when these tables and plots were originally pub-

lished, the existence of such data has subsequently been adopted

to avoid the need for including FEC in system simulations and

experiments. This SD-FEC limit paradigm is nowadays very

popular in optical communication system design. It has been

used for example in the record experiments based on 2048
quadrature amplitude modulation (QAM) for single-core [28]

and multi-core [29] fibers. It has, however, never been validated

to which extent the function BERpost versus BERpre , deter-

mined for one set of system parameters (channel, modulation,

symbol rate, etc.), accurately characterizes the same function

with other parameters.

Another option to predict the post-FEC BER is to use the

mutual information (MI) between the input and output of the

discrete-time channel. This approach was suggested in [30]–

[32] and applied to optical communications in [33] (see also

[34]). In [33], it was shown that the MI is a better metric than

the pre-FEC BER in predicting the post-FEC BER, which casts

significant doubts on the SD-FEC limit paradigm.

This paper investigates the usage of the generalized mutual

information (GMI) [1, Sec. 3], [2, Sec. 4.3] for the same pur-

pose. The GMI, also known as the BICM capacity (or parallel

decoding capacity), was introduced in an optical communica-

tions context in [7]. The performance of some LDPC codes with

four-dimensional constellations over the additive white Gaus-

sian noise (AWGN) channel was evaluated in terms of the GMI

in [35]. With any given LDPC code, an apparent one-to-one

mapping was observed between the GMI and the post-FEC

BER, regardless of the constellation used. In this paper, which

extends the conference version [36], we investigate this map-

ping further and show that the GMI is a very accurate post-FEC

BER predictor, significantly more accurate than both the pre-

FEC BER and the MI, under general conditions.1 Consistent

results were obtained for the nonlinear optical channel in both

linear and nonlinear regimes, for the AWGN channel, for both

LDPC codes and TCs, for a variety of modulation formats, and

also validated by experiments.

This paper is organized as follows. In Section II, the sys-

tem model is introduced and principles for FEC are reviewed.

Section III introduces achievable rates, which are quantified by

the MI and GMI. The post-FEC BER prediction is studied in

Section IV. Conclusions are drawn in Section V.

II. PRELIMINARIES

A. Channel and System Model

In this paper, we consider the CM transceiver shown in

Fig. 1, which is common for coherent optical communication

systems. Data is transmitted in blocks of 2ns symbols, where

every block represents ns time instants in each of the two

polarizations. At the transmitter, an outer encoder is serially

concatenated with an inner FEC encoder with code rate

Rc . The inner encoder generates code bits C
p

1 , . . . ,C
p

m ,

where C
p

k = [Cp

k,1 , C
p

k,2 , . . . , C
p

k,n s
], k = 1, 2, . . . ,m is the

1One of these conditions is that the binary code under consideration is uni-

versal, i.e., that its performance does not depend on the distribution of the soft
information passed to the decoder, but only on the capacity of the channel [37,
Sec. 9.5]. The universality property of LDPC codes for binary-input memory-
less channels was initially discussed in [32] and [38], later studied in, e.g., [39]
and [40], and recently for spatially-coupled LDPC codes in [41].
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TABLE I
SUMMARY OF SYSTEM PARAMETERS USED IN WDM SIMULATION

Parameter Value

Fiber attenuation 0.2 dB/km

Dispersion parameter 17 ps/nm/km

Fiber nonlinear coefficient 1.2 (W km)−1

Span length L km

PMD 0 ps/
√

km

Symbol rate 32 Gbaud

EDFA noise figure 3 dB

WDM channels 11

Channel separation 50 GHz

Pulse shape RRC, 1% rolloff

bit position and p ∈ {x, y} indicates the polarization.2 The

code bits for each polarization are fed to a memoryless

M -ary QAM (MQAM) mapper with M = 2m constellation

points X � {x1 , x2 , . . . , xM }. We consider Gray-mapped

square QAM constellations with M = 4, 16, 64, 256 as well as

(non-Gray) 8QAM from [42, Fig. 14(a)].

The transmitted sequences of complex symbols Xp =
[Xp

1 , Xp

2 , . . . , Xp
n s

] with Xp

l ∈ X is modulated using a root-

raised-cosine (RRC) pulse with 1% rolloff. The symbols in the

two polarizations are combined into the matrix

X =

[

Xx

Xy

]

=

[

Xx
1 Xx

2 . . . Xx
n s

Xy

1 Xy

2 . . . Xy
n s

]

(1)

and sent through a nonlinear optical channel, whose parameters

are summarized in Table I. We consider 11 dual-polarization

wavelength-division multiplexed (WDM) channels of 32Gbaud
in a 50 GHz grid over a single span of single mode fiber (SMF)

of length L with zero polarization mode dispersion (PMD). At

the receiver, an erbium-doped fiber amplifier (EDFA) with an

ideal noise figure of 3 dB (spontaneous emission factor nsp = 1)

is used. The DSP in the receiver includes electronic chromatic

dispersion compensation (EDC) and matched filtering followed

by ideal data-aided phase compensation. Data for the central

channel is recorded and represented (for the two polarizations)

by the received matrix Y of size 2 by ns , where Y p

l ∈ C for

l = 1, 2, . . . , ns and p ∈ {x, y}.

The ideal phase compensation algorithm we consider com-

pensates the nonlinear phase rotation of each received sym-

bol by multiplying the received symbol by exp (−jθi) with

i = 1, . . . , M , where θi is the average phase rotation experi-

enced by the received symbols conditioned on the ith trans-

mitted symbol. The average is taken over the entire codeword,

whose length depends on the type of code and its code rate, as

detailed in Section II-B.

As shown in Fig. 1, the optical channel is modeled by the

channel law fY |X(y|x).3 This discrete-time model encom-

2Throughout this paper, boldface symbols denote random vectors.
3Throughout this paper, fA (a) denotes a probability density function (PDF)

and fA |B (a|b) a conditional PDF. Similarly, PA (a) � Pr{A = a} denotes

a probability mass function (PMF) and PA |B (a|b) � Pr{A = a|B = b} a
conditional PMF.

passes all the transmitter DSP used after the MQAM mapper

(i.e., pulse shaping and polarization multiplexing), the physical

channel (the fiber and the EDFA), and the receiver DSP.

