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In this paper we generalize to the case of diluted spin models and random com-
binatorial optimization problems a technique recently introduced by Guerra
(cond-mat/0205123) to prove that the replica method generates variational
bounds for disordered systems. We analyze a family of models that includes the
Viana–Bray model, the diluted p-spin model or random XOR-SAT problem,
and the random K-SAT problem, showing that the replica/cavity method, at
the various levels of approximation, provides systematic schemes to obtain
lower bounds of the free-energy at all temperatures and of the ground state
energy. In the case of K-SAT and XOR-SAT it thus gives upper bounds of the
satisfiability threshold. Our analysis underlines deep connections with the cavity
method which are not evident in the long range case.

1. INTRODUCTION

The replica method, (1, 2) originally devised as a trick to compute thermo-
dynamical quantities of physical systems in presence of quenched disorder,
has found applications in the analysis of systems of very different nature,
as Neural Networks, Combinatorial optimization problems, (2–4) Error
Correction Codes, (4) etc. Its physical meaning has been clarified recognizing
its equivalence with the cavity method, which provides a self-consistent
evaluation of the effect of the addition of an interaction and/or a new spin
to a large system. (2, 22)

Although many physicists believe that these equivalent methods,
within the Replica Symmetry Breaking scheme of Parisi, (2) are able to



potentially give the exact solution of any problem treatable as a mean field
theory, their necessary mathematical foundation is still lacking, after more
then 20 years from their introduction in theoretical physics. The last times
have seen a growing interest in the methods of the mathematical commu-
nity, leading to important but still partial results, confirming in certain
cases the replica analysis with more conventional and well established
techniques that put the cavity method on a rigorous footing. (5) However,
apart from the remarkable exception of the analysis of the fully connected
p-spin model in ref. 6 and the one of the Random Energy Models, (7) the
analysis of the mathematicians has been, as far as we know, restricted to
the high temperature regions and/or to problems of replica symmetric
nature.

Very welcomed have been the techniques recently introduced by
Guerra and Toninelli (8) which allow rigorous analysis not relying on the
assumption of high temperature, and valid even in problems with replica
symmetry breaking. Along these lines, an important step towards the
rigorous comprehension of the replica/cavity method has been undertaken
in ref. 9, where it has been shown how in the case of the Sherrington–
Kirkpatrick model, and its p-spin generalizations for even p, the replica
free-energies with arbitrary number of replica symmetry breaking steps
constitute variational lower bounds to the true free-energy of the model. As
stated in that paper, the analysis is restricted to fully-connected models,
whose replica mean field theory can be formulated in terms of a single n × n
matrix. However, in recent times, many of the more interesting problems
analyzed with replica theory pertain to the so called ‘‘diluted models’’
where each degree of freedom interacts with a finite number of neighbors.
The introduction of a ‘‘population dynamics algorithm’’ (10) has allowed to
treat in full generality—within statistical precision—complicated sets of
probabilistic functional equations appearing in the one step symmetry
broken framework of diluted models. The same algorithm has been used as
a starting point of a generalized ‘‘belief propagation’’ algorithm for opti-
mization problems. (11, 12) Furthermore, at the analytic level, simplifications
due to graph homogeneities in some cases, (13) and to the vanishing temper-
ature limit in some other cases (14) have led to supposedly exact solutions of
the ground state properties of diluted models, culminated in the resolution
of the random XOR-SAT on uniform graphs in ref. 13 and the random
K-SAT problem in ref. 12 within the framework of ‘‘one-step replica
symmetry breaking’’ (1RSB).

The aim of this paper is to show that the replica/cavity analysis of
diluted models provides lower bounds for the exact free-energy density, and
ground state energy density. We analyze in detail the cases of the diluted
p-spin model on the Poissonian degree hyper-graphs also known as random
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XOR-SAT problem and the random K-SAT problems, finding that the
bound holds for even p and K respectively. We expect that along similar
lines free-energy lower bounds can be found for many other diluted cases.

The Guerra method we use sheds some light on the meaning of the
cavity method of which, in the previously mentioned cases, we can prove it
constitutes a variational reformulation. The physical idea behind the
method is that within mean field theory one can modify the original
Hamiltonian weakening the strength of the interaction couplings or
removing them partially or totally, and compensate this removal by some
auxiliary external fields. In disordered systems these fields should be
random fields, taken from appropriate probability distributions and pos-
sibly correlated with the original values of the quenched variables elimi-
nated from the systems. One is then led to consider Hamiltonians inter-
polating between the original model and a pure paramagnet in a random
field, and by means of these models achieving free-energy lower bounds.
The procedure is reminiscent of the cavity method where the effect of the
addition of interactions and spins are evaluated self-consistently. Indeed,
the free-energy is shown to be written as a replica/cavity term plus a
reminder, which is simply shown to be positive for even p or K. We will see
that the RS case corresponds to assuming independence between the
random fields and the quenched disorder. The Parisi RSB scheme assumes
at each breaking level a peculiar kind of correlations, and gives free-energy
bounds improving the RS one.

Our paper is organized in this way: in Section 2 we introduce some
notations that will be extensively used in the following sections. In Sec-
tion 3 we introduce the general strategy to get the replica bounds; we then
specialize to the replica symmetric and the one step replica symmetry
broken bounds, giving the results in the p-spin and the K-SAT cases.
Conclusions are drawn in Section 4. In the appendices some details of the
calculations in both the p-spin and the K-SAT cases are shown.

Our results will be issue of explicit calculations. Although at the end
we will get bounds, formalizable as mathematical theorems, the style and
most of the notations of the paper will be the ones of theoretical physics.

2. NOTATIONS

The spin models we will consider in this work are defined by a collec-
tion of N Ising ± 1 spins S={S1,..., SN}, interacting through Hamiltonians
of the kind

H (a)(S, J)= C
M

m=1
HJ(m)(Sim

1
,..., Sim

p
) (1)
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where the indices im
l are i.i.d. quenched random variables chosen uniformly

in {1,..., N}. We will call each term HJ(m) a clause. The subscript J (m) in the
clauses indicates the dependence on a single or a set of quenched random
variables, as it will be soon clear. The number of clauses M will be taken to
be proportional to N. For convenience we will choose it to be for each
sample a Poissonian number with distribution p(M, aN)=e−aN (aN)M

M! . The
fluctuations of M will not affect the free-energy in the thermodynamic
limit, and this choice, which slightly simplify the analysis, will be equiva-
lent, e.g., to choosing a fixed value of M equal to aN. The clauses them-
selves will be random. The p-spin model (15) has clauses of the form

HJ(m)(Sim
1
,..., Sim

p
)=JmSim

1
· · · · · Sim

p
. (2)

This form reduces to HJ(m)(Sim
1
, Sim

2
)=JmSim

1
Sim

2
in the case of the Viana–Bray

spin glass p=2. In both cases the Jm will be taken as i.i.d. random
variables with symmetric distribution m(J)=m(−J). Notice that for
m(J)=1/2[d(J+1)+d(J − 1)] the model reduces to the random XOR-
SAT problem (16) of computer science. The random K-SAT clauses have the
form (14)

HJ(m)(Sim
1
,..., Sim

p
)=D

p

l=1

1+Jm
l Sim

l

2
, (3)

where the Jm
l = ± 1 are i.i.d. with symmetric probability. (The number p of

spin appearing in a clause is usually called K in the K-SAT problem. For
uniformity of notation we will deviate from this convention). Notice that in
all cases, on average each spin participate to a=M

N clauses, and that the set
of spins and interactions defines a random diluted hyper-graph (17) of
uniform rank p and random local degree with Poissonian statistics in the
thermodynamic limit.3 At high enough temperature, the existence of the

3 An equivalent representation is provided by bipartite (Tanner) graphs, where each spin is
associated to a ‘‘left’’ node, each clause is associated to a ‘‘right’’ node, and links relate a
clause to each spin belonging to it.

free-energy in the thermodynamic limit for models of this kind has been
proved in by Talagrand in ref. 18, together with the validity of the RS
solution. A proof valid at all temperatures, based on the ideas presented in
this paper, can be obtained for even p in analogy of the analysis in ref. 8
for long range models. We sketch it in Appendix C in the case of the p-spin
model.

