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AbstractÐIn this paper, we propose a new processor framework that supports dynamic optimization. The rePLay Framework embeds

an optimization engine atop a high-performance execution engine. The heart of the rePLay Framework is the concept of a frame.

Frames are large, single-entry, single-exit optimization regions spanning many basic blocks in the program's dynamic instruction

stream, yet containing only a single flow of control. This atomic property of frames increases the flexibilty in applying optimizations. To

support frames, rePLay includes a hardware-based recovery mechanism that rolls back the architectural state to the beginning of a

frame if, for example, an early exit condition is detected. This mechanism permits the optimizer to make speculative, aggressive

optimizations upon frames. In this paper, we investigate some of the underlying phenomenon that support rePLay. Primarily, we

evaluate rePLay's region formation strategy. A rePLay configuration with a 256-entry frame cache, using 74KB frame constructor and

frame sequencer, achieves an average frame size of 88 Alpha AXP instructions with 68 percent coverage of the dynamic istream, an

average frame completion rate of 97.81 percent, and a frame predictor accuracy of 81.26 percent. These results soundly demonstrate

that the frames upon which the optimizations are performed are large and stable. Using the most frequently initiated frames from

rePLay executions as samples, we also highlight possible strategies for the rePLay optimization engine. Coupled with the high

coverage of frames achieved through the dynamic frame construction, the success of these optimizations demonstrates the

significance of the rePLay Framework. We believe that the concept of frames, along with the mechanisms and strategies outlined in

this paper, will play an important role in future processor architecture.

Index TermsÐHigh-performance microarchitecture, dynamic optimization, trace caches.

æ

1 INTRODUCTION

DYNAMIC optimizations techniques are rapidly gaining
the attention of computer systems researchers as an

effective means for boosting application performance. Code

optimizations made dynamically (i.e., while the program is

running) can exploit the stable, possibly phased [26],

behavior exhibited by an application during execution

and thereby utilize information not available to a static

optimizer. Furthermore, new code deployment techniques,

such as dynamically linked libraries, create barriers for

traditional optimizers, but are more amenable to dynamic

optimization.
In this paper, we propose a hardware framework that

supports dynamic optimization. The rePLay Framework is a

microarchitecture that combines a high-performance execu-

tion engine with a programmable optimization engine,

allowing program optimization to occur simultaneously

with program execution. Coupled with the execution

engine is a hardware recovery mechanism that enables the

optimization engine to perform optimizations speculatively.
RePLay consists of five key components:

1. A component called the frame constructor for con-
structing candidate code regions for optimization,

2. A programmable optimization engine for optimizing
these regions,

3. A frame cache for caching these regions on-chip,
4. A component for sequencing between regions, and
5. A mechanism to recover architectural state if

speculatively applied optimizations prove incorrect.

These components are integrated into a processor's fetch
and execution engine, as shown in Fig. 1.

In rePLay, the candidate regions of optimization are
called frames. They are the soul of rePLay. They serve the
same purpose that traces within a trace scheduling compiler
or superblocks within an aggressive ILP compiler serve.
They are the scope in which optimizations are applied.

Frames are logically atomic. They have a single entry point
and a single exit point (execution of a frame starts at a single
instruction and ends at a single instruction). Furthermore,
frames encapsulate only a single flow of control. If any
instruction within a frame executes, all instructions within
the frame execute. A basic block is an example of a frame,
albeit a small one. This atomicity property provides more
flexibility for applying optimizations than if the frame were
not atomic: Instructions within a frame are not control
dependent on one another and can be moved freely within
the frame within the confines of data dependencies.
Atomicity also reduces the complexity of the optimization
algorithms. These algorithms need not consider multiple
paths of execution as there are no side exits, side entrances,
or divergent flows of control within a frame.

To support frame atomicity, the rePLay Framework
includes a hardware recovery mechanism that reverts the
architectural state to the beginning of a frame when it is
detected that a frame does not completely execute (e.g.,
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because an early exit condition was detected). This enables
the rePLay mechanisms to join together and aggressively
optimize basic blocks that are likely to execute together into
a single frame without generating the recovery code
necessary for several other approaches to optimization. In
order for frame-based optimizations to have a significant
impact on performance, frames must consist of many
instructions and span multiple basic blocks. The longer
the frame, the greater the opportunity for optimization and
the greater the boost to overall fetch bandwidth.

In this paper, we make several contributions. First, we
describe the rePLay Framework, including the mechanisms
to create frames, to optimize frames, to sequence between
them, and to recover when frames are incorrectly initiated
(Section 2). Second, we describe and evaluate an effective
dynamic technique for creating long frames that have good
caching properties and very low likelihood of requiring
recovery action (Sections 4, 5, and 6). Third, we present a
sampling of optimizations that are possible within the
rePLay Framework, many of which are most effective when
based on runtime behavior rather than the limited
behavioral information available to a static optimizer
(Section 7).

2 THE REPLAY FRAMEWORK

Dynamic information is beginning to play a significant role
in boosting processor performance. Mechanisms such as
branch prediction, dynamic scheduling, and hardware
memory disambiguation are central to high-performance
processing today. Techniques such as trace caches, value
prediction, and instruction reuse are likely to appear in
tomorrow's processors. All of these techniques leverage the
stable patterns that occur during execution to reduce a
program's running time.

Run-time behavior may exhibit stabilities that are hard to
identify or hard to exploit statically. A compiler can very
effectively capitalize on behavior that is stable across an
entire execution, such as highly biased branches apparent
from profile executions of a program. However, if the
program behaves differently from the way the compiler
expected, optimizations based on expected behavior may
degrade performance. Similarly, phased variations in

behavior during executionÐfor example, a conditional
branch that is highly biased for the first half of the program
and then highly biased in the other direction for the second
halfÐare difficult for a compiler to exploit. Furthermore,
without addressing the cumbersome task of generating
recovery code or relying on hardware support for specula-
tion, compilers can reap only limited benefits from behavior
that is typical but not universal.