Even though some residual intersymbol interference usually

remains after EDC and the received symbols are affected by in-

terpolarization interference, these effects are typically ignored

in current receivers, to reduce complexity. Hence, each symbol

in Y is decoded separately in both time and polarization. More

specifically, for each l = 1, . . . , ns and p ∈ {x, y}, soft infor-

mation on the code bits Cp

1,l , . . . , C
p

m,l is calculated in the form

of L-values,4 also known as logarithmic likelihood ratios, as

Lp

k,l � log
fY p

l |C p

k , l
(yp

l |1)

fY p

l |C p

k , l
(yp

l |0)
(2)

= Lp,apo

k,l − Lp,apri

k,l (3)

where k = 1, . . . , m and

Lp,apo

k,l = log
PC p

k , l |Y
p

l
(1|yp

l )

PC p

k , l |Y
p

l
(0|yp

l )
, (4)

Lp,apri

k,l = log
PC p

k , l
(1)

PC p

k , l
(0)

(5)

are the a posteriori and a priori L-values, respectively.

A stationary channel model is assumed, and thus, the index l
can be dropped. Furthermore, the performance in both polariza-

tions is expected to be identical, so from now on, the notation

(·)p is also dropped. Using this and the law of total probability

in (2) gives

Lk = log

∑

x∈X 1
k

PX |Ck
(x|1)fY |X (y|x)

∑

x∈X 0
k

PX |Ck
(x|0)fY |X (y|x)

(6)

where X b
k ⊂ X is the set of constellation symbols labeled by a

bit b ∈ B � {0, 1} at bit position k ∈ {1, . . . , m}. The L-values

calculated by the demapper are then passed to the SD-FEC

decoder. The SD-FEC decoder makes a decision on the bits fed

into the inner encoder. These bits are then used by the outer

HD-FEC decoder, as shown in Fig. 1.

To alleviate the computational complexity of (6), the well-

known max-log approximation [43]

Lk ≈ log
maxx∈X 1

k
PX |Ck

(x|1)fY |X (y|x)

maxx∈X 0
k

PX |Ck
(x|0)fY |X (y|x)

(7)

is often used.

B. Pre-FEC BER

The lower branch of the receiver in Fig. 1 includes an HD

demapper which makes an HD on the code bits. We assume that

this HD demapper is the optimal memoryless HD demapper in

the sense of minimizing the pre-FEC BER. This maximum a

posteriori (MAP) decision rule is equivalent to making an HD

on the a posteriori L-values in (4): if Lapo

k ≥ 0 then Ĉk = 1, and

4A sign operation on an L-value corresponds an HD. Its magnitude represents
the reliability of the HD.



ALVARADO et al.: REPLACING THE SOFT-DECISION FEC LIMIT PARADIGM IN THE DESIGN OF OPTICAL COMMUNICATION SYSTEMS 4341

Fig. 2. Interface for (a) the inner SD-FEC and (b) the outer HD-FEC in Fig. 1 (for one polarization). The BISO channel characterized by the GMI and the BSC
by its crossover probability given by the BER after SD-FEC decoding BERpost . (a) Interface for SD-FEC. (b) Interface for HD-FEC.

Ĉk = 0 otherwise.5 Formally,

BERpre �
1

m

m
∑

k=1

Pr{Ĉk �= Ck} (8)

=
1

m

m
∑

k=1

∑

c∈B

PCk
(c) Pr{Ĉk �= c|Ck = c} (9)

=
1

m

m
∑

k=1

∑

c∈B

PCk
(c)

∫ ∞

0

fL apo

k |Ck
((−1)c l|c) dl.

(10)

The pre-FEC BER is a standard performance measure for un-

coded systems. As discussed in Section II-D, pre-FEC BER is

a good predictor of post-FEC BER for HD-FEC with ideal in-

terleaving. We will show in Section IV that the pre-FEC BER is

not necessarily a good predictor of post-FEC BER for SD-FEC.

C. SD-FEC: Turbo and LDPC Codes

We consider two families of binary SD-FEC: TCs and irreg-

ular repeat-accumulate LDPC codes. In both cases, a pseudo-

random bit-level interleaver is assumed to be used prior to mod-

ulation (see Fig. 1). Without loss of generality, we assume this

interleaver to be part of the inner FEC encoder.

The TCs we consider are formed as the parallel concate-

nation of two identical, eight-state, recursive and systematic

convolutional encoders with code rate 1/2. The generator poly-

nomials are (1, 11/15)8 [45] and the two encoders are separated

by an internal random interleaver, giving an overall code rate

Rc = 1/3. Six additional code rates are obtained by cyclically

puncturing parity bits using the patterns defined in [45] and [46],

which leads to Rc ∈ {1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 5/6} and

FEC overheads (OHs) of {200, 150, 100, 66.6, 50, 33.3, 20}%.

Each transmitted frame consists of 20 000 information bits. The

decoder is based on the max-log-MAP decoding algorithm with

ten iterations. The extrinsic L-values exchanged during the iter-

ations are scaled by 0.7 as suggested in [47].

5This decision rule is slightly better than the standard demapper based on HDs
on the symbols followed by a symbol-to-bit mapper (inverting the bit-to-symbol
mapping used at the transmitter). However, the differences are noticeable only
at very high pre-FEC BER [44, Sec. V].

The LDPC codes we consider are those proposed by the

second generation satellite digital video broadcasting stan-

dard [48] with code rates Rc ∈ {1/3, 2/5, 1/2, 3/5, 3/4, 9/10}.

This leads to OHs of {200, 150, 100, 66.66, 33.3, 11.1}%. Each

transmitted frame consists of 64 800 code bits. The decoder

uses the message passing algorithm with 50 iterations and exact

L-values.

What the SD-FEC encoder and decoder pair “sees” is a

binary-input soft-output (BISO) channel. This is shown in

Fig. 2(a). This BISO channel is sometimes known in the lit-

erature as the BICM channel [49, Fig. 1] and it has been used to

predict the decoder performance via probabilistic models of the

L-values [2, Sec. 5.1]. In this paper, we are interested in finding

a measure to characterize this BISO channel in order to predict

the post-FEC BER across different channels.