In establishing the free-energy bounds we will need several kind of
averages:
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• The Boltzmann–Gibbs average for fixed quenched disorder: given an
observable A(S)

w(A)=
;S A(S) exp(−bH(S, J))

Z
(4)

where Z=;S exp(−bH(S, J)) and b is the inverse temperature.
Obviously, w(A), as well as Z will be functions of the quenched

variables, the size of the system and the temperature. This dependence will
be made explicit only when needed.

• The disorder average: given an observable quantity B dependent on
the quenched variables appearing in the Hamiltonian, we will denote as
E(B) its average. This will include the average with respect to the J
variables and the choice of the random indices in the clauses as well as with
respect to other quenched variables to be introduced later.

• We will need in several occasion the ‘‘replica measure’’

W(A1,..., An)=E(w(A1) · · · w(An)) (5)

and some generalizations that we will specify later.

• We will occasionally use other kinds of averages, as well as other
notations, for which we will use an angular bracket notation, with a
subscript indicating the variable(s) over which the average is performed.
E.g., an average over a random variable u with probability distribution
Q(u) will be denoted equivalently as > du Q(u)( · ) — > dQ(u)( · ) — O ·Pu.
Analogously, averages over distribution families of Q(u) will be denoted as
> dQ Q(Q)( · ) — > DQ(Q)( · ) — O ·PQ. Subscripts will be omitted whenever
confusion is not possible.

• Another notation we will have the occasion to use in the one for the
overlaps among l spin configurations {Sa1

i ,..., Sal
i }, out of a population of n

{S1
i ,..., Sn

i }:

q (a1,..., al)=
1
N

C
N

i=1
Sa1

i · · · · · Sal
i (1 [ ar [ n -r), (6)

and in particular

q (n)=q(1,..., n)=
1
N

C
N

i=1
S1

i · · · · · Sn
i , (7)

This notation will be extended to multi-overlaps in the 1RSB case, as we
will specify in Section 3.2.
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In the following we will need to consider averages where some of the
variables are excluded, e.g., the averages when a variable x is erased. These
average will be denoted with a subscript − x, e.g., if an w average is con-
cerned the notation will be w( · )−x. Other notations will be defined later in
the text whenever needed.

Our interest will be confined to bounds to the free-energy density FN=
− 1

bN E log Z and the ground state energy density UGS=limN Q . 1/N×
E[min(UN)] valid in the thermodynamic limit, so that O(1/N) will be often
implicitly neglected in our calculations.

3. THE GENERAL STRATEGY

The strategy we are going to follow in order to show the variational
nature of the replica/cavity bounds is a generalization of the one intro-
duced by Guerra in the case of fully connected models. (9) We are going to
consider models which interpolate between the original ones and pure
paramagnets in random fields with suitably chosen distribution. As we
discussed, the spin variables can be associated to the vertices of a diluted
hyper-graph, with hyper-edges representing the clauses. Hyper-edges are
then progressively erased, while spin variables survive albeit decreasing
their local degree. A dilution interpolation parameter t is introduced, con-
trolling the fraction of edges erased as t is tuned in the [0, 1] interval such
that at t=0 only isolated spins are present. At each step of the process,
balancing local magnetic fields are introduced, in order to compensate for
the loss of the true effective local fields propagated by the erased interac-
tions. The underlying idea is that, given the mean field nature of the models
involved, if one was able to reconstruct the real local fields acting on a
given spin variable via a given hyper-edge, and to introduce auxiliary fields
acting on that variable in such a way to balance the deletion of the hyper-
edge, then it would be possible to have an exact expression for the free-
energy in terms of such auxiliary fields even when the whole edge set was
emptied. If the replacement is done with some approximate self-consistent
form of the auxiliary fields distribution function, the real free-energy will
be the one calculated using the approximate fields plus an excess term at
every step of the graph deletion process. If this excess term has a definite
sign at the end of the deletion process, we can use the approximate free-
energy as a bound to the true one.

We will prove the existence of replica lower bounds to the free-energy
density of the p-spin model and the random K-SAT problem. In this last
case our result proves that the recent replica solution of ref. 12 gives a
lower bound to the ground state energy and therefore an upper bound for
the satisfiability threshold. The proofs will strictly hold in the N Q . limit,
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due to the presence of corrections of order 1/N in the calculated expres-
sions for any finite size graph. Moreover, our proofs will be restricted to
the p-spin model and the K-SAT with even p. In the cases of odd p the
same bound would hold if one could rely on some physically reasonable
assumptions on the overlap distribution (see below).

Our analysis will start from the TAP equations for the models, (19, 10)

and their probabilistic solutions implied by the cavity, or equivalently the
replica method at various degrees of approximation. We will consider in
particular the replica symmetric (RS) and one step replica symmetry
broken solutions, but it should be clear from our analysis how to generalize
to more steps of replica symmetry breaking. In the TAP equations one
singles out the contribution of the clauses and the sites to the free-energy
and defines cavity fields h (m)

i and u (i)
m respectively as the local field acting on

the spin i in absence of the clause m and the local field acting on i due to
the presence of the clause m only. If we define ZN[Si] as the partition
function of a given sample with N spins where all but the spin i are
integrated, FN, −i the free-energy of the corresponding systems where the
spin Si and all the clauses to which it belongs are removed, we can write,

ZN[Si]=e−bFN, −i D
m ¥ Ti

C
Si

2
m,..., Sip

m

e−bHJ(m)(Sim, Si2
m,..., Sip

m)+;p
l=2 h

(m)

i
l
m Sil

m

=e−bFN, −i D
m ¥ Ti

B (i)
m ebu(i)

m Si (8)

where Ti is the set of clauses containing the spin i, and the constant
B (i)

m =e−bDF(i)
m can be interpreted as suitable shifts in the free-energy due to

the contribution of the clause m for fixed value of the spin i. The equations
are closed by the self-consistent condition:

h (m)
i = C

n ¥ {Ti − m}
u (i)

n , (9)

which are indeed the TAP equations of the models and constitute the basis
for iterative algorithms such as the ‘‘belief propagation’’ or ‘‘sum-product’’
algorithm, known for a long time in statistical inference (20) and coding
theory (21) and the more recently proposed algorithm of ‘‘survey propaga-
tion’’. (12) Conditions (8) and (9) can be diagrammatically represented as in
Fig. (1).