The rePLay Framework dynamically identifies stable
runtime behavior and exposes this behavior to a hardware-
based optimizer that performs lightweight code optimiza-
tions on sections of the dynamic instruction stream. The
optimizer operates on regions called frames that consist of
many basic blocks in the original control flow. These
regions are based on the original control flow of the
program and are created by a hardware frame constructor.
Once optimized, these frames are stored in a hardware
cache for low-latency access. While the program executes, a
correlation-based frame sequencer decides appropriate
instances for frame dispatch. Coupled with the frame
execution mechanism is a hardware-based recovery me-
chanism that reverts architectural state to the beginning of a
frame if it is detected that a frame should not have executed.
With this hardware recovery mechanism, the optimizer can
make speculative, potentially unsafe, optimizations that are
based on assumptions about control flow or data values.
This section provides a more detailed overview of each
component and subsequent sections explore the specific
design trade-offs and experiments that motivate rePLay.

2.1 Frame Speculation and Recovery

The central concept of rePLay is the concept of the atomic
region or frame. A frame is similar to a trace in a trace-
scheduling compiler [6] or a block in the Block-Structured
ISA [10], [18]. As explained later, all control dependencies
within a frame are removed, ensuring that all instructions
within the frame are mutually control independent. In
particular, either all instructions in a frame execute or
none of them do. This atomicity simplifies both frame
scheduling and the optimization algorithms used for
dynamic optimization.

Control instructions within a frame are changed to
assertion instructions. An assertion instruction is similar to a
conditional branch in that both test a condition. They are
different, however, in the actions taken after the condition is
tested. The outcome of a conditional branch instruction
determines the address of the next instruction, selecting
either the taken target of the branch instruction if the
condition is true or the instruction following the branch if
the condition is false.

In contrast, an assertion has no effect on the address of
subsequent instructions and has no effect whatsoever if the
condition is true. If the condition is false, the assertion fires,
triggering a recovery action that discards all instructions in
the frame and redirecting control flow to the original
address for the instruction at the beginning of the frame.
Instructions after a given assertion can thus be executed
speculatively, making the assumption that the assertion
condition is true.

When an assertion fires during a frame's execution, the
hardware must roll architectural state back to the beginning

PATEL AND LUMETTA: REPLAY: A HARDWARE FRAMEWORK FOR DYNAMIC OPTIMIZATION 591

Fig. 1. The rePLay Framework integrated into a generic processor

microarchitecture.



of the frame. Such restoration implies that any state
generated during frame execution must be buffered until
all assertions within the frame have executed successfully
(not fired). Once all assertions within a frame have been
checked, state changes generated within the frame can be
committed.

Buffering of architectural state in rePLay is accomplished
using recovery mechanisms similar to those used by
dynamically scheduled processors with speculative execu-
tion. As required by these processors, we require a means to
commit register values and memory writes only once the
associated computation is known to have completed with-
out exception and with no intervening misspeculations.

RePLay requires a reorder buffer-type mechanism to
allow values generated within a frame to be used by
subsequent instructions. Values are kept in the reorder
buffer until it is known that their associated frame commits,
at which point all values that are live-out of the frame
proceed to the architectural register file in a single cycle. If
the frame does not commit, all values corresponding to the
frame (and all values from subsequent frames) are flushed
from the reorder buffer, also in a single cycle. This recovery
action is similar to that required for a branch misprediction.
Because of the potentially high number of values that are in-
flight while executing a frame, rePLay's register recovery
mechanism requires a deeper buffer.

Similarly, store values are kept in a pending store buffer
until the corresponding frame is committed. Again, a
dynamically scheduled processor utilizes a similar mechan-
ism to recover from branch mispredictions, allowing
misspeculated stores to be flushed in a single cycle. The
corresponding rePLay mechanism requires a larger number
of store values to be buffered: potentially, one for every
store instruction in a frame. Alternatively, the number of
store instructions in a frame can be limited during
construction to accommodate the physical size of the
pending store buffer.

2.2 Frame Construction

The frame constructor uses the committed instruction

stream from the execution engine to build frames for

optimization. Its objective is to create long frames that span

many basic blocks. Long frames increase the potential for

finding optimization opportunities not exploited at compile

time. As mentioned previously, branches and other control

instructions at the boundaries between basic blocks in a

frame are converted to assertion instructions. In rePLay,

branches are converted via a technique called branch

promotion.
With branch promotion [21], branches that behave in a

highly regular manner are dynamically promoted to

assertions. Many different schemes for promoting branches

to assertions are possible. In this paper, we investigate a

hardware-based scheme in which branches that have gone

to the same target for n consecutive previous occurrences

are candidates for promotion. The promotion process can be

applied not only to conditional branches, but also to indirect

branches and return instructions by generating appropriate

assertion conditions based on the expected target addresses.
Our frame construction algorithm is quite simple: As

instructions are retired by the execution engine, they are

passed to the constructor. The constructor adds each

arriving instruction into a frame construction buffer,

causing the pending frame to grow. Whenever a control

flow instruction is encountered that is not promoted into an

assertion, the pending frame is terminated. If a newly

formed frame is large enough, it is passed to the

optimization engine for optimization. With this technique,

only highly biased branches are incorporated into frames;

those that are not strongly biased form the terminal

branches of frames.
Fig. 2 shows how original control flow is reorganized

into a frame. For the frame ABCDE, a firing assertion causes

program control to return to the original block A. In such a
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Fig. 2. Construction of a frame. Although the original code spans several branches, the resulting frame has only a single entry and a single exit.



case, no instruction in the frame is committed to architec-
tural state.

Frames may contain taken branches from the original
code. In other words, the frame construction process
dynamically remaps nonsequential control flow into
straight-line code in a manner similar to trace construction
within a trace cache mechanism or the dynamic code
realignment mechanism proposed by Merten et al. [19]. The
frame ABCDE in the example above is stored as a
sequential block of instructions despite the presence of
nonsequential blocks in the original code.

