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Abstract. One of the most important policies adopted in inventory
control is the (R,S) policy (also known as the “replenishment cycle”
policy). Under the non-stationary demand assumption the (R,S) policy
takes the form (Rn,Sn) where Rn denotes the length of the nth replen-
ishment cycle, and Sn the corresponding order-up-to-level. Such a policy
provides an effective means of damping planning instability and coping
with demand uncertainty. In this paper we develop a CP approach able
to compute optimal (Rn,Sn) policy parameters under stochastic demand,
ordering, holding and shortage costs. The convexity of the cost-function
is exploited during the search to compute bounds. We use the optimal
solutions to analyze the quality of the solutions provided by an approx-
imate MIP approach that exploits a piecewise linear approximation for
the cost function.

1 Introduction

Much of the inventory control literature concerns the computation of optimal re-
plenishment policies under demand uncertainty. One of the most important poli-
cies adopted is the (R,S) policy (also known as the replenishment cycle policy).
In this policy a replenishment is placed every R periods to raise the inventory
position to the order-up-to-level S. This provides an effective means of damping
planning instability (deviations in planned orders, also known as nervousness)
and coping with demand uncertainty. As pointed out by Silver et al. ([8], pp.
236–237), (R,S) is particularly appealing when items are ordered from the same
supplier or require resource sharing. In these cases all items in a coordinated
group can be given the same replenishment period. Periodic review also allows
a reasonable prediction of the level of the workload on the staff involved, and
is particularly suitable for advanced planning environments. For these reasons
(R,S) is a popular inventory policy.

An important class of stochastic production/inventory control problems as-
sumes a non-stationary demand process. Under this assumption the (R,S) policy
takes the non-stationary form (Rn,Sn) where Rn denotes the length of the nth



replenishment cycle and Sn the corresponding order-up-to-level. To compute the
near optimal policy parameters for (Rn,Sn), Tarim and Kingsman [4] propose a
mixed integer programming (MIP) formulation using a piecewise linear approx-
imation to a complex cost function.

This paper focuses on the work of Tarim and Kingsman, in which a finite-
horizon, single-installation, single-item (Rn,Sn) policy is addressed. They assume
a fixed procurement cost each time a replenishment order is placed, whatever the
size of the order, and a linear holding cost on any unit carried over in inventory
from one period to the next. Instead of employing a service level constraint —
the probability that at the end of every time period the net inventory will not
be negative is at least a certain value (see Tarim and Kingsman [3] for (Rn,Sn)
under a service level constraint) — their model employs a penalty cost scheme.
They propose a certainty-equivalent formulation of the above problem in the
form of a MIP model. So far no CP approach has been proposed for (Rn,Sn)
under a penalty cost. In fact, as shown in [4], the cost structure is complex in
this case and it differs significantly from the one under a service level constraint.
In [2] the authors proposed a CP model under a service level constraint. In
this paper it was shown that not only CP is able to provide a more compact
formulation than the MIP one, but that it is also able to perform faster and
to take advantage of dedicated pre-processing techniques that reduce the size
of decision variable domains. Moreover dedicated cost-based filtering techniques
were proposed in [1] for the same model, these techniques are able to improve
performances of several orders of magnitude.

In this paper, we give an exact formulation of the (Rn,Sn) inventory control
problem via constraint programming, instead of employing a piecewise linear
approximation to the total expected cost function. This exact CP formulation
provides an optimal solution to (R,S) policy. Our contribution is two-fold: we
can now obtain provably optimal solutions, and we can gauge the accuracy of
the piecewise linear approximation proposed by Tarim and Kingsman.