Starting from Eq. (8), and introducing some clause variables J, as well
as p − 1 fields h1,..., hp − 1, it is useful to define functions

uJ(h1,..., hp − 1) and BJ(h1,..., hp − 1), (10)

Replica Bounds for Optimization Problems and Diluted Spin Systems 541



Fig. 1. Diagrammatic representation of the cavity relations for h and u fields acting on spin
S in the Tanner graph representation. Spin nodes are represented as circles, clauses as squares.
The upper figure represents a factor in Eq. (8) where fields h determine the new fields u. In the
lower picture the cavity magnetic field h is represented as the sum of u’s.

according to

BJ(h1,..., hp − 1) ebuJ(h1,..., hp − 1) S= C
S1,..., Sp − 1= ± 1

e−bHJ(S1,..., Sp − 1, S)+;p − 1
l=1 hlSl (11)

The cavity fields solutions of (8, 9) are random variables which fluctuate
for two reasons. (2, 10, 22) First, they differ from sample to sample. Second,
within the same sample the equations can have several solutions which can
level-cross. The cavity/replica method provides under certain assumptions,
probabilistic solutions. In the RS approximation, one just supposes a single
solution to give the relevant contribution in a given sample. The sample to
sample fluctuations induce probability distributions P(h) and Q(u) whose
relations implied by (8, 9) are:

P(h)=C
k

e−ap (ap)k

k!
F du1 Q(u1)...duk Q(uk) d 1h − C

k

i=1
uk
2 (12)

Q(u)=F dh1 P(h1)...dhp − 1 P(hp − 1)Od(u − uJ(h1,..., hp − 1))PJ (13)

where O ·PJ denotes the average over the random variables appearing in a
clause. In addition to sample to sample fluctuations, the 1RSB solution
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assumes fluctuations of the fields from solution to solution of the equa-
tions, so that the functions P(h) and Q(u) will be themselves randomly
distributed according to some functional probability distributions P(P)
and Q(Q) related by the self-consistency equations (23)

Q(Q)=F DP1P(P1)...DPp − 1P(Pp − 1)Od(Q( · ) − Q( · | P1,..., Pp − 1, J))PJ (14)

P(P)= C
.

k=0
e−ap (ap)k

k!
F D

k

l=1
DQlQ(Ql) d(P( · ) − P( · | Q1,..., Qk)) (15)

where:

Q(u|P1,..., Pp − 1, J)
NP[P1,..., Pp − 1]

=F D
p − 1

t=1
dht Pt(ht) BJ(h1,..., hp − 1)m d(u − uJ(h1,..., hp − 1))

(16)

P(h|Q1,..., Qk)
NQ, k[Q1,..., Qk]

=(2 cosh(bh))m F D
k

l=1
dul

Ql(ul)
(2 cosh(bul))m d 1h − C

k

l=1
ul
2

(17)

where NQ, k[Q1,..., Qk] and NG[G1,..., Gp − 1] insure normalization and
BJ(g1,..., gp − 1) is a rescaling term of the form (10) that can be reabsorbed
in the normalization in the case of the p-spin model. Its form for the
K-SAT case is given in Eq. (60) m is a number in the interval (0, 1], which
within the formalism selects families of solutions at different free-energy
levels. The physical free-energy is estimated maximizing over m.

The interpretation of these equations has been discussed many times in
the literature. (2, 10, 22) We will show here, that such choices in the field dis-
tributions result in lower bounds for the free-energy analogous to the ones
first proved by Guerra in fully connected models. In order to prove these
bounds, we will have to consider auxiliary models where the number of
clauses aN will be reduced to atN (0 [ t [ 1), while this reduction will be
compensated in average by some external field terms of the kind:

H (t)
ext=C

i
C
ki

li=1
u li

i Si (18)

where the numbers ki will be i.i.d. Poissonian variables with average
ap(1 − t). As the notation suggests, the fields u l

i will play the role of the
cavity fields u (i)

m of the cavity approach, and they will be i.i.d. random
variables with suitable distribution. Indeed, for each field u li

i we will chose
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in an independent way p − 1 primary fields g li, n
i (n=1,..., p − 1) and clause

variables J li, n
i such that the relation

u li
i =uJli, n

i
(g li, 1

i ...g li, p − 1
i ) (19)

is verified. Notice that the compound Hamiltonian

H (t)
tot[S]=H (at)[S]+H (t)

ext[S] (20)

will constitute a sample with the original distribution for t=1, while it will
consist in a system of non interacting spins for t=0. The key step of the
procedure, consists in the choice of the distribution of the primary fields
g li

i . We will also find useful to define fields hi verifying

hi= C
ki

l=1
u l

i. (21)

The field u are related to the g’s by a relation similar to (8), while the h’s
are related to the u’s by a relation similar to (9). Of course, the statistics of
the fields h and the g’s do coincide in the cavity approach. It is interesting
to note that the bounds we will get, are optimized precisely when their sta-
tistical ensemble coincide. As we mentioned, various Replica bounds are
obtained assuming for the fields g li

i the type of statistics implied by the dif-
ferent replica solution. So, the Replica Symmetric bound is obtained just
supposing the field as quenched variables completely independent of the
quenched disorder and with distribution G(g). For the one-step RSB
bound, on the other hand, the distribution G will itself be considered as
random, subject to a functional probability distribution G[G]. More com-
plicated RSB estimates, not considered in this paper, can be obtained along
the same lines. The case of the fully connected models considered by
Guerra can be formalized in this way where the various field distributions
involved are Gaussian.

3.1. The RS Bound

We consider in this case i.i.d. fields u and h distributed according
probabilities Q(u) and P(h) verifying the following relation with the dis-
tribution Q(g) of the primary fields.

Q(u)=F dg1 G(g1)...dgp − 1 G(gp − 1)Od(u − uJ(g1,..., gp − 1))PJ (22)

P(h)=P(h | k) p(k, ap(1 − t)) (23)

P(h | k)=F du1 Q(u1)...duk Q(uk) d 1h − C
k

i=1
uk
2 (24)
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The distribution G(g) will be chosen to be symmetric under change of sign
of g, and regular enough for all the expression below to be well defined.
The RS bound can now be obtained following a procedure similar to the
one of Guerra for the SK model, and considering the t dependent free-
energy; with obvious notation:

F(t)= lim
N Q .

FN(t)= lim
N Q .

−
1

bN
E log ZN(t) (25)

where E represents the average over all the quenched variables, the one
defining the clauses and the external fields. We then consider the t deriva-
tive of FN

d
dt

FN(t)=−
1

Nb

d
dt

E(log ZN(t)). (26)

As in ref. 9 we will then write

F(1)=F(0)+F
1

0
dt

d
dt

F(t) (27)

and show, by an explicit computation, that, up to O(1/N) terms that will
be systematically neglected, the expression coincides with the variational
RS free-energy plus a remainder. In fortunate cases this term will have
negative sign and neglecting it will immediately result in a lower bound for
the free-energy. This happens in the Viana–Bray model, the p-spin and the
K-SAT for even p. In the cases of odd p we were not able to prove the sign
definiteness of the remainder, although we believe this to be the case on a
physical basis.