2.3 Optimization Engine

Frames generated by the frame constructor are dynamically
optimized by an optimization engine. The optimization
engine is a flexible datapath that can be software-
programmed using its own native instruction set architec-
ture and separate local memory. The optimization engine
also has access to the execution state (including micro-
architectural state) of the program being optimized, such as
branch behavior, load-store dependence information, or to
intermediate data values.

Typical optimizations performed by the optimization
engine include classical compiler optimizations, extended
basic block optimizations [11], and various optimizations
performed by other dynamic optimizations systems [1]. The
programmability of the optimizer allows for optimizations
to be tailored toward an application or toward a particular
section of code.

Furthermore, the coupling of dynamic optimizations,
execution rollback mechanisms, and rePLay's assertion
instruction architecture allows for low-latency implementa-
tion of speculative optimizations: optimizations that may
not be valid in every operating scenario. For example, an
optimization that speculates on input data values can be
performed. These optimizations prespecialize a frame for
particular input values (or subset of input values) that are
detected to be stable at runtime. For each assumed value, a
data assertion is added to the frame to ensure the live-in
value is the expected value. This type of optimization draws

upon the same phenomenon that drives value prediction
and computation reuse [4], [27]. Examples of both simple
optimizations and aggressive value speculation for pointer
aliasing appear in Section 7. Other classes of possible
optimization include optimizations that tune the instruction
stream to the details of the execution microarchitecture,
such as instruction scheduling and instruction placement
for clustered functional units.

2.4 Frame Cache

Frames processed by the optimization engine are stored in a
frame cache. The frame cache is similar to a trace cache
except that it delivers very long sequences of instructions,
spanning multiple traditional cache lines. For example, a
particular frame might consist of 80 instructions, span five
cache lines (at 16 instructions per cache line), and take five
cycles to be fetched and issued on a 16-wide fetch/issue
processor. The frame cache must support frames of varying
sizes and must prevent a fetch from starting from the
middle of a frame. Furthermore, the frame cache must treat
each cached frame as an atomic entity: If any portion of a
frame is to be evicted, all of it must be evicted. This caching
mechanism is described in more detail in Section 6.

2.5 Sequencer

The sequencer has the difficult task of chaining the fetch
mechanism between one frame and the next. As frames are
created dynamically, they must be added to the fetch
stream. As is the case with the fetch engines of all pipelined
processors, the sequencer operates ahead of the execution
engine and, thus, must speculatively select frames for
fetching. The penalty associated for incorrectly initiating an
optimized frame may be quite severe, depending on the
depth of the firing assertion within the frame's dependency
tree. The rePLay Framework uses a speculative sequencing
mechanism to predict when a frame should be initiated and
when it should not. For example, consider Fig. 3. At block Y
in the original control flow, there are two choices: block Z
and block A. A conventional branch predictor selects one of
the two targets based on information collected about past
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program behavior. With rePLay, a third choice is possible:
the dynamically constructed frame ABCDE. The rePLay
sequencing mechanism consists of a conventional branch
predictor, which selects between A and Z, and the frame
sequencer, which selects between the fetch of block A or
block Z versus an initiation of the frame ABCDE. Section 5
examines this mechanism in more detail.

To sustain adequate instruction fetch bandwidth, the
rePLay Framework uses an instruction delivery mechanism
consisting of a standard instruction cache or trace cache to
supplement the frame cache. Based on the sequencer
mechanism described above, the fetch address is directed
to either the conventional caches or to the frame cache. If it
is directed to the frame cache and the frame cache responds
with a miss, the conventional caches are accessed in a
subsequent cycle. If the frame cache responds with a hit, a
frame streams out of the frame cache in fetch-width sized
packets over the next few cycles.

3 RELATED WORK

Almost all of the previous work on dynamic optimization
has centered around software systems where the dynamic
optimizer is part of the runtime system [15], [1], [8]. For
many schemes, such as Dynamo [1] and Transmeta's Code
Morphing System [15], the original program runs under
control of a software interpreter. The interpreter gathers
information about the program's runtime behavior and
builds optimized regions. When a PC is encountered for
which an optimized region exists, the optimized code is
directly executed.

All software schemes suffer from diminished gains due
to optimization overheads. Essentially, while the optimizer
is running, the application is not and, therefore, the latency
of the optimizer (and interpreter, if it exists) is exposed in the
execution time of the application. Furthermore, probing
latency is incurred in order to collect runtime information.
Also, the entire optimization system uses the same caches
and translation lookaside buffers as the running program,
exacerbating memory systems performance. RePLay offers
the potential of reducing this overhead by moving the
portions of dynamic optimization process into hardware.
Furthermore, rePLay's hardware recovery scheme enables
the optimizer to perform speculative optimization without
requiring recovery code.

A few, preliminary investigations into hardware support
for dynamic optimization have been made [3], [5], [7], [20].
Because of the limited scope (i.e., small regions) to which
the optimizations were applied in these previous studies,
many hardware optimization schemes showed only modest
gains.

RePLay is an evolution of these hardware schemes. It
builds upon several recent developments in computer
microarchitecture, specifically that of trace caches, correla-
tion-based branch prediction, value prediction, and com-
putation reuse, in order to enlarge the scope of optimization
and to create opportunities for speculative optimization.
The programmable optimization engine has the potential of
allowing the optimization techniques used by software-
based dynamic optimizers to be applied with less overhead.

Much of this work builds upon previous trace cache
research [24], [25], [22], in particular, that of branch
promotion [21] and that of dynamic trace optimizations
[7], [14], [3], and also that of the trace predictor [13]. Similar
in nature to this work is the DIF cache [20], which
dynamically creates statically scheduled instruction words.

Frames bear resemblance to other types of optimization
regions. Superblock [9] and hyperblock formation [16], and
trace scheduling [6], collapse sequences of frequently
executed blocks into a straight-line, possibly predicted,
code entity, relegating the infrequent blocks to side exits.
Frames are different in that they contain no side exits and no
internal control flow. Furthermore, the hardware recovery
mechanism allows frames to be scheduled and optimized
without requiring recovery code for misspeculations.

