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Abstract:  Our brains at rest spontaneously replay recently acquired information, but how this 

process is orchestrated to avoid interference with ongoing cognition is an open question. We 

investigated whether replay coincided with spontaneous patterns of whole brain activity. We 

found, in two separate datasets, that replay sequences were packaged into transient bursts 

occurring selectively during activation of the default mode network (DMN) and parietal alpha 

network. These networks were characterized by widespread synchronized oscillations coupled to 

increases in ripple band power, mechanisms that coordinate information flow between disparate 

cortical areas. Our data show a tight correspondence between two widely studied phenomena of 

neural physiology and suggest the DMN may coordinate replay bursts in a manner that 

minimizes interference with ongoing cognition.  

Main Text:  

A key mechanism by which the brain forms and stores new knowledge is through neural 

replay, whereby the patterns of neural activity associated with specific items are spontaneously 

reinstated in structured sweeps (1). These sweeps project to widespread regions of cortex (2, 3), 

with physiological signatures known as sharp wave ripples that have been described as the most 

synchronous events in the mammalian brain (4). Such spatially dispersed patterns of activity are 

often initiated during specific states, such as slow wave sleep, so as to preclude interference with 

ongoing wakeful processes. Replay was originally discovered during sleep, but is now known to 

occur also during wakefulness, particularly within periods of immobility and rest (5–7). An 

unanswered question in neuroscience is how the brain orchestrates these structured events in a 

manner that minimizes interference with ongoing cognition.  

Neuroimaging studies have long highlighted that the brain in wakeful rest displays an 

intrinsic activity structure, cycling through a series of canonical resting state networks (RSNs) 

(8–10). One network that has drawn particular attention is the default mode network (DMN), a 

disparate set of brain regions that coactivate during ‘offline’ periods - such as between trials in 

the absence of specific tasks, and also during sleep (11, 12). The DMN has since been identified 

as correlating with a number of introspective cognitive states such as episodic memory and 

future oriented thought, suggesting a functional role during wakeful rest in mediating internally 

generated cognition and inhibiting bottom-up sensory processing (13). MEG resting state studies 

have established an ability to detect DMN activation (along with that of many other networks) 

with millisecond temporal resolution, demonstrating these networks activate transiently within 

specific spectrally defined modes (10, 13–15). An ability to measure replay noninvasively in 

humans has recently been demonstrated (16, 17), and this allowed us to investigate a potential 

link between replay and resting brain network activity.  

Replay during slow wave sleep is associated with specific electrophysiological patterns; 

low frequency oscillations synchronize widespread regions of cortex, while high frequency sharp 

wave ripples propagate between hippocampus and cortical areas (4, 18). These widespread 

patterns appear integral to the effective function of replay in consolidating memories (19). In 

contrast, the wakeful brain displays a markedly different profile, with transient periods of 

synchronous activity interspersed with widespread desynchronisation associated with the 

distributed processing of parallel cognitive tasks (10, 15). Here we ask whether replay events, as 

detected by Liu et al. (16),  are linked to specific changes in whole-brain neural activity, changes 

that might explain how wakeful replay could reinstate distributed cortical patterns from memory 

without interference from competing cognitive demands.  
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Spontaneous replay coincides with activation of the Default Mode and Parietal Alpha 

networks 

We investigated whether the replay events discovered by Liu et al. (16), each 

representing the rapid serial reactivation of learned stimulus representations (Fig. 1), coincided 

with specific macro patterns of resting brain network activity that have been studied widely in 

the literature (10, 13–15). The focus of our analysis was the same MEG scan data of Liu et al. 

(16), collected during resting periods of their experiment.  

We first repeated the analysis of Liu et al. (16) to identify specific moments when replay 

occurred within this resting state data. Briefly, we trained multivariate classifiers to recognize 

each experimental stimulus, applied these classifiers to the resting data, and found the times 

when classifiers detected stimulus representations in rapid sequences played out in an order 

defined by the task (see Methods and Liu et al. (16)).  