The time derivative of F take contributions from the derivative of the
distribution of the number of clauses M

dp(M, atN)
dt

=−Na(p(M, atN) − p(M − 1, atN)) (28)

and the distribution of the number of u fields on each site

dp(ki, ap(1 − t))
dt

=ap(p(ki, ap(1 − t)) − p(ki − 1, ap(1 − t))) (29)
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so that:

d
dt

E log Z(t)=−Na C
M

(p(M, atN)−p(M−1, atN)) EŒ log Z(t)

+ap C
i

C
ki

(p(ki, ap(1−t))−p(ki −1, ap(1−t))) E'

i log Z(t)
(30)

where we have denoted as EŒ the average with respect to all the quenched
variables except M and with E'

i the average with respect to all the
quenched variables except ki, and simply Z(t) the partition function of the
N spin system ZN(t).

In the first term of (30) we can single out the M-th clause, and write
Z(t)=Z−M(t) w(e−bHM(Si1

M,..., Sip
M))−M, where by Z−M(t) we denote the parti-

tion function of the system in absence of the M-th clause, and w( · )−M is
the canonical average in absence of the M-th clause. In the following terms
we single out the ki-th field u term, Z(t)=Z−uki

i
(t) w(ebuki

i Si)−uki
i

, where
Z−uki

i
(t) is the partition function in absence of the field − uki

i and
analogously for the average w( · )−uki

i
. Finally, rearranging all terms we find

d
dt

E log Z(t)=Na C
M

(p(M − 1, atN)) EŒ log[w(e−bHJ(M)(Si1
M,..., Sip

M))−M)]

− pa C
i

C
ki

p(ki − 1, ap(1 − t)) E'

i log[w(ebuki
i Si)−uki

i
]. (31)

where we have used ;M p(M − 1, atN) EŒ log Z−M=; ki
p(ki − 1, ap(1 − t))

× E'

i log Z−uki
i

=E log Z. We notice at this point that the statistical
ensemble defined by p(M − 1, atN)) EŒ can be substituted with the original
one E and the average of the variables appearing in the clause we have
singled out. To be more precise, we remark that the average w( · ) depends
on the quenched variables D={J, u} appearing in the Hamiltonian.
Writing explicitly this dependence as w( · | D), and denoting as D−M all the
quenched variables except the ones appearing in the M-th clause, our
statement is that thanks to the Poissonian distribution of M and the
uniform choice of the indices of each clause,

C
M

(p(M − 1, atN)) EŒ log[w(e−bHJ(M)(Si1
M,..., Sip

M) | D−M)]

=E 1 1
Np C

i1,..., ip

Olog[w(e−bHJ(Si1
,..., Sip

) | D)]PJ
2 . (32)
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where by O ·PJ we denote the average with respect to the random variables
appearing in the clause. This is a crucial step in our analysis. Indeed,
similar considerations apply to the term in the second line of (31), which
can be written as

C
ki

p(ki − 1, ap(1 − t)) E'

i log[w(ebuki
i Si)−uki

i
]=EOlog w(ebuSi)Pu. (33)

The same kind of averages E and w appear in the two terms which can be
therefore directly compared as we will do in the next section. This property,
linked to the Poissonian character of the graph defined by the model,
would not hold for other ensembles of random graphs and the analysis
would be technically more involved. Notice that in Eq. (32) the trace over
all values of the spin variables is performed, therefore the average
1/Np ; i1,..., ip

(...) can be omitted and one reference choice of indices
chosen, such that: SiM

1
,..., SiM

p
Q S1,..., Sp. The same is valid for the term in

the second line of (31). Summations will be omitted in the following. Sub-
stituting in (31) we find:

1
N

d
dt

E log Z(t)=aE[Olog[w(e−bHJ(S1,..., Sp))]PJ − pOlog w(ebuS)Pu]. (34)

Notice that Eq. (31) if made of a first clause contribution plus a second site
contribution, weighted on the average site degree ap. This structure is
analogous to the one that appear in the computation of the RS free-energy
via the cavity method, as in can be seen in ref. 10 and in ref. 22 for the
direct T=0 case. The same correspondence is going to hold for the 1RSB
case. This is a natural consequence of the fact that, like in the cavity
method, we compensate in average a clause deletion by a field addition.
The present method is indeed a way of performing rigorous cavity calcula-
tions, keeping explicit trace of the terms discarded in the cavity approxi-
mation. This connection, somehow hidden in the fully connected models, is
made explicit in diluted systems. Rearranging terms and using (27) we
finally find that the free-energy FN can be written as

FN=Fvar[G]+F
1

0
dt RRS[G, t]+O(1/N) (35)

where Fvar[G] coincides the expression of the variational free-energy in
the replica treatment under condition G[h]=P[h] -h at t=0 and
>1

0 dt RRS[G, t] is a remainder term. Instead of writing the formulae for
general clauses, in order to keep the notations within reasonable simplicity,

Replica Bounds for Optimization Problems and Diluted Spin Systems 547



we specialize now to the specific cases of the p-spin model and the K-SAT.
Notice that in all models

F[0]=−
1
b
Olog(2 cosh(bh))Ph |t=0 (36)

3.1.1. p-Spin

In the case of the p-spin HJ(Si1
,..., Sip

)=J Si1
· · · · · Sip

. Substituting in
Eq. (34) and rearranging terms one immediately finds:

Fp-spin
var [G]=

1
b
5a(pOlog(cosh bu)Pu −Olog(cosh bJ)PJ) −Olog(2 cosh bh)Ph

+a(p − 1) 7 log 11+tanh(bJ) D
p

t=1
tanh(bgt)28

{gt}, J

6 (37)

while the remainder is the t integral of

Rp-spin
RS [G, t]= −

a

b
5EOlog(1+tanh(bJ) w(S1 ...Sp))PJ

− pEOlog(1+tanh(bu) w(S))Pu

+(p − 1) E 7 log 11+tanh(bJ) D
p

t=1
tanh(bgp)28

{gt}, J

6 . (38)

The expression for Fp-spin
var [G] coincides with the RS free energy once

extremized over the variational space of probability distributions G. (24)

Terms have been properly added and subtracted in order to obtain a
remainder equal to zero if maximization over G is taken, and the tempera-
ture is high enough for replica symmetry to be exact. (18) As we will see, the
remainder turns out to be positive. Fp-spin

var [G] is therefore, for all G for
which its expression makes sense, a lower bound to the free-energy. At
saturation the condition

G[h]=P[h]|t=0 -h (39)

should hold, which is simply the self-consistency RS equation.
By using equation

EOlog(1+tanh(bu) w(Si))Pu

=E 7 log 11+tanh(bJ) D
p − 1

t=1
tanh(bgr) w(Si)28

{gt}, J
(40)
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we can establish that the remainder is positive for even p. We expand the
logarithm of the three terms in (absolutely converging) series of tanh(bJ),
and notice that, thanks to the parity of the J and the g distributions, they
will involve only negative terms. We can then take the expected value of
each terms and write

Rp-spin
RS [G, t]=

1
b

C
.

n=0
Otanh2n bJPJ

1
n

× W[(q(2n))p − pq (2n)Otanh2n bgPp − 1
g +(p − 1)Otanh2n bgPp

g]
(41)

where we have introduced the overlap q (l) and the replica measure W

defined in Section 2. The series in (41) is an average of positive terms in the
case of the Viana–Bray model p=2, where we get perfect squares, and
more in general for all even p, as we can easily, starting from the observa-
tion that in this case xp − pxyp − 1+(p − 1) yp is positive or zero for all
x=q(2n), y=Otanh2n bJPJ real.

