
Replica Control in Distributed Systen'ls:

An Asynchronous Approach

Galton Pu and A vraham Leff
Departmen t of Computer Science

Columbia University
New York, NY 10027

Technical Report No. CUCS-0.53-00

calton@cs.columbia.edu
.Jalluary 8. 1091

Abstract

An asynchronous approach is proposed for replica control in distributed systems. This
a.pproach applies an extension of serializahility called epsilon-se7'ializability (ESR). it correct­
ness criterion which allows temporary and bounded inconsistency in replicas to be seen by
queries. ~vIoreon'r. users can reduce t he degree of inconsistency to the desired amOllll t. J n the
limit, users see strict I-copy serializability. Because the system maintains ESR correctness
(1) replicas always converges to global sel'ializability and (2) the systenl permits re;ld access
to object replicas before the system reaches a quiescent state.

Variolls replica control methods that maintain ES It are descri bed and analyzed. Becallse

these methods do not require users to refer explicitly to ESR criteria, they can be easil~'
encapsulated in high-level applications that use replicated data.

Contents

1 Int.roduction

2 Replica Coutrol
2.1 ESR and ETs
2.2 lteplica Control and ESR
2.;1 Asynchronous Replica Control.
2,4 Framework for Replica Control

3 Forward Replica Control Methods
3.1 Ordered Updates (ORDUP)
:3.2 Commutative Operations (COMMU)
:3.:3 Read-Independent Timest.amped Updates (RITU)

4 Backward Replica Control Methods
.1.1 Analysis of Compensations

·1.2 Compensation-based Replica Control (CO?-.IPE)

5 Related 'Vork
0.1 User Specification
5.2 Read-only Redundancy

1

2

6
6

9

9

9
10

11

11
11

:d Xetwork Partition .Merging 12
:1.-[Services for Asynchronous Updates. .. 1:3

6 Conclusion 13

II

1 Introduction

Data replication offers the benefits of autonomy, performance. and (l\'ailability. U nfortllna1.c1y.
ensuring that t he replicas remain mil t ually consisten t (coherency con trol) is a d iflicu It problelll
because of the tradeoffs involved. Typical coherency control methods are synchronous. in the
sense that they require the atomic updating of some number of copies. From the point of
view of performance, synchronous methods decrease system availability and throughpllt as
the size of the system increases. From the point of view of autonomy, federated databases
may not wish to support this kind of tight coupling. On the other hand, a basic prohlem
\'lith asynchronous coherency control methods is that the system enters an inconsistent state
in which replicCls of a given object may not share the same value. Standard correctlless
criterion for coherency control such as I-copy serializability (ISR) [4] are hard to attain with
asynchronous coherency control.

Epsilon-serializahility (EST{) is a correctness criterion which offers the possibility of main­
taining mutual consistency of replicated data asynchronously. First, ESH allows incolIsis\.c·nt
data to be seen, but requires that data will eventually converge to a consistent (ISIt) state.
?-.Ioreover, ESn allows the degree of inconsistency to be controlled so tllat the amolillt of er·
ror (departure from consistency) can be reduced to a specified margin. A distributed system
which supports ESn permits temporary and limited differences among object replicas: these
replicas are required to converge to the standard ISR coherency as soon as all the update

messages arrive allcl are processed. These systems benefit from the increased asynchrony
allowed under ESR, and which results from (1) controlled inconsistency in queries Cllld from
(2) use of operation semantics that go beyond the usual Head/\Vrite operations.

Several practical replica control mechanisms can guarantee ESn. COIll bining high all tOll­

omy, performance. and availability. A high-level interface called epsilon-transaction (I:'T)
encapsulates the ESR abstraction so users need not explicitly deal with the theoretical condi­
tions satisfying ESR. The advantages of ESR are not supplied for "free": each replica control

method imposes some particular restrictions to achieve asynchronous consistency. For ex­
ample, the ordered-update method works by requiring update ETs to be executed in an SR
order. In exchange, this method allows query ETs to be processed in any order.

Just as coherency control and atomic transactions ensure synchronous mutual consistellc~'
without requiring references to ISR, replica control and ETs ensure aSYlichronolls I11l1tllal

consistency without references to ESR. In this paper we view the rolL' of both cohcl'I'ncy
control and replica control as consistency maintenance among replicas of a given "logical"
object. We therefore only discuss replica control methods: the replicated system is assu med
to use sta.ndard (synchronous) concurrency control [4] or (asynchronous) divergenc(' cOlltrol
methods [24] in order to maintain consistency among different objects in the system.

