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ABSTRACT

Energy harvesting systems have shown their unique benefit of

ultra-long operation time without maintenance and are expected

to be more prevalent in the era of Internet of Things. However,

due to the batteryless nature, they suffer unpredictable frequent

power outages. They thus require a lightweight mechanism for

crash consistency since saving/restoring checkpoints across the

outages can limit forward progress by consuming hard-won energy.

For the reason, energy harvesting systems have been designed with

a non-volatile memory (NVM) only. The use of a volatile data cache

has been assumed to be not viable or at least challenging due to the

difficulty to ensure cacheline persistence.

In this paper, we propose ReplayCache, a software-only crash

consistency scheme that enables commodity energy harvesting sys-

tems to exploit a volatile data cache. ReplayCache does not have to

ensure the persistence of dirty cachelines or record their logs at run

time. Instead, ReplayCache recovery runtime re-executes the poten-

tially unpersisted stores in the wake of power failure to restore the

consistent NVM state, from which interrupted program can safely

resume. To support store replay during recovery, ReplayCache par-

titions program into a series of regions in a way that store operand

registers remain intact within each region, and checkpoints all reg-

isters just before power failure using the crash consistency mech-

anism of the commodity systems. For performance, ReplayCache

enables region-level persistence that allows the stores in a region

to be asynchronously persisted until the region ends, exploiting

ILP. The evaluation with 23 benchmark applications show that

compared to the baseline with no caches, ReplayCache can achieve

about 10.72x and 8.5x-8.9x speedup (on geometric mean) for the

scenarios without and with power outages, respectively.
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1 INTRODUCTION

Energy harvesting systems [65] have been deployed in a wide

range of application domains, such as Internet of Things (IoT) de-

vices [5, 17, 26, 79], wearables [8, 13, 36, 51, 52], stream and river

surveillance [27, 71], health and wellness monitors [6, 7, 16, 61], etc.

Energy harvesting systems are well-suited to these domains with

the superb property of ultra-long operation time without mainte-

nance by collecting energy from variant ambient sources such as

solar, thermal, piezoelectric, and radio-frequency radiation.

However, due to the batteryless nature, energy harvesting sys-

tems suffer unpredictable frequent power failure and thus require

some form of crash consistency which must be lightweight; other-

wise checkpointing/restoring consistent program states across the

failure can limit forward progress by consuming hard-won energy.

Thus, existing systems [3, 11, 12, 21, 22, 50, 70] have been designed

with byte-addressable non-volatile memory (NVM), where data

are immediately persisted and thus recoverable at the cost of long

latency. While volatile write-back caches can hide the store latency

and improve performance with a load hit exploiting data locality,

they have been assumed to be not viable or at least challenging in

energy harvesting systems.

The crux of the problem is that volatile write-back cache states

are not preserved across a power outage. This may lead to an incon-

sistent NVM state, and therefore the power-interrupted program

may fail to resume correctly. That is why existing energy harvest-

ing systems do not use volatile data caches; prior work [50] uses a

read-only NVM-based instruction cache where a crash consistency

(without stores) is not an issue. Unfortunately, it is a challenging

problem to ensure correct data cache persistence in a lightweight

manner to maintain forward progress. For example, software log-

ging causes serious performance degradation (100-300% slowdown)

since each regular store is preceded by the log store, cacheline flush,

and store fence [23, 24, 31, 40, 66, 73, 75].

One possible hardware solution is to use a volatile write-through

cache. It allows energy harvesting systems to benefit from load hits

and to ensure crash consistency by enforcing that the completion

of a store instruction guarantees the persistence of the data in

NVM. However, write-through cache comes with a performance

penalty on each store as conventional cache-free energy harvesting

processors. Since they use a simple in-order core without any form

of speculation, they cannot hide the data persistence latency.

Alternatively, one can design a persistent write-back data cache,

e.g., non-volatile cache (NVCache) [1, 25, 55, 56, 62, 74, 77] and

non-volatile SRAM cache (NVSRAMCache) [9, 20, 38, 39, 53, 68, 69].
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However, both cache designs have their own problems. Due to

the NVM-based design, NVCaches incur high latency and power

consumption for each access. NVSRAMCaches embed NVM to

backup an SRAM-based cache, and checkpoint/restore the entire

SRAM to/from the NVM backup across power failure, leading to

consume high energy. While NVSRAMCaches may be as fast as a

volatile SRAM cache without power failure, it is hard to maintain

the performance with frequent failureÐi.e., the norm of energy

harvestingÐunless they use a lower-power yet fast non-volatile

technology which has not been commercialized yet.

With that in mind, we propose ReplayCache, a software-only

scheme that enables commodity energy harvesting systems to ex-

ploit a volatile write-back data cache for performance, yet ensures

lightweight crash consistency of the NVM state for correctness.

ReplayCache does not ensure the persistence of dirty cachelines or

record their logs at run time: i.e., no write amplification. Instead,

ReplayCache re-executes the potentially unpersisted stores in the

wake of power failure to restore the consistent NVM state from

which interrupted program can safely resume.

To support the store replay, ReplayCache partitions program into

a series of regions so that the operand registers of store instructions

are intact (i.e., not overwritten by the other following instructions)

in each region. We refer to this process store-register-preserving

region formation. Then, at run time, ReplayCache checkpoints all

registers just before power failure to secure the store operand reg-

isters. We note that the just-in-time register checkpointing is al-

ready available in energy harvesting systems: e.g., QuickRecall[22],

Hibernus[3], and NVP[50]. During recovery, these checkpointed

registers are used to re-execute the stores along the same program

path as the one before a power failure; for the store replay, a re-

covery code block is generated for each region, i.e., ReplayCache

directs program control to the recovery code in the wake of the

power failure. After that, ReplayCache can safely resume from the

interrupted program point with the checkpointed registers and the

recovered consistent NVM.

Experiments with 23 applications from Mibench [19] and Media-

bench [35] benchmarks show that compared to the baseline with no

caches, ReplayCache can make them 10.72x and 8.5x-8.9x faster (on

geometric mean) for the scenarios without and with power outages,

respectively. This paper makes the following contribution:

• ReplayCache is the first to enable volatile caches for commod-

ity energy harvesting systems; its software-only design allows

them to use traditional SRAM cache as is with crash consistency

guarantee

• ReplayCache proposes a new resumption scheme that recovers

consistent NVM states across power failure by re-executing po-

tentially unpersisted stores before the failure during the recovery,

without write amplification.