In the case of p odd, the same term is positive only if x is itself positive
or zero. The bound of the free-energy would therefore be established if we
were able to prove that the probability distributions of the q (2n) has support
on the positives.4 This property, which tells that anti-correlated states are

4 A different sufficient condition for the series to have positive terms is that |q (2n)| \

Otanh(bg)2nPg, but it is not clear its physical meaning.

not possible, is physically very sound whenever the Hamiltonian is not
symmetric under change of sign of all spins. In fact, one expects the prob-
ability of negative values of the overlaps to be exponentially small in the
size of the system for large N. Unfortunately, however, we have not been
able to prove this property in full generality. Notice that upon maximiza-
tion on G, the results of ref. 18 imply that the remainder is exactly equal to
zero if the temperature is high enough for replica symmetry to hold.

3.1.2. K-SAT

In the case of the K-SAT, using def. (3) for the clause H, we find rela-
tion:

uJ(h1,..., hp − 1) — uJ({Jt}, {ht})=
J
b

tanh−1 5 t
2 <p − 1

t=1 (1+Jt tanh(bht)
2 )

1+t
2 <p − 1

t=1 (1+Jt tanh(bht)
2 )

6 , (42)
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where t — e−b − 1 < 0. The variational free-energy reads:

FK-SAT
var [G]=

1
b
5a(p − 1) 7 log 11+(e−b − 1) D

p

t=1

11+tanh(bgt)
2

228
{gt}, {Jt}

−Olog(2 cosh(bh))Ph+apOlog(2 cosh(bu))Pu

− ap 7 log 11+
(e−b − 1)

2
D
p − 1

t=1

11+tanh(bgt)
2

228
{gt}, {Jt}

6 , (43)

while the remainder is the t integral of

RK-SAT
RS [G, t]= −

a

b
E 57 log 11+(e−b − 1) w 1D

p

t=1

1+JtSt

2
228

{Jt}

− p 7 log 11+tw 11+JS
2

D
p − 1

t=1

1+Jt tanh(bgt)
2

228
{gt}, J, {Jt}

+(p − 1) 7 log 11+t D
p

t=1

1+Jr tanh(bgt)
2

28
{gt}, {Jt}

6 . (44)

Considerations analogous to the case of the p-spin, have led us to add and
subtract terms from Eq. (34) to single out the proper remainder term.
Expanding in series the logarithms, exploiting the symmetry of the proba-
bilities distribution functions and taking the expectation of each term of the
absolutely convergent series we finally obtain:

RK-SAT
RS [G, t]

=
a

b
C

n \ 1

(−1)n

n
(tg)n W[(1+Qn)p − p(1+Qn)O(1+J tanh(bg))nPp − 1

J, g

+(p − 1)O(1+J tanh(bg))nPp
J, g] (45)

where we have defined tg — t/(2p) < 0 and Qn — ;n
l=1 OJ lPJ

× ;1, n
a1 < · · · < al

qa1 ...al. Detailed calculations are given in the appendix. As in
the p-spin case, the previous sum is obviously positive for p even. For p
odd we face the same problem as in the case of the p-spin, and should
again rely on the physical assumption that all q (a1,..., al) have positive support
and so have the functions 1+Qn \ 0. Again, the variational free-energy
coincides with the RS expression, (14) once extremized over G at the condi-
tion P=G at t=0.
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3.2. The 1RSB Bound

We establish here a more complex estimate, in a larger variational
space of functional probability distributions. The general strategy will be
here to consider the same form for the auxiliary Hamiltonian, but now with
a more involved choice for the fields distribution. The fields on different
sites or different index li will be still independent, but each site field distri-
bution G li

i (g li
i ) will be itself random i.i.d., chosen with a probability density

functional G[G], with support on symmetric distributions G(−g)=G(g).
We assume to be working in an ensemble of functionals G such that the
expressions below are well defined and the functional integrals are con-
vergent. The final choice we will make for the form of G will show a pos-
teriori to be included in that ensemble, since it will lead to the cavity results
that are numerically well defined. In this case, the variational approxima-
tion for the free-energy will be obtained from an estimate of

− bFN[m, t]=
1

mN
E1 log E2(Zm(t)) (46)

where we have denoted with:

• E2 the average w.r.t. g li, n
i for fixed distributions G li, n

i according to
the measure

C D
N

i=1
D
ki

li=1
D
p − 1

n=1
dg li, n

i G li, n
i (g li, n

i ) 1 BJli, n
i

(g li, 1
i ...g li, p − 1

i )
2 cosh(buJ

li, n
i

(g li, 1
i ...g li, p − 1

i ))
2m

(47)

where C ensures the normalization.

• E1 the average with respect to the quenched clause variable, the G li
i ’s

distributions and the Poissonian variables ki’s, which will be i.i.d. with
probabilities m(J), G(G li

i ) and p(ki, (1 − t) a) respectively.

The number m is real in the interval (0,1]. The statistical ensemble of the
auxiliary fields u and h will be now related to the one of the g by:

Q(Q)=F DG1G(G1)...DGp − 1G(Gp − 1)Od(Q( · ) − Q( · | G1,..., Gp − 1, J))PJ

(48)

P(P)= C
.

k=0
e−ap(1 − t) (ap(1 − t))k

k!
F D

k

l=1
DQlQ(Ql) d(P( · ) − P( · | Q1,..., Qk))

(49)
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where:

Q(u | G1,..., Gp−1, J)
NG[G1,..., Gp−1]

=F D
p−1

t=1
dgt Gt(gt) BJ(g1,..., gp−1)m d(u−uJ(g1,..., gp−1))

(50)

G(g | Q1,..., Qk)
NQ, k[Q1,..., Qk]

=(2 cosh(bg))m F D
k

l=1
dul

Ql(ul)
(2 cosh(bul))m d 1g− C

k

l=1
ul
2

(51)

where NQ, k[Q1,..., Qk], NG[G1,..., Gp − 1] and BJ(g1,..., gp − 1) have been
previously defined. With notations similar to the ones of the RS case, we
can write

d
dt

(−bFN[m, t])= − a C
M

(p(M, atN) − p(M − 1, atN)) E −

1

1
Nm

log E2Z(t)m

+
ap
N

C
i

C
ki

(p(ki, ap(1 − t))

− p(ki − 1, ap(1 − t))) E'

1, i

1
Nm

log E2Z(t)m. (52)

Extracting explicitly the contribution from the M-th clause in the first term
and the ki-th field u in the second, following considerations similar to the
RS case we find:

d
dt

(−bFN[m, t])

=a C
M

(p(M − 1, atN))
1
m

E −

1 log 5E2Zm
−Mw(e−bHJ(m)(Si1

M,..., Sip
M))m

−M

E2Zm
−M

6

−
pa

N
C

i
C
ki

p(ki − 1, ap(1 − t))
1
m

E'