D. HD-FEC: Staircase Codes

As shown in Fig. 1, the considered transceiver includes an

outer encoder to reduce the BER after SD-FEC decoding to

10−15 . For both TCs and LDPC codes, we use the staircase code

with 6.25% OH from [50, Table I]. For a BSC, this staircase code

guarantees an output BER of 10−15 for a crossover probability

of 4.7 · 10−3 . This corresponds to the HD-FEC limit paradigm,

which is perfectly justifiable under the BSC assumptions.

To guarantee that the errors introduced by the inner SD-

FEC decoder are independent within a frame, we include a

bit-level interleaver (see Fig. 1). Under these assumptions, what

the HD-FEC encoder and decoder pair “sees” is a BSC with

crossover probability given by the BER after SD-FEC decoding

(BERpost). Therefore, the BER after HD-FEC decoding can be

assumed to be 10−15 for BERpost = 4.7 × 10−3 . This is shown

in Fig. 2(b). From now on, we therefore assume the existence

of the interleaver and staircase code, and thus, without loss of

generality, we focus on a target BER after SD-FEC decoding of

BERpost = 4.7 × 10−3 .

III. ACHIEVABLE RATES

Achievable rates indicate the number of bits per symbol

that can be reliably transmitted through the channel. In this

section we review achievable rates for channels with memory,



4342 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 33, NO. 20, OCTOBER 15, 2015

for optimal decoders, and for BW decoders. These achievable

rates will be used in Section IV to predict the post-FEC BER.

A. Channels With Memory

A coding scheme consists of a codebook, an encoder, and a

decoder. The codebook is the set of codewords that can be trans-

mitted through the channel, where each codeword is a sequence

of symbols. The encoder is a one-to-one mapping between the

information sequences and codewords. The decoder is a deter-

ministic rule that maps the noisy channel observations onto an

information sequence.

A code rate, in bits per (single-polarization) symbol, is said to

be achievable at a given block length ns and for a given average

error probability ε if there exists a coding scheme whose aver-

age error probability is below ε. Under certain assumptions on

information stability [51, Sec. I], and for any stationary random

process {Xl} with joint PDF fX , an achievable rate for chan-

nels with memory (i.e., where symbols are correlated in time

and across polarizations) is given by

Rmem = lim
n s→∞

1

2ns
I(X;Y ) (11)

where I(X;Y ) is the MI defined as

I(X;Y ) � EX,Y

[

log2

fY |X(Y |X)

fY (Y )

]

(12)

and where EX,Y denotes the expectation with respect to both

X and Y . The channel capacity is the largest achievable rate for

which a coding scheme with vanishing error probability exists,

in the limit of large block length.

B. Memoryless Receivers

Although the discrete-time optical channel in Section II-A

suffers from intersymbol and interpolarization interference, the

standard receiver considered in this paper ignores these effects.

In particular, each polarization is considered independently (see

Fig. 1), and the soft information on the coded bits is calculated

ignoring correlation between symbols in time (see (2)). To model

these assumptions made by the receiver, the channel is modeled

by a conditional PDF fY |X (Y |X). Therefore, from now on, and

without loss of generality, only one polarization is considered.

Furthermore, we assume the symbols are independent random

variables drawn from a distribution fX .

An achievable rate for transceivers that ignore intersymbol

and interpolarization interference is

I(X;Y ) = EX,Y

[

log2

fY |X (Y |X)

fY (Y )

]

(13)

where I(X;Y ) is the unidimensional version of the MI in

(12). As expected, Rmem ≥ I(X;Y ) [52, Sec. III-F] and

thus, I(X;Y ) is a (possibly loose) lower bound on the ca-

pacity of the channel with intersymbol and interpolarization

interference.

Let C the binary codebook used for transmission and c denote

the transmitted codewords as

c =

⎡

⎢

⎢

⎢

⎣

c1,1 c1,2 . . . c1,n s

...
...

. . .
...

cm,1 cm,2 . . . cm,n s

⎤

⎥

⎥

⎥

⎦

. (14)

Furthermore, let B = [B1 , . . . , Bm ] be a random vector repre-

senting the transmitted bits [c1,l , . . . , cm,l ] at any time instant l,
which are mapped to the corresponding symbol Xl ∈ X with

l = 1, 2, . . . , ns . Assuming a memoryless channel and equally

likely codewords, the optimal maximum-likelihood (ML) re-

ceiver chooses the transmitted codeword based on an observed

sequence [y1 , . . . , yn ] according to the rule

cml � argmax
c∈C

n s
∑

l=1

log fY |B(yl |c1,l , . . . , cm,l). (15)

Shannon’s channel coding theorem states that reliable transmis-

sion with the ML decoder in (15) is possible at arbitrarily low

error probability if the combined rate of the binary encoder and

mapper (in information bit/symbol) is below I(X;Y ), i.e., if

Rcm ≤ I(X;Y ).
For a discrete constellationX , the MI in (13) can be expressed

as

I(X;Y ) =
∑

x∈X
PX (x)

∫

C

fY |X (y|x) log2

fY |X (y|x)

fY (y)
dy.

(16)

A Monte-Carlo estimate thereof is

I(X;Y ) ≈ 1

ns

∑

x∈X
PX (x)

n s
∑

l=1

log2

fY |X (t(l) |x)

fY (t(l))
(17)

where t(l) with l = 1, 2, . . . , ns are independent and identically

distributed (i.i.d.) random variables distributed according to the

channel law fY |X (y|x).