While not examined in this study, the frame construction
hardware can direct its efforts to hot regions of execution,
thereby focusing the efforts of the optimizer to frames that
have high probability of repeated execution. Merten et al.
[19] have demonstrated how hot-spot detection can effec-
tively boost instruction fetch bandwidth by dynamic code
realignment of hot execution regions.

4 FRAME CONSTRUCTION TECHNIQUES

A critical component of the rePLay Framework is the frame
construction mechanism. The objective of frame construc-
tion is to create atomic regions consisting of many
instructions that are very likely to execute completely. The
resulting single-entry, single-exit, single-path semantic
allows the runtime optimizer to perform very aggressive
optimizations upon these constructed frames.

Frames can span many basic blocks of a program. To
prevent branches that terminate these blocks from also
terminating frames, the rePLay frame constructor dynami-
cally converts each highly biased branch into an assertion
that generates a recovery action if the original branch
switches direction. See Fig. 2 for an example. The target
block of the original branch appears inline with the
assertion. Furthermore, because of rePLay's hardware-
assisted recovery mechanism, instructions within a frame
are not control dependent on any of the frame's assertions.
The promotion of branches to assertions can be applied to
all types of multitarget branches (i.e., conditional, indirect,
returns).

The frame construction mechanism is simple: Instruc-
tions are added to the frame constructor as they retire. The
pending frame continues to grow as long as branches are
promoted. Once a nonpromotable branch is encountered,
the pending frame is considered complete and is handed off
to the optimizer.

The promotion mechanism is also simple: The construc-
tor accesses an entry for each completing branch in a branch
bias table. The bias table is a hardware structure that counts
the number of consecutive times a branch has had the same
outcome. Each time a branch has the same outcome as
previously, the counter field of the bias table entry is
incremented. Once the counter reaches a threshold, the
branch is promoted into an assertion. In other words, the
bias table promotes a branch if it has n (where n is the
counter threshold) outcomes in the same direction. Previous
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branch prediction research has demonstrated that such a
technique is an effective way to identify highly biased
branches [2].

We also demote assertions back into branches when we
detect that their behavior has changed. As every assertion is
committed, it also is checked in the branch bias table (using
its original basic block address) to determine if it should be
demoted. While many demotion schemes are possible, we
adopt one in which an assertion is demoted when it fires
twice consecutively. This policy allows a branch at the end
of a loop to remain as an assertion even though the singular
fall through case causes the assert to fire. A demoted
assertion causes the frame containing it to be invalidated in
the frame cache.

The frame constructor's ability to identify candidate
branches for promotion is greatly enhanced with the use
branch correlation, as shown later. Fig. 4 is a diagram of the
branch bias mechanism augmented with path history. Path
history is XORed with a branch's address in order to
generate the bias table index. This way, a specific static
branch is divided into multiple instances based on the
control path leading up to the branch.

The starting path history of each frame (i.e., the
committed history at the first block in the frame) is kept
with each frame. This history is essentially a prefix that
identifies the instance of each promoted branch within a
frame. For example, if the frame history of frame ABCDE is
XYZ, XYZ was used to decide whether or not to promote
branch A, YZA was used to decide the promotion of B, and
so forth. The starting history XYZ forms a context for the
frame and specifies when the frame should be invoked.
Whenever the current history contains XYZ and the current
fetch address is A, the frame sequencing mechanism
attempts to fetch the frame ABCDE.

The crux of this frame construction technique hinges on
the observation that a branch can be separated into
instances based on the path leading up to the branch. Once
separated this way, a greater number of branches tend to
exhibit biased behavior. This is the same phenomenon
exploited by two-level branch predictors. Said another way,
the outcome of a branch tends to be highly correlated to the

outcomes of branches, or path, before it. The history used in
the promotion decision helps separate branches into these
biased instances.

Larger frames are beneficial for the rePLay Framework.
Larger frames spanning more basic blocks present the
rePLay optimizer with a greater opportunity for performing
effective optimizations. Larger frames also increase the
processor fetch mechanism's ability to supply instructions
at a high rate. For the measurements presented in the
remainder of the paper, the frame constructor only
maintains frames containing five or more dynamic basic
blocks or containing 32 or more instructions. Smaller frames
are discarded. Also, to limit the space required for a frame
in the hardware frame cache, each frame has a maximum
limit of 256 instructions.

4.1 The Ideal

In this section, the rePLay frame construction mechanism is
evaluated on three bases: frame length, coverage of the
instruction stream, frame completion rate.

Fig. 5 demonstrates the potential of this frame
construction technique by showing average frame size
in instructions on the eight SPECint95 benchmarks. All
measurements were taken on a trace-driven simulator
(based on the SimpleScalar tool set) simulating the Alpha
AXP ISA. All benchmarks were compiled using the
Compaq/Digital C Compiler V3.5 at the maximum
optimization level (including loop unrolling). Profile-
guided code placement was used to reduce the impact
of taken branches. Also, link-time code placement optimi-
zations using the OM executable editor were performed to
further improve the code-layout. In [23], we present a more
condensed version of the measurements presented in this
paper on the SPEC2000 benchmarks.

Fig. 5 demonstrates the average size of frames in
instructions using a branch bias table of unlimited size
(i.e., interference-free). The horizontal axis of the graph
represents the number of branch targets incorporated into
the path history. The path history is used to index into the
branch bias table to determine whether a branch should or
should not be promoted.
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Also shown on these graphs is the average frame size if a

simple static predictor were used in place of the dynamic

bias table. Here, the static mechanism classifies a branch as

promoted if it has a 95 percent bias toward a particular

target during the profile run. The mechanism is idealized

because the measurement data set is the same as the profile

data set. All branches are considered to be promotable,

including indirect jumps and returns.
The data presented in these graphs is promising.

Whether generated by a static means or by using the
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dynamic bias table, frames can be large. The dynamic
means is able to make use of the additional branch
characterization provided by path history to further
increase average frame size. On average, for a history
length of 6, a frame consists of about 106 instructions.