1, i log 5E2Zm
−uki

i
w(ebuki

i Si)m
−uki

i

E2Zm
−uki

i

6 . (53)

Again it can be recognized that the primed averages coincide with the
averages over the original ensembles plus the averages on the variables
appearing in the terms we extracted. Finally we get:

d
dt

(−bFN[m, t])=
a

m
E1

57 log 1E2Zmw(e−bHJ(S1,..., Sp))m

E2Zm
28

J

− p 7 log 1E2ZmOw(ebuS)mPu

E2Zm
28

Q

6 . (54)
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Rearranging all terms one finds the estimate:

FN=Fvar[G]+F
1

0
dt R1RSB[G, t]+O(1/N) (55)

where this time Fvar[G] coincides with F1RSB[G], the expression of the var-
iational free-energy in the 1RSB treatment at the saddle point G=P at
t=0, and >1

0 dt R1RSB[G, t] is the remainder. Notice that the derivation
immediately suggests how to generalize the analysis to more steps of replica
symmetry breaking. Let us now specialize the formulae for the p-spin
model and the K-SAT. Again, in this case we will need the expression for
F[0]:

F[0]=
1

bm
57 log 71 1

2 cosh(bh)
2m8

h

8
P

6
|t=0

. (56)

3.2.1. p-Spin
In this case, plugging def. (2) in Eq. (54) rearranging, adding and sub-

tracting terms one finds:

Fp-spin
var [G]=

1
bm

57 log 71 1
2 cosh(bh)

2m8
h

8
P

− amOlog(2 cosh(bJ))PJ

− ap 7 log 71 1
2 cosh(bu)

2m8
u

8
Q

+a(p − 1)Olog O(1+tanh(bJ) tanh(bg1)...

tanh(bgp))mPg1,..., gp
PG1,..., Gp; J] (57)

while the remainder is the t integral of

Rp-spin
1RSB [G, t]= −

a

bm
E1

57 log 1E2Zm(1+w(S1 ...Sp) tanh(bJ))m

E2Zm
28

J

− p 7 log 1E2ZmO(1+w(Si) tanh(bu))mPu

E2Zm
28

Q

+(p − 1)Olog O(1+tanh(bJ) tanh(bg1)...

tanh(bgp))mPg1,..., gp
PG1,..., Gp; J

6 (58)

The expression for Fp-spin
var [G] coincides with the 1RSB free-energy (24) once

maximized over the variational space of probability distribution functionals
G. The maximization condition reads:

G[P]=P[P] |t=0 -P, (59)

Replica Bounds for Optimization Problems and Diluted Spin Systems 553



which is simply the self consistency 1RSB condition. For even p (and in
particular for p=2 that corresponds to the Viana–Bray case), one can
check that the remainder is positive just expanding the logarithm in series
and exploiting the parity of the J and the g distributions. As this is con-
siderably more involved then in the RS case, we relegate this check to
Appendix A.

3.2.2. K-SAT
In the K-SAT case the expression for function BJ(h1,..., hp − 1) reads:

BJ(h1,..., hp − 1) — B({Jt}, {ht})=1+
t

2
D
p − 1

t=1

11+Jt tanh(bht)
2

2 , (60)

while the corresponding one for uJ(h1,..., hp − 1) is the same as in the RS
case. The corresponding replica free-energy reads:

FK-SAT
var [G]=

1
mb

5a(p−1) 7log 711+t D
p

t=1

11+Jt tanh(bgt)
2

22m8
{gt}

8
{Gt}, {Jt}

−ap 7log 71 B({Jt}, {gt})
2 cosh(buJ({Jt}, {gt}))

2m8
{gt}

8
{Gt}, {Jt}, J

+7log 71 1
2 cosh(bh)

2m8
h

8
P

6. (61)

The remainder is the t integral of

RK-SAT
1RSB [G, t]=−

a

bm
E1

57log 1E2Zm (1+tw(<p
t=1

1+JtSt
2 ))m

E2Zm
28

{Jt}

−p 7log 1E2Zm O(1+t 1+Jw(S)
2 <p−1

t=1
1+Jt tanh(bgt)

2 )mP{gt}

E2Zm
28

{Gt}, {Jt}, J

+(p−1) 7log 711+t D
p

t=1

11+Jt tanh(bgt)
2

22m8
{gt}

8
{Gt}, {Jt}

6.

(62)

The expression for FK-SAT
var [G] coincides with the 1RSB free energy once

extremized under condition (59), with the corresponding K-SAT probabil-
ity distribution functionals. Notice that the proof of the positivity of (62)
for even p is again dove via series expansion. Details are shown in Appen-
dix B.

At this point we can take the zero temperature limit, finding that the
resulting expression gives us a lower bound for the ground-state energy of
the system, i.e., the minimal number of unsatisfied clauses. Notice that the
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T Q 0 limit of the replica free-energy is not trivial. The necessary assump-
tions on the field distributions to get it correct are well known in the phy-
sical literature, and have been recently reviewed in ref. 22. Recently
Mézard, Parisi, and Zecchina (12) have worked out the K-SAT 1RSB solu-
tion for p=3 predicting a non zero ground-state energy for values of a

above a satisfiability threshold of ac=4.256, very well in agreement with
the numerical simulations. Our results, together with the additional
hypothesis of positivity of the support of the overlap functions imply that
this value is an upper bound to the true threshold.

4. SUMMARY AND CONCLUSIONS

In this paper we have established that the free-energy of some families
of diluted random spin models can be written as the sum of a term identical
to the ones got in the cavity/replica framework, plus an error term. Both
the replica term and the remainder are different in different replica
schemes, corresponding to the choice of statistical ensemble of the cavity
fields. We believe that the sign of the remainder is in general negative in the
models we have considered, although we have been able to prove that only
in the case of even p.

We have considered the cases of replica symmetry and one step of
replica symmetry breaking. It is clear that the analysis could be extended to
further levels of replica symmetry breaking, although the technical com-
plexity of the analysis would greatly increase. The 1RSB level is thought to
give the exact scheme to treat the p spin model and the K-SAT problem for
p \ 3. For the Viana–Bray model on the other hand it is believed that no
finite RSB scheme furnish the exact solution, and one needs to consider the
limit of infinite number of replica symmetry breaking. It is not clear to us
how to generalize the analysis to this case.

Our analysis of the diluted models underlines a strong link between the
Guerra method and the cavity method which remained rather hidden in the
fully connected case. In the cavity approach one considers incomplete
graphs in which either sites or clauses are removed from the complete5

5 The term complete indicates here the total graph the spin system is defined on.

graph. Then, with the aid of precise physical hypothesis, consistency equa-
tions are written that allow to compute the free-energy from the compari-
son between the site and clause contributions. In the approach presented in
this paper the removal of clauses is compensated in average by the addition
of some external fields which have precisely the statistics which is assumed
with cavity. The novelty of the approach is that it gives some control on
the approximation involved, and proves the variational nature of the
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replica free-energies. Of course a complete control on the remainder in
various situations would result in rigorous solutions.

Although in this paper we have mainly worked at finite temperature,
the zero temperature limit can be considered without harm. This is partic-
ularly relevant in random satisfiability problem, where it is typically found
a SAT/UNSAT transition where the ground state energy passes from zero
to non zero values. Our analysis shows that the replica estimates for many
of the models considered in the literature, and possibly some of the ones to
be obtained in the future with the same method, provide upper bounds for
the satisfiability thresholds.