• ReplayCache achieves the high performance despite its software-

only design; its performance is comparable to an ideal NVSRAM-

Cache for realistic power failure traces.

2 BACKGROUND AND MOTIVATION

This section discusses the architectures of existing energy harvest-

ing systems (section 2.1), the potential crash consistency problem

of using a volatile write-back data cache as is (section 2.2) and the

limitations of existing cache solutions (section 2.3).

2.1 Architecture of Energy Harvesting Systems

Energy harvesting systems derive energy from external sources (e.g.,

solar, thermal, ambient electromagnetic radiation) and mostly store

it in a tiny capacitor for small IoT devices such as wearables. Due to

the nature of unreliable power supply, energy harvesting systems

should be able to save (checkpoint) the current state upon power

failure, and restore the program state and seamlessly resume the

execution when the power comes backs as if nothing had happened.

A power interruption in energy harvesting systems is a frequent,

normal event, unlike in high performance computing context. It

is thus crucial to design systems for whole system persistence

(WSP) [30, 59] so that they efficiently save/restore the program

state and make a progress no matter where power failure happens.

The above requirements motivate existing energy harvesting

systems to adopt NVM as main memory. However, the registers in

a processor still remain volatile for performance reasons. Broadly

speaking, existing mechanisms to checkpoint/restore registers can

be classified into two groups.

Figure 1(a) shows the architecture of Non-Volatile Processor

(NVP) [49], representing the first group that checkpoints and re-

stores registers in place with some additional hardware support [34,

49, 70]. NVP is equipped with an energy harvester, a voltage mon-

itor, and capacitors (not shown). When the monitor detects im-

pending power failure, i.e., the voltage is about to drop below a

certain threshold, it signals the processor to checkpoint all the

registers (so-called just-in-time checkpointing) into their neigh-

boring non-volatile flip-flops (NVFF) [37, 58, 60, 64]. When power

is secured enough across the failure, the processor restores the

register states from the NVFF and resumes the execution from the

power-interruption point. As both register and memory states on

the resumption point are guaranteed to be the same as the states

before a power failure, there is no crash consistency problem. A

downside of NVP is the use of additional hardware NVFF.

Figure 1(b) illustrate the architecture of QuickRecall [22], repre-

senting the second group that checkpoints/restores the registers

to/from the NVM. Similar to NVP (and others), QuickRecall also

implements just-in-time (JIT) register checkpointing with a voltage

monitor and a capacitor (not shown). When the monitor detects

upcoming power failure, it triggers an interrupt whose handler

checkpoints all the registers into the NVM. When the power comes

back, the recovery runtime reads the checkpointed states from

the NVM in order to restore the registers. As in NVP, QuickRecall

(and others [2, 3] in this group) has no crash consistency issue. A

drawback of QuickRecall is that it should secure a lot more energy

than NVP to atomically checkpoint all registers in NVM before

impending power failure.

2.2 Crash Inconsistency of Write-back Caches

Adding a cache to energy harvesting systems has a high potential

to improve their performance (with load hits) and allow them to

make more progress for a given energy harvested. However, a naive

integration of volatile write-back data cache with existing energy

harvesting systems (e.g., NVP, QuickRecall) for performance, may

lead to a crash consistency problem, as depicted in Figure 1(c).

Suppose the NVMhas thememory stateX = 0 andY = 0 initially.

And suppose a program has a power outage after executing two

storesW (X ) = 1 andW (Y ) = 1. Before the outage, the cache had the
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Figure 1: The architectures of existing energy harvesting systems
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Figure 2: An overview of ReplayCache.

updated state X = 1 and Y = 1, but the NVM may not, depending

on whether the cache lines holding X and/or Y are evicted or not,

which is varying according to cache replacement policy and thus

unpredictable. Since the volatile cache state disappears upon a

power loss, i.e., any unpersisted dirty cacheline is completely lost,

the system may restart from an inconsistent state (e.g., X = 1 and

Y = 0) failing to resume or producing wrong output later.

2.3 Limitations of Existing Cache Solutions

There are four possible solutions to address the crash consistency

problem. The first approach is to use a write-through cache. Fig-

ure 1(d) illustrates a case in which NVP is configured with a volatile

write-through cache (a traditional SRAM-based one). The write-

through policy ensures data consistency as the completion of a

store instruction ensures the data persistence to NVM. However,

the downside is a long store latency (as in the case without a cache);

more precisely, for a write miss, the critical path is lengthened due

to the write-allocation policy. Since most of the energy harvest-

ing systems are designed with a simple in-order processor, it is

impossible hide the store latency.

As shown in Figure 1(e), the second approach is to equip the

processor with the NVSRAMCache that embeds NVM (e.g., ReRAM)

to traditional SRAM cache for its backup and restoration [10, 33, 57,

76]. As with NVP, NVSRAMCache also relies on a voltage monitor

for just-in-time checkpointing of the SRAM cache. When power is

about to be cut, NVSRAMCache triggers a copy from SRAM to NVM

for all the cachelines. Along with their restoration, the entire cache

backup makes NVSRAMCache consume high energy across power

failure. Moreover, NVSRAMCache significantly postpones the boot-

ing time due to the high amount of energy that must be secured for

failure-atomic cache checkpointing. Although researchers attempt

to improve the backup latency [38, 69], their NVSRAMCaches are

more of a forward-looking technology in an ideal formÐsince none

of current non-volatile materials can provide comparable latency

to SRAM [12].

The third approach is NVCache [20, 54] that leverages a pure

non-volatile technology as the cache material; see Figure 1(f). Since

NVCache usually uses a slight faster NVM technology for the cache

than the non-volatile main memory, the NVCache accesses are a lot

slowerÐconsuming more energyÐthan those of traditional SRAM

cache. Thus, NVCache-equipped energy harvesting systems only

occasionally outperform cache-free systemswhen there is very high

locality. In sum, the second and third approachesÐFigures 1(e) and

(f)Ðare to make a cache itself persistent surviving power failure,

but they suffer from their own problems.