2 Problem definition and (Rn, Sn) policy

The demand dt in period t is considered to be a normally distributed random
variable with known probability density function (PDF) gt(dt), and is assumed to
occur instantaneously at the beginning of each period. The mean rate of demand
may vary from period to period. Demands in different time periods are assumed
to be independent. A fixed holding cost h is incurred on any unit carried over
in inventory from one period to the next. Demands occurring when the system
is out of stock are assumed to be back-ordered and satisfied as soon as the next
replenishment order arrives. A fixed shortage cost s is incurred for each unit of
demand that is back-ordered. A fixed procurement (ordering or set-up) cost a
is incurred each time a replenishment order is placed, whatever the size of the
order. In addition to the fixed ordering cost, a proportional direct item cost v
is incurred. For convenience, and without loss of generality, the initial inventory
level is set to zero and the delivery lead-time is not incorporated. It is assumed



that negative orders are not allowed, so that if the actual stock exceeds the
order-up-to-level for that review, this excess stock is carried forward and does
not return to the supply source. However, such occurrences are regarded as rare
events and accordingly the cost of carrying the excess stock is ignored. The above
assumptions hold for the rest of this paper.

The general multi-period production/inventory problem with stochastic de-
mands can be formulated as finding the timing of the stock reviews and the size
of non-negative replenishment orders, Xt in period t, minimizing the expected
total cost over a finite planning horizon of N periods:

min E{TC} =
∫

d1

∫

d2

. . .

∫

dN

N
∑

t=1

(

aδt + vXt + hI+
t + sI−t

)

g1(d1) . . . gN (dN )d(d1) . . .d(dN )

(1)

subject to

Xt > 0 ⇒ δt = 1 (2)

It =
t
∑

i=1

(Xi − di) (3)

I+
t = max(0, It) (4)

I−t = −min(0, It) (5)

Xt, I
+
t , I−t ∈ Z

+ ∪ {0}, It ∈ Z, δt ∈ {0, 1} (6)

for t = 1 . . . N , where

dt : the demand in period t, a normal random variable with PDF gt(dt),
a : the fixed ordering cost,
v : the proportional direct item cost,
h : the proportional stock holding cost,
s : the proportional shortage cost,
δt : a {0,1} variable that takes the value of 1 if a replenishment occurs in

period t and 0 otherwise,
It : the inventory level at the end of period t, −∞ < It < +∞, I0 = 0
I+
t : the excess inventory at the end of period t carried over to the next period,

0 ≤ I+
t ,

I−t : the shortages at the end of period t, or magnitude of negative inventory
0 ≤ I−t ,

Xt : the replenishment order placed and received in period t, Xt ≥ 0.

The proposed non-stationary (R,S) policy consists of a series of review times and
associated order-up-to-levels. Consider a review schedule which has m reviews
over the N period planning horizon with orders arriving at {T1, T2, . . . , Tm},
Tj > Tj−1. For convenience T1 = 1 is defined as the start of the planning
horizon and Tm+1 = N + 1 the period immediately after the end of the horizon.



In [3], the decision variable XTi
is expressed in terms of a new variable St ∈ Z,

where St may be interpreted as the opening stock level for period t, if there is
no replenishment in this period (i.e. t 6= Ti and Xt = 0) and the order-up-to-
level for the i-th review period Ti if there is a replenishment (i.e. t = Ti and
Xt > 0). According to this transformation the expected cost function, Eq. (1),
is written as the summation of m intervals, Ti to Ti+1 for i = 1, . . . ,m, defining
Dt1,t2 =

∑t2
j=t1

dj :

min E{TC} =
m
∑

i=1



aδTi
+

Ti+1−1
∑

t=Ti

E{CTi,t}



+

vIN + v

∫

D1,N

D1,N × g(D1,N )d(D1,N ),

(7)

The term v
∫

D1,N
D1,N×g(D1,N )d(D1,N ) is constant and can therefore be ignored

in the optimization model. E{CTi,t} of Eq. (7) is defined as:

∫ STi

−∞

h (STi
− DTi,t) g(DTi,t)d(DTi,t) −

∫ ∞

STi

s (STi
− DTi,t) g(DTi,t)d(DTi,t).