In this paper we have confined ourselves to spin models on graphs
with Poissonian connectivity. The extension to more general diluted graph
models will be presented in a forthcoming paper.

Finally we would like to remark that despite the heavy formalism, our
proofs are conceptually simple. They are issue of explicit computations and
elementary positivity considerations. We hope that this contributes to
illustrate the elegance of the construction first introduced in ref. 9.

APPENDIX A: P-SPIN

1. Check of the Positive Sign of Rp-spin
1RSB

In this appendix we will explicitly show that expression (58) has posi-
tive sign. We proceed expanding in absolutely convergent series each of the
three addend in (58) and showing, taking the expectation of each term that
the resulting series is positive semidefinite.

The first term writes:

E1
7 log

E2Zm(1+tanh(bJ) w(S1 ...Sp))m

E2Zm
8

J

= C
l \ 1

(−1) l+1

l
C
1, .

k1,..., kl

D
l

s=1

1m(−1)ks − 1

ks!
D

ks − 1

rs=1
(rs − m)2 O(tanh(bJ); l

s=1 ksPJ

· E1
1D

l

s=1

E2(Zmw(S1 ...Sp)ks)
E2(Zm)

2 (A1)

where the term E1( · ) in the last line of Eq. (A1) can be written as

E1

R1E (1)
2 ...E (l)

2 Zm
(1) ...Zm

(l)w(1)(S1, 1
1 ...S1, 1

p ...Sk1, 1
1 ...Sk1, 1

p )...
w(l)(S1, l

1 ...S1, l
p ...Skl, l

1 ...Skl, l
p )

2

(E2Zm) l

S
=W (l)[(q(k1,..., kl))p]. (A2)
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where each w(s) (s=1,..., l) is a product of ks Gibbs measure with inde-
pendent fields (variables appearing in the E (s)

2 averages), and same fields
distributions and quenched disorder (variables appearing in E1). The
complete notation is such that the first superscript i on spin S i, s correspond
to the i-th ¥ [1, ks] spin replica in the power w(...)ks term, while the
second superscript s corresponds to the replica induced by the product
< l

s=1.
The quantities q (k1,..., kl) have been defined as:

q (k1,..., kl)=
1
N

C
i

S1, 1
i · · · · · Sk1, 1

i · · · · · S1, l
i · · · · · Skl, l

i (A3)

and in this case the averages are performed using a a generalized replica
measure, defined as:

W (l)[(q(k1,..., kl))n]=E1
5< l

s=1 E (s)
2 Zm

(s)w(s)(S1 ...Sn)ks

(E2Zm) l
6 (A4)

for any integer n. The average over J selects the terms with even ; l
s=1 kl in

(A1) so that we finally find

− C
l \ 1

ml

l
C
1, .

k1,..., kl
;l

s=1 ks even

D
l

s=1

1<ks −1
rs=1 (rs −m)

ks!
2 O(tanh(bJ));l

s=1 ksPJ W(l)[(q(k1,..., kl))p]

(A5)

notice that (rs − m) \ 0 - integer rs > 0 only in the current hypothesis that
m ¥ [0, 1]. Analogously, the term

E1
7 log

E2ZmO(1+tanh(bu) w(Si))mPu

E2Zm
8

Q
(A6)

writes

− C
l \ 1

ml

l
C
1, .

k1,..., kl
;l

s=1 kseven

D
l

s=1

1<ks −1
r=1 (r−m)

ks!
2 7D

l

s=1
Otanh(bu)ksPu

8
Q

W(l)[(q(k1,..., kl))]

(A7)

or, making use of the definition of G(g),

− C
l \ 1

1
l

C
1, .

k1,..., kl
; l

s=1 ks even

D
l

s=1

1<ks − 1
r=1 (r − m)

ks!
2 7D

l

s=1
O(tanh(bg))ksPg

8p − 1

G

·O(tanh(bJ)); l
s=1 ksPJ W (l)[(q (k1,..., kl))] (A8)
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Eventually, following analogous manipulations, the last term

7 log 711+tanh(bJ) D
p

t=1
tanh(bgt)2

m8
{gt}

8
J, {Gt}

(A9)

can be written as

− C
l \ 1

m l

l
C
1, .

k1,..., kl
; l

s=1 ks even

D
l

s=1

1<ks − 1
r=1 (r − m)

ks!
2 7D

l

s=1
O(tanh(bg))ksPg

8p

G

O(tanh(bJ)); l
s=1 ksPJ. (A10)

Invoking 48 and collecting all

Rp-spin
1RSB [G, t]=

a

bm
C

l \ 1

m l

l
C
1, .

k1,..., kl
; l

s=1 ks even

D
l

s=1

1<ks − 1
r=1 (r − m)

ks!
2 O(tanh(bJ)); l

s=1 ksPJ

· W (l)[(q(k1,..., kl))p − pA(k1,..., kl)p − 1 (q (k1,..., kl))

+(p − 1) A(k1,..., kl) lp] (A11)

where we have defined:

A(k1,..., kl) — 7D
l

s=1
O(tanh(bg))ksPg

8
G

(A12)

Each inner term of the series (A11)

W (l)[(q(k1,..., kl))p − pA(k1,..., kl)p − 1 (q (k1,..., kl))+(p − 1) A(k1,..., kl)p] (A13)

is always positive semidefinite for p even while we need the condition con-
ditions q (k1,..., kl) \ 0 for p odd. For p=2 one retrieves the Viana–Bray result
where (A13) is a perfect square. As in the RS case, one can now integrate
Eq. (A11) and recognize that once more the total true free-energy can be
written as variational term plus a positive extra one. The variational term
coincides with the 1RSB free-energy at stationarity and under condition

G(P)=P(P)|t=0 -P. (A14)
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APPENDIX B: K-SAT

1. Check of the Positive Sign of RK-SAT
RS ...

The aim of this appendix is to show that the expression for the
remainder RRS[G, t] in (35) for the K-SAT model case as positive sign. For
the K-SAT RRS[G, t] specializes to:6

6 The sum of the site indices has been eliminated by symmetry.

RK-SAT
RS [G, t]=−

a

b
E[Olog(w(exp−b <p

r=1
1+JrSr

2 ))P{Jt}

−pOlog(1+w(S) tanh(bu))Pu

−p 7log 11+
t

2
D
p−1

t=1

11+Jt tanh(bgt)
2

228
{gt}, {Jt}

+(p−1) 7log 11+t D
p

t=1

1+Jr tanh(bgt)
2

28
{gt}, {Jt}

6 (B1)

which thanks to the relation between Q(u) and G(g), rewrites as

RK-SAT
RS [G, t]= −

a

b
E 57 log 11+(e−b − 1) w 1D

p

t=1

1+JtSt

2
228

{Jt}

− p 7 log 11+tw 11+JS
2

D
p − 1

t=1

1+Jt tanh(bgt)
2

228
{gt}, J, {Jt}

+(p − 1) 7 log 11+t D
p

t=1

1+Jr tanh(bgt)
2

28
{gt}, {Jt}

6 (B2)