Next, in the same data, we determined which of a set of canonical resting state networks 

(RSN-states) were active at each point in time (see Methods and Fig. 1). We inferred 12 RSN-

states in a data-driven way using an established Hidden Markov Model Framework (see methods 

and Vidaurre et al. (15)). These RSN-states were labelled according to a multidimensional 

scaling of their distances from each other (see Methods and Fig. S1); thus, RSN-states 1 and 12 

represented opposing extremums of a single major axis of differentiation between networks. We 

then conducted an evoked response analysis to ask whether activation of the RSN-states was 

modulated around replay events.  

As shown in Fig. 2A, a strong relationship emerged between replay onset and two RSN-

states in particular, RSN-states 1 and 2. This relationship peaked at around t=0 - the exact time of 

replay-onset - but exhibited a decay at either side of this time, with a statistically significant 

association up to 0.5 seconds before and after each estimated replay-onset time (non-parametric 

cluster significance test, p<2e-4 for both RSN-states). In addition, a weaker relationship was also 

evident between RSN-states 3 and 4 and the observed replay times (p<2e-4 for both RSN-states). 

Each RSN-state can be described by its distinct spectral power and phase locking profile; 

these profiles are summarized by averaging over frequency bands in Fig. 2B for RSN-states 1-4. 

This highlights that RSN-state 1 was associated with activity over parietal cortex; the equivalent 

network in simultaneous EEG-fMRI studies has been shown to be anticorrelated with the Dorsal 

Attention Network (DAN) (20, 21); thus the activation of RSN-state 1 corresponds to the DAN 

switching off. RSN-state 2 combines high power signals in frontal and temporal regions with 

coherent oscillations in lateral parietal cortex, regions that comprise the DMN. RSN-state 3 can 

be interpreted as activation of the visual cortex, and RSN-state 4 can be interpreted as activation 

of frontal cortical regions. The profiles of the remaining RSN-states are shown in Fig. S3; see 

Supplementary Text for more detail on how the MEG RSN-states relate to canonical resting state 

networks from fMRI. 

The alignment of replay with specific RSN-states would not be surprising if some of 

these networks simply reflected the patterns of activity present during the original stimulus-

encoding in the functional localizer data. Fig. 2C shows this is not the case; fitting the canonical 

RSNs to the original functional localizer data on which the classifiers were trained identified a 

markedly different relationship with the RSN-states compared with replay. No significant 
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increase was observed to RSN-state 1 (p=0.88 at t=0.2sec), and RSN-state 2 showed a mild 

increase that was not significant after Bonferroni correction (p=0.006 at t=0.2 sec). Comparing 

directly the distribution of RSN-states evoked by replay and by the stimuli identified a clear 

differential distribution, with highly significant increases in the RSN-states 1 and 2 (Fig. 2D, one 

sided t-test p=8.9e-7 for RSN-state 1 and p=1.9e-4 for RSN-state 2). We conclude that the brain-

wide patterns of resting RSN-state activity that are associated with replay, differ to those present 

during original stimulus-encoding. Instead, they are better characterized by activation of the 

default mode and parietal alpha RSN-states. 

To ensure replicability of these results, the same analysis was conducted on a second 

independent study that examined replay data in MEG using a very similar but slightly amended 

paradigm (see (16)). We replicated the exact findings again, showing that RSN-states 1 and 2 

had a strong association with replay (see Fig. 2A inset panels and Fig. S2; p<2e-4 for RSN-states 

1 to 4). Neither RSN-states 1 or 2 displayed a significant increase in relation to the functional 

localizer data (p=0.67 for RSN-state 1 and p=0.14 for RSN-state 2). A paired t-test also 

confirmed these RSN-states were more strongly associated with replay than with the original 

training data (p=5.4e-3 for RSN-state 1 and p=9.1e-3 for RSN-state 2). Note that this is 

statistically weaker than what we observed in the first study, and neither result in the second 

study is significant after Bonferroni correction for multiple comparisons; however, considering 

the conservative nature of Bonferroni correction, we interpret it as a successful replication of the 

above reported findings. 