(8)

As stated in [4], E{CTi,t} is the expected cost function of a single-period in-
ventory problem where the single-period demand is DTi,t. Since STi

may be
interpreted as the order-up-to-level for the i-th review period Ti and STi

−DTi,t

is the end of period inventory for the “single-period” with demand DTi,t, the
expected total subcosts E{CTi,t} are the sums of single-period inventory costs
where the demands are the cumulative demands over increasing periods. By
dropping the Ti and t subscripts in Eq. (8) we obtain the following well-known
expression for the expected total cost of a single-period newsvendor problem:

E{TC} = h

∫ S

−∞

(S − D)g(D)d(D) − s

∫ ∞

S

(S − D)g(D)d(D) (9)

where we consider two cost components: holding cost on the positive end of
period inventory and shortage cost for any back-ordered demand. Let G(·) be the
cumulative distribution function of the demand in our single-period newsvendor
problem. A known result in inventory theory (see [17]) is convexity of Eq. (9). The
so-called Critical Ratio, s

s+h
, can be seen as the service level β (i.e. probability

that at the end of the period the inventory level is non-negative) provided when
we fix the order-up-to-level S to the optimal value S∗ that minimizes expected
holding and shortage costs (Eq. (9)). By assuming G(·) to be strictly increasing,

we can compute the optimal order-up-to-level as S∗ = G−1
(

s
s+h

)

.

2.1 Stochastic cost component in single-period newsvendor

We now aim to characterize the cost of the policy that orders S∗ units to
meet the demand in our single-period newsvendor problem. Since the demand



D is assumed to be normal with mean µ and standard deviation σ, then we
can write D = µ + σZ, where Z is a standard normal random variable. Let
Φ(z) = Pr(Z ≤ z) be the cumulative distribution function of the standard
normal random variable. Since Φ(·) is strictly increasing, Φ−1(·) is uniquely de-
fined. Let zβ = Φ−1(β), since Pr(D ≤ µ + zβσ) = Φ(zβ) = β, it follows that
S∗ = µ + zβσ. The quantity zβ is known as the safety factor and S∗ − µ = zβσ
is known as the safety stock. It can be shown [17] that
∫ ∞

S∗

(S∗ − D)g(D)d(D) = E{D − S∗}+ = σE{Z − zβ}
+ = σ[φ(zβ) − (1 − β)zβ ]

(10)
where φ(·) is the PDF of the standard normal random variable. Let E{S∗ −

D}+ =
∫ S

−∞
(S − D)g(D)d(D), it follows

E{TC(S∗)} = h · E{S∗ − D}+ + s · E{D − S∗}+ =

h · (S∗ − µ) + (h + s)E{D − S∗}+ =

hzβσ + (h + s)σE{Z − zβ}
+ =

hzβσ + (h + s)σ[φ(zβ) − (1 − β)zβ ] =

(h + s)σφ(zβ)

(11)

The last expression (h + s)σφ(zβ) holds only for the optimal order-up-to-level

S∗ that provides the service level β =
(

s
s+h

)

computed from the critical ratio

(CR). Instead, expression

hzασ + (h + s)σ[φ(zα) − (1 − α)zα] (12)

can be used to compute the expected total cost for any given level S such that

α = Φ
(

S−µ
σ

)

. In Fig. 1 we plot this cost for a particular instance as a function

of the opening inventory level S.

Fig. 1. Single-period holding and shortage cost as a function of the opening inventory
level S. The demand is normally distributed with mean 200 and standard deviation 20.
Holding cost is 1, shortage cost is 10.



2.2 Stochastic cost component in multiple-period newsvendor

The considerations in the former sections refer to a single-period problem, but
they can be easily extended to a replenishment cycle R(i, j) that covers the
period span i, . . . , j. The demand in each period is normally distributed with
PDF gi(dj), . . . , gj(dj). The cost for the multiple periods’ replenishment cycle,
when ordering costs are neglected, can be expressed as

E{TC} =

j
∑

k=i

(

h

∫ S

−∞

(S − di,k)gi,k(di,k)d(di,k) − s

∫ ∞

S

(S − di,k)gi,k(di,k)d(di,k)

)

(13)

