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Abstract. This paper is concerned with bridging the gap between requirements,
provided as a set of scenarios, and conforming design models. The novel aspect of
our approach is to exploit learning for the synthesis of design models. In particu-
lar, we present a procedure that infers a message-passing automaton (MPA) from
a given set of positive and negative scenarios of the system’s behavior provided
as message sequence charts (MSCs). The paper investigates which classes of reg-
ular MSC languages and corresponding MPA can (not) be learned, and presents a
dedicated tool based on the learning library LearnLib that supports our approach.

1 Introduction

The elicitation of requirements is the main initial phase in the typical software engineer-
ing development cycle. A plethora of elicitation techniques for requirement engineering
exist. Popular requirement engineering methods, such as the Inquiry Cycle and CREWS
[26], exploit use cases and scenarios to specify the system’s requirements. Sequence di-
agrams are also at the heart of the UML. A scenario is a partial fragment of the system’s
behavior, describing the system components, their message exchange and concurrency.
Their intuitive yet formal nature has resulted in a broad acceptance. Scenarios can be
positive or negative, indicating a desired or unwanted system behavior, respectively.
Different scenarios together form a more complete description of the system behavior.

The following design phase in software engineering is a major challenge as it is con-
cerned with a paradigm shift between the requirement specification—a partial, overlap-
ping and possibly inconsistent description of the system’s behavior—and a conforming
design model, a complete behavioral description of the system (at a high level of ab-
straction). During the synthesis of design models, usually automata-based models that
are focused on intra-agent communication, conflicting requirements will be detected
and need to be resolved. Typical resulting changes to requirements specifications in-
clude adding or deleting scenarios, and fixing errors that are found by a thorough analy-
sis (e.g., model checking) of the design model. Obtaining a complete and consistent set
of requirements together with a related design model is thus a highly iterative process.

This paper proposes a novel technique that is aimed to be an important stepping
stone towards bridging the gap between scenario-based requirement specifications and
design models. The novel aspect of our approach is to exploit learning algorithms for
the synthesis of distributed design models from scenario-based specifications. Since
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message-passing automata (MPA, for short) [10] are a commonly used model to realize
the behavior as described by scenarios, we adopt MPA as design model. We present
a procedure that interactively infers an MPA from a given set of positive and negative
scenarios of the system’s behavior provided as message sequence charts (MSCs). This
is achieved by generalizing Angluin’s learning algorithm for deterministic finite-state
automata (DFA) [4] towards specific classes of bounded MPA, i.e., MPA that can be
used to realize MSCs with channels of finite capacity. An important distinctive aspect of
our approach is that it naturally supports the incremental generation of design models.
Learning of initial sets of scenarios is feasible. On adding or deletion of scenarios, MPA
are adapted accordingly in an automated manner. Thus, synthesis phases and analysis
phases, supported by simulation or analysis tools such as MSCan [7], complement each
other in a natural fashion. Furthermore, on establishing the inconsistency of a set of
scenarios, our approach mechanically provides diagnostic feedback (in the form of a
counterexample) that can guide the engineer to evolve his requirements. This paper
investigates which classes of regular MSC languages and corresponding MPA can (not)
be learned, and presents Smyle, a dedicated tool based on the learning library LearnLib
[27] that supports our approach.

Generating automata-based models from scenarios has received a lot of attention.
These works include algorithms to generate statechart models from MSCs [19], formal-
ization and undecidability results for the synthesis for a simple variant of live sequence
charts (LSCs) [9], and Harel’s play-in, play-out approach for LSCs [11,12]. Another
approach is proposed by Alur et al. in [2,3]. Uchitel et al. [29] present an algorithm for
synthesizing transition systems from high-level MSCs. An executable variant of LSCs,
triggered MSCs, are presented in [28]. All approaches are based on a rather complete,
well-elaborated specification of the system to be, such as MSCs with loops or condi-
tions, high-level MSCs, triggered MSCs, or LSCs, whereas for our synthesis approach
only simple MSCs have to be provided as examples, simplifying the requirements
specification task.

Applying learning yields an incremental approach, and facilitates the generation of
diagnostic feedback. An alternative approach to using learning for inferring design
models from UML sequence diagrams has been proposed in [23]. This approach fo-
cuses on learning DFA (from words) representing the global system and only considers
synchronous communication. The use of learning for model-based testing in [18] has
similar characteristics. Using our technique, collections of MSCs (in fact, partial or-
ders or words with partial commutation) are learned and yield an MPA that explicitly
reflects the composite structure of the system together with the asynchronous message
exchange between the individual components.

After an introduction into MSCs and MPA (Sections 2 and 3), we formally define
the general learning setting and describe the extension of Angluin’s learning algorithm,
cf. Section 4. We then consider existentially and universally bounded MPA, i.e., MPA
for which some (all) possible event orderings can be realized with finite channels. It
is shown (in Section 5) that universally bounded MPA and safe product MPA, as well
as existentially bounded MPA with an a priori fixed channel capacity are learnable.
Section 6 presents the basic functionality of our tool and some initial case study results.
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2 Message Sequence Charts

Let Σ∗ denote the set of finite words over a finite alphabet Σ. A Σ-labeled partial order
is a triple P = (E, ≤, �) where E is a finite set, ≤ is a partial-order relation on E, i.e.,
it is reflexive, transitive, and antisymmetric, and � : E → Σ is a labeling function. A
linearization of P is an extension (E, ≤′, �) of P = (E, ≤, �) such that ≤′ ⊇ ≤ is a total
order. As we will consider partial orders up to isomorphism, the set of linearizations of
P, denoted Lin(P), is a subset of Σ∗.