Branch correlation effects can be incorporated into the
static scheme by using the code replication techniques
described by Young and Smith [29]. They demonstrate that
compile-time branch assumptions can be made more
accurate by considering the paths leading up to a branch.
Blocks can be specialized for the particular paths in which
their behavior is more regular. Such a scheme, however, is
not able to adapt to phased behavior as easily as the
dynamic scheme.

One phenomenon that frame construction may be
capturing is simple loop unrolling. For all data presented
thus far, the loop unrolling option was enabled when the
benchmarks were compiled using the Compaq Alpha
compiler. Frame construction was able to boost atomic
region size beyond the loop unrolling performed by a
production C compiler.

As the trends demonstrate, history is an important
ingredient for enlarging frames. History helps the promo-
tion mechanism refine its classification of branches. Fig. 6
isolates the effectiveness of Branch Promotion (with n � 32)
on the benchmark perl. In this graph, each dynamic branch
is classified either as a normal branch or an assertion that
did not fire or an assertion that fired. In this graph, each bar
represents a different path history length. As the amount of
history information is increased, the number of branches
that appear as assertions increases. Furthermore, the fault
rate of these assertions is extremely low. With no history,
approximately 65 percent of all dynamic branches are
classified as assertions. With a path history of length 6,
85 percent are classified as assertions. Fault rate is below
1 percent of all cases. The net effect is that branch
promotion using path history removes 85 percent of the
branches (conditional, indirect, returns) from the dynamic
instruction stream. While we only present the data for the
benchmark perl, all other benchmarks exhibit similar
behavior.

The next experiment measures the coverage of the
dynamic instruction stream using the described frame
construction technique. In essence, this experiment mea-

sures the fraction of the instruction stream delivered by a
perfect frame cache that is capable of caching every
constructed frame. Whenever a new frame is created, the
perfect cache is checked. If the frame exists, the correspond-
ing instructions are tallied as covered. If the frame does not
exist, those instructions are not covered. With the caching
effects factored out, the effects of the frame construction
algorithm can be more closely examined. For example, if the
frame constructor is creating very small frames (say, if
branches are rarely promotable) that rarely exceed the five
basic block/32 instruction minimum size threshold, a small
fraction of the instruction stream will be covered.

Fig. 7 shows the fraction of the dynamic instruction
stream covered by frames created using this technique. The
coverage attainable by the ideal static mechanism is also
provided. Again, the interference-free dynamic mechanism
is able to capture a larger fraction of the instruction stream
than the ideal static mechanism. With the dynamic
mechanism, at history length 10, almost 90 percent of the
dynamic instruction stream on average is covered by
frames. With the simple static mechanism, average frame
coverage is around 54 percent.

In Table 1, we present data that demonstrate that frames
almost always completely execute. The table lists the
percentage of executions where a frame completely exe-
cuted once it was initiated, i.e., no assertions within that
frame fired. When an assertion fires, the corresponding
frame is flushed. Essentially, any progress made in
executing instruction within the frame is discarded. For
this reason, assertions can be costly and, therefore, high
frame completion rates are desirable. The data is presented
for all three promotion thresholds, with the path history
length at 6. In general, lowering the threshold increased the
assertion rate, but generated frames that were larger and
covered more of the instruction stream. Increasing the
threshold lowered assertion rate, but decreased frame size
and coverage.

4.2 Finite Hardware

We now demonstrate that a straightforward finite-storage
implementation of the construction mechanism can also
achieve very good results. Fig. 8 shows the average frame
length and Fig. 9 shows the percent coverage of the
dynamic instruction stream using a 64KB direct-mapped
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branch bias table for conditional branches. Each entry in

this table is 8 bits, allowing 64K branch instances to

concurrently reside in the table.
The degradation from the ideal is substantial in some

cases, minor in others. An interesting note: As path history

is increased for gcc and go, coverage begins to decline. This

is due to the shear number of control paths followed by

these benchmarks. Increasing history results in a steep

increase in the number of paths needed to be maintained

within the bias table. For this reason, we pick a history

length of 6 as our base for further evaluation. This path

history length strikes a good balance between the positive

and negative effects of longer path history.
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Fig. 7. The percentage of dynamic instructions that occur within a frame identified by this technique.



We also use a 10KB direct-mapped bias table for
promoting returns and indirect branches. The main
difference between the conditional branch bias table and
the indirect branch table is that each entry contains a 32-bit
target along with an 8-bit bias counter (the table stores up to
2K branch instances). The promotion signal is given only if
the same target is used a threshold number of times.
Assertions for indirect branches require that the promoted
target be encoded along with assertion.

For both bias table sizes, path history is hashed with the
address of the current branch in order to form an index into
the corresponding tables. We use a path history hashing
technique similar to that described by Stark et al. [28]. The
technique maintains path history by rotating the old history
prior to XORing in a new target. This way, the history
pattern encapsulates the ordering of targets within the
history, while allowing for a larger number of bits of the
target address to be expressed in the history. Fig. 10
demonstrates how this mechanism works conceptually. In
this figure, n targets are hashed together to form an m-bit
path history. Note that this diagram is a conceptual
diagram; the actual implementation of this hashing scheme
can be pipelined over several cycles. A pipelined version is
provided by Stark et al.

Finally, the frame completion rates using this 64KB bias
table (accessed using a path history of six branch targets)
are shown in Table 2. The real completion rates are about
the same as those attainable by ideal hardware. To
summarize the data: With the 64KB+10KB finite bias table,
at a history length of 6 and a promotion threshold of 32, we
attain an average frame size of 96 instructions, with a
coverage of 82 percent and a completion rate of 98 percent.
Recall that the frame construction mechanism is only
capturing frames that span at least five basic blocks or are
at least 32 instructions long. Frames are truncated at the
256th instruction.