The last term has been added and subtracted from Eq. (35) in order to
extract a remainder that would vanish if replica symmetry holds, and
maximization is performed on G(g). As in the p-spin case, we will proceed
in a Taylor expansion of expression (B2) in powers of t, and rely on
absolute convergence to average each term of the series.
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Expanding the first term in (B2) we can write

E 57 log 11+tw 1D
p

t=1

1+JtSt

2
228

{Jt}

6

= C
n \ 1

(−1)n+1

n
(tg)n E 57w 1D

p

t=1
(1+JtSt)2

n8
{Jt}

6

= C
n \ 1

(−1)n+1

n
(tg)n W 5D

p

t=1

11+ C
n

l=1
OJ l

tPJt
C
1, n

a1 < · · · < al

Sa1
t ...Sal

t
26

= C
n \ 1

(−1)n+1

n
(tg)n W 5D

p

t=1

11+ C
n

l=1
OJ l

tPJt
C
1, n

a1 < · · · < al

qa1 ...al 26

= C
n \ 1

(−1)n+1

n
(tg)n W[(1+Qn)p] (B3)

where we have defined tg — (e−b − 1)/(2p) and ;n
l=1 OJ lPJ ;1, n

a1 < · · · < al
qa1 ...al

— Qn. Notice that due to the negative sign of tg, the coefficients
(−1)n+1 (tg)n are all negative.

The analogous expansion of the second term is:

E 57 log 11+tw 11+JS
2

D
p − 1

t=1

1+Jt tanh(bgt)
2

228
{Jt}, J, {gt}

6

= C
n \ 1

(−1)n+1

n
(tg)n W 511+ C

n

l=1
OJ lPJ C

1, n

a1 < · · · < al

qa1 ...al 2

×7D
p − 1

t=1
D

n

l=1
(1+Jt tanh(bgt))8

{Jt}, {gt}

6

= C
n \ 1

(−1)n+1

n
(tg)n W[(1+Qn)O(1+J tanh(bg))nPp − 1

J, g ] (B4)

Finally, the third terms in Eq. (B2) immediately reads

7 log 11+t D
p

t=1

1+Jt tanh(bgt)
2

28
{Jt}, {gt}

= C
n \ 1

(−1)n+1

n
(tg)n O(1+J tanh(bg))nPp

J, g (B5)
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The sum of the three pieces in Eq. (B2) gives:

RK-SAT
RS [G, t]=

a

b
C

n \ 1

(−1)n

n
(tg)n W[(1+Qn)p

− p(1+Qn)O(1+J tanh(bg))nPp − 1
J, g

+(p − 1)O(1+J tanh(bg))nPp
J, g] (B6)

The previous sum is always positive semidefinite for p even while we need
1+Qn \ 0 for p odd.

2.2. ...and of RK-SAT
1RSB

We proceed in the same way as in the p-spin case. The algebra is ele-
mentary but more tedious and involved, therefore we will only list the final
results of the calculation. Starting from Eq. (62), we again expand in series
the first term, getting, with a treatment similar to the RS case:

RK-SAT
1RSB [G, t]= C

l \ 1

m l

l
C
1, .

k1,..., kl

(−tg); l
s=1 ks

× D
l

s=1

1<ks − 1
r=1 (r − m)

ks!
2 W (l)[(1+Q(k1,..., kl))p] (B7)

where we have defined:

Q(k1,..., kl) — C
l

s=1
C

k1,..., ks

r1,..., rs

OJ (r1+ · · · +rs)PJ D
s

t=1
C

k1,..., ks

a1 < · · · < art
=1

q (ar1
,..., ars

) (B8)

Analogous steps give for the second term in Eq. (62)

C
l \ 1

m l

l
C
1, .

k1,..., kl

(−tg); l
s=1 ks D

l

s=1

1<ks − 1
r=1 (r−m)

ks!
2 7D

l

s=1
O(1+J tanh(bg))klPg

8p − 1

G, J

· W(l)[1+Q(k1,..., kl)] (B9)

and for the third term

C
l \ 1

ml

l
C
1, .

k1,..., kl

(−tg);l
s=1 ks D

l

s=1

1<ks −1
r=1 (r−m)

ks!
2 7D

l

s=1
O(1+J tanh(bg))klPg

8p

G, J
,

(B10)
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where in the last two terms we can further expand

7D
l

s=1
O(1+J tanh(bg))klPg

8n

G, J

=1 C
k1,..., kl

r1,..., rl=1
D

l

s=1

1ks

rs

2 OJ (r1+ · · · +rl)PJ
7D

l

s=1
O(tanh(bg))rsPg

8n

G

2 (B11)

with n equal to p − 1 and p respectively. Since tg < 0 it is easy to see how
only positive terms of the series survive.

Collecting all, we eventually find the complete power expansion for
RK-SAT

1RSB :

a

bm
C

l \ 1

m l

l
C
1, .

k1,..., kl

(−tg); l
s=1 ks D

l

s=1

1<ks − 1
r=1 (r − m)

ks!
2

· W (l)[(1+Q(k1,..., kl))p − p(1+Q(k1,..., kl))

× A(k1,..., kl)p − 1+(p − 1) A(k1,..., kl)p] (B12)

where we have defined

A(k1,..., kl) — 7D
l

s=1
O(1+J tanh(bg))klPg

8
G

(B13)

Again, every term of the expansion is positive for even p and for p odd
under condition 1+Q(k1,..., kl) \ 0.

APPENDIX C: EXISTENCE OF THE THERMODYNAMIC LIMIT FOR

THE FREE-ENERGY

Let us briefly sketch the proof of the existence of the thermodynamic
limit of free-energy of the p spin model for even p. Let us define a model
which interpolates between two non interacting systems with N1 and N2

spins respectively, and a system of N=N1+N2 spins. Each clause
m=1,..., M will belong to the total system with probability t, to the first
subsystem with probability N1/N(1 − t) and to the second subsystem with
probability N2/N(1 − t). We chose the indices im

1 ,..., im
p in the following

way: for each clause the indices will be i.i.d. with probability t, the indices
will be chosen uniformly in the set {1,..., N}, with probability (1 − t) N1/N
the indices will be chosen in {1,..., N1} and with probability (1 − t) N2/N in
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the set {N1+1,..., N}. Let us consider the finite N free-energy density
FN(t)=− 1

Nb log Z(t). A direct calculation of its t-derivative reads:

dFN(t)
dt

=−
1
b
5 1

Np C
1, N

i1,..., 1p

+
N1

N
1

Np
1

C
1, N1

i1,..., 1p

+
N2

N
1

Np
2

C
N1+1, N

i1,..., 1p

6

× EOlog(1+tanh(bJ) w(Si1
...Sip

))PJ. (C1)

Expanding the logarithm in series, observing that thanks to the symmetry
of the J distribution the odd term vanish, introducing the replica measure
and using the convexity of the function xp for even p one proves that
dFN(t)

dt [ 0 which implies sub-additivity FN [ N1
N FN1

+N2
N FN2

; this is in turn is a
sufficient condition to the existence of the free-energy density in the ther-
modynamic limit. The same prove applies to the even p random K-SAT
model. For odd p we face a difficulty similar to the one in the replica
bounds. We can not prove sub-additivity due to the need to consider nega-
tive values of the overlaps, and non convexity of xp for negative x.
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