We fix a finite set Proc of at least two processes, which exchange messages from
a finite set Msg by executing communication actions. Let Ch denote the set {(p, q) |
p, q ∈ Proc, p �= q} of reliable FIFO channels. For p ∈ Proc, Actp denotes the set of
actions of p, i.e., {!(p, q, a) | (p, q) ∈ Ch and a ∈ Msg} ∪ {?(p, q, a) | (p, q) ∈ Ch
and a ∈ Msg}. The action !(p, q, a) is to be read as “p sends the message a to q”, while
?(q, p, a) is the complementary action of receiving a sent from p to q (which is thus
executed by q). Moreover, let Act =

⋃
p∈Proc Actp.

Definition 1 (Message Sequence Chart (MSC)). An MSC (over Proc and Msg) is a
structure (E, {≤p}p∈Proc, <msg, �) with:

– E is a finite set of events,
– � : E → Act is a labeling function,
– for any p ∈ Proc, ≤p is a total order on Ep = �−1(Actp),
– <msg ⊆ E × E such that, for any e ∈ E, e <msg e′ or e′ <msg e for some e′ ∈ E,

and, for any (e1, e
′
1) ∈ <msg, there are p, q ∈ Proc and a ∈ Msg satisfying:

• �(e1) = !(p, q, a) and �(e′1) = ?(q, p, a),
• for any (e2, e

′
2) ∈ <msg with �(e2) = !(p, q, b) for some b ∈ Msg: e1 ≤p e2 iff

e′1 ≤q e′2 (which guarantees FIFO behavior), and
• ≤ = (<msg ∪

⋃
p∈Proc ≤p)∗ is a partial-order relation on E.

Let M = (E, {≤p}p∈Proc, <msg, �) be an MSC. A prefix of M is a structure (E′, {≤′
p

}p∈Proc, <
′
msg, �

′) such that E′ ⊆ E with e ∈ E′ and e′ ≤ e implies e′ ∈ E′, ≤′
p =

≤p ∩ (E′ × E′) for any p ∈ Proc, <′
msg = <msg ∩ (E′ × E′), and �′ is the restriction

of � to E′. We write P 
 M if P is a prefix of the MSC M .
The set of MSCs is denoted by ���. A set of MSCs, L ⊆ ���, is called an MSC

language. For L ⊆ ���, we let Pref (L) denote {P | P 
 M for some M ∈ L} (a
similar notation will be used in the context of words). Note that ��� ⊆ Pref (���).

Let M = (E, {≤p}p∈Proc, <msg, �) ∈ ���. We set Lin(M) to be Lin((E, ≤, �))
(canonically extended for prefixes of M ); the linearizations of L ⊆ ��� are defined
by Lin(L) =

⋃
M∈L Lin(M). Note that L ⊆ ��� is uniquely determined by Lin(L),

i.e., for any L, L′ ⊆ ���, Lin(L) = Lin(L′) implies L = L′. A word w ∈ Act∗ is an
MSC word if w ∈ Lin(M) for some M ∈ ���; for B ∈ IN, w is B-bounded if, for any
prefix v of w and any (p, q) ∈ Ch ,

∑
a∈Msg |v|!(p,q,a) −

∑
a∈Msg |v|?(q,p,a) ≤ B where

|v|σ denotes the number of occurrences of σ in v. For B ∈ IN, let LinB(M) denote
{w ∈ Lin(M) | w is B-bounded}, and LinB(L) =

⋃
M∈L LinB(M) for L ⊆ ���.

Definition 2 (Boundedness). Let M ∈ ���. We call M universally B-bounded (i.e.,
∀B-bounded) if Lin(M) = LinB(M). We call it existentially B-bounded (i.e., ∃B-
bounded) if Lin(M) ∩ LinB(M) �= ∅.
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The sets of ∀B-bounded MSCs and ∃B-bounded MSCs are denoted by ���∀B and
���∃B , respectively. In an ∃B-bounded MSC, the events can be scheduled such that,
during its execution, any channel contains at most B messages. In a ∀B-bounded MSC,
any scheduling is within the channel bound B. A set L ⊆ ��� is ∀B-bounded if
L ⊆ ���∀B, and ∃B-bounded if L ⊆ ���∃B . It is is ∀-/∃-bounded if it is ∀B-/∃B-
bounded for some B ∈ IN, respectively.

Example 1. The MSC word w = !(1, 2, req) (!(1, 2, req) ?(2, 1, req))4 ?(2, 1, req) is in
Lin(M) with M the MSC from Fig. 1c. Note that w is 2-bounded, but not 1-bounded.
But M has a 1-bounded linearization, and Lin1(M) = {(!(1, 2, req) ?(2, 1, req))5}. In
fact, M is ∃1-bounded and ∀B-bounded for B ≥ 5. The MSC in Fig. 1a is ∀4-bounded
and thus ∃4- bounded. It is even ∃2-bounded, but not ∃1-bounded. The MSC in Fig. 1b
is ∀3-and ∃1-bounded, but not ∀2-bounded. Finally, we note that the set of MSCs where
arbitrarily many messages are sent from 1 to 2 is ∃1-bounded, but not ∀-bounded.