Finally, data loggings are another approach to crash consistency

in the presence of a volatile cache. However, they dramatically

increase execution time (or power consumption if implemented in

hardware), prohibiting their use in energy harvesting systems. For

example, iDO [40] and Mnemosyne [73] incur 100-300% slowdown,

prohibiting their use in an energy harvesting system. Furthermore,

since they only supports crash consistency for a few transactions

or failure-atomic sections, additional overheads should be paid for

whole system persistence (WSP) [30, 59]. Similarly, existing WSP

schemes for cache-free harvesting systems such as Alpaca [29] and

Ratchet [72] also cause unacceptable slowdown (60% - 500%). Since

they assume no cache, their overheads would be even worse for

cache-enabled systems due to the additional cacheline flush and

fence overhead.

3 OVERVIEW OF REPLAYCACHE

The goal of ReplayCache is to guarantee crash consistency (i.e., an

ability to restart from a consistent state) of energy harvesting sys-

tems in the presence of a volatile write-back data cache, allowing

them to make the most of data locality and to achieve more progress

given an energy budget. ReplayCache employs software-only de-

sign that provides (A) program region partitioning, (B) region-level

persistence, (C) register checkpointing before a power outage, and

(D) recovering a consistent NVM state.

172



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay P. Shreepathi, Dongyoon Lee, Changwoo Min, and Changhee Jung

NVM

Regs NVFF

SRAM Cache

write-back region-level persistence

Pipeline

st …
st ...

st …
st …

Pipeline

st …
st ...

st …
st …

NVM

(a) NVP + ReplayCache 

restore
signal

Voltage
Detector

recovery
code

checkpoint
signal

application
code

Regs

SRAM Cache

write-back region-level persistence

Voltage
Detector

restore
signal

checkpoint  
signal

recovery
code

application
code

(b) QuickRecall + ReplayCache 
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ing system.

3.1 Program Region Partitioning

As shown in Figure 2(a), ReplayCache compiler partitions entire

program input to a series of regions. Each region ensures that the

operand registers (e.g., address, value) of a store therein are not

overwritten by any other succeeding instructions in that region.

3.2 Region-level Persistence

ReplayCache asynchronously writes back the stored value to the

NVM, and overlaps thewrite-back operations with the executions of

other following instructions, effectively exploiting instruction-level

parallelism (ILP).

Unlike a traditional write-back cache, ReplayCache ensures that

all the stores in a region are persisted (written back to the NVM)

before the region ends; this paper calls this region-level persistence

guarantee in which the persistence latency of in-region stores can

be naturally hidden by ILP; Figure 2(b) illustrates the window of

potential ILP gain, and the unpersisted state of each store. This

region-level persistence assures that at the moment of a power

outage, all the stores in the preceding program regions have already

been persisted, and only the stores in the interrupted region could

not potentially be unpersisted.

The processor stalls if there exists an outstanding unpersisted

store at the end of a region, until it becomes persisted to the NVM.

ReplayCache compiler dedicates a single register (e.g., r12) to be

acted as region register to track the most recent region boundary

information for recovery. That is, the register is updated with a

program counter at each region boundary.

3.3 Register Checkpointing

Across a power outage, ReplayCache saves register states just be-

fore the outage and restores them in the wake of the outage us-

ing the voltage monitor based JIT checkpointing mechanism (sec-

tion 2.1) in commodity energy harvesting systems. For instance,

NVP and QuickRecall can both checkpoint register states before

the power off and to restore them after the power on as discussed

in section 2.1. In Figure 2(c), step 1 illustrates that ReplayCache

checkpoints the registers when power is about to be cut off.

3.4 Power Failure Recovery

The recovery protocol works as follows. Upon a power outage, the

interrupted region’s stores before the outage may or may not be

persisted, e.g.,W (X ) = 1 in Figure 2(c) unpersisted till the outageÐ

while all preceding regions’ stores are guaranteed to be persisted

and thus consistent (due to the region-level persistence). In thewake

of the outage, ReplayCache jumps to the recovery code block of the

interrupted region to replay all the stores left behind the outage.

The recovery code block re-executes such unpersisted stores using

the checkpointed register values in either NVFF (NVP) or NVM

(QuickRecall). This is shown as a step 2 of Figure 2(c). Finally, the

recovery code sets off a restoration signal to restore all registers

(including PC) from NVFF or NVM, and then resumes the program

from the outage point with the restored register and the recovered

NVM states as in step 3 of Figure 2(c). In this way, ReplayCache

allows energy harvesting systems to seamlessly leverage a data

cache without amplifying NVM stores.

Figure 3 depicts how ReplayCache works for existing energy

harvesting systems, i.e., NVP and QuickRecall, using the afore-

mentioned recovery protocol. The takeaway is that ReplayCache

enables the commodity systems to leverage write-back volatile data

caches as is with help of the region-level persistence and the re-

covery code based recovery. The details of recovery code block

generation is presented in Section 5.

4 REPLAYCACHE COMPILER

This section describes how ReplayCache compiler realizes the store-

register-preserving region formation. The compiler’s role is 3-fold:

(1) region formation (2) CLWB insertion after each store, and (3)

recovery code generation whose discussion is deferred to Section 5.

For region formation, the compiler partitions program into a

series of small regions so that in each region, no operand registers

of a store instruction are overwritten by the following instructions.

That way store registers remain intact from the execution of their

region all the way to the power failure recovery time on which

ReplayCache replays the same stores in case theywere not persisted

before the failure. We refer to this property as store integrity.

Figure 4 shows a high-level workflow of ReplayCache compiler

which introduces 3 additional phases (shaded in the figure) to the

standard backend compilation passes. This region formation is

performed in a whole-program manner to cover the entire program

stores, i.e., every single program point belongs to one of the regions.

At first glance, forming regions appears to be as simple as count-

ing the store registers while traversing the control flow graph (CFG)

and placing boundaries before the count exceeds the number of

(physical) registers in the processor (e.g., 16 for NVP and Quick-

Recall). However, it turns out that two problems below make the

region formation challenging.

Problem1.CircularDependence: Intuitively, the store-register-

preserving region formation can be realized with two phases: (1)

region partitioning that counts stores to place a region boundary,

i.e., store fence instruction, in program and then (2) register preser-

vation that extends the live interval of store operands to the end

of each region for their exclusive register use. Thus, the register

preservation depends on the region partitioning. However, since the

partitioning counts the stores to determine where to place a region

boundary, it also depends on the register preservationÐforming
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Figure 4: The workflow of ReplayCache compiler.

a circular dependence; the live interval extension of the register

preservation increases the register pressure, i.e., the number of

necessary registers. Due to the register file size limitation, some

registers could be spilled (written) to stack through stores. We call

them stack-spill stores.