 

Transient replay bursts coincide with clusters of DMN and parietal alpha network activity 

The correlation between replay and the RSN-states shown in Fig. 2B was maintained for 

over 0.5 seconds either side of each replay event. This is difficult to immediately reconcile with 

the highly transient nature of MEG RSN-states, which typically activate for less than 100msec. 

RSN-states 1 and 2 however have unique temporal profiles; replicating previous findings of 

distinct DMN dynamics (14, 15), when activated they endured for longer than any other RSN-

states (Fig. 3B), and also quiesced for longer periods than any other RSN-states (Fig. 3C). 

Qualitative assessment suggested these state visits may cluster together over longer timescales, 

with clusters of DMN and parietal alpha network activity coinciding with bursts of replay events 

(Fig. 3A).    

To test whether replay events were concentrated into transient bursts, as suggested by 

(16), we first computed the Fano Factor over the time course of replay events; Fano factors equal 

to one correspond to a regular, non-bursting process, whereas Fano Factors greater than one 

corresponding to increasingly irregular bursting. As shown in Fig. 3D, the observed replay Fano 

Factor increased as a function of window size and exceeded one for all window sizes tested, 

showing that the occurrence of replay events was increasingly irregular over longer time periods. 

The bursting nature of replay events was further supported by the rejection of a broader null 

hypothesis that intervals between replay events were independent and identically distributed 

(p<1e-3; see Methods).  

We conducted the same analysis on the time-courses of RSN-state occurrences (Fig. 3E). 

As with replay events, this showed that visits to different RSN-states were also increasingly 

irregular over longer time periods, but displayed a degree of irregularity that was not uniform 

over the different RSN-states (one-way ANOVA, p<2e-8 for all window sizes tested; this was 
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significant after multiple comparison correction for RSN-states and number of windows). 

Notably, this was particularly pronounced for RSN-states 1 and 2 (two sample t-test p<6.4e-9 for 

RSN-state 1 and p<0.01 for RSN-state 2), the DMN and parietal alpha RSN-states that were 

most strongly correlated with replay. Thus, the RSN-states which were most inclined to cluster 

together into periods of increased intensity over long timescales were similarly the most 

correlated with replay.  

We have found evidence that both the replay events and RSN-state visits display bursty 

behavior, resulting in clusters of intense activity interspersed with long periods of quiescence. In 

addition, we have evidence that replay events and RSN-state occurrence temporally coincide (cf. 

Fig. 2A). However, this alone does not necessarily mean that the bursting itself temporally 

coincides. To test whether this was the case, we computed the inter-replay interval time 

conditioned upon the active RSN-state at that time. We found that the interval to the next replay 

event was significantly determined by the currently active RSN-state (one way ANOVA, p=2e-

9) such that when RSN-states 1 and 2 were active there were shorter intervals between replay 

events (p=2.6e-3 and p=5e-4 respectively). This suggests that replay events are packaged into 

bursts that occur selectively during clusters of intense DMN and Parietal Alpha RSN-state 

activity.  

To assess reproducibility, we again replicated all results reported here on a second dataset 

of 22 subjects (see (16) and Methods); as shown in Fig. S4, replay Fano Factors again exceeded 

one, increased with window size, and exceeded non-parametric permutation test thresholds 

(p<1e-3); visits to RSN-states displayed a similar bursty profile, the degree of which was RSN-

state dependent (p<1.5e-8, one-way ANOVA) with the Parietal Alpha and DMN RSN-states 

displaying the highest amount (two sample t-test: p<7e-6 for RSN-state 1, p<1.1e-4 for RSN-

state 2); inter replay intervals were again significantly determined by active RSN-state (p=0.01, 

one-way ANOVA); RSN-state 1 was significantly associated with shorter intervals (p=6e-3), 

RSN-state 2 was trending in the same direction but not statistically significant (p=0.07). 