3 Message-Passing Automata

An MPA [10] is a collection of finite automata (called processes) that share a single
global initial state and a set of global final states. Bilateral communication between
the processes takes place via unbounded reliable FIFO buffers. Process transitions are
labeled with send or receive actions. Action !(p, q, a) puts the message a at the end of
the channel from p to q. Receive actions are enabled only if the requested message is
found at the head of the channel. The expressive power of MPA is extended by allowing
components to exchange synchronization messages.

Definition 3 (Message-passing automaton (MPA)). An MPA is a tuple ((Ap)p∈Proc ,
Sync, sin , F ) with:

– Sync is a nonempty finite set of synchronization messages,
– for each p ∈ Proc, Ap is a pair (Sp, Δp) where Sp is a finite set of local states and

Δp ⊆ Sp × Actp × Sync × Sp is a set of local transitions,
– sin ∈ SA =

∏
p∈Proc Sp is the global initial state, and

– F ⊆ SA is a set of global final states.

As in [17,24], we consider the linearizations of MSCs that are obtained from the global
automaton induced by an MPA. For an MPA A = ((Ap)p∈Proc,Sync, sin , F ), where
Ap = (Sp, Δp), this global automaton is defined as follows. The set of configurations
of A, denoted by ConfA, consists of pairs (s, χ) with s ∈ SA and χ : Ch → (Msg ×
Sync)∗, indicating the channel contents. The global transition relation of A, =⇒A ⊆
ConfA × Act × Sync × ConfA, is defined by the following two inference rules (s[p]
refers to the p-component of a global state s ∈ SA):

(s[p], !(p, q, a), m, s′[p]) ∈ Δp ∧ for all r �= p, s[r] = s′[r]
((s, χ), !(p, q, a), m, (s′, χ′)) ∈ =⇒A

where χ′ = χ[(p, q) := (a, m) · χ((p, q))], i.e., χ′ maps (p, q) to the concatenation of
(a, m) and χ((p, q)); for all other channels, it coincides with χ.

(s[p], ?(p, q, a), m, s′[p]) ∈ Δp ∧ for all r �= p, s[r] = s′[r]
((s, χ), ?(p, q, a), m, (s′, χ′)) ∈ =⇒A
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Fig. 1. Example message sequence charts
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Fig. 2. Example message-passing automata

where χ((q, p)) = w · (a, m) and χ′ = χ[(q, p) := w]. The initial and final configura-
tions of the global automaton are (sin , χε) and F × {χε}, respectively, where χε maps
each channel onto the empty word.

Now MPA A defines the word language L(A) ⊆ Act∗, i.e., the set of words ac-
cepted by the global automaton of A while ignoring synchronization messages. The
MSC language of A, denoted by L(A), is the (unique) set L of MSCs such that we
have Lin(L) = L(A). The notions of boundedness on MSCs carry over to MPA in a
natural way, e.g., MPA A is ∀-bounded if its MSC language is ∀-bounded. The set of
∀-bounded and ∃B-bounded MPA is denoted by MPA∀ and MPA∃B, respectively.

Example 2. Fig. 2a shows a not ∃-bounded MPA with set of synchronization messages
{m1, m2} (and simplified action alphabet). Its only global final state is indicated by a
dashed line. Its MSC language, which contains MSCs such as in Fig. 1a, cannot be
recognized with less than two synchronization messages. For the MPA in Fig. 2b, spec-
ifying a part of the alternating-bit protocol (ABP), a single synchronization message
suffices (which is therefore omitted). It is ∀3-bounded (cf. Fig. 1b). The MPA in Fig. 2c
has no synchronization messages either. Its accepted MSCs are as in Fig. 1c and form
an ∃1-bounded MSC language that, however, is not ∀-bounded.

An MPA A = ((Ap)p∈Proc ,Sync, sin , F ), with Ap = (Sp, Δp), is a product MPA
if |Sync| = 1 and F =

∏
p∈Proc Fp for some Fp ⊆ Sp, p ∈ Proc. The acceptance
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condition is thus local, i.e., any process autonomously decides to halt. Moreover, prod-
uct MPA cannot distinguish between synchronization messages. MSC languages of
product MPA are referred to as realizable [24,21]. The MPA in Figs. 2b and 2c are
product MPA, whereas the MPA in Fig. 2a is not, as it employs two synchronization
messages. Actually, the latter has no equivalent product MPA. As for ordinary MPA,
the notions of boundedness carry over to product MPA; let MPAp

∀ and MPAp
∃B denote

the set of ∀-bounded product and ∃B-bounded product MPA, respectively. The MPA in
Fig. 2b is in MPAp

∀ , whereas the MPA in Fig. 2c is in MPAp
∃1, but not in MPAp

∀.
An MPA is called deadlock-free or safe if, from any configuration that is reach-

able from the initial configuration, one can reach a final configuration. The MPA from
Figs. 2b and 2c are safe, whereas the MPA depicted in Fig. 2a is not safe. The class of
∀-bounded safe product MPA is denoted by MPAsp

∀ .

4 An Extension of Angluin’s Algorithm

Angluin’s algorithm L∗ [4] is a well-known algorithm for learning deterministic finite
state automata (DFA). In this section, we recall the algorithm and extend it towards
learning objects that can be represented by DFA in a way made precise shortly. This
extension allows us to learn various classes of MPA, as described below.