Problem 2. Stack-Spill Stores: In addition to regular stores,

ReplayCache also needs to ensure the integrity of stack-spill stores

for correct failure recovery. However, it is hard for the region parti-

tioning to figure out in advance what variables are to be spilled to

stack. That is because stack-spill stores are determined in the later

register allocation pass assigning physical registers. One might try

to perform the region partitioning after the register preservation

to exactly count the number of stores. However, this is not a vi-

able option since the region partitioning depends on the register

preservation in the first place.

ReplayCache Approach to the Problems: To break the cir-

cular dependence between the region partitioning and the register

preservation, ReplayCache first considers a function call boundary

as initial regions and conducts (A) register-pressure aware region

partitioning (the first box of Figure 4) to fine-cut the initial regions

as needed. Our register-pressure tracking algorithm allows the

region partitioning phase not only to estimate the number of stack-

spill stores, breaking the dependence on the register preservation,

but also possibly to form a region with no spill in a best-effort

manner. In case register allocation actually generates stack-spill

stores in the formed region after the (B) register preservation phase,

ReplayCache runs a post-processing (C) stack-store register preser-

vation phase (the fourth box of the figure) that runs through the

register-allocated code to find those stack-spill stores whose regis-

ters are overwritten in their region, and places a region boundary

before the register updates. The rest of this section details the three

phases with referring to them with (A), (B), and (C), respectively.

4.1 Register Pressure Aware Partitioning

ReplayCache initially forms regions at function call boundaries and

the end of conditional branches, and then runs the register-pressure

aware region partitioning algorithm, which aims to achieve two

goals. First, it attempts to maximize the length of a region to provide

ReplayCache with long potential ILP window for its region-level

persistence; see Figure 2 (b). Second, it tries to minimize stack spills

generated by the later register allocation phase.

For this purpose, the partitioning algorithm keeps track of the

register pressure by traversing the control flow graph (CFG) of each

initial region. ReplayCache counts the number of overlapping live

intervals at each program point visited during the CFG traversal.

In particular, if store instructions are encountered, ReplayCache

carries their live intervals along the way beyond the original live

intervals. This serves as a proxy for the actual live interval extension

of the next (B) register preservation phase. When the number of

the overlapping live intervals becomes greater than the number of

physical registers available in the underlying processor, a stack-spill

store might be generated thereafter. Therefore, a region boundary,

i.e., store fence, is placed at that point. That way ReplayCache can

maximize the size of the store-register-preserving region, likely

with no spill.

Figure 5(a) shows an example code where there are variables x ,

y, z and their live intervals; x and y are used as store operands, and

their live intervals overlap in basic block A as shown in the left of

the figure. Suppose there are only 2 physical registers. Figure 5(b)

demonstrates how the register-pressure aware region partitioning

works for the example code. Basically, whenever stores are encoun-

tered, the algorithm carries the live interval of their operands for

the rest of the CFG traversal. For example, when the traversal hits

the store y at the end point of basic block B in the left control path,

the algorithm will start carrying the live interval of y thereafter

(illustrated as a hatched box in the figure); the same action is taken

with the store x in the right path. Thus, when the traversal hits the

point where z’s assignment is found in the join basic block D, the

live intervals of both x and y have been carried to the point. Since

z’s live interval starts there, the algorithm places a region boundary

at that point, which would otherwise end up making the number

of overlapping intervals (3 thereafter) bigger than the number of

physical registers (2).

4.2 Regular Store Register Preservation

Once regions are formed by the register-pressure aware region

partitioning, ReplayCache compiler enters register allocation. Then,

this register preservation phase łpreserves” the variables used for

the operands of stores. The goal is to ensure that no other variables

are assigned to those registers that are supposed to be occupied

only by store operands. To achieve this, this phase extends the live

interval of store operand variables from their last use point to the

end of the region to which they belong, along the control path.

For example, as shown in Figure 5(c), the actual live intervals of

x stops at its last use point in basic block C , the resulting interval

is extended to the next region boundary placed in the middle of

the bottom basic block D; similarly, y’s interval is extended to

the same following region boundary. In this way, x and y never

share their physical registersÐeven after their last use pointÐwith

other variables. In other words, the next register allocation phase

ensures that neither x nor y is assigned to any physical register

used by other variables. Consequently, ReplayCache guarantees

the integrity of the regular stores’ registers.

4.3 Stack-Spill Store Register Preservation

The register allocation might spill some variable to stack and gen-

erate the stack-spill stores. This actually happens since register

allocation performs in a function level (not a region level) and

makes a global decision across all the regions in a functionÐthough

the (A) register-pressure aware region partitioning tries to form

spill-free regions in a best-effort manner. Just in case, this stack-spill

store register preservation phase searches the register-allocated

code of each region for any update on the spill store registers. For

example, in Figure 5(d), a r1 is spilled to the stack in basic block D,

i.e., the stack-spill store of r1 is generated there. However, in the

174



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay P. Shreepathi, Dongyoon Lee, Changwoo Min, and Changhee Jung

CB

A

x = …
y = …

…
st y, ...

st x,...
…

x
y

z

region 
boundary

live intervals

CB

A

D

x = …
y = …

…
st y, ...

st x,...
…

x
y

z

region 
boundary

live intervals

2 overlaps
2 overlaps

3 overlaps

carried
live 
intervals

CB

A

x y z

region 
boundary

extended
live intervals

CB

A

r1 = …
r2 = …

…
st r2, ...

st r1,...
...

region 
boundary

stack
spill

(a) (b) (c) (d)

st x,...
…

x = …
y = …

…
st y, ...

...
z = ...

…
q = z<<2

q q

q

D

...
z = ...

…
q = z<<2

D

...
z = ...