 

Replay coincides with distinct patterns of brain-wide highly synchronous activity 

Having established a strong temporal association between replay and specific RSN-state 

activation, we next sought to characterize the nature of the brain-wide activity in the replay-

associated RSN-states. For each RSN-state we calculated the spatial patterns of oscillatory power 

over all brain regions and the degree of synchronization (coherence) between all brain regions 

(as per (15); see Methods). Fig. 4A displays these averaged over brain regions, showing that the 

replay-associated RSN-states (RSN-states 1 and 2, and to a lesser extent, RSN-states 3 and 4) 

were associated with widespread increases in both the power and coherence of oscillatory 

activity compared with the other RSN-states (one way ANOVA for group-wise variation, p<1e-

50 for both power and coherence; two sample t-tests, p<1e-50 for RSN-states 1-4 for both power 

and coherence). 

To better characterize the spatial distribution of activity in distinct frequency bands, we 

decomposed the spectral activity patterns using non-negative matrix factorization (15). This 

identified three prominent frequency modes reflecting activity in canonical frequency bands of 

delta/theta, alpha and beta bands (Fig. 4B). RSN-state 2, the DMN, showed a prominent 

elevation in network coherence across all three frequency bands compared to all other RSN-

states; whereas RSN-state 1, the Parietal Alpha network, showed increased coherence in the 
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alpha band compared to the other frequency bands. The two other replay-associated RSN-states 

were associated with activity concentrated in the alpha band (RSN-state 3) and delta/theta band 

(RSN-state 4). 

We also used the RSN-state description of the resting state data to calculate the brain-

wide patterns of oscillatory power and synchronization occurring specifically around replay 

events.  Fig. 5 shows this first as time-frequency plots of power (Fig. 5A) and coherence (Fig. 

5B) averaged over all brain regions, again highlighting a strong increase in power and coherence 

associated with each replay event. Fig. 5C shows the brain-wide patterns of oscillatory power 

(left) and synchronization (right) that occurred at the time of onset of the replay events. This 

highlights activity across both the frontal and parietal regions of the DMN, with activity in each 

brain region dissociated into two distinct frequency bands. Frontal nodes of the DMN, including 

the medial prefrontal cortex and temporal poles, were associated with coherent oscillations in a 

low delta / theta frequency band; parietal nodes, taken to include posterior cingulate and lateral 

parietal cortex, were associated with coherent oscillations in the alpha band.  

Again, in the interests of replicability, all these results were replicated on a second dataset 

of 22 subjects (see (16) and Methods), where all activation maps and spectro-spatial profiles 

were remarkably consistent; see Fig. S5. 

 

Sharp wave ripple-band power linked exclusively to activation of the DMN 

Liu et al. found an association between the onset of replay and increases in high 

frequency (>100Hz) power, consistent with a model of sharp wave ripple activity that coincides 

with the detected replay events. Given the strong association between replay events and activity 

in DMN and Parietal Alpha networks in our work, we asked whether sharp wave ripple band 

activity might correlate more generally with activity in these networks. Crucially, our approach 

for estimating the RSN-states applied a low pass filter to the data with 45Hz cut-off frequency; 

so any correlation with power spectra above this cut-off can be interpreted as entirely 

independent of the original RSN-state estimation. 

Fig. 6A plots the average high frequency power spectra over all periods when a given 

RSN-state is active; this demonstrates a significantly elevated power spectral density in the 

ripple-band associated exclusively with the DMN RSN-state (one way ANOVA p<2.5e-6 for 

each frequency band between 52 and 148Hz; p>0.05 if ANOVA excludes DMN). This 

relationship mimics that observed in the power spectral density averaged over 50msec windows 

around replay events (Fig. 6B), whilst accentuating the power increase in much higher 

frequencies. This suggests that the ripple band power bursts recorded by Liu et al., and taken to 

be synonymous with replay, may be a hallmark feature of DMN activation.  

Plotting the spatial distribution of ripple-band power in the DMN RSN-state (Fig. 6C) 

shows a concentration of power in temporal cortex. While acknowledging the limitations of 

MEG in imaging deep sources, these results are nonetheless consistent with a model of 

hippocampal sharp wave ripple activity occurring selectively during activation of the DMN 

RSN-state.  