C. BW Receivers

As shown in Fig. 1, the BW decoder considered in this paper

splits the decoding process. First, L-values are calculated, and

then, a binary SD decoder is used. More precisely, the BW

decoder rule is

cbw � argmax
c∈C

n s
∑

l=1

log
m
∏

k=1

fY |Bk
(yl |ck,l). (18)

The BW decoding rule in (18) is not the same as the ML rule in

(15) and the MI is in general not an achievable rate with a BW

decoder.6

The channel under consideration is a symbol-wise channel

defined by the channel transition probability fY |X (y|x). The

6An exception is the trivial case of Gray-mapped 4QAM (i.e., quadrature
phase-shift keying, QPSK) with noise added in each quadrature independently.
In this case, the detection can be decomposed into two binary phase-shift keying
constellations, and thus, ML and BW decoders are identical.
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BW decoder can therefore be cast into the framework of a mis-

matched decoder by considering a symbol-wise metric

q(b, y) �

m
∏

k=1

fY |Bk
(y|bk ). (19)

Using this mismatched decoding formulation, the BW rule in

(18) can be expressed as

cbw = argmax
c∈C

n s
∑

l=1

log q(bl , yl) (20)

where with a slight abuse of notation we use bl =
[c1,l , . . . , cm,l ]

T . In this context, the ML decoder in (15) can

be seen as a mismatched decoder with a metric q(bl , yl) =
fY |B(yl |bl) = fY |X (yl |xl) which is “matched” to the symbol-

wise channel. Using this interpretation, the BW decoder uses

metrics matched to the bits fY |Bk
(y|bk ), but not matched to the

actual channel, and thus, its name.

An achievable rate for a BW decoder is the GMI, which

represents a bound on the number of bits per symbol that can be

reliably transmitted through the channel. The GMI is defined as

[2, eq. (4.34)–(4.35)], [53, eq. (59)–(60)]

GMI � max
s≥0

EB,Y

[

log2

q(B, Y )s

∑

b∈Bm PB(b)q(b, Y )s

]

. (21)

For the BW metric in (19) and assuming independent bits

B1 , . . . , Bm , the GMI in (21) can be expressed as

GMI = max
s≥0

m
∑

k=1

EBk ,Y

[

log2

fY |Bk
(Y |Bk )s

∑

b∈B
PBk

(b)fY |Bk
(Y |b)s

]

(22)

=
m

∑

k=1

EBk ,Y

[

log2

fY |Bk
(Y |Bk )

∑

b∈B
PBk

(b)fY |Bk
(Y |b)

]

(23)

=
m

∑

k=1

I(Bk ;Y ) (24)

where (22) follows from [2, Th. 4.11] and (23) from [2, Corollary

4.12] (obtained with s = 1). The expression in (24) follows from

the definition of MI in (13).

In general, I(X;Y ) ≥ GMI [2, Th. 4.24],7 where the rate

penalty I(X;Y ) − GMI can be understood as the penalty

caused by the use of a suboptimal (BW) decoder. This rate

penalty, however, is known to be small for Gray-labeled con-

stellations [4, Fig. 4], [54], [55], [56, Sec. IV].

The GMI has not been proven to be the largest achievable rate

for the receiver in Fig. 1. For example, a different achievable

rate—the so-called LM rate—has been recently studied in [57,

Part I]. Moreover, in the case where unequally likely constella-

tion points are allowed, a new achievable rate has been recently

derived in [58, Th. 1]. Finding the largest achievable rate with

a BW decoder remains an open research problem. Despite this

7The condition of i.i.d. bits in [2, Th. 4.24] is not necessary—only indepen-
dence is needed.

cautionary statement, the GMI is known to predict well the per-

formance of CM transceivers based on capacity-approaching

SD-FEC decoders. This will be shown in Section IV.

When the L-values are calculated using (6), I(Bk ;Y ) =
I(Bk ;Lk ) [2, Th. 4.21], and thus, the GMI in (24) becomes

GMI =

m
∑

k=1

I(Bk ;Lk ) (25)

i.e., the GMI is a sum of BW MIs between code bits and L-

values. The equality in (25) does not hold, however, if the L-

values were calculated using the max-log approximation (7),

or more generally, if the L-values were calculated using any

other approximation. For example, when max-log L-values are

considered, it is possible to show that there is a loss in achievable

rates. Under certain conditions, this loss can be recovered by

adapting the max-log L-values, as shown in [59]–[61].

Regardless of the L-value calculation, the GMI in (22) can be

estimated via Monte-Carlo integration as [2, Th. 4.20]

GMI ≈
m

∑

k=1

Hb(PBk
(0))

− 1

ns
min
s≥0

m
∑

k=1

∑

b∈B

PBk
(b)

n s
∑

n=1

log2

(

1 + es(−1)b
λ

(n )
k , b

)

(26)

where λ
(n)
k,b , n = 1, 2, . . . , ns are i.i.d. random variables dis-

tributed according to the PDF of the L-values fLk |Bk
(λ|b) and

Hb(p) � −p log2(p) − (1 − p) log2(1 − p) is the binary en-

tropy function. The minimization over s in (26) can be easily

approximated (numerically) using the concavity of the GMI on

s [2, eq. (4.81)].

We emphasize here that the expression in (26) is valid for any

symbol-wise metric in the form of (19), i.e., for any L-value Lk

that ignores the dependency between the bits in the symbol. In

particular, when the L-values are calculated exactly using (6),

the GMI can be estimated using (26) and s = 1, which follows

from [2, Th. 4.20].

D. Memoryless and BW Receivers for the AWGN Channel

Often, if not always, CM transceivers in optical communica-

tion systems assume that the discrete-time channel, including

transmitter- and receiver-side DSP, is a memoryless AWGN

channel Y = X + Z, where Z is a complex, zero-mean, cir-

cularly symmetric Gaussian random variable with total vari-

ance E[|Z|]2 . This assumption might be suboptimal, but in the

absence of a better (non-Gaussian) model with memory, the

memoryless AWGN channel assumption is reasonable. In this

subsection, we specialize the MI and GMI estimators in (17)

and (26) to the AWGN channel and equally likely input bits

(and therefore, equally likely symbols in X ).

For the AWGN channel and a uniform input distribution, the

MI in (16) can be estimated using (17) as

I(X;Y ) ≈ log2(M) − 1

Mns

M
∑

i=1

n s
∑

l=1

log2 fi,l , (27)
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where

fi,l �

M
∑

j=1

exp
(

−ρ(2ℜ{(xi − xj )
∗z(l)} + |z(l) |2)

)

, (28)

the signal-to-noise ratio (SNR) ρ is defined as ρ �

EX [|X|2 ]/EZ [|Z|]2 , and z(l) with l = 1, 2, . . . , ns are ns in-

dependent realizations of the Gaussian random variable Z.