Let us first recall some basic definitions. Let Σ be an alphabet. A deterministic finite
automaton (DFA) over Σ is a tuple A = (Q, q0, δ, F ), where Q is its finite set of states,
q0 ∈ Q is the initial state, δ : Q × Σ → Q is its transition function, and F ⊆ Q is the
set of final states. The language of A is defined as usual and denoted by L(A).

4.1 The Basic Algorithm

A Learner , who initially knows nothing about a given DFA A, is trying to learn A by
asking queries to a Teacher , who knows A. There are two kinds of queries:

– A membership query consists in asking whether a string w ∈ Σ∗ is in L(A).
– An equivalence query consists in asking whether a hypothesized DFA H is correct,

i.e., whether L(H) = L(A). The Teacher will answer yes if H is correct, or else
supply a counterexample w, either in L(A) \ L(H) or in L(H) \ L(A).

The Learner maintains a prefix-closed set U ⊆ Σ∗ of prefixes, which are candidates
for identifying states, and a suffix-closed set V ⊆ Σ∗ of suffixes, which are used to
distinguish such states. The sets U and V are increased when needed during the al-
gorithm. The Learner makes membership queries for all words in (U ∪ UΣ)V , and
organizes the results into a table T which maps each u ∈ (U ∪ UΣ) to a mapping
T (u) : V → {+, −} where + represents accepted and − not accepted. In [4], each
function T (u) is called a row. When T is

– closed: for any u ∈ U and a ∈ Σ, there is a u′ ∈ U with T (ua) = T (u′), and
– consistent: for any u, u′ ∈ U and a ∈ Σ, T (u) = T (u′) implies T (ua) = T (u′a),

the Learner constructs a hypothesized DFA H = (Q, q0, δ, Q
+), where Q = {T (u) |

u ∈ U} is the set of distinct rows, q0 is the row T (ε) (with ε denoting the empty word),
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δ is defined by δ(T (u), a) = T (ua), and Q+ = {T (u) | u ∈ U and T (u)(ε) =
+}. After that, the Learner submits H in an equivalence query. If the answer is yes,
the learning procedure is completed, otherwise the returned counterexample is used to
extend U and V , and subsequent membership queries are performed until arriving at a
new hypothesized DFA.

4.2 Learning Objects Represented by Subclasses of Regular Word Languages

Our goal is to learn MPA from examples given as MSCs. To avail Angluin’s algorithm,
we need to establish a correspondence between MPA and regular word languages. As
we will consider several classes of MPA with corresponding representations in the next
section, let us first elaborate on general properties of representations for learning objects
of a fixed arbitrary set of objects O. These objects might be classified into equivalence
classes of an equivalence relation ∼ ⊆ O × O. In our setting, the objects will be MPA,
and two MPA are considered to be equivalent if they recognize the same MSC language.

We now have to represent elements from O (or, rather, their equivalence classes)
by regular word languages, say over an alphabet Σ. For MPA A, we might consider
regular languages L over Act such that L corresponds to the set Lin(L(A)). But not
every regular word language over Act gives rise to an MPA. In particular, it might
contain words that are not MSC words, i.e., do not correspond to some MSC. Thus, in
general, it is necessary to work within a subset D of Σ∗, i.e., we learn regular subsets
of D. For learning MPA, e.g., it is reasonable to set D = Lin(���).

It is not always sufficient to restrict to D in order to obtain a precise correspondence
between O and regular word languages. Often, regular word languages are required to
be closed under some equivalence relation and/or inference rule. E.g., an MPA always
gives rise to an MSC word language that contains either any linearization of some given
MSC, or none. Similarly, languages of product MPA are closed under inference (to be
made precise later) imposing similar requirements on the representing language. So let
us consider an equivalence relation ≈ ⊆ D×D and, moreover, a relation � ⊆ 2D×2Σ∗

where L1 � L2 intuitively means that L1 still requires at least one element from L2.

Regular Languages Objects

D

D

u ≈ u
′

w
′′

w ≈ w
′

obj

∼

Fig. 3. Representing objects by regular lan-
guages

We say that L ⊆ D is ≈-closed (or,
closed under ≈) if, for any w, w′ ∈ D with
w ≈ w′, we have w ∈ L iff w′ ∈ L. More-
over, L is said to be �-closed (or, closed
under �) if, for any (L1, L2) ∈ �, we have
that L1 ⊆ L implies L ∩ L2 �= ∅.1 Con-
sider Fig. 3. The larger ellipse is closed
under ≈ (w ≈ w′) and under � (assum-
ing {w, w′} � {w′′}), whereas the smaller
circle is not.

Naturally, D, ≈, and � determine a par-
ticular class RminDFA(Σ, D, ≈, �) = {L ⊆
D | L is regular and closed under both ≈

1 Technically, ≈ and � could be encoded as a single relation. As they will serve a different
purpose, we separate them in the general framework, to simplify the forthcoming explanations.
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and �} of regular word languages over Σ (where any language is understood to be
given by its minimal DFA). Suppose a language of this class RminDFA(Σ, D, ≈, �) can
be learned in some sense that will be made precise. For learning elements of O, we
still need to derive an object from a language in RminDFA(Σ, D, ≈, �). To this aim, we
suppose a computable bijective mapping obj : RminDFA(Σ, D, ≈, �) → [O]∼ = {[o]∼ |
o ∈ O} (where [o]∼ = {o′ ∈ O | o′ ∼ o}). Again, Fig. 3 illustrates a typical situation.