In Section 2 we introd lice the ES R terminology. model. and its properties. In Sections
3 and 4. two classes of asynchronous replica control methods a.re described. Some concrete
methods are analyzed, and are shown to provide ETs with ESR properties. Fina.lly. in Section
.). we discllss some related work.

1

2 Replica Control

Even if distributed systems are willing to pay the price of some inconsistency ill exchange for

the freedom to do asynchronous updates, they will insist that (1) the degree of inconsistency

he bounded precisely. and that (2) the system guarantee convergellce to standard notions

of "correctness". 'Vithout such properties, the system in effect becomes partitioned as the

replicas diverge more and more from OIle another [10]. These important properties are pro­

"idecl by ESR, which is a theory of constrained inconsistency jdivergence [24]. The key idea is

that asynchronous updates to replicas can be done approximately atomically. i.e .. updates are

at.omic within certain time lags, but have the same value when completed. Tn ollr approaclJ,

replica control is supplied within epsilon-transactions (ETs), a high-lcvel interface supplying
I·:SR.

2.1 ESR and ETs

An ET is a sequence of operations on data objects. These operations are divided into two

class: reads and writes. An ET containing only reads is a query ET (denoted by Q ET) and an

I~T containing at least one write is an upe/ate E1' (denoted by U ET). An [JET preserves data

consistency. In other words, if the objects modified by an [lET are initially in a consistent

state then, after the ET finishes (without interference from operations outside the ET), the
object.s will remain in a consistent state.

If update ETs are executed concurrently, we require them to be serializable (SR) [4, n].
1I0wever, ETs take advantage of operations which increase concurrency and allow more inter­

leaving. For example, commutative operations can be interleaved more freely than reads and

writes. Semantics-based consistency maintenance methods are in general termed divergence

ron/rot methods. Divergence control methods play an analogous role in replicated systems to

that of concurrency control methods: just as the latter maintain overall system consistency

h:v ensuring SR correctness, the former maintain overall system consistency by (:'Ilsuring ES It
correctness.

Qllery ETs are allowed to interleave with other ETs (both queries and updates) freely.

Therefore, query ETs may see an inconsistent object state produced by update ETs. This

properly does not disturb data consistency since query ETs do not change object state. Tllis

property does increase concurrency, because it increases the number of allowed interlcavillgs.

In order to define the ET interface more precisely, we lise an extension of the standard

S H model. which we first briefly summarize. A history or lor/ is a sequence of operations.

:\ serial log is a sequence of operations composed of consecutive transactions. A history

(:dso called a schedule or a log) of transaction operations (typically rea.ds and writes) is saill

to be serializable (SUlog) if it produces results equivalent to some serial schedule. in which

tile sallle transactions executed sequentially, one at a time. Concurrency control methods
that preserve SR (e.g., two-phase locking) are algorithms that restrict the interleaving of

operations in such a way that only SWogs are allowed. In the standard model, a log is shown

to be an SRlog by rearranging its operations according to certaill rules. These rules are ca.1led

read-write (R/W) and write-write (W /W) dependencies. Once a dependency is established

I The term log is unrelated to the write-ahead log in database recovery.

2

between two operations, then we cannot move one past the other in the rearrangemcnt., since
the resulting log would have produced a different database.

A log containing only query ETs and update ETs is called an €-sel'iallog if, after deleting
query ETs from the log, the remaining update ETs form an SRlog. An ESRIog is a history
of operations of ETs that produce results equivalent to an (-serial log. An example or an
€-seriallog is:

(1)

Even though ufT = W2(b)W2(a) and QfT = R3(a)R3(b) are not SR. the dcletion of qfr
results in the log being an SRlog (actually a serial log) formed by U fT alld ufT . . As a result,
log (1) still qualifies as an €-seriallog.

In an €-serial log, a query ET may overlap with update ETs. If the query E1' accesses

objects that are affected by these update ETs (R/W dependencies). then the potential for
inconsist.encyexists. We define the over/ajJ of a query ET as the set of (l,ll update ETs that
had not finished at the first operation of the query ET, plus all the update ETs that started
during the query ET. (The term "update E1's" refers here to the set of update ETs that

actually affect objects tha.t the query ET seeks to access). In our example log (1), UfT and

Q!fT overlap. The o\'erlap is an upper bound of error on the amount of inconsistency that a
query ET may accumulate. If a query ET's overlap is empty, then it is SR.