L-values may be calculated either exactly or using the max-

log approximation. In the first case, the exact L-values in (6) are

calculated as

Lk = log

∑

x∈X 1
k

exp(−ρ|y − x|2)
∑

x∈X 0
k

exp(−ρ|y − x|2) (29)

where we used the uniform input symbol distribution assump-

tion. For given sequences of mns transmitted bits ck,l and

mns L-values λk,l computed via (29), for k = 1, . . . , m and

l = 1, . . . , ns , the GMI in (26) can be estimated as

GMI ≈ m − 1

ns

m
∑

k=1

n s
∑

l=1

log2

(

1 + e(−1)c k , l λk , l

)

. (30)

In the second case, the max-log L-values in (7) are calculated as

Lk ≈ ρ

(

min
x∈X 0

k

|y − x|2 − min
x∈X 1

k

|y − x|2
)

. (31)

For given sequences of transmitted bits ck,l and max-log L-

values λk,l computed via (31), the GMI can be estimated using

(26) as

GMI ≈ m − 1

ns
min
s≥0

m
∑

k=1

n s
∑

l=1

log2

(

1 + es(−1)c k , l λk , l

)

. (32)

To calculate the GMI, (30) and (32) should be used for ex-

act and max-log L-values, respectively. Using (30) for max-log

L-values results in a rate lower than the true one, i.e., the min-

imization over s in (32) is a mandatory step for approximated

L-values. Furthermore, the distribution of the LLRs for nonbi-

nary modulation is in general unknown. However, in the case of

max-log LLRs and Gray-labeled squared QAM constellations,

the distribution is known to be a sum of piecewise Gaussian

functions [62].

IV. POST-FEC BER PREDICTION

In this section, we study the robustness of three different

metrics to predict the post-FEC BER of SD-FEC: the pre-FEC

BER, the MI, and the GMI. The aim is to find a robust and easy-

to-measure metric that can be used to predict the post-FEC BER

of a given encoder and decoder pair across different channels.

Results for the AWGN channel are shown first, followed by

results for the nonlinear optical channel. All the results were

obtained by transmitting at least 500 codewords and by counting

at least 100 bits in error after decoding.

A. AWGN Channel

To study the post-FEC BER prediction across different BISO

channels [see Fig. 2(a)], we consider the TCs defined in Section

II-C and four modulation formats: M -QAM constellations with

M = 4, 8, 64, 256. For M = 4, 64, the SD decoder uses exact

L-values and for M = 8, 256, max-log L-values.8 In Fig. 3(a),

the post-FEC BER is shown as a function of BERpre for the

28 cases. Ideally, all the lines for the same rate (same color)

should fall on top of one another, indicating that measuring

BERpre is enough to predict BERpost when the BISO channel

(in this case, the modulation format) changes. The results in

this figure show that this is not the case, especially for low and

medium code rates. The pre-FEC BER therefore fails to predict

the performance of the SD-FEC decoder across different BISO

channels.

To estimate the inaccuracy of the SD-FEC limit paradigm,

consider the results for 4QAM and Rc = 1/3 shown in Fig. 3(a).

For a target post-FEC BER of BERpost = 4.7 × 10−3 , the re-

quired pre-FEC BER is BERpre ≈ 0.2. By using the SD-FEC

limit paradigm, we can conclude that to guarantee the same

for post-FEC BER for 256QAM, the same pre-FEC BER can

be assumed (BERpre ≈ 0.2). This is clearly not the case, as

for 256QAM and Rc = 1/3, the pre-FEC BER can be higher

(BERpre ≈ 0.23). An alternative interpretation of this is that the

results in Fig. 3(a) show that for BERpre ≈ 0.2 and 256QAM,

the code rate can be increased to Rc = 2/5. This shows that

the use of the SD-FEC limit paradigm in this scenario leads

to an underestimation of the spectral efficiency of 20%. Very

similar conclusions can be in fact drawn for the LDPC codes

shown in [35, Fig. 4]. We also conjecture that the use of the

SD-FEC limit paradigm in the record results reported in [28]

and [29] (where a pre-FEC BER threshold obtained for 4QAM

was used for 2048QAM) are in fact incorrect and even higher

spectral efficiencies can be obtained. In this case, however, the

considered code rates are relatively high, and thus, we expect

the underestimation to be below 5%.

The results in Fig. 3(a) show the variations on the required pre-

FEC BER to guarantee a given post-FEC BER across different

modulation formats. While for low code rates these variations

could lead to errors of up to 20% in spectral efficiencies, the

errors decrease as the code rate increases. This partially suggests

that the pre-FEC BER is a relatively good metric for high code

rates, however, we have no theoretical justification for the use of

BERpre to predict the performance of a SD-FEC. Furthermore,

we believe that having a metric that works for all code rates is

important. Considering only high code rates—as is usually done

in the optical community—is an artificial constraint that reduces

flexibility in the design, as pointed out in [63, Sec. II-B].

An intuitive explanation for the results in Fig. 3(a) is that

the SD-FEC in Fig. 1 does not operate on bits, and thus, a

metric that is based on bits (i.e., the pre-FEC BER) cannot be

used to predict the performance of the decoder. To clarify this,

we compare 8QAM and 64QAM for Rc = 1/3 and a target

BERpre ≈ 0.216. Exact L-value calculations are considered in

both cases. From Fig. 3(a) we see that BERpost ≈ 5 × 10−4 for

64QAM. For 8QAM, this value is BERpost ≈ 5 × 10−2 , which

is slightly lower than the one shown in Fig. 3(a) for max-log

8For M = 256, the use of max-log L-values is very relevant in practice as
the calculation in (29) is greatly simplified.
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Fig. 3. Post-FEC BER for TCs with Rc ∈ {1/3, 2/5, 1/2, 3/5, 2/3, 3/4,
5/6} (colors) and different modulation formats (markers): 4QAM, 8QAM,
64QAM, and 256QAM. The post-FEC BER is shown versus (a) pre-FEC BER,
(b) normalized MI, and (c) normalized GMI. The L-values for 8QAM and for
256QAM are calculated using the max-log approximation.

Fig. 4. Conditional PDF of the L-values fL |B (l|1) in (33) for 8QAM and
64QAM. In both cases, the L-values are calculated using (29). The PDFs of the
L-values give identical pre-FEC BER but different post-FEC BER.