Since demands are independent and normally distributed in each period, the
term gi,j(di,j) (that is the p.d.f. for the overall demand over the period span
{i, . . . , j}) can be easily computed (see [12]) once the demand in each period
di, . . . , dj are known. It is easy to apply the same rule as before and compute
the second derivative of this expression:

d2

dS2
E{TC} =

j
∑

k=i

(h · gi,k(S) + s · gi,k(S)) (14)

which is again a positive function of S, since gi,k(S) are PDFs and both hold-
ing and shortage cost are assumed to be positive. The expected cost of a single
replenishment cycle therefore remains convex in S regardless of the periods cov-
ered. Unfortunately it is not possible to compute the CR as before, using a
simple algebraic expression to obtain the optimal S∗ which minimizes the ex-
pected cost. But since the cost function is convex, it is still possible to compute
S∗ efficiently. Eq. (12) can be extended in the following way to compute the cost
for the replenishment cycle R(i, j) as a function of the opening inventory level
S:

j
∑

k=i

(

hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k)) − (1 − α(i, k))zα(i,k)]
)

(15)

where Gi,k(S) = α(i, k) and zα(i,k) = Φ−1(α(i, k)). Therefore we have j − i +
1 cost components: the holding and shortage cost at the end of period i, i +
1, . . . , j. In Fig. 2 we plot this cost for a particular instance as a function of the
opening inventory level S. For each possible replenishment cycle we can efficiently
compute the optimal S∗ that minimizes such a cost function, using gradient
based methods for convex optimization such as Newton’s method. Notice that
the complete expression for the cost of replenishment cycles that start in period
i ∈ {1, ..., N} and end in period N is

N
∑

k=i

(

hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k)) − (1 − α(i, k))zα(i,k)]
)

+

v

(

S −
N
∑

k=i

dk

)
(16)



Fig. 2. Three periods holding and shortage cost as a function of the opening inventory
level S. The demand is normally distributed in each period with mean respectively 150,
100, 200, the coefficient of variation is 0.1. Holding cost is 1, shortage cost is 10.

In fact for this set of replenishment cycles we must also consider the unit cost
component. Once S∗ is known, by subtracting the expected demand over the
replenishment cycle we obtain the optimal expected buffer stock level b(i, j)
required for such a replenishment cycle in order to minimize holding and shortage
cost. Notice that every other choice for buffer stock level will produce a higher
expected total cost for R(i, j).

An upper bound for the value of the opening inventory level in each pe-
riod t ∈ {1, ..., N} can be computed by considering the buffer stock b(1, N)
required to optimize the convex cost of a single replenishment cycle R(1, N)
that covers the whole planning horizon. Then for each period t ∈ {1, ..., N},

max(St) =
∑N

t d̃t+b(1, N). A lower bound for the value of the expected closing
inventory level in each period t ∈ {1, ..., N}, i.e. opening inventory level minus
expected demand, can be computed by considering every possible buffer stock
b(i, j) required to optimize the convex cost of a single replenishment cycle R(i, j),
independently of the other cycles that are planned. The lower bound will be the
minimum value among all these possible buffer values for j ∈ {1, ..., N} and
i ∈ {1, ..., j}.

3 Deterministic equivalent CP formulation

Building on the considerations above it is easy to construct a deterministic equiv-

alent CP formulation for the non-stationary (Rn, Sn) policy under stochastic
demand, ordering cost, holding and shortage cost. (For a detailed discussion on
deterministic equivalent modeling in stochastic programming see [14]).

In order to correctly compute the expected total cost for a replenishment
cycle R(i, j) with opening inventory level Si, we must build a special-purpose
constraint objConstraint(·) that dynamically computes such a cost by means of



an extended version of Eq. (15)

C(Si, i, j) = a +

j
∑

k=i

(

hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k)) − (1 − α(i, k))zα(i,k)]
)

(17)
that considers the ordering cost. Then the expected total cost for a certain re-
plenishment plan will be computed as the sum of all the expected total costs
for replenishment cycles in the solution, plus the respective ordering costs.
objConstraint(·) also computes the optimal expected buffer stock level b(i, j) for
every replenishment cycle R(i, j) identified by a partial assignment for δk∈{1,...,N}

variables. A deterministic equivalent CP formulation is

min E{TC} = C (18)

subject to

objConstraint
(

C, Ĩ1, . . . , ĨN , δ1, . . . , δN , d1, . . . , dN , a, h, s
)