…
q = z<<2

D

...
r1 = …
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…
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Figure 5: An example partitioned program with live intervals; (a) shows an initial region boundary at the function beginning

(basic block A) and live intervals of variables x ,y, and z; (b) shows the second boundary inserted in basic block D over which

live intervals of x ,y are carried, when the partitioning threshold (physical registers) is two; (c) shows extended intervals of all

three variables towards the second region boundary; and (d) shows the case of redefining the register r1 of spill store in basic

block D after variables are assigned to the physical register.

region, the spill store is followed by the instruction that changes

the r1, i.e., r1 = r1 ≪ 2. Thus, the region cannot guarantee the in-

tegrity of r1 used by the stack-spill store from that moment. To deal

with this problem, this phase places an additional region boundary

right before the register updating instruction to separate it from

the stack-spill store; the resulting boundary is shown near the bot-

tom of basic block D in Figure 5(d). Consequently, ReplayCache

compiler guarantees the integrity of all the store registers in all

regions.

CLWB insertion: Once register allocation ends, after which no

store is generated, the compiler inserts a CLWB instruction right

after each store in regions. Since CLWB instructions reuse the

address operand of the preceding store, they make no side effect

other than the instruction count increase.

5 RECOVERY PROTOCOLS

This section describes (A) how ReplayCache compiler generates

recovery code and (B) the details of recovery procedure, and (C)

finally explains a running example.

5.1 Recovery Code Generation

To recover from power failure, as a software-only design without

hardware support, ReplayCache compiler generates a recovery code

block for each region, which contains all the necessary information

and code for the recovery of the region. A recovery code block

consists of Recovery Code, which is a code to re-execute all stores in

the corresponding region, and two mapsÐRecovery Map (RM) and

Store Counting Map (CM)Ðto locate the corresponding recovery

block and the number of stores to be re-executed for recovery. An

RM is a map from a region boundary PC to an address of region

recovery code. A CM is a map from a region boundary PC to a

Store Counting Table (SC table), which is an array of store addresses

and the number of store instructions from the beginning of the

region to this store. With these generated recovery code and maps,

ReplayCache’s recovery protocol figures out where the recovery

code of the interrupted region is and how many stores should be

re-executed in the interrupted region before the failure point.

In particular, to ensure the absence of power failure during the re-

covery process, ReplayCache compiler leverages the EH model [67]

to estimate the worst-case execution energy of the recovery code

block. If the energy is greater than what the underlying capaci-

tor can deliver with it full capacitance1, the compiler splits the

corresponding region into two smaller regions and generate their

recovery code blocks; this process is repeated unless the resulting

code blocks are small enough to complete with the fully charged

capacitor. In this way, ReplayCache guarantees the power-failure-

free recovery. According to experimental results (ğ6), ReplayCache

regions are not that long; we have not encountered any regions

that must be split during our evaluation of total 23 benchmark

applications.

5.2 Recovery by Re-execution

ReplayCache’s region-level persistence guarantees that all the stores

in preceding regions are persisted. However, stores in the inter-

rupted region before the power outage may or may not be persisted.

ReplayCache recovery protocol relies on two properties: First, upon

power outage, ReplayCache processor checkpoints registers (in-

cluding PC) just-in-time by signaling voltage monitor (NVP) or

runtime (QuickRecall). The register checkpoint is thus available in

either NVFF (NVP) or checkpointing storage in NVM (QuickRecall).

Next, ReplayCache compiler ensures that registers used for store

operands are never overwritten within a region. This implies that

ReplayCache can restore memory status from potential corruption

by re-executing the recovery code generated by the compiler.

When the power comes back, ReplayCache first finds out the

start address of an interrupted region. It loads the checkpointed

region register ś a dedicated general-purpose register by compiler as

mentioned in section 3.2 ś fromNVFF or checkpointing storage, and

1Energy harvesting systems do not reboot across power failure until the capacitor
is fully charged, which is the case for commodity systems such as NVP, WISP, and
QuickRecall.
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st r1, x
st r2, y

…
st r3, z

Locate the recovery code
Set the store count

st NVFF_r1, x
r12 = r12 - 1
if r12 == 0: goto _exit

st NVFF_r2, y
r12 = r12 - 1
if r12 == 0: goto _exit
…

st NVFF_r3, z
r12 = r12 - 1
if r12 == 0:  goto _exit

_exit: signal NVFF to restore

r1 = &checkpointing storage
r2 = ld [r1 + 4]
st r2, x
r12 = r12 - 1
if r12 == 0: goto _exit
r2 = ld [r1 + 8]
st r2, y
r12 = r12 - 1
if r12 == 0: goto _exit
…
r2 = ld [r1 + 12]
st r2, z
r12 = r12 - 1
if r12 == 0:  goto _exit

_exit: signal runtime to restore

Recovery code of the interrupted region (R1)

NVP QuickRecall

1 region register

2 recovery code, store count (r12)

3    start
normal 
execution

R1

Figure 6: Failure recovery of region R1 when an outage

happens in the middle of basic block A. Upon recovery,

ReplayCache locates a recovery code and counts the num-

ber of stores needed to be re-executed 1 . Then it re-plays

all stores in the recovery block by using checkpointed store

operand registers in NVFF 2 . Finally, it goes back to the fail-

ure point by restoring registers from NVFF and continues

the normal execution 3 .

locates the recovery code and the SC table of the interrupted region

by looking up the RM and CM, respectively. ReplayCache gets the

number of store instructions to be re-executed from the beginning

of the region to the failure PC by performing binary search of the SC

table with the region register as a key. Subsequently, ReplayCache

runtime jumps to the recovery code of the interrupted region with

the re-executing store count in a register. As illustrated in Figure 6,

the recovery code is a series of re-executing the store instruction,

decrementing the store counter, and checking if the counter is zero.

After executing the specified number of store instructions (i.e., the

store counter becomes zero), ReplayCache runtime signals voltage

monitor to restore register files from either NVFF or checkpointing

storage and thus goes back to the failure point because PC now

points to the failure point.

5.3 A Running Example

We illustrate a recovery example in Figure 6. ReplayCache com-

piler ensures that registers that are used for store operand (r1, r2,

and r3) are never updated in region R1. When entering into R1,

ReplayCache sets the region register to the beginning of R1. When

a power outage happens in the region indicated by a red cross, all

registers, including the region register and PC, are checkpointed.

At this point, the stores to memory locations x and y may or may

not be persisted due to the volatile cache.

When the power comes back, ReplayCache first loads the region

register, which points to the beginning of the interrupted region.

Then it locates the corresponding recovery code and the number of

stores to be re-executed from the RM and SC table 1 . ReplayCache

jumps to the recovery code to re-execute the same number of store

instructions in the region before the failure 2 . In the recovery code

examples in Figure 6, r12 is the number of stores to be re-executed

during recovery. In the recovery code, ReplayCache runtime loads

the checkpointed store operand registers (e.g., NVFF_r1 in NVM,

and ld [r1 + 4] in QuickRecall) and re-executes store instructions.