L-values. In Fig. 4 we show the PDF9

fL |B (l|b) =
1

2m

m
∑

k=1

fLk |Bk
(l|b) + fLk |Bk

(−l|1 − b). (33)

The PDF in (33) corresponds to the conditional PDF of “sym-

metrized” and “mixed” L-values. For exact L-values, this PDF

has been recently shown in [64, Sec. V] to fully determine the

GMI (via GMI = mI(B;L)). Under the uniform bit probability

assumption, the pre-FEC BER in (10) can be expressed as

BERpre =
1

2m

m
∑

k=1

∫ 0

−∞
(fLk |Bk

(−l|0) + fLk |Bk
(l|1)) dl

(34)

and thus, it is clear that the pre-FEC BER can be calculated by

BERpre =

∫ 0

−∞
fL |B (l|1) dl (35)

where fL |B (l|b) is given by (33).

While both PDFs fL |B (l|1) in Fig. 4 give the same pre-FEC

BER (BERpre ≈ 0.216), the post-FEC BER for 64QAM is

much lower than the one for 8QAM. This can be explained

by the different shapes of the PDFs in Fig. 4. In particular,

the slow-decaying right tail of the PDF of 64QAM shows that

some L-values with high reliability (i.e., high magnitude) will

be observed, which the iterative SD-FEC decoder can exploit.

To study the dependency of the post-FEC BER and GMI

on the distribution of the LLRs, we now compare 4QAM and

64QAM with Rc = 1/2. In particular, we consider the two SNR

values that give BERpost ≈ 4.7 × 10−3 for the two modulation

formats. Fig. 5 shows the PDF of the L-values for these two

cases. Although the PDFs in Fig. 5 are clearly different, in

both cases the normalized GMIs are identical (GMI/m ≈ 0.55).

This shows that the shape of the PDF of the L-values is not

9Estimated via histograms.
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Fig. 5. Conditional PDF of the L-values fL |B (l|1) in (33) for 4QAM and
64QAM. In both cases, the L-values are calculated using (29). The PDFs of the
L-values give identical normalized GMI and also identical post-FEC BER.

relevant for the post-FEC BER prediction. What is important is

the normalized GMI obtained from those L-values.

Using BERpre to predict the performance of SD-FEC de-

coders has no information-theoretic justification. To remedy

this, one could consider the symbol-wise MI I(X;Y ) (see

Fig. 1) as a metric to better predict BERpost . The values of

BERpost as a function of the normalized MI I(X;Y )/m are

shown in Fig. 3(b). In this case too, the prediction does not

work well across all rates. In particular, although for square

QAM constellations (M = 4, 64, 256) the MI seems to work

well for high code rates (as previously reported in [35, Sec.

III]), this is not the case if 8QAM is considered. The MI then

appears to be less reliable to predict BERpost than the pre-FEC

BER.

One intuitive explanation for the results in Fig. 3(b) is that the

MI is an achievable rate for the optimum receiver in (15), but not

for the (suboptimal) receiver in Fig. 1 (see (18)). Another ex-

planation is related to the performance dependence of BERpost

on the binary labeling of the constellation. It is nowadays well

understood that for the receiver in Fig. 1, the performance of the

SD-FEC decoder depends on the binary labeling; Gray (or quasi-

Gray) labelings are known to be among the best. On the other

hand, the MI does not depend on the binary labeling but only

on the constellation. Thus, it is not surprising that a labeling-

independent metric fails at predicting the labeling-dependent

BERpost .

The third and last metric we consider to predict BERpost is

the GMI. The rationale behind this is that an SD-FEC decoder is

fed with L-values, and thus, the GMI (see (25)) is an intuitively

reasonable metric. The values of BERpost as a function of the

normalized GMI are shown in Fig. 3(c). These results show that

for a given code rate, changing the constellation does not affect

the post-FEC BER prediction based on the GMI. More impor-

tantly, and unlike for BERpost and MI, the prediction based on

the GMI appears to work across all code rates. These results in

Fig. 6. Required values for the different metrics to give BERpost = 4.7 ×
10−3 as a function of the code rate for the same cases as in Fig. 3: (a) normalized
MI and (b) normalized GMI. The curves I(X ; Y ) = mRc and GMI = mRc

are shown in (a) and (b), respectively.

fact show that the considered TCs appear to be universal (with

respect to the GMI), which, to the best of our knowledge, has

never been shown in the literature.

Fig. 6 shows the values of MI and GMI needed for each

configuration in Fig. 3 to reach a post-FEC BER of BERpost =
4.7 × 10−3 .10 These values are obtained by finding the crossing

points of the curves in Fig. 3 and the horizontal dashed lines.

Fig. 6 also shows the relationships I(X;Y ) = mRc and GMI =
mRc , where the vertical difference between the markers and the

solid lines represent the rate penalty for these codes. The results

in Fig. 6 clearly show the excellent prediction based on GMI

and how MI does not work well across different modulation

formats.

We showed before that the pre-FEC BER can lead to an erro-

neous estimate of the spectral efficiency, which is particularly

noticeable for low code rates. A similar problem occurs if the

normalized MI in Fig. 6(a) is used to predict post-FEC BER.

For example, the results in Fig. 6(a) show that post-FEC BER

of BERpost = 4.7 × 10−3 can be achieved with 4QAM and

Rc = 2/3 when the normalized MI is approximately 0.71 (see

also Fig. 3(b)). One might be tempted to then conclude that,

for the same MI, the same post-FEC BER can be achieved with

8QAM and Rc = 2/3. The results in Fig. 6(a) show that this

is in fact not possible, and a (lower) code rate of Rc = 3/5 is

needed. In other words, the use of a “MI threshold paradigm”

could lead to an overestimation (in this case by 11%) of the true

spectral efficiency. This is not the case for the GMI (see Fig. 6

(b)), where all markers for the same code fall on top of one

another.

10Similar results could be presented in terms of pre-FEC BER. To have a fair
comparison in terms of rates, however, one would need to convert the pre-FEC
BER into SNR, and then map that SNR onto MI (or GMI), giving exactly what
is shown in Fig. 3.
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Fig. 7. Achievable rates (per polarization) versus span length: GMI (solid
lines) and LDPC codes with Rc ∈ {1/3, 1/2, 3/4, 9/10} (markers).