Three things need to be noted here. First, the frame
constructor's bias table mechanism does not exist in the
front end of the processor, therefore, single-cycle access of
the bias tables is not essential. The bias tables exist in the
frame constructor, where latency is likely not a major factor
of performance. The bias table, however, does require
supporting the average branch execution bandwidth of the
processor, i.e., if the execution engine completes three
branches each cycle on average, the promotion hardware
needs to support three lookups per cycle. Second, since the
promotion information is maintained on the completed

branch stream, checkpointing of the associated structures is
not required. Third, many techniques developed to reduce
the interference within dynamic branch predictors can be
applied here to increase the effectiveness of the bias table
mechanism toward that of the interference-free case. We
have only explored a simple bias table scheme to demon-
strate that large frames can be formed effectively using
dynamic information.

5 SEQUENCING MODEL

We only want to initiate frames at the right time. The frame
execution percentages of Tables 1 and 2 indicate that, once a
frame is correctly initiated, it has a very high chance of fully
executing. However, there are also penalties associated with
incorrectly initiating a frame in the first place (similar to the
penalties of a regular branch misprediction). To help avoid
these penalties, we use a sequencing technique that predicts
when a frame should be initiated versus when a conven-
tional fetch should be performed.

As mentioned in Section 2, the frame sequencing
happens alongside a conventional branch predictor that
sequences through the original control flow of the program
(or sequences among traces if a trace cache is used).
Whenever the conditions for sequencing to a frame are
present, the frame sequencer overrides the prediction
generated by the conventional branch predictor.

The sequencer datapath is shown in Fig. 11. A selection
mechanism selects between the conventional mechanism
and the frame predictor. The selector mechanism can be a
history-based mechanism similar to the selector used for a
hybrid branch predictor [17] or can be a confidence-based
mechanism [12].

The frame predictor works similarly to the trace
predictor described by Jacobson et al. [13]. Each entry in
the table contains a frame starting address. Entries are
accessed using a hashed path history containing the current
fetch target. Whenever a frame is added to the frame
cache, the frame predictor is updated by adding the
frame's address at the entry corresponding to its path
history (i.e., the path history used to determine whether
or not to promote the first branch in the frame). For
example, say frame ABCDE is just created and optimized
by the rePLay pipeline. This frame also has an associated
path history: If the stream of retiring target addresses was
XYZABCDE, a hash of the addresses XYZ forms the path
history of the frame ABCDE. The frame predictor is
updated at the entry corresponding to the hash of XYZ.
This way, whenever the current fetch target is Z and the
path history is ...XY, then, in theory, the fetch sequencer
outputs the address for frame ABCDE.

For our initial evaluation, we present the effectiveness of
a hardware implementation of the frame predictor assum-
ing the selector mechanism operates ideally. We measure
frame predictor accuracy by comparing the predicted frame
with the next region of instructions encountered in the
dynamic instruction stream. If the next region is a frame, the
frame addresses are compared. If they match, the frame
predictor is tallied a correct prediction. Otherwise, an
incorrect prediction is assessed. If the next region of the
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TABLE 1
The Average Frame Completion Rate at Path History Length = 6



instruction stream is not a frame, the frame prediction is

dropped.
The results in Table 3 show the effectiveness of a frame

predictor of 16K direct-mapped entries using four, six, or

eight previous path targets (one of which is the current fetch

address) hashed together into a 14-bit index. For all runs,

branch bias tables of 64KB + 10KB (as described in

Section 4.2) are used for frame construction with promotion

threshold of 32.
One thing must be noted here. The low rates of frame

prediction reflect the effectiveness of the frame construc-

tion algorithm. With the frame constructor, a large

fraction of the regularly behaving branches have been

collected into frames. The frame predictor's job (and the
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Fig. 8. The average frame size using a 64KB bias table.



branch predictor's as well) is to now predict the most

difficult branches within the program. This difficulty is

reflected in the rather low prediction rates shown in

Table 3. However, because a significant fraction of branches

have been removed from the dynamic instruction stream

and converted into assertions, the actual number of

predictions required by the frame predictor and branch

predictor is significantly reduced to approximately 1/4 of

the original dynamic branch count.

6 THE FRAME CACHE

We have now demonstrated that frames span many

instructions and, if perfectly cached, can cover a large
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Fig. 9. The percentage of dynamic instructions that are covered by frames identified using a 64KB bias table.



fraction of the dynamic instruction stream. In this section,
we establish the caching effectiveness of frames with finite
sized caches.

A frame cache is essentially a trace cache with the added
ability of frames to span multiple cache lines. For instance,
if the frame cache had a line size of 16 instructions, a frame
containing 80 instructions spans five cache lines. These five
cache lines are read from the cache one line at a time, in five
consecutive cycles. To enable this pipelining, all lines
associated with a particular frame are tagged with the
same addressÐthe starting address of the frame. The
individual lines of a frame are stored in subsequent sets
of the cache. For example, if a frame's address indicates that
the initial line of the frame maps to index 30, subsequent
lines are found in set 31 onward. The last line of the frame is
marked with a termination bit to indicate that the output of
the sequencer is used to initiate the next fetch. Frame
replacement must occur atomically, i.e., if any line of the
frame is to be evicted, the entire frame must be evicted. This
happens by using the tag of a line to be evicted to find the
first line of the frame. Once the initial line is found, the
entire frame can be evicted. A by-product of this scheme is
that writes to the frame cache can take many cycles. A major
benefit of this scheme is that the frame cache can effectively
store both long frames and short traces without wasting
cache storage space.