Once ReplayCache runtime re-executes the same number of store

instructions ś i.e., all store instructions to the failure PC are re-

executed, the store counter (r12) becomes zero and the runtime

prepares to resume the normal execution (дoto_exit colored in

blue). The runtime signals voltage monitor to restore register files

from NVFF and jumps to failure point 3 . The recovery code are

slight different between NVP and QuickRecall. As shown in the

right, QuickRecall loads the checkpointed registers from the storage

(colored in gray).

6 EVALUATION

6.1 Methodology

6.1.1 Compiler. We implemented all ReplayCache compiler passes

using the LLVM compiler infrastructure [32]. In particular, we im-

plemented our LLVM passes on MIR (Machine IR) level after in-

struction selection to precisely measure the number of live intervals

during the region construction. The all compiler passes consist of

about 1700 LOC excluding comments.

6.1.2 Architecture. We evaluate ReplayCache using a gem5 simu-

lator [4] with ARM ISA, modeling a single core in-order processor

with 16 registers, based on the NVPsim [18]; Table 1 summarizes our

NVM write/read latency based on [18, 47, 48, 63]. In particular, we

only modified L1D cache leaving L1I cache as NVM cache as with

the original NVP [49]. Note that ReplayCache works for any energy

harvesting processors that support just-in-time (JIT) register check-

pointing. In addition to NVP, we test ReplayCache on top of Quick-

Recall whose simulation configuration follows that of NVP other

than the JIT checkpointing/restoration parameters. Table 2 shows

the detailed simulation parameters of NVP and QuickRecall. Since

QuickRecall checkpoints registers in NVM, its checkpoint/restore

voltage thresholds are higher than those used by NVP.

6.1.3 Other Cache Designs and the Default Setting. In addition

to ReplayCache, we test 3 alternative cache designs: non-volatile

cache (NVCache), non-volatile SRAM cache (NVSRAM), and volatile

write-through cache (WT-VCache). All 4 cache designs are assumed

to run with NVP unless noted otherwise. Especially for NVSRAM,

we use the same configuration used by NVPsim [18], which is based

on advanced ReRAM technology. That is, it writes 3x faster with 5x

less energy compared to conventional ReRAM based non-volatile

main memory does. Similarly, it reads 2x faster with 24x less energy

compared to the main memory does. Thus, NVSRAM here serves as

the upper bound for performance comparison due to the forward-

looking technology used. As our default setting, we set the size

of all the caches to 8KB, and they are all 2-way set-associative.

For non-volatile main memory, we used Re-RAM by default and

set its size as 16MB by leveraging NVMain [63]. We also perform

sensitivity studies with STT-RAM and PCM using the parameters

in Table 1.

6.1.4 Benchmarks and Power Traces. We use 8 applications in

Mibench [19] and 15 applications in Mediabench [35] benchmark

suites [46]. All the applications are compiled by ReplayCache com-

piler with -O3 optimization level. To evaluate ReplayCache for
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Table 1: The timing parameters (ns) of different NVM tech-

nologies: e.g., tCK stands for clock period.

NVM tCK tBURST tRCD tCL tWTR tWR tXAW

ReRAM (default) 0.94 7.5 18.0 15.0 7.5 150 30

STT-RAM 1.5 6 35 15 12.5 25 50

PCM 1.88 7.5 48.0 15.0 7.5 300 50

Table 2: Simulation configuration.

NVP (default) NVP (NVSRAM) QuickRecall

Vmax/Vmin[70] 3.3/2.8 3.5/2.8 3.5/2.8

Ckpt/Restore[70] 2.9/3.2 3.2/3.4 3.1/3.3

Recovery NVFF+Cache NVFF+Cache VFF+Cache
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(b) Power Trace 2 (Office)

Figure 7: Energy harvesting traces showing voltage input

fluctuations in two different places within about 250∼400ms

from an RF energy harvesting reader [18].

realistic energy harvesting environment with frequent power out-

ages, we use two power traces of the NVPsim which were collected

from real RF energy harvesting systems [18]. Figure 7 describes the

shape of those two power traces; (a) shows the voltage fluctuations

across time in home, and (b) shows those in office. Trace 2 (office)

has more power outages than Trace 1 (home); in every 30 seconds,

Trace 1 and 2 incur ≈20 and ≈400 power outages, respectively.

6.2 Performance Comparison

6.2.1 Performance without Power Outage. Figure 8 shows the per-

formance results of power-failure-free executions. The Y-axis shows

the normalized speedup over the baseline without a cache. Over-

all, ReplayCache improves the performance of all the applications,

achieving 11x speedup on (geometric) average. It turns out that

NVCache is the worst design as expected because of higher latency

(especially stores) then SRAM, but it still improve the performance

due to locality exploitation.

Recall that NVSRAM uses a traditional SRAM cache with an

NVM (advanced ReRAM) backup, and checkpoints/restores the

whole cache state to/from the NVM backup across power failure.

Thus, with no power outage, NVSRAM should perform as an orig-

inal write-back volatile cache. NVSRAM performs the best as ex-

pected achieving 14x speedup compared to the baseline. Here, the

performance gap between NVSRAM and ReplayCache results from

the store write-back latency that our region-level persistence did

not manage to fully hide with ILP. Later in section 6.3, we present

the detailed results on ReplayCache’s ILP efficiency, reflecting the

amount of stalls at the region boundary.

WT-VCache shows some improvement over the baseline without

a cache. The performance benefits mostly come from load hits,

though the write-through policy makes the cost of store the same as

the baseline. ReplayCache outperforms WT-VCache, i.e., achieving

an average speedup of 1.57x, by hiding the latency of stores with

region-level persistence.

6.2.2 Performance with Power Outages. Figures 9 and 10 show the

performance results with power failures, simulated on Power Traces

1 and 2 in Figure 7. The simulation includes different sequences of

power up/down and downtime during charging. Again, the Y-axis

is the normalized speedup over the baseline without a cache.

Although NVCache uses the same NVM technology as main

memory, it can be placed close to a core as cache in that core-to-

NVCache access is faster than core-to-NVM one. NVCache remains

the worst mainly due to a long cache access latency and higher

energy consumption of NVM access wasting hard-won energy.