(19)

and for t = 1 . . . N

Ĩt + d̃t − Ĩt−1 ≥ 0 (20)

Ĩt + d̃t − Ĩt−1 > 0 ⇒ δt = 1 (21)

Ĩt ∈ Z, δt ∈ {0, 1} (22)

Each decision variable Ĩt represents the expected closing inventory level at the
end of period t; bounds for the domains of these variables can be computed
as explained above. Each d̃t represents the expected value of the demand in a
given period t according to its PDF gt(dt). The binary decision variables δt state
whether a replenishment is fixed for period t (δt = 1) or not (δt = 0).

Eq. (20) enforces a no-buy-back condition, which means that received goods
cannot be returned to the supplier. As a consequence of this the expected in-
ventory level at the end of period t must be no less than the expected inventory
level at the end of period t− 1 minus the expected demand in period t. Eq. (21)
expresses the replenishment condition. We have a replenishment if the expected
inventory level at the end of period t is greater than the expected inventory level
at the end of period t − 1 minus the expected demand in period t. This means
that we received some extra goods as a consequence of an order.

The objective function (18) minimizes the expected total cost over the given
planning horizon. objConstraint(·) dynamically computes buffer stocks and it
assigns to C the expected total cost related to a given assignment for replen-
ishment decisions, depending on the demand distribution in each period and
on the given combination for problem parameters a, h, s. In order to propagate
this constraint we wait for a partial assignment involving δt, t = 1, . . . , N vari-
ables. In particular we look for an assignment where there exists some i s.t.
δi = 1, some j > i s.t. δj+1 = 1 and for every k, i < k ≤ j, δk = 0. This will



Fig. 3. A replenishment cycle R(i, j) is identified by the current partial assignment for
δi variables.

uniquely identify a replenishment cycle R(i, j) (Fig. 3). There may be more re-
plenishment cycles associated to a partial assignment. If we consider each R(i, j)
identified by the current assignment, it is easy to minimize the convex cost func-
tion already discussed, and to find the optimal expected buffer stock b(i, j) for
this particular replenishment cycle independently on the others. By doing this
for every replenishment cycle identified, two possible situations may arise: the
buffer stock configuration obtained satisfies every inventory conservation con-
straint (Eq. (20)), or for some couple of subsequent replenishment cycles this
constraint is violated (Fig. 4). Therefore we observe an expected negative order
quantity. If the latter situation arises we can adopt a fast convex optimization

Fig. 4. The expected total cost of both replenishment cycles is minimized, but the
inventory conservation constraint is violated between R(i, k) and R(k + 1, j)

procedure to compute a feasible buffer stock configuration with minimum cost.
The key idea is to identify two possible limit situations: we increase the opening
inventory level of the second cycle, thus incurring a higher overall cost for it,
to preserve optimality of the first cycle (Fig. 5 - a). Or we decrease the buffer
stock of the first replenishment cycle, thus incurring a higher overall cost for it,
to preserve optimality of the second cycle cost (Fig. 5 - b). A key observation
is that, when negative order quantity scenarios arise, at optimality the closing
inventory levels of the first and the second cycle lie in the interval delimited by
the two situations described. This directly follows from the convexity of both
the cost functions. Moreover the closing inventory level of the first cycle must
be equal to the opening inventory level of the second cycle. In fact, if this does
not hold, then either the first cycle has a closing inventory level higher than the
opening inventory level of the second cycle and the solution is not feasible (Fig.