As Angluin’s algorithm works within the class of arbitrary DFA over Σ, its Learner
might propose DFA whose languages are neither a subset of D nor satisfy the closure
properties for ≈ and �. To rule out and fix such hypotheses, the language inclusion
problem and the closure properties in question are required to be constructively decid-
able, meaning that they are decidable and if the property fails, a reason of its failure can
be computed. Now, let us formally define what we understand by a learning setup:

Definition 4. Let O be a set of objects and ∼ ⊆ O × O be an equivalence relation. A
learning setup for (O, ∼) is a quintuple (Σ, D, ≈, �, obj ) where

– Σ is an alphabet,
– D ⊆ Σ∗ is the domain,
– ≈ ⊆ D × D is an equivalence relation such that, for any w ∈ D, [w]≈ is finite,
– � ⊆ 2D × 2Σ∗

such that, for any (L1, L2) ∈ �, L1 is both finite and ≈-closed, and
L2 is a nonempty decidable language,

– obj : RminDFA(Σ, D, ≈, �) → [O]∼ is a bijective effective mapping in the sense
that, for L ∈ RminDFA(Σ, D, ≈, �), a representative of obj (L) can be computed.

Furthermore, we require that the following hold for DFA A over Σ:

(D1) The problem whether L(A) ⊆ D is decidable. If, moreover, L(A) �⊆ D, one
can compute w ∈ L(A) \ D. We then say that INCLUSION(Σ, D) is constructively
decidable.

(D2) If L(A) ⊆ D, it is decidable whether L(A) is ≈-closed. If not, one can compute
w, w′ ∈ D such that w ≈ w′, w ∈ L(A), and w′ �∈ L(A). We then say that the
problem EQCLOSURE(Σ, D, ≈) is constructively decidable.

(D3) If L(A) ⊆ D is closed under ≈, it is decidable whether L(A) is �-closed. If not,
we can compute (L1, L2) ∈ � (hereby, L2 shall be given in terms of a decision
algorithm that checks a word for membership) such that L1 ⊆ L(A) and L(A) ∩
L2 = ∅. We then say that INFCLOSURE(Σ, D, ≈, �) is constructively decidable.

Let us generalize Angluin’s algorithm to cope with the extended setting, and let (Σ,D,
≈, �, obj ) be a learning setup for (O, ∼). The main changes concern the processing of
membership queries and the treatment of hypothesized DFA:

– Once a membership query has been processed for a word w ∈ D, queries w′ ∈
[w]≈ must be answered equivalently. They are thus not forwarded to the Teacher
anymore. We might think of an Assistant in between the Learner and the Teacher
that checks if an equivalent query has already been performed. Queries for w �∈ D
are not forwarded to the Teacher either but answered negatively by the Assistant .

– When the table T is both closed and consistent, the hypothesized DFA H is com-
puted as usual. After this, we proceed as follows:
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1. If L(H) �⊆ D, compute a word w ∈ L(H) \ D, declare it a counterexample,
and modify the table T accordingly (possibly involving further membership
queries).

2. If L(H) ⊆ D but L(H) is not ≈-closed, then compute w, w′ ∈ D such that
w ≈ w′, w ∈ L(H), and w′ �∈ L(H); perform membership queries for [w]≈.

3. If L(H) is the union of ≈-equivalence classes but not �-closed, then compute
(L1, L2) ∈ � such that L1 ⊆ L(H) and L(H) ∩ L2 = ∅; perform membership
queries for any word from L1; if all these membership queries are answered
positively, the Teacher is asked to specify a word w from L2, which will be
declared “positive”.

Actually, a hypothesized DFA H undergoes an equivalence test only if L(H) ⊆ D
and L(H) is both ≈- and �-closed. I.e., if, in the context of the extended learning
algorithm, we speak of a hypothesized DFA, we actually act on the assumption that
L(H) is the union of ≈-equivalence classes and closed under �.

Let the extension of Angluin’s algorithm wrt. a learning setup as sketched above be
called EXTENDEDANGLUIN (its pseudo code can be found in [6]). A careful analysis
shows:

Theorem 1. Let (Σ, D, ≈, �, obj ) be a learning setup for (O, ∼). If o ∈ O has to be
learned, then invoking EXTENDEDANGLUIN((O, ∼), (Σ, D, ≈, �, obj )) returns, after
finitely many steps2, an object o′ ∈ O such that o′ ∼ o.

The theorem suggests the following definition:

Definition 5. Let O be a set of objects and ∼ ⊆ O ×O be an equivalence relation. We
say that (O, ∼) is learnable if there is some learning setup for (O, ∼).

5 Learning Message-Passing Automata

This section identifies some learnable classes of MPA, i.e, regular word languages that
can be learned and generated by an MPA. It seems unlikely to find a reasonable learn-
ing approach for arbitrary MPA, which is suggested by negative results from [8]. We
therefore propose to consider ∃- and ∀-regular MSC languages and study learnability
for the class of MPA and product MPA.

5.1 Regular MSC Languages and Product MSC Languages

A word language is said to represent an MSC language L whenever it contains a lin-
earization for each M ∈ L, and no linearizations for M ′ �∈ L. Formally:

Definition 6 (Representative). L ⊆ Act∗ is a representative for L ⊆ ��� if L ⊆
Lin(L) and, for any MSC M , M ∈ L iff Lin(M) ∩ L �= ∅.