Fig. S6 demonstrates the replication of these results on a second dataset of 22 subjects 

(see (16) and Methods) where the DMN was found to be significantly associated with elevated 

ripple band power (one way ANOVA; p<2.4e-6 for all frequencies between 52Hz and 148Hz; 
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p>0.06 when DMN state omitted), with a spatial distribution of power concentrated over 

temporal cortices. 

 

Discussion 

These results bridge two quite separate fields of enquiry in neuroscience. The study of 

replay has been predominantly characterized at the level of cellular connections and LFP 

oscillations in animals, while the study of resting brain networks has been largely the preserve of 

human neuroimaging. As such, the link we now establish between these has the potential to 

extend not only our understanding of replay but also our understanding of the functional role 

played by human resting brain networks. We have looked for sequential reactivations consistent 

with the task sequence, but similar analyses work if we simply consider all reactivations (see 

Supplementary Text and Fig. S9). It has been established in these datasets that reactivations are 

more likely to occur in relevant sequences than control sequences (16). However, because 

reactivations are bursty, we cannot make selective claims about sequential reactivations here. 

Increases in the density of sequential reactivations coincide with increases in the density of all 

reactivations, and these times align to periods of DMN and parietal alpha activity. 

Both the DMN and parietal alpha activity have parallel histories in the scientific 

literature, initially interpreted as reflecting idling or default patterns of activity and only 

subsequently understood to have functional roles supporting attention and cognition (22, 23). 

The DMN in particular has since been associated with a role broadly defined as reflecting 

internally oriented cognition, encompassing functions like episodic memory and future oriented 

thought (23, 24). But in the same way that the brain uses sleep to replay past experience and 

consolidate memories, our results suggest that healthy waking brain activity may undergo 

periods of heightened DMN and alpha activity to perform the same function alongside ongoing 

cognition. Given our more refined mechanistic understanding of the role of replay, our new 

findings could extend our interpretation of the functional relevance of the DMN. Replay itself is 

fundamentally understood as a mechanism for memory consolidation, but has also been proposed 

to have more expansive roles in building cognitive maps, preparing neural structures for learning 

(preplay) and transferring knowledge from hippocampus to cortex (7, 16, 25). This suggests a 

more expansive role for the DMN in executive control, with the regular transient activations of 

the DMN associated with building and maintaining stable representations of recently acquired 

information. 

Replay occurs in the highest intensity during slow wave sleep, when large scale 

synchronized oscillations provide an environment conducive to the large scale propagation of 

sharp wave ripples (26). Notably, the RSN-states that correlate with replay in our study are 

characterized by large increases in oscillatory coherence, itself hypothesized to support 

integration of signals from disparate regions of cortex. The DMN itself appears to be preserved 

at least into light sleep stages (27–29), with further evidence that the DMN correlates directly 

with sharp wave ripples under light anesthesia (30). Our findings appear to reflect both these 

phenomena – low frequency coherent oscillations and high frequency sharp wave ripples – 

coinciding directly with estimated replay events during an awake state. Importantly the high 

frequency band power increases we see alongside DMN activation appear much more broadband 

than has been established by studies of human sharp wave ripple activity using invasive methods 

(31, 32).  We do not have a good explanation for this at present, but it is notable that relative 
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power increases on short timescales aligned to the replay events themselves, in the same datasets, 

produces a more narrow-band high-frequency spectrum (16).   

The role of the parietal alpha network is perhaps more readily understood through the 

unique requirements of awake state replay. Our results are based on spontaneous replay of visual 

stimuli representations, raising the problem of how the brain could reinstate these items without 

interference from ongoing perception. Alpha oscillations are widely interpreted as an inhibitory 

signal that acts to gate irrelevant stimuli from active processing (33–35). One possibility is that 

strong alpha activity may combine with DMN activation to inhibit bottom-up sensory perception 

during inward oriented attention, thereby supporting replay of items from memory. This could 

provide a crucial mechanism for how replay plays out without interference from competing 

sensory inputs during the awake state. 