To measure the effectiveness of caching frames, we use

the two metrics used in Section 4: frame length and frame

coverage. Frame length is simply a measure of the average

number of instructions contained in frames fetched from

the frame cache. Frame coverage is the percentage of the

dynamic instruction stream covered by frames fetched from

the frame cache. Here, a miss in the frame cache results in

no frame fetch.
Fig. 12 displays the average frame length for various

cache sizes. Here, the frame cache is measured in the

number of frames it can hold. Since frames can be of

different sizes, this is not a direct measurement of the cache

size, but a general indicator of caching effectiveness. In

other words, the cache we measured is able to store an

entire frame, regardless of its size, in a single entry. These

entries are organized in a 4-way set associative manner. Our

objective here is to show that frames do exhibit locality and

can indeed be cached effectively. The effective size of a

frame depends on the optimizations that are performed

upon it. Optimizations are likely to reduce the size of a

frame from its original length. As we are not currently

performing optimizations upon the frames we create,
measuring cache space in bytes would portray the benefits

of rePLay too conservatively.
Fig. 13 shows the frame coverage using various sized

frame caches. For all these measurements, a 64KB bias table

(with 10KB bias table for indirect branches) is used for

frame construction, accessed using a path history of

length 6. The promotion threshold is set to 32. These graphs

demonstrate that even with fixed hardware, we get a

substantial coverage of the instruction stream with large

frames.
Finally, in order for the rePLay Framework to be

effective, frames must have a high completion rate. Table 4

shows the frame completion rates, i.e., the probability of

completing a frame once it has been started, given various

sized frame caches. The rates are high, considering that an

average frame contains the equivalent of six conditional

branches. The completion rates using fixed size caches are

marginally smaller than with perfect caches (see Table 1).
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Fig. 10. A conceptual diagram of the path history generation scheme.

TABLE 2
The Average Frame Completion Rate at

Path History Length = 6, Using a Bias Table of 64KB



For a configuration consisting of a frame cache capable

of caching 256 frames, a 64KB conditional branch bias

table, 10KB indirect branch bias table, 16K entry frame

predictor, all using a path history length of 6, we achieve

the following results: average frame size of 88 instruc-

tions, with these frames covering an average of 68 percent

of the dynamic instruction stream, an average frame

completion rate of 97.81 percent, and a frame predictor

accuracy of 81.26 percent.

7 SAMPLE FRAME OPTIMIZATIONS

As apparent from the preceding sections, dynamic frame

construction is a powerful tool for partitioning the instruc-

tion stream into more predictable pieces. In this section, we

consider two typical frames generated by executions of

SPEC95 benchmarks on rePLay and discuss potential

optimizations for these frames. As the design of the rePLay

optimization engine is still open, we select frames that offer

fairly obvious opportunities related to interprocedural

optimization and dynamic loop unrolling. The optimization

engine will analyze frames more carefully and system-

atically and will uncover opportunities less obvious to the

untrained eye. By varying the aggressiveness of the

optimizations between the two sample frames, this section

provides qualitative insight on the potential value of frames

in improving control-related performance.
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Fig. 11. The Frame Sequencer for the rePLay Framework.

TABLE 3
Accuracy of a 16K Entry Frame Predictor

Fig. 12. The average size of a cached frame with varying cache sizes.



7.1 Memory Allocation Example

Fig. 14 details the first frame, a segment of memory
allocation code from gcc, in unoptimized and optimized
forms. The format is pseudoassembly code based on Alpha
instructions. This frame was the one most frequently
initiated during an execution of gcc on the rePLay Frame-
work (256 entry frame cache, 64KB + 10KB bias table,
16K entry frame predictor). During the execution, rePLay
initiated the frame 17,942 times and completed it
17,900 times, a completion rate of 99.77 percent. The frame
represents a little more than 0.4 percent of all dynamic
instructions in the execution.

The left column of the figure lists a sequence of
41 instructions corresponding to the tail end of a call to
alloca. The frame begins in malloc once an appropriate
hash bucket has been chosen for an allocation. Such buckets
must be refilled periodically, but are typically nonempty.
The function unlinks a chunk of memory from the bucket
and fills in a private header, then returns to its caller,
xmalloc. xmalloc checks the return value, which is
always acceptable, as the return (instruction 21) never
returns NULL. xmalloc next returns to alloca, which
fills in a private header and returns an adjusted pointer,
ending the frame.

A simple scan of the frame reveals that only three
registers are live into the frame: gp, the global data pointer;

sp, the stack pointer; and s3, the index of the memory
allocation hash bucket to be used. Many other registers1 are
overwritten without use. The return value (v0) and stack
pointer (sp) are live out of the frame, as are s0, s1, s2, and s3.
Considering only the instructions in the frame, registers ra,
t0, t1, t5, t6, t7, and t11 must also be treated as live out of the
frame, although they are not preserved across C function
boundaries. In total, the frame reads three registers and
writes 13.

The right column in the figure illustrates a few
straightforward optimizations: Superfluous register restore
instructions are eliminated, branches and returns are
changed to assertions, and stack pointer arithmetic is
condensed into a single operation. Optimizations related
to register naming and scheduling were not performed,
although some are obvious: Renaming register ra to s0 in
instructions 06-10 eliminates false dependencies with later
instructions and rewriting instruction 13 to add to t7 after
04 reduces the dependency height of the frame, although
another scratch register (or a recalculation) must be used to
avoid changing t7's value out of the frame. Finally,
instruction 23 can be removed, as a value of 0 generates
an exception in instruction 07.

7.2 Data Copying Example

Fig. 15 shows unoptimized and aggressively optimized
versions of a second sample frame, a piece of memory copy
code from compress. Of frames exhibiting character akin to
loop unrolling (i.e., with a repeated component), this frame
was the one most frequently initiated during an execution
of compress on the rePLay Framework described in
Section 7.1. During one execution of compress, rePLay
initiated and completed the frame 25,671 times, a success
rate of 100 percent. The frame represents more than
2.9 percent of all dynamic instructions in the execution.

The frame corresponds to part of a basic block in the
output function in which decompressed data are copied to
an output buffer. The left column of the figure lists the
unoptimized instructions, a total of 136 instructions includ-
ing an 8-instruction preloop component and an iteration of
16 instructions executed eight times. The number of bytes
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Fig. 13. The coverage of the instruction stream using a fixed size frame cache.