2 When learning a DFA over Σ with n states, the number of membership queries in the worst
case is O(|Σ| · n3).
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Fig. 4. Some MSCs

Example 3. Let M1 ·M2 denote the concatenation of MSCs M1 and M2, i.e., the unique
MSC M such that {w1w2 | w1 ∈ Lin(M1), w2 ∈ Lin(M2)} ⊆ Lin(M). {M}∗
denotes the Kleene closure of ·. The MSC language {M1}∗ for MSC M1 in Fig. 4
is not regular in the sense of [17], as Lin({M1}∗) is not a regular word language.
However, {M1}∗ can be represented by the regular word language Lin1({M1}∗) =
{(!(1, 2, a) ?(2, 1, a))n | n ∈ IN}. Considering the MSC M2 in Fig. 4, we even have
that Lin({M2}∗) is a regular representative for {M2}∗.

The interesting case occurs when representatives are regular. But some MSC languages
cannot be generated by MPA as their regular representatives require infinite channels.

Example 4. The ∃1-bounded MSC language {M3}∗ for MSC M3 in Fig. 4 has the
regular representative {(!(1, 2, a) ?(2, 1, a) !(3, 4, a) ?(4, 3, a))n | n ∈ IN}, but there
is no B ∈ IN such that LinB({M3}∗) is a regular representative for {M3}∗. Thus,
according to results from [16], it cannot be the language of some MPA.

Definition 7 (∀- and ∃-regular). L ⊆ ��� is ∀-regular if Lin(L) ⊆ Act∗ is regular.
L is ∃-regular if, for some B ∈ IN, LinB(L) is a regular representative for L.

Any ∀-regular MSC language is ∀-bounded and any ∃-regular MSC language is ∃-
bounded. Moreover, any ∀-regular MSC language is ∃-regular. An MPA is called ∀-
regular, ∃-regular, etc., if so is its MSC language.

Example 5. The MPA in Fig. 2a is not ∃-regular, whereas the MPA in Fig. 2b is ∀-
regular. In particular, only finitely many global configurations are reachable from the
initial configuration. The MPA in Fig. 2c is ∃-regular, but not ∀-regular.

Regular MSC languages are of interest as they are realizable by MPA.

Theorem 2 ([16,17,20]). Regular MSC languages versus bounded MPA:

(a) For any ∃-regular MSC language L (given as a regular representative), one can
effectively compute an MPA A such that L(A) = L. If L is ∀-regular, then A can
be assumed to be deterministic.

(b) Let B ∈ IN. For A ∈ MPA∃B , LinB(L(A)) is a regular representative for L(A)
and L(A) is ∃-regular. For A ∈ MPA∀, Lin(L(A)) is a regular representative for
L(A) and L(A) is ∀-regular.

A realization of {M1, M4} (cf. Fig. 4) also infers M3 provided the bilateral interaction
between the processes is completely independent. A set of MSCs that is closed under
such an inference is a product MSC language (it is called weakly realizable in [2]). For
M = (E, {≤p}p∈Proc, <msg, �) ∈ Pref (���), the behavior of M can be split into its
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components M � p = (Ep, ≤p, �|Ep
), p ∈ Proc, each of which represents the behavior

of a single agent, which can be seen as a word over Actp. For finite set L ⊆ ���

and M ∈ ���, let L �p
MSC M if, for any p ∈ Proc, there is M ′ ∈ L such that

M ′ �p = M �p.

Definition 8 (Product MSC language [2]). L ⊆ ��� is a product MSC language if,
for any M ∈ ��� and any finite L′ ⊆ L, L′ �p

MSC M implies M ∈ L.

For practical applications, it is desirable to consider so-called safe product languages.
Those languages are implementable in terms of a safe product MPA, thus one that is
deadlock-free. For a finite set L ⊆ ��� and P ∈ Pref (���), we write L �s

MSC P if,
for any p ∈ Proc, there is M ∈ L such that P � p is a prefix of M � p.

Definition 9 (Safe product MSC language [2]). A product MSC language L ⊆ ���

is called safe if, for any finite L′ ⊆ L and any P ∈ Pref (���), L′ �s
MSC P implies

P 
 M for some M ∈ L.

Lemma 1 ([21], cf. [2,3]). L ⊆ ��� is a ∀-regular safe product MSC language (given
in terms of Lin(L)) iff it is accepted by some A ∈ MPAsp

∀ . Both directions are effective.

5.2 Learning ∀-Bounded Message-Passing Automata

Towards a learning setup for ∀-bounded MPA, we let

– ∼∀ = {(A, A′) ∈ MPA∀ × MPA∀ | L(A) = L(A′)},
– ≈MW = {(w, w′) ∈ Lin(M) × Lin(M) | M ∈ ���}, and
– obj ∀ : RminDFA(Act ,Lin(���), ≈MW, ∅) → [MPA∀]∼∀ be an effective bijective

mapping whose existence is stated by Theorem 2 (a).

To prove that (Act ,Lin(���), ≈MW, ∅, obj ∀) is indeed a learning setup for the pair
(MPA∀, ∼∀), we need to establish the corresponding decidability results.

Proposition 1. INCLUSION(Act ,Lin(���)) and EQCLOSURE(Act ,Lin(���),≈MW)
are constructively decidable.