The temporal profile of replay activation that we have characterized may also explain 

replay related signals across different recording modalities. In particular, fMRI studies have 

shown reliable behavioral correlations between the reinstatement of BOLD traces associated 

with experimental stimuli and subsequent task performance (36–38). This has supported an 

interpretation of the BOLD signal as a reflection of cellular replay despite the disparity of 

timescales between cellular replay events (known to be temporally compressed on the order of 

milliseconds), and the hemodynamic response (assumed to reflect sustained activations on the 

order of seconds). However, our results characterize replay as occurring in transient bursts of 

high intensity, interspersed by long periods of quiescence. Such a temporal profile may bridge 

this disparity of timescales and explain how a hemodynamic signal could arise from clusters of 

replay bursts in quick succession.  

Furthermore, our results can help to bridge the understanding of RSNs studied in 

electrophysiology and fMRI. A longstanding challenge in unifying findings across modalities has 

been to understand how the BOLD response relates to activity in canonical frequency bands. 

Activity in the gamma band (>30Hz) has consistently shown a strong correlation with a 

subsequent BOLD signal (39, 40), however a more complex relationship emerges between the 

BOLD signal and activity in lower frequency bands, in which electrophysiological RSNs are 

largely defined (10, 20). It has now been shown that different RSN-states show markedly 

different hemodynamic profiles; in particular, the DMN and DAN evoke BOLD signals that are 

both opposed in polarity and distinct in their temporal decay profile (21). But if the DMN state 

visits cluster together in time whilst being linked to high frequency power increases, as our 

results indicate, then this may help to explain these distinct profiles and provide a key bridge 

between the understanding of RSNs recorded across distinct modalities. 

Finally, our results suggest measures that could potentially serve as non-invasive proxy 

measures of replay, potentially opening the door to a broader set of replay experimental 

paradigms. Until very recently, replay has been predominantly studied in animal models using 

spatial navigation paradigms, due to the necessity of highly invasive electrophysiology in order 

to detect replay and the sophisticated understanding of the entorhinal-hippocampal spatial 

navigation systems. The development of methods to detect reactivation (38) and replay (16, 17, 

41) in humans noninvasively has enabled experiments that test how these theories generalize to 

non-spatial domains and other abstract cognitive tasks that are unique to human neuroscience. 

However, these methods require demanding experimental designs and cognitive paradigms. Our 

results broaden the range of tools further, providing additional non-invasive measures that could 
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provide an estimate of aggregate replay activity under simple experimental conditions (rest) that 

can be potentially be studied in large populations or patient groups. 

Overall, our results highlight an important link between two influential concepts in 

modern neuroscience; the study of replay and the study of resting state networks, and provide a 

connection between noninvasive human imaging studies and invasive cellular physiology. 
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Fig. 1. Task outline. The online task required participants to learn and remember a sequence of 

items. During the offline resting period, subjects were recorded passively with no immediate 

task; they were later tested for correct recall of the item sequence. The data from the offline 

resting period was analyzed in two ways: the first analysis detected replay using the methods of 

Liu et al. (16), using classifiers trained on the task items and identifying periods when they are 

reactivated in the specific sequence required by the task. The second analysis identified when 

specific resting state networks were activated by using an established model (15) to detect 

spontaneous patterns of spatial and spectral activity in the data. The objective was to determine 

whether the two measures were linked. 
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Fig. 2. Replay coincides with activation of specific resting state networks. (A) A strong 

correlation exists between the replay times identified by Liu et al. (16) and resting network 

activity, namely RSN-States 1 and 2. This association peaks at t=0, representing the exact time of 

replay onset, but remains significant up to 0.5 seconds to either side of each event, showing that 

activity in either of these RSN-states is broadly predictive of replay. Significance bars show 

clusters where p<2e-4. Inset: Result of replication study on second dataset. (B) The broadband 
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power and coherence networks that characterize each state identify RSN-states 1 and 2 as 

parietal alpha and default mode network respectively; RSN-states 3 and 4 correspond to activity 

in visual and frontal areas respectively. Power maps thresholded at 50%, phase locking networks 