B. Optical Channel—Simulations

Dual-polarization transmission over the nonlinear optical

channel specified in Section II-A was simulated using the cou-

pled polarization nonlinear Schrödinger equation (NLSE) [65,

eq. (6)]. This enabled the consideration of an idealized trans-

mission link with zero PMD. The simulations were carried out

via the split-step Fourier method with a step size of 100m and

an oversampling factor of 4 samples/symbol.

Fig. 7 shows the GMI (per polarization) as a function

of the span length, for MQAM constellations with M =
4, 16, 64, 256. For each distance and M , we used the launch

power that gave the highest GMI. In this figure, we also show

the distance required by the LDPC codes in Section II-A to give

BERpost = 4.7 × 10−3 for each combination of four constella-

tions and Rc ∈ {1/3, 1/2, 3/4, 9/10}. The vertical position of

these 16 markers represent the resulting achievable rates and

clearly show that the results follow the GMI curves. This is in

good agreement with the results in [10] and [35], where it was

shown that the GMI can be used to predict the performance of

LDPC codes for the AWGN channel. The penalties with respect

to the GMI are between 5 and 15 km and are highest for high

code rates and large values of M . These penalties are caused by

the suboptimality of the LDPC code under consideration.

In analogy with Fig. 3, Fig. 8 shows the post-FEC BER as

a function of (a) pre-FEC BER, (b) normalized MI, and (c)

normalized GMI. The results for the NLSE are shown with

filled markers and show that the prediction based on the GMI is

excellent. Just as for TCs, the prediction based on pre-FEC BER

does not always work, however, a relatively good approximation

is obtained for high code rates.

Different interleaving strategies can be used to connect the

binary encoder and the mapper. These strategies include, e.g.,

consecutively assigning the code bits to the mapper (as done

in [36]), multiple (parallel) interleavers [66], or interleavers

optimized for a particular code [9]. In this paper, an ensemble

of random interleavers was considered, and thus, the ensemble

Fig. 8. Post-FEC BER for LPDC codes with Rc ∈ {1/3, 1/2, 3/4, 9/10}
(colors) over linear and nonlinear channels and different modulation formats
(markers): 4QAM, 16QAM, 64QAM, and 256QAM. The post-FEC BER is
shown versus (a) pre-FEC BER, (b) normalized MI, and (c) normalized GMI.
All the L-values are calculated using (29).
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of encoders generated by randomly permuting the code bits is

considered. In general, the performance of the encoder depends

on the choice of interleaver, which explains why the curves in

Fig. 8(c) are slightly more “compact” for low rates than those in

[36, Fig. 5]. If a particular interleaving strategy is used instead

(consecutive, parallel, optimized, etc.), the post-FEC BER pre-

diction based on GMI is less precise, although still much better

than pre-FEC BER and MI.

In Fig. 8, we also show results obtained for the AWGN chan-

nel (white markers). These results were obtained for the same

modulation and coding pairs as used in the NLSE simulations

and show that indeed the GMI is a robust metric to predict

post-FEC BER across different channels. In particular, Fig. 8(c)

shows that the post-FEC BER predictions give the same results

for both the AWGN channel and the simulations based on the

NLSE. This also suggests that using a Gaussian model for the

noise is quite reasonable.

All the results in Fig. 8(c) for the NLSE were obtained for

the optimal launch power. To show that the GMI prediction

is also not dependent on the launch power, we study a fixed

distance and vary the launch power, bringing the system deep

into the nonlinear regime. As the modulation format, we choose

64QAM and based on the results in Fig. 7, we use L = 210 km

and Rc = 3/4. The launch power was varied from 2.6 to 12.6
dBm, giving the pre-FEC and post-FEC BER shown in Fig. 9(a).

The same post-FEC BER values are shown in Fig. 9(b) as a

function of the normalized GMI. This figure shows once again

that the GMI can be used to accurately predict the post-FEC

BER of SD-FEC decoders, even when the channel is highly

nonlinear.

C. Optical Channel—Experiments

To experimentally verify that the normalized GMI is an accu-

rate predictor for post-FEC BER, the LDPC code described in

Section II-D was implemented in a dual-polarization 64QAM

Nyquist-spaced WDM transmission system. The corresponding

experimental setup is illustrated in Fig. 10. A 100 kHz linewidth

external cavity laser (ECL) was passed through an optical comb

generator to obtain seven frequency-locked comb lines with a

channel spacing of 10.01GHz. The eight-level drive signals

required for 64QAM were generated offline in MATLAB and

were digitally filtered using an RRC filter with a roll-off factor

of 0.1%. The resulting in-phase (I) and quadrature (Q) signals

were loaded onto a pair of field-programmable gate arrays and

output using two digital-to-analog converters (DACs) operating

at 20Gsamples/s (2 samples/symbol). The odd and even sub-

carriers were independently modulated using two complex IQ

modulators, which were subsequently decorrelated before be-

ing combined and polarization multiplexed to form a Nyquist

spaced 64QAM super-carrier. The recirculating loop configura-

tion consisted of two acousto-optic switches, two EDFAs with a

noise figure of 4.5 dB, an optical band-pass filter for amplified

spontaneous emission noise removal, a loop-synchronous polar-

ization scrambler (PS) and a single 81.8 km span of Corning R©

SMF-28 R© ULL optical fiber.

Fig. 9. (a) Pre-FEC BER and post-FEC BER as a function of the launch power
for an LDPC code with Rc = 3/4, 64QAM, and L = 210 km. (b) Pre-FEC
BER versus normalized GMI in the linear (white markers) and nonlinear (filled
markers) regimes.

Fig. 10. Dual-polarization 64QAM Nyquist-spaced WDM transmission
testbed.
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Fig. 11. Post-FEC BER for the 64QAM Nyquist spaced WDM transmission
testbed with LPDC codes and Rc ∈ {2/5, 1/2, 3/5, 3/4, 9/10} (colors) as a
function of the normalized GMI. Experimental results for different number of
spans Ns are shown with markers and AWGN results with solid lines.