TABLE 4
The Avarage Frame Completion Rate at

Path History Length = 6, Using a Bias Table of 64KB,
Using Various Sized Frame Caches

1. Registers s0, s1, s2, t0, t1, t5, t6, t7, t11, and v0 are all overwritten.



copied by the loop depends on the current code length, but

is always nine or more, thus the frame never faults.
An analysis of this frame is both more complex and more

rewarding. The live input registers are again three: gp, the

global data pointer; v0, the number of bytes to copy; and t5,

the buffer from which bytes are to be copied. The frame

overwrites a1-a5, t3, t6, and t7 without reading them and

changes v0 in the loop iteration. Register inputs to the loop

include a4, a pointer to the storage location for the pointer

to the destination buffer; t3, the number of uncopied bytes;

and t6, a pointer to the current source byte. Potentially live

output registers include all those that the frame overwrites

or changes (a1-a5, t3, t6, t7, and v0). Overall, the frame reads

three registers and writes nine.
Pointer analysis is one of the more difficult aspects of

optimization and it remains a stumbling block for frame

optimization. However, we can augment optimized frames

with assertions to support likely but unprovable pointer

aliasing relationships. For example, in addition to the control

assertion that the frame requires at least eight bytes to copy

(instruction 08), we assert the following: The destination

does not overlap forward to the source (instructions 09-10),

the source bytes do not overlap with the storage for the

destination buffer pointer (instructions 11-13), and neither

do the destination bytes (instructions 14-16).
Leveraging these assertions, the optimization engine can

rewrite the Alpha byte manipulation instructions as

unaligned quad-word manipulations, reducing eight itera-

tions to a single load-store combination (instructions 19-

33). The effect of this optimization is to reduce the number

of instructions required for the frame from 136 to 41, a

factor of more than three. Although the magnitude of this

benefit is enhanced by the fortuitous length of the sample

frame (we selected it based solely on frequency and its loop-

unrolling nature), the optimization is not limited to frames

with exactly eight iterations. More or fewer iterations can be

grouped into multiple or smaller (e.g., 32-bit word) load-

store combinations, generally with a significant savings in

dynamic instruction count. The optimized form shown in

the figure also makes no attempt to optimize register

allocation or instruction scheduling, but rather breaks the

instructions into conceptual blocks to improve readability.

For the execution discussed here, optimization of one frame

reduces the total dynamic instruction count by 2.1 percent.
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Fig. 14. A sample frame based on memory allocation code from the SPEC95 gcc benchmark. The left column is the unoptimized frame. In the right

column, some instructions have been eliminated, modified or replaced (primed), or adjusted to reflect the reassociation of stack pointer

manipulations (marked with ªsº).



7.3 Summary

This section has presented a range of possible optimizations
on frames, from simple single-pass elimination of redun-
dant and useless instructions to value speculation to
eliminate pointer aliasing. We believe that the former class
of optimizations, although fairly simple and straightfor-
ward, can provide substantial benefits when applied to
large regions of code. The dynamic identification of the
control path allows instructions intended for alternative
paths or for the possibility of multiple paths to be
eliminated. Register spill code for unexecuted code, for
example, can be transformed to stores or eliminated entirely
in some cases. Finally, in the case of unoptimized code,
many of the optimizations normally performed by a
compiler can be handled by rePLay.

The more aggressive class of optimizations is perhaps
even more promising. Use of hardware-based speculation
to exploit high-probability (or low-probability) relation-
ships between pointers passed into a frame can result in
very effective optimizations, as demonstrated by the
memory copy example. A similar technique can be
employed to capitalize on predictable data values. As the
optimization architecture will contain programmable

elements, interaction with compilers and profilers to further

improve the focus and impact of these optimizations is also

possible.

8 CONCLUSION

We have described a new hardware framework for

enhancing application performance by using dynamic

optimizations. The rePLay Framework centers on the

concept of a frame, a logically atomic sequence of

instructions drawn dynamically from an executing pro-

gram. The rePLay mechanism allows a programmable

optimization engine to make speculative optimizations

upon frames, such as ones based on assumptions about

control flow behavior or data values. In the unlikely event

that these assumptions are incorrect, a hardware-based

recovery mechanism rolls back state to the beginning of a

frame. This coupling between a hardware-based optimizer

and recovery mechanism can potentially reduce the over-

heads suffered by software-based dynamic optimizers.
These frames are typically much larger than the regions

considered by previous work on dynamic optimization.

Branch promotion, in particular, plays a key role in the

606 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 6, JUNE 2001

Fig. 15. A sample frame based on code byte copying from the SPEC95 compress benchmark. The loop body appears eight times in the frame. With

an aggressive optimization engine and pointer aliasing assertions, the frame can be reduced from 136 to 41 instructions, as shown on the right.



rePLay frame construction strategy. Once rePLay has
constructed a potentially useful frame, the frame undergoes
online optimization and is stored in a frame cache.
Branches, returns, and indirect calls are transformed into
instructions that assert the prediction implied by the linear
instruction sequence in the frame. The rePLay sequencer
then fetches and initiates the frame when the branch path
history indicates a high likelihood of completion.

A rePLay configuration with a 256-entry 4-way set
associative frame cache, a 64KB direct-mapped conditional
branch bias table, a 10KB direct-mapped indirect branch
bias table, 16K entry frame predictor, and a path history
length of 6, achieves an average frame size of 88 instructions
with 68 percent coverage of the dynamic instruction stream,
an average frame completion rate of 97.81 percent, and a
frame predictor accuracy of 81.26 percent. These results
soundly demonstrate that the frames upon which the
optimizations are performed are large and stable.

Using the most frequently initiated frames from rePLay
executions as samples, we highlighted possible strategies
for the rePLay optimization engine. Many traces contain
interprocedural linkage that can easily be stripped away to
reduce dynamic instruction count. Loop unrolling and
reoptimization based on dynamic iteration counts also
seems promising. Finally, the use of assertions about
infrequent pointer aliasing can significantly improve the
level of frame aliasing conditions that ever occur, the frame
faults and normal instruction execution resumes. Coupled
with the high coverage of frames achieved through the
dynamic construction approaches outlined in earlier sec-
tions, the success of these optimizations demonstrates the
significance of the rePLay Framework.
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