2.2 Replica Control and ESR

Replica control maintainillg ESR correctness involves asyncltronous propagation of replica
updates in a distributed system. Our model is that of a number of sites connected by a

network, where both individual sites and Ilet.work lillks may fail. \Ve factor out the problem
of internal system consistency due to site failures by encapsulating it in the local message
processing, which assumes each site is capable of maintaining local consistency. Similarly,
we factor out the problem of message losses by encapsulating it in stable queues which

persistently retry message delivery until sllccessful. The problem of replica control, therefore.
is to keep replica.s consistent with each other with a technique that is robust in face of very
slow links, network partitions, and site failures.

\Ve reiterate here the distillctioll between replica control, which ellsures asynchronous
mutual consistency under ESR. and traditional coherency control, which ensures synchronous
mutual cC)[lsistency under iSR. Also, we distinguish replica control from the mailltenann.~ of

system internal consistency, termed divergence control. This distinction is analogous to the
distinction between coherence control (replicas of a single "logical" object) and concurrency

control (system internal consist.ency).

We therefore restate the ESR model in terms of replica control in a distributed system.
First. of all, we are only concerned with ETs in the system that carry illformation ahout
replicated data. At each site. an ET is represented by a me8sage set or MSEl. Query ETs
use query t-.ISets to read the values or an object's copy. All update !vISeI is a set or replicl
mailltenance operat.ions \vhich propagates updates to object replicas. That is, when an update
is originated in a client node the results of the update are propagated to the replicas in ~'1Scts,
Each local system is responsible for applying its 11Set and preserving int.ernal consistency.

Note that the propagation of ~lSets to each site is asynchronous. \Ve assume th(' s~'sl('m

3

ma.intains the unprocessed 11Sets in some stable storage, such as stable qlH:)l\(~S [.5] and 1)('l'sis­
lent pipes [17]. Each !vfSet is stored as an element in a stable queue. Due to the asynchronous
propa.gation of 11Sets, replicas of a "logical" object can differ at any given llloment. This
is the source of inconsistency seen by the query ETs. A key observation, however, is that
under ESR all replicas converge to the same lSR value when the update MSets queued at

iJldividual sites are processed, and the system reaches a quiescent state.

Since a query ET may see the intermediate results or update ETs, it is clear that a
query 1::1' may yield a results some distance away from that of an SR query. One of the
i III portant points or ES H replica con tral is the ability to con trol the length of overlap (amoll nt
or inconsistency) in practice. At the one end of spectrum, replica control may allow zero

illconsistency and no overlap, producing SR. queries. At the other end of spectrum. replica
control may let a query ET's error grow, by allowing a very long overlap - but ultimately
the overlap still bounds the query ET's error.

2.3 Asynchronous Replica Control

All replica contralmethods have to solve the following problem: how can operations be per·
mitted to execute with the greatest possible concurrency and not intcrrere wit.h one another.
The problem is complicated because replica control methods must permit updates to proceed

asynchronously. Each of the methods that we discuss restricts the set or potcl1tial concurrellt
I'xl'clltions in one way or another. The key point is that these methods. at the same time,
illlpliciLly specify ESR correctness criteria. In sections 3 and -l these methods are shown to
satisfy the ESIt requirements discussed in section 2.1 and 2.2. As a result, these methods

maintain ESn correctness for ETs.

The advantages of using a replica control method that maintains ESR can best be seen

in thc following context. Picture a distribut.ed system comprised of a. collectiol1 of cooper­
;ding components. Each component maintains a set of objects that support sophisticated

operations, such as read, write, increment, append a timestamped version. etc.

If t he overall system is correct in tenns of ESR. this implies that when all ongoing £1'
l1pdates have been applied, the system convcrges to SR. ESH. allows more concurrency than

strict SR in two ways. F'irst, query ETs may interleave other ETs. Second. update ETs may

bl' serialized by divergence control methods that apply operat.ion sema.ntics. The important
point is that ETs produce results equivalent to a serial schedule and therefore consistent.
Furthermore, the amount of inconsistency in tIle query ETs is bounded by t.he numher of
concurrent update ETs with which they interleave.