The polarization-diverse coherent receiver had an electrical

bandwidth of 70GHz and used a second 100 kHz linewidth

ECL as a local oscillator (LO). The frequency of the LO was

set to coincide with the central sub-carrier of the 64 QAM

super-carrier and the received signals were captured using a

160Gsamples/s real-time sampling oscilloscope with 63GHz
analog electrical bandwidth. DSP and SD-FEC decoding were

subsequently performed offline in Matlab and was identical to

that described in [67].

The transmission performance of the central WDM carrier

was analyzed over a number of transmission distances from

81.8 (Ns = 1) to 1308.8 km (Ns = 16) and for a number of

launch powers, ranging from −18 to +2dBm. This resulted

in a normalized GMI ranging from 0.39 to 0.93, which re-

quired adaptation of the OH in order to achieve a post-FEC

BER that was below the target BER after SD-FEC decoding

BERpost = 4.7 × 10−3 . Fig. 11 illustrates the experimentally

measured normalized GMI (markers) as a function of post-FEC

BER, for five code rates Rc ∈ {2/5, 1/2, 3/5, 3/4, 9/10}. The

transmission distances were 81.8, 327.2, 654.4 and 1308.8 km,

i.e., Ns = 1, 4, 8, and 16 spans. The simulated results obtained

for an AWGN channel (i.e., the ones in Fig. 8(c)) are dis-

played using solid lines. Excellent agreement between the sim-

ulated curves and the experimental points is demonstrated for

all SD-FEC code rates, launch powers, and distances, even

though the simulations and experiments concern entirely dif-

ferent channels.11

Each result shown with a marker in Fig. 11 corresponds to a

given launch power (per channel), code rate Rc , and number of

spans Ns . These results are summarized in Table II, where the

launch powers are also shown. The results in Fig. 11 and Table II

11The parameters of the experimental setup in this section are also different
to those in Section IV-B.

TABLE II
SUMMARY OF RESULTS FOR THE EXPERIMENTAL SETUP IN FIG. 10. EACH ROW

CORRESPONDS TO A MARKER IN FIG. 11.

Launch Power GMI/m BERpost Spans Ns Rate Rc

−18.27 dBm 0.39 1.7 × 10−1 16
2/5

−17.00 dBm 0.44 5.0 × 10−2 16

−17.00 dBm 0.44 1.7 × 10−1 16

1/2
−15.90 dBm 0.50 1.3 × 10−1 16

−14.80 dBm 0.55 4.9 × 10−2 16

−13.69 dBm 0.56 1.5 × 10−5 16

−18.12 dBm 0.53 1.5 × 10−2 8

3/5
−17.14 dBm 0.57 1.3 × 10−2 8

−15.94 dBm 0.61 9.9 × 10−3 8

−18.21 dBm 0.64 1.3 × 10−5 4

−18.20 dBm 0.66 1.0 × 10−1 4

3/4

−17.20 dBm 0.69 8.8 × 10−2 4

−16.01 dBm 0.73 6.4 × 10−2 4

−15.0 dBm 0.77 3.3 × 10−2 4

−0.60 dBm 0.78 2.7 × 10−4 4

−9.17 dBm 0.87 2.9 × 10−2 1

9/10

−10.17 dBm 0.89 2.2 × 10−2 1

−11.24 dBm 0.91 1.2 × 10−2 1

−12.24 dBm 0.92 8.2 × 10−4 1

−13.30 dBm 0.93 3.4 × 10−5 1

TABLE III
NORMALIZED GMI AND OVERALL RATE REQUIRED FOR LDPC AND TCS WITH

DIFFERENT CODE RATES Rc CONCATENATED WITH A STAIRCASE CODE TO

ACHIEVE A BER OF 10−15 AFTER DECODING

Rc Overall Rate GMI LDPC GMI Turbo

1/4 0.24 0.30 –

1/3 0.31 0.37 0.38

2/5 0.38 0.44 0.45

1/2 0.47 0.54 0.55

3/5 0.56 0.64 0.65

2/3 0.63 0.71 0.71

3/4 0.71 0.78 0.79

4/5 0.75 0.83 –

5/6 0.78 0.86 0.86

8/9 0.84 0.91 –

9/10 0.85 0.92 –

show that regardless of the transmit power, the normalized GMI

can indeed be used to predict the post-FEC BER. These results

can be seen as experimental validation of those presented in

Fig. 9.

V. CONCLUSION

This paper studied the GMI as a powerful tool to predict the

post-FEC BER of SD-FEC. The GMI was measured in experi-

ments and simulations, and for all considered scenarios proved
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to be robust. The GMI can be used to predict the post-FEC BER

without actually encoding and decoding data. This prediction

can be done, e.g., by using the results in Table III, which shows

the required normalized GMI for the codes considered in this

paper. Using this table, it is correct to claim that if the measured

normalized GMI in a given simulation or experiment was e.g.,

0.83, there exists a concatenation of an LDPC code and a stair-

case code with overall rate 0.75 which gives a BER of 10−15

after soft-decision decoding.

The pre-FEC BER and MI were also shown to be weak pre-

dictors of the performance of SD-FEC for BW decoders. The

so-called FEC limit is, hence, an unreliable design criterion

for optical communication systems with SD-FEC. On the other

hand, the GMI was found to give very good results for all code

rates, all considered modulation formats, LDPC and TCs, exact

and approximated L-values, and for both linear and nonlinear

optical transmission. We suggest to replace the “SD-FEC limit”

(used for many years with HD decoding and now becoming

increasingly popular with soft decision) with a “GMI limit”,

which is relevant for modern optical communication systems.

This paper considered only noniterative binary decoding.

Different results are expected if a (capacity-approaching soft-

decision) nonbinary decoder or a binary decoder with iterative

detection (i.e., with soft information being exchanged iteratively

between the decoder and demapper) are used. In these cases, we

conjecture the MI to be the correct metric to predict the post-

FEC BER. This comparison is left for future work.
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[6] H. Bülow, and T. Rankl, “Soft coded modulation for sensitivity enhance-
ment of coherent 100-Gbit/s transmission systems,” in Proc. Opt. Fiber

Commun. Conf., San Diego, CA, USA, Mar. 2009.
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