Fig. 5. Feasible limit situations when negative order quantity scenarios arise

6 - a), or the first cycle has a closing inventory level smaller than the opening
inventory level of the second cycle. In the latter case we can obviously decrease
the overall cost by choosing a smaller opening inventory level for the second
cycle (Fig. 6 - b). The algorithm for computing optimal buffer stock configura-

Fig. 6. Infeasible (a) and suboptimal (b) plans realized when the opening inventory
level of the second cycle doesn’t equate the closing inventory level of the first cycle

tions in presence of negative order quantity scenarios simply exploits the linear
dependency between opening inventory level of the second cycle and closing in-
ventory level of the first cycle. Due to this dependency the overall cost is still
convex in b(i, k) (or equivalently in b(k+1, j), since they are linearly dependent)
and we can apply any convex optimization technique to find the optimal buffer
stock configuration. Notice that this reasoning still holds in a recursive process.
Therefore we can optimize buffer stock for two subsequent replenishment cycles,
then we can treat these as a new single replenishment cycle, since their buffer
stocks are linearly dependent, and repeat the process in order to consider the
next replenishment cycle if a negative order quantity scenario arises.

Once buffer stocks are known we can apply Eq. (17) to the opening inventory
level Si = d̃i + . . . + d̃j + b(i, j) and compute the cost C(Si, i, j) associated to a
given replenishment cycle. Since the cost function in Eq. (17) is convex and we
handle negative order quantity scenarios, a lower bound for the expected total
cost associated to the current partial assignment for δt, t = 1, . . . , N variables is
now given by the sum of all the cost components C(Si, i, j), for each replenish-
ment cycle R(i, j) identified by the assignment. Furthermore this bound is tight



Period 1 2 3 4 5 6 7 8

d̃t 200 100 70 200 300 120 50 100

Table 1. Expected demand values

if all the δt variables have been assigned. objConstraint(·) exploits this prop-
erty in order to incrementally compute a lower bound for the cost of the current
partial assignment for δt variables. When every δt variable is ground, since such
a lower bound becomes tight, buffer stocks computed for each replenishment
cycle identified can be assigned to the respective It variables. Finally, in order
to consider the unit variable cost v we must add the term v · IN to the cycle cost
C(Si, i, N) for i ∈ {1, ..., N}. Therefore the complete expression for the cost of
replenishment cycles that start in period i ∈ {1, ..., N} and end in period N is:

C(Si, i, N) = a +
N
∑

k=i

(

hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k)) − (1 − α(i, k))zα(i,k)]
)

+v

(

Si −
N
∑

k=i

dk

)

(23)

4 Comparison of the CP and MIP approaches

In [4] Tarim and Kingsman proposed a piecewise linear approximation of the
cost function for the single-period newsvendor type model under holding and
shortage costs, which we analyzed above. Thus they were able to build a MIP
model approximating an optimal solution for the multi-period stochastic lot-
sizing under fixed ordering, holding and shortage costs. They gave a few examples
to show the effect of higher noise levels (uncertainty in the demand forecasts)
on the order schedule. Using the same examples we shall compare the policies
obtained using our exact CP approach with their approximation. Depending on
the number of segments used in the piecewise approximation, the quality of the
solutions obtained can be improved. We shall consider approximations with two
and seven segments. The forecast of demand in each period are given in Table
1. We assume that the demand in each period is normally distributed about
the forecast value with the same coefficient of variation τ . Thus the standard
deviation of demand in period t is σt = τ · d̃t. In all cases, initial inventory levels,
delivery lead-times and salvage values are set to zero.

In Fig. 7–11 optimal replenishment policies obtained with our CP approach
are compared for four different instances, with respect to τ , v, a and s, with
the policies provided by the 2-segment (PW-2) and 7-segment (PW-7) approxi-
mations. For each instance we compare the expected total cost provided by the
exact method with the expected total cost provided by the policies found using
approximate MIP models. Since the cost provided by PW-2 and PW-7 is an



approximation, it often differs significantly from the real expected total cost re-
lated to policy parameters found by these models. It is therefore not meaningful
to compare the cost provided by the MIP model with that of the optimal policy
obtained with our CP model. To obtain a meaningful comparison we computed
the real expected total cost by applying the exact cost function (Eqs. 17, 23)
discussed above to the (Rn,Sn) policy parameters obtained through PW-2 and
PW-7. It is then possible to assess the accuracy of approximations in [4]. Fig.