With power outages, ReplayCache achieves ≈80% performance

of NVSRAM. This is a promising result given that ReplayCache is

a software-only scheme that allows commodity systems to use a

volatile data cache as is with no other additional hardware sup-

port. Note that NVSRAM cache can retain the cache data across a

power outage while ReplayCache cannot since it uses a traditional

SRAM cache that loses all the content upon the outage; due to this

advantage, NVSRAM beats all other cache schemes. In contrast,

when power comes back, ReplayCache has to start with a cold

cache reloading all necessary data from NVM. Nevertheless, the

cache warming-up cost can be amortized by the benefit of cache

hits, unless the program execution is too frequently interrupted by

power failure.

WT-VCache shows only comparable performance to the expen-

sive NVCache design due to the cost of warming up the volatile

cache across power failure and serializing stores with the write

through policy. However, WT-VCache still outperforms the baseline

with exploiting certain degree of locality. In particular, WT-VCache

outperforms ReplayCache for adpcmencode. That is because the

ReplayCache ended up increasing the instruction count due to a

register spilling in a hot loop along with the stack memory access

cost. On average, WT-VCache performance happens to be almost

same as NVCache design.

Overall, ReplayCache achieves 8.95x (Trace 1) and 8.46x (Trace 2)

average speedups compared to the baseline (no cache), outperform-

ing NVCache andWT-VCache. The reason for the performance gain

over them is two-fold. First, ReplayCache costs less cache power

consumption compared to the NVCache and WT-VCache as shown

in Figure 11. Second, due to the ILP nature, ReplayCache can hide

the most of write-back latency as will be shown Figure 12.

6.2.3 Energy Consumption Breakdown. To figure out the energy

consumption behavior of ReplayCache, we measured howmuch en-

ergy was consumed for each part of the system, i.e., cache, memory,

and core (NVP computation), by using the power model provided

by NVPsim [18]. Figure 11 shows the resulting energy consumption

breakdown, normalized to the same no-cache baseline, using the

Power Trace 2. Overall, ReplayCache turns out to be very effective,

allowing NVP to spend more energy for computation rather than

memory access compared to other schemes. Also, ReplayCache’s

energy consumption is on par with the ideal NVSRAM. As a result,

ReplayCache enables NVP to make a significantly further forward

progress than the no-cache baseline.
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Figure 8: Performance results łwithoutž power outages. We compare ReplayCache with NVCache, NVSRAMCache, and WT-

VCache. Y-axis shows the normalized speedup over the baseline without a cache. The higher, the faster.
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Figure 9: Performance results łwithž power outages, simulated with Power Trace 1 in Figure 7(a). We compare ReplayCache

with NVCache, NVSRAMCache, and WT-VCache. Y-axis shows the normalized speedup over the baseline without a cache.
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Figure 10: Performance results łwithž power outages, simulated with Trace 2 in Figure 7(b). We compare ReplayCache with

NVCache, NVSRAMCache, and WT-VCache. Y-axis shows the normalized speedup over the baseline without a cache.
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Figure 11: Normalized energy consumption breakdown

(trace 2) compared to the baseline without a cache.

6.3 Instruction Level Parallelism Efficiency

ReplayCache exploits ILP for stores and thus is faster than a volatile

write-through cache. Nevertheless, its ILP can be bounded by region-

level persistence guarantee, e.g., a region end is reached before the

preceding store completes the NVM persistence, in which case

ReplayCache is slower than an ideal write-back cache. With that

in mind, we investigate the amount of ILP that ReplayCache can

exploit, based on the power-failure-free simulation results, to reason

about ReplayCache’s high performance.
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Figure 12: Instruction-level parallelism efficiency "without"

power failure.

Let N be the total number (dynamic instances) of stores in a

region. Among them,Nno_stall represents the number of stores that

do not stall, and Nstall represents the number of stores that stall

at the region boundary for region-level persistence guarantee. Let

C be the cycles required for a store to be persisted in the NVM (i.e.,
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the write-through NVM store latency; 31 cycles in our evaluation

for default ReRAM); and S(i) be the stall cycles of i’s store in the

region. We then calculate the ILP efficiency at a 0-to-100% scale.

For each store, the worst efficiency 0% is made when the processor

waits for C cycles after the region finishes, and the best efficiency

100% reflects 0 stall cycle. Equation (1) defines the ILP efficiency for

N stores in a region as follows.

ILPef f (%) =
1

N
{

Nno_stall∑

i=1

1 +

Nstall∑

i=1

(1 −
S(i)

C
)} ∗ 100 (1)

Figure 12 shows the ILP efficiency of the tested applications. On

average, ReplayCache achieves 63% ILP across the evaluated appli-

cations, and the ILP efficiency explains why ReplayCache achieves

the performance shown in Figure 8. Again, in our evaluation, the

write-through store latency takes 31 cycles [18], i.e., C = 31. This

implies that ReplayCache can hide about 20 cycles out of the 31

cycles on average.

6.4 Binary Size Analysis

adp
cm

g721

gsm

jp
eg

m
p
eg2

m
p
eg2

p
egw

it

sha

susan

geom
ean

basicm
ath

blow
fi
sh

dijkstra

ff
t

patricia

rijndael

typ
eset

geom
ean

all
geom

0 0

10 10

20 20

30 30

40 40

In
cr
ea
se
.[
%
]

Mediabench Mibench

Recovery Block

RM

CM

SC Table

Metadata Operations

Figure 13: Binary size increase due to recovery block, meta-

data (RM, CM, SC table), and metadata operations (code).
Figure 13 demonstrates the breakdown of binary size increase

of ReplayCache binaries as a percentage increase compared to the

baseline binary. Overall, ReplayCache incurs only 1.2% binary size

overhead on average. Metadata operations are comprised of roughly

110 instructions, leading to near-zero overhead. Only 2 applications,

e.g., jpeg and typeset, have observable binary size increase be-

cause they have lots of small regions. Note that the binary size

overhead never puts pressure on application’s memory usage at

run time. That is because the metadata is accessed only at boot time

on which ReplayCache’s recovery starts with empty cacheÐalready

wiped out upon the prior failureÐwithout cache pollution.