Tht, known replica control methods can be classified into two ramilips. The firsl. tcrmed
"rorward methods". prevents inconsistency by restricting some system parameter. For ex·
ample, ir update ETs contain only commlltative operations. then the system supports [SIt
since update operations can be reordered into a serial schedule. Another example of replica
control is ordered lIpda/r8. which majntains the processing order of update ET operatiolls.
Ordered updates maintain system consistency, and query ETs call be processed in any order
to increa.se concurrellcy. Read·indepe1ldent timcslamped updates also prpserv(' ESR. because
update ETs can be scheduled in any order, and query ETs are scheduled more or less freely
depellding Oll consistency and concurrency trade-offs.

4

ORDUP CO~I~IU RITU CO~I'IPENSATION

Kind of message operation operation "operation
Restriction delivery semantics semantics value

..

Applicability Forwards Forwards Forwards Backwards

Asynchronous Query Query & Query & Query &:
Propagation only Update Update Updat.e

Sorting Time at update doesn't mat ter at read NjA

Table 1: Replica-Control Jvlethods

The second family of replica contro\. termed "backward methods", is based on co17l1Jcn­

sation operatiolls. The replicated syst.em may optimist.ically a.llow operations to proceed in
parallel. If inconsistencies are detected later. then the system rolls them back with compell­
sation operations or compensation E1's. Since update ETs are serializable with respect to
othCJ' update ETs, ESR compensation is safe and carries low overhead.

In summary, the forward methods assume the updates have been "committed" and are
being propagated through a reliable communication mechanism, while the backward methods
supply some recovery mechanism in case the updates are "aborted". Table 1 lists some
important characteristics of each of the replica control methods discussed in the paper. We
have already discussed the issue of "forwards" versus "backwards" methods. The significallce
of the other dimensions will be discussed as each method is analyzed.

2.4 Framework for Replica Control

In [24J formal proofs are given for the assertion that these replica control methods maintain
ESR. We are concerned here with the issue of implementing these methods in a replicated sys­
tem. Traditioll:d coherency control met.hods, such as weighted voting [1::>], update a numln'r
of replicas (e.g .. write quorum) in an atomic transaction. Similarly, replica cont.rol methods
apply the updat.es in an upda.te ET. \,Ve say that a coherency cOl1trol metllod is sYllchronolls

because a distributed transaction requires a commit agreement protocol to synchronize the
transaction outcome. This is a big handicap when network links ha\'c very low bandwidth or
moderately high latency. To solve this problem, replica. control propagates upda.tes indepen­
dently; these methods are therefore asynchronous.

The first step in replica control is the generation of update :\'ISets and their delivery to the
replica si tes. Each 1v1Set is deli vered asynchronously to its desti na.t ion. anel local si If'S exC'c Illp
the MSet independently of the processing of other MSet.s that update the same replica. :\[
this stage, potential inconsistency arises because of the <l.'iynchrollous updates, 50 we need 1.0

analyze the degree of divergence and control it.

Replica control depends on some additional restriction (in addition to that of SR) all
the execution of ~ISet5 to control the divergence. This restrictioll may II<Lppen dllrillg the

5

first "lvlSet delivery" step, which is the case of ordered updates (ORDUP), described in
Section 3.1. Alternatively, the restriction may be on the kind of operations allowed, during
tIle second "1\'1Set processing" step. as in the case of both commutative operations lIlethod
(COM ~IU), described in Section 3.2, and read-independent timestamped update method
(H lTV), descri bed ill Section :3.:3. Finally, the restriction lI1ay be on the r.l SC't processing
as a whole, which is the case of backward replica control methods based on compensations
described in Section 4.

We note that each restriction is independent of the other restrictions. Concretely, 0 H DUP
does not restrict the kind of operations in any way. Similarly. CO ~vf~!u does not restrict.
the ordering of }",ISet execution, nor does RITU. However, the analysis of I'eplica control
co III binations is beyond the scope of this paper.

For each replica coutrol method, we will describe its steps, from "MSet delivery", to
")'ISet processing", ending with an analysis of the divergence allowed and an algorithm to
limit the divergence 011 replicas ("Divergence bounding"). There are several ways divergence
Illay arise and users may want to control each of them (see a discussion in Sectioll .).1). Here,
we exhibit an existential proof of such techniques, without any aspiration for a complete
cO\'erage of the subject.