The decidability part stems from [17, Prop. 2.4] (see also [25]). The corresponding
decision algorithm runs in time linear in the size of the transition function of the DFA.
Counterexamples can be computed in linear time as well. For a detailed description,
please consult [6]. Note that the question if the ≈MW-closure of a regular set of MSC
words is a regular language, too, is undecidable. For our learning approach, however,
this problem does not play any role. For arbitrary finite automata A over Act with
L(A) ⊆ Lin(���) (which are not necessarily deterministic), it was shown in [25]
(for Büchi automata) that deciding if L(A) is ≈MW-closed is PSPACE complete. In our
context of minimal DFA, however, the problem becomes much simpler.

Proposition 2. (Act ,Lin(���), ≈MW, ∅, obj ∀) is a learning setup for (MPA∀, ∼∀).

Theorem 3. (MPA∀, ∼∀) is learnable.
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5.3 Learning ∃-Bounded Message-Passing Automata

In this subsection, we are aiming at a learning setup for ∃-bounded MPA. As stated in
Def. 7, we now have to provide a channel bound. So let B ∈ IN and set

– ∼∃B = {(A, A′) ∈ MPA∃B × MPA∃B | L(A) = L(A′)},
– ≈∃B = {(w, w′) ∈ LinB(M) × LinB(M) | M ∈ ���}, and
– obj ∃B : RminDFA(Act ,LinB(���), ≈∃B, ∅) → [MPA∃B]∼∃B

to be an effective
bijective mapping whose existence is stated by Theorem 2.

In the following, we will see that (Act ,LinB(���), ≈∃B, ∅, obj ∃B) is indeed a learn-
ing setup for (MPA∃B, ∼∃B). Adapting Prop. 1, we can establish the corresponding
decidability result (see [6] for the proof):

Proposition 3. For any B ∈ IN, the problems INCLUSION(Act ,LinB(���)) and
EQCLOSURE(Act ,LinB(���), ≈∃B) are constructively decidable.

Proposition 4. For any B ∈ IN, (Act ,LinB(���), ≈∃B, ∅, obj ∃B) is a learning setup
for (MPA∃B, ∼∃B).

Theorem 4. For any B ∈ IN, (MPA∃B, ∼∃B) is learnable.

5.4 Learning ∀-Bounded Safe Product Message-Passing Automata

Let us set the scene for learning ∀-bounded safe product MPA. In this case, we have to
create an inference rule � �= ∅ (cf. Definitions 8 and 9). We first define relations �p

MW
and �s

MW for word languages, which correspond to �p
MSC and �s

MSC, respectively:

– �p
MW = {(Lin(L), {w}) | L ⊆ ��� is finite and ∃ M ∈ ���: L �p

MSC M ∧
w ∈ Lin(M)}

– �s
MW = {(Lin(L), L2) | L ⊆ ��� is finite and ∃P ∈ Pref (���) and u ∈

Lin(P ) such that L �s
MSC P and L2 = {w ∈ Lin(���) | w = uv for some

v ∈ Act∗}} (note that L2 is a decidable language).

Given these relations, we can define our learning setup as follows:

– ∼sp
∀ = {(A, A′) ∈ MPAsp

∀ × MPAsp
∀ | L(A) = L(A′)},

– ≈MW = {(w, w′) ∈ Lin(M) × Lin(M) | M ∈ ���} (as before),
– �sp

MW = �p
MW ∪ �s

MW,
– obj sp

∀ : RminDFA(Act ,Lin(���), ≈MW, �sp
MW) → [MPAsp

∀ ]∼sp
∀

be an effective bijec-
tive mapping, as guaranteed by Lemma 1.

Proposition 5. INFCLOSURE(Act ,Lin(���),≈MW,�sp
MW) is constructively decidable.

Proof. Decidability of INFCLOSURE(Act ,Lin(���), ≈MW, �sp
MW) has been shown in

[3, Theorem 3], where an EXPSPACE-algorithm for bounded high-level MSCs is given,
which reduces the problem to finite automata with a ≈MW-closed language. From such
a ≈MW-closed DFA H, we compute a (componentwise) minimal, reduced (i.e., without
local sink states), and deterministic product MPA A, by simply taking the projections
of H onto Actp for any p ∈ Proc, minimizing and determinizing them. Then, the MSC
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language L associated with H is a safe product language iff A is a safe product MPA
realizing L. From H, we can moreover compute a bound B such that any run of A
exceeding the buffer size B cannot correspond to a prefix of some MSC word in L(H).
Thus, a run through A (in terms of a prefix of an MSC word) that either

– exceeds the buffer size B (i.e., it is not B-bounded), or
– does not exceed the buffer size B, but results in a deadlock configuration

gives rise to a prefix u (of an MSC word) that is implied by H wrt. �s
MW, i.e., L(H)

must actually contain a completion uv ∈ Lin(���) of u. Obviously, one can decide if a
word is such a completion of u. The completions of u form one possible L2. It remains
to specify a corresponding set L1 for u. By means of H, we can, for any p ∈ Proc,
compute a word wp ∈ L(H) such that the projection of u onto Actp is a prefix of the
projection of wp onto Actp. Observe that wp can be computed in polynomial time. We
set L1 =

⋃
p∈Proc[wp]≈MW .

Finally, suppose that, in A, we could neither find a prefix exceeding the buffer size
B nor a reachable deadlock configuration in the B-bounded fragment. Then, we still
have to check if A recognizes L. If not, one can compute a (B-bounded) MSC word
w ∈ L(A) \ L(H) whose MSC is implied by L wrt. �p

MSC. Setting L2 = {w}, a
corresponding set L1 can be specified as the union of sets [wp]≈MW , as above. �
Together with Prop. 1, we obtain the following two results:

Proposition 6. The quintuple (Act ,Lin(���), ≈MW, �sp
MW, obj sp

∀ ) is a learning setup
for (MPAsp

∀ , ∼sp
∀ ).