thresholded with gaussian mixture model (see methods). (C) Fitting the same states to the 

original stimulus data on which the replay classifiers were trained identifies an overall network 

profile markedly different to that of the spontaneous replay events. Significance bars show 

clusters where p<2e-4. Inset: Result of replication study on second dataset. (D) Comparing 

directly the mean +/- standard error of the evoked state distribution at replay time and at the 

classifier training time identifies RSN-states 1 and 2 as significantly increased during 

spontaneous replay (multiple paired t tests). Single asterisk denotes p<0.05, double asterisk 

denotes p<5e-4. Inset: Result of replication study on second dataset. 
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Fig. 3. Replay and Resting State Networks share a common long-term temporal structure. (A) 

Example data showing the bursty nature of replay coinciding with relatively infrequent visits to 

the replay-associated RSN-states. For ease of visualization, lower panel plots the one second 

moving average RSN-state probability. (B) RSN-state visit lifetimes; the average time each 

RSN-state remains active when it is visited. RSN-states 1 and 2 display the longest lifetimes. (C) 

RSN-state interval times; the average time for each subject between visits to a particular RSN-

state. RSN-states 1 and 2 have the longest interval times between visits. (D) Temporal 

irregularity can be quantified by looking at the Fano factor as a function of window size. Replay 

events show that this irregularity measure increases over longer timescales, displaying maximum 

temporal irregularity over windows of ten seconds or more. (E) This structure is replicated by the 

RSN-state activations, with RSN-states 1 and 2 displaying the most irregular patterns at long 

timescales. (F) This temporal structure is not just common but in fact coincides; replay events 

that occur during RSN-state 1 or 2 have significantly shorter periods, reflecting rapid bursty 

behavior during the infrequent state visits and long periods of quiescence outside of these.  
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Fig. 4. Replay associated RSN-states display specific spectral patterns of power and coherence. 

(A) Summarizing the frequency information in a single wideband plot, a scatter plot of the power 

spectral density (PSD) and coherence for each ROI (PSD is computed directly per ROI; 

coherence is taken as the sum of coherence values between that ROI and all others) as a function 

of active RSN-state identifies RSN-states 1 and 2 as having elevated coherence. (B) The data 

support a frequency decomposition into three modes that correspond to canonical delta/theta, 

alpha and beta bands (see methods). Scatter plots of each RSN-state’s PSD and coherence 
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highlight that RSN-state 2 displays higher coherent activity across multiple frequency bands 

compared to all other RSN-states, whereas RSN-state 1 is more concentrated in the alpha band.  
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Fig. 5. Replay associated brain activity is characterized by independent spatially and spectrally 

defined modes. (A) We can use the PSD estimates of each RSN-state (left) and the replay evoked 

RSN-state probabilities (lower) to reconstruct a time-frequency estimate of power spectral 

density around replay events, revealing a prominent peak in the alpha and delta /theta bands. (B) 

In addition to increases in power, the replay associated RSN-states show an increase in 

coherence across all frequencies, but especially in the alpha and delta/theta bands. (c) Plotting 

the spatial distribution of activity in the defined frequency modes at the time of replay identifies 

independent modes of coherent activity; a low frequency mode comprising frontal DMN and 

temporal areas, and an alpha frequency mode comprising parietal DMN regions and visual 

cortex. Additionally, some weaker levels of activity in the beta band are observed over motor 

areas, but network coherence patterns in this frequency band are not significant. 
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Fig. 6. Both Replay and the DMN coincide with high frequency power increases in temporal 

areas. (A) Although the RSN-state model was originally fit to data filtered at 1-45Hz, we can still 

analyze whether the state timings correlate with specific patterns in frequency bands outside this 

range in the original data. This reveals a very strong association between RSN-state 2 and power 

in high frequencies – despite these high frequencies not having been originally included in the 

model. (B) Similarly, the onset of replay is associated with an increase in high frequency power 

relative to the global average. (C) Activity in this RSN-state and in this frequency band may 

originate in temporal cortices. 
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