Fig. 7. h = 1, a = 250, s = 10, v = 0, τ = 0.0

7 shows the optimal replenishment policy for the deterministic case (τ = 0.0).
The direct item cost (v) is taken as zero. Four replenishment cycles are planned.
The (Rn,Sn) policy parameters are R = [3, 1, 3, 1] and S = [370, 200, 470, 100].
The total cost for this policy is 1460. Fig. 8 shows an instance where we con-

Fig. 8. h = 1, a = 250, s = 10, v = 0, τ = 0.1

sider low levels of forecast uncertainty (τ = 0.1). In this case both PW-2 and
PW-7 perform well compared to our exact CP solutions. Since forecast uncer-
tainty must be considered, all the models introduce buffer stocks. The optimal
(Rn,Sn) policy parameters found by our CP approach are R = [3, 1, 2, 2] and
S = [384, 227, 449, 160]. The PW-2 solution is 1.75% more costly than the exact
solution, while the PW-7 solution is slightly more costly than the exact solution.



Period 1 2 3 4 5 6 7 8
dt 200 100 70 200 300 120 200 300

Table 2. Expected demand values

Fig. 9 shows that as the level of forecast uncertainty increases (τ = 0.2), the

Fig. 9. h = 1, a = 250, s = 10, v = 0, τ = 0.2

quality of the PW-2 solution deteriorates, in fact it is now 3.62% more costly
than the exact solution. The optimal (Rn,Sn) policy parameters found by our
CP approach are R = [3, 1, 2, 2] and S = [401, 253, 479, 170]. In contrast the
PW-7 solution is still only slightly more costly than the exact solution. As noted

Fig. 10. h = 1, a = 350, s = 50, v = 0, τ = 0.3

in [4] the quality of the approximation decreases for high ratios s/h. In Fig. 10
we consider s/h = 50 and a different demand pattern. The forecast of demand
in each period are given in Table 2. Now the PW-2 solution is 6.66% more costly
than the exact approach, while the PW-7 solution is 1.03% more costly. The op-
timal (Rn,Sn) policy parameters found by our CP approach are R = [3, 1, 2, 1, 1]
and S = [483, 324, 592, 324, 486]. In Fig. 11 we consider the same instance but



a direct item cost is now incurred (v = 15). The buffer stock held in the last
replenishment cycle is affected by this parameter, and is decreased from 186 to
63. The PW-7 policy is now 0.84% more costly than the exact one. For these

Fig. 11. h = 1, a = 350, s = 50, v = 15, τ = 0.3

instances seven segments usually provides a solution with a cost reasonably close
to optimal. In terms of running times, for all these instances both the MIP ap-
proximations and the CP model perform very quickly. In our experiments we
used ILOG OPL Studio 3.7 to solve the MIP models of [4], and Choco [16] (an
open source solver written in Java) to implement our CP model. All experiments
were performed on an Intel Centrino 1.5 GHz with 500Mb RAM. Since the plan-
ning horizon is short (8 periods), we were able to solve any instance in less than
a second. As the planning horizon length increases the pure CP model becomes
slower than the MIP one. This is due both to the size of decision variable do-
mains and to the lack of good bounds in the search. We do not discuss efficiency
issues in this paper, but we emphasise that a significant reduction in decision
variable domain sizes can be achieved in a way similar to the one discussed in [2].
Furthermore it is possible to incorporate in our CP model dedicated cost-based
filtering methods [15] based on a dynamic programming relaxation [5] that is able
to generate good bounds during the search. Such a technique has been already
employed under a service level constraint [1] and preliminary results in this di-
rection under a penalty cost suggest that our exact CP model, when enhanced
with these dedicated filtering techniques, is able to produce an optimal solution
for instances up to 50 periods and more in a few seconds.

5 Conclusions

We presented a CP approach that finds optimal (Rn,Sn) policies under non-
stationary demands. Using our approach it is now possible to evaluate the quality
of a previously published MIP-based approximation method, which is typically
faster than the pure CP approach. Using a set of problem instances we showed
that a piecewise approximation with seven segments usually provides good qual-
ity solutions, while using only two segments can yield solutions that differ signifi-



cantly from the optimal. In future work we will aim to develop domain reduction
techniques and cost-based filtering methods to enhance the performance of our
exact CP approach.
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