Theorem 5. (MPAsp
∀ , ∼sp

∀ ) is learnable.

5.5 Learning ∀-Bounded Product Message-Passing Automata

Finally, we study the problem of learning ∀-bounded product MPA. Unfortunately, we
are in the situation that the canonical definition of a learning setup does not work:

Proposition 7 ([3]). INFCLOSURE(Act ,Lin(���), ≈MW, �p
MW) is not constructively

decidable. More specifically, it is undecidable if the language of a ≈MW-closed DFA
over Act is closed under �p

MW.

Similar decision problems were considered in [24,2,3,21]. Most of them are, however,
concerned with translating a high-level MSC into a product MPA.

6 Tool Description and Future Work

We have implemented the learning approach presented in the preceding sections in the
tool Smyle (Synthesizing Models bY Learning from Examples), which can be freely
downloaded at http://smyle.in.tum.de. It is written in Java and makes use of
the LearnLib library [27], which implements Angluin’s algorithm, and the libraries
Grappa [5] and JGraph [22] for visualization purposes. For computing linearizations
of MSCs we use the algorithm given in [30] running in O(n ·e(P)) time, where n is the
number of elements of the partial order P and e(P) = |E(P)| is the number of linear
extensions of P. The tool is capable of learning universally regular and existentially
regular MSC languages. The framework contains the following three main components:
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– the Teacher, representing the interface between the GUI (user) and the Assistant
– the Learner, containing the LearnLib part
– the Assistant, keeping track of membership queries that were not yet asked, check-

ing for B-boundedness as well as the language type (∃/∀)

The learning chain: Initially, the user is asked to specify the learning setup. After hav-
ing selected a language type (existentially/universally) and a channel bound B, the user
provides a set of MSCs. These MSC specifications must then be divided into positive
(i.e., MSCs contained in the language to learn) and negative (i.e., MSCs not contained
in the language to learn). After submitting these examples, all linearizations are checked
for consistency with respect to the properties of the learning setup. Violating lineariza-
tions are stored as negative examples. Now the learning algorithm starts. The Learner
continuously communicates with the Assistant in order to gain answers to membership
queries. This procedure halts as soon as a query cannot be answered by the Assistant. In
this case, the Assistant forwards the inquiry to the user, displaying the MSC in question
on the screen. The user must classify the MSC as positive or negative (cf. Fig. 5 (1)).

The Assistant checks the classification for validity wrt. the learning setup. Depend-
ing on the outcome of this check, the linearizations of the current MSC are assigned
to the positive or negative set of future queries. Moreover, the user’s answer is passed
to the Learner, which then continues his question-and-answer game with the Assis-
tant. If the LearnLib proposes a possible automaton, the Assistant checks whether

Fig. 5. Smyle screenshot

the learned model is consistent
with all queries that have been cat-
egorized but not yet been asked. If
he encounters a counter-example,
he presents it to the learning al-
gorithm which, in turn, continues
the learning procedure until the
next possible solution is found. In
case there is no further evidence
for contradicting samples, a new
frame appears (cf. Fig. 5 (2,3)).
Among others, it visualizes the
currently learned DFA (2,4) and
a panel for displaying MSCs (3)
of runs of the system described by
the automaton. The user is then
asked if he agrees with the solu-

tion and may either stop or introduce a new counter-example proceeding with the learn-
ing procedure.

Case studies: We applied Smyle to the simple negotiation protocol from [13], the
continuous update protocol from [14], a protocol being part of USB 1.1 mentioned
in [15], and a variant of the ABP. For the first one, Smyle was provided with 6 pos-
itive MSCs and performed 9675 membership and 65 user-queries. It resulted in an
automaton consisting of 9 states. The second protocol (giving 4 sample MSCs as in-
put) was learned after 5235 membership and 43 user queries resulting in an automaton



Synthesis of Design Models from Scenarios by Learning 449

containing 8 states. The third protocol was learned after 1373 membership and 12
user-queries, providing it with 4 sample MSCs. The inferred automaton was composed
of 9 states. The ABP was realized by an automaton with 15 states after 19276 member-
ship and 105 user queries, providing 4+1 positive examples. For further details such as
the input MSCs and inferred automata, we refer to [6] and the webpage of our tool.

Future work: There are other interesting classes of learnable MPA, and our setting
applies to the causal closure by Adsul et al. [1]. We plan to provide high-level MSCs as
a means to predefine patterns of positive or negative examples. Moreover, MSCan [7]
will be integrated into Smyle to support formal analysis of a suggested model.

Smyle is freely available for exploration at http://smyle.in.tum.de.
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19. I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs to statecharts. In DIPES 1998,
volume 155 of IFIP Conf. Proc., pages 61–72. Kluwer, 1998.

20. D. Kuske. Regular sets of infinite message sequence charts. Inf. Comput., 187:80–109, 2003.
21. M. Lohrey. Realizability of high-level message sequence charts: closing the gaps. Th. Comp.

Sc., 309(1-3):529–554, 2003.
22. J. Ltd. JGraph - Java Graph Visualization and Layout. http://www.jgraph.com/.
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