6.5 Dynamic Instruction Count Analysis

Figure 14 demonstrates that ReplayCache compiler only increases

dynamic instruction count by 2.49% on average compared to the

baseline binary. Note that this is not a critical performance limiting

factor as confirmed in Figure 8-10 where ReplayCache consistently

shows significant speedups.

6.6 Sensitivity Study

6.6.1 Cache Size. Figure 15 shows the normalized execution time

(to the baseline without a cache) of alternative cache schemes with

a different cache size from 512B to 8KB using Power Trace 2. The

results show that ReplayCache matches the performance of NVS-

RAM cache (that is an ideal write-back cache in power-failure-free

scenarios) for small cache size, such as 512B and 1KB.
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Figure 14: Dynamic instruction count increase due to

ReplayCache compiler code generation; lower is better.
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Figure 16: Sensitivity study on different NVMs with trace 2

used.
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Figure 17: Performance overhead comparison with trace 2.

6.6.2 NVM Technology. Different NVM technologies (e.g.,, ReRAM,

PCM, and STT-RAM) have different write/read latency properties

as summarized in Table 1. For ReRAM, PCM, and STT-RAM (as

the main memory), Figure 16 shows the normalized speedup of

alternative cache schemes, compared to their 3 baselines without a

cache. It turns out that ReplayCache consistently achieves signifi-

cant speedups across the NVM technologies (8.4x-8.46x).

6.6.3 NVP versus QuickRecall. To analyze the impact of the un-

derlying just-in-time register checkpointing on ReplayCache’s per-

formance, we tested all four cache schemes on top of QuickRecall

and compared the results with those of NVP. Again, we used the

Power Trace 2 and normalized the speedup over their baselines, i.e.,

NVP/QuickRecall without cache. Figure 17 describes that the per-

formance trend is similar to NVP; however, it is worth noting that

QuickRecall requires higher checkpoint/restoration voltage due

to data backup as shown in Table 2Ðthough it is a less expensive

system than NVP due to the lack of non-volatile flip-flops.
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Figure 18: Breakdown of per-region instructions on average.
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Figure 19: Average distance (the number of instructions) be-

tween region’s last store and the following region boundary.

6.7 ReplayCache Compiler Region Statistics

We study the region statistics, statically calculated from the binary

built by our compiler. Figure 18 presents the average number of

instructions per region. On average, there are 16.4 instructions per

region. We also break them down into two categories: stores and

other instructions. On average, there are 2.18 stores and 14.35 others

per region. This implies that the recovery code blocks are not long

either (smaller than their regions). In fact, we did not encounter

any recovery block that requires the corresponding region to be

split to ensure the absence of power failure during the recovery.

Moreover, Figure 19 shows the average distance (the number of

instructions) between the last store of a region and the following

region boundary, i.e., 4.35 instructions on average. The distance

here reflects ReplayCache’s ILP opportunities.

7 RELATED WORKS

Many prior works [1, 25, 55, 56, 62, 74, 77] have been proposed

to leverage non-volatile caches to speed up the performance and

leverage their zero standby leakage and crash consistency free

properties. However, the cell endurance of NVM techniques ranges

from 105 in flash to 1012 in STT-RAM. Non-volatile caches may

only be able to endure few months for most of real applications [25].

Thus, prior works focus on increasing the lifetime of NVM cells.

Furthermore, NVM has the asymmetric performance property. A

write is considerably slower than a read, compared to the SRAM

counterpart. Both the short lifetime and the long write latency

severely limit the use of NVM as L1 cache in practice.

To use the synergy of NVM and SRAM, many researches [10, 20,

33, 38, 39, 53, 54, 57, 68, 69, 69, 78] proposed to incorporate different

NVM technologies (e.g., STT-RAM, ReRAM, etc.) with SRAM. Many

proposals leverage the NVM part as a just-in-time checkpointing

storage of the traditional SRAM-based cache in case of power fail-

ure. Thus, the NVM speed is the critical aspect for the success of

such SRAM/NVM hybrid design. Although researchers attempt

to improve the NVM backup/restoration latency [38, 69], they as-

sume forward-looking technologies; no current NVM technologies

provide comparable latency to SRAM [12, 30].

The idea of partitioning a program into multiple regions to de-

sign more efficient energy harvesting systems has been explored.

Ratchet [72] proposed to partition program into a series of anti-

dependence-free (i.e., write-after-read dependence free) regions

for idempotent processing as with others [14, 15, 28, 40ś43, 45].

Since idempotent regions can be safely re-executed multiple times,

it can recover a power-interrupted region by rolling back to the

beginning in the wake of power failure, provided the inputs value

of the region can survive the power failure. Due to the absence of

the anti-dependence, Ratchet only needs to checkpoint all live-in

registers of the region at its entry point. Unfortunately, such con-

secutive NVM writes are not only expensive but also dangerous

increasing the chance of power failure in the middle of their writes.

To address the issues in Ratchet, Clank [21] proposed hardware-

based idempotent processing. Despite its improved performance,

Clank requires relatively heavy and complex hardware components

such as a fast scratchpad memory for speeding up the writes to

the underlying NVM and an expensive CAM (content-addressed

matching) search based load/store address tables to dynamically

detect anti-dependence. Alternatively, CoSpec [12] proposed power

failure speculation assuming that power failure is not likely to

occur. Thus, it buffers all the application writes in a gated store

buffer [44, 80] in case of misspeculation, i.e., actual power failure.

Also, the CoSpec compiler partitions program into a series of re-

gions so that they never overflow the store buffer. When power

failure occurs in the middle of a region, it is rolled back to the

beginning in the wake of power failure. As with Ratchet, CoSpec

needs to pay the overhead of checkpointing all live-in registers

of every region. Unlike ReplayCache, neither Clank nor CoSpec

supports a volatile data cache. Thus, we suspect that ReplayCache

can significantly outperform them.

8 CONCLUSION

This paper presents ReplayCache, a software-only scheme that en-

ables energy harvesting systems to take advantage of a volatile

data cache efficiently and correctly. To achieve crash consistency

with the volatile data cache, ReplayCache proposes a replay-based

solution that restores the operands of potentially unpersisted stores

from the register checkpoint and then re-executes them to restore

consistent non-volatile memory status. Experimental results show

that compared to the baseline with no cache, ReplayCache sig-

nificantly improves the performance by 8.46x-8.95x speedup on

geometric mean, while ensuring correct resumptions even in the

presence of unpredictable and frequent power outages.
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