3 Forward Replica Control Methods

3.1 Ot'dered Updates (ORDUP)

The idea behind the ORDUP replica control method is to execute the lv[Sets by upd:lting
eli fferent replicas of the same object asynchronously- but in the same order. In this way the
update ETs are SR. \Ve can process query ETs ill any order because they are allowed to see
illconsistent results. It is easy to see that the log composed of ordered updates is {-serial
since the update ETs are SR,

l'viSet delivery: The client generating the t-.lSets does not have to deliver them in order.
In other words, a "later" MSet can be delivered before an "earlier" l\fSet. However, since
their excculion must be in order, the MSet must include information about its execution
order. Each site simply waits for the next)'ISet in the execution sequence to show up before
I'll nning other lvlSets. Although such ordering can be generated easily by a centralized order
server, sometimes true dist.ributed control is desired. In those cases we may use a Lamport­
st.yle global timestamp [21] to mark the ordering. In that case the MSets should somehow be
delivered in order, since it is not easy to see whether there is another 11Set coming in with
jl1st a slightly earlier timestamp.

l'vISet processing: Once the local system determines the next !vlSet. that MSet may
be processed immediately. Note that the execution of ~'ISets at each site may be locally
interleaved, as long as the end result is an ESRlog. For example. the basic-timestamp (or
01 her timestamp-based) concurrency control method applied to update ETs will produce an
SHlog. Query ETs may interlea\'e with the update ETs (and other query ETs) in any order.

Divel'gence bounding: The amount of inconsistency which a query E1' may see is
]HHlIlded by its o\'erlap wit.h update ETs. If we allow arbitrary interleaving. a q1lery ET can
coIlceivably start at the beginning of log and finish at the end. Such a query would contain
as milch inconsistency a.s there are conflicts.

Ru IFu RQ

Ru OK - OK

Wu - - OK

RQ OK OK OK

Table 2: 2PL Compatibility for ORDUP ETs

To limit the amount of inconsistency seen by query ETs, we use the divergence control

of update ETs. The detailed algorithm depends on t.he particular global ordering algorithm

adopted. The idea is to give each query ET its own global order number. If these are ordered

the same way as the update ETs. then the oyerlap will be empty. yielding an SRlog. To control

the degree of inconsistency of a query ET. we maintain an "inconsistency counter" for each.
Each time a QET is found to overlap an [lET the inconsistency couIIter is incremented by l.
\Vhen the inconsistency counter reaches a pre-specified number. the query ET is allowed tn

proceed only when it is running in the global order.

The detection of out-of-order execution depends on the particular divergence (Oli! 1'01

method used for local operation ordering. III case of basic timestamps, for exalllple, each

object maintains the timestamp of the latest access. The divergence control checks the or­

dering of each access. In an sa execution. out-of-order reads are either rejected or cause an

abort of a write. In an ESR execution, the divergence control increments the inconsistency

counter and decides whether to allow the read depending on the specified di\'ergence limit.

Although a complete presentation of divergence cOlltrol methods, is beyond the scope of
this paper. we present here an outline of how the standard two-phase locking (2PL) concur­

rency control algorithm would be modified.

The standard 2PL lock compatibility table shows RjR compatible and the other cases

(RjW, WjR, WjW) iJlcompatible. Table 2 shows the resulting lock compatibility for ETs.

Ru denotes a read lock by an update ET, Wu a write lock by an update ET. and RQ denotes

a. read lock by a query ET.

3.2 Commutative Operations (COMl\1U)

The idea behind the CO~I1J\,iI U replica cont.rol method is the lise of operatioll semantics. If the

final result is equivalent to some serial execution. then the actual execution order does not

matter. In essence, we order updates at 1 heir completion time. Sincp query ETs are allowed

to interleave update ETs, QET reads become commutative with n~spect to the commlJt.ative

U ET writes. Tota.l concuJ"J'ency inCl"eases since we have eliminated a major boHlcneck - the

lack of commutativity between reads and updates.

MSet delivery: Since the MSets are commutative, there is no restriction on tllc ordering

of messages delivered. \Ve still need stable queues, however. since lost MSets cannot be

recovered.

7

Ru Wu RQ

Ru OK Commu OK

Wu Commu Commll OK

RQ OK OK OK

Table 3: 2PL Compatibility for C01HvIU ETs

l'vlSet processing: We assume that update operations on each object are commutati\·e.
If t his is not the case, then care must be taken t.o preserve the serialization of nOll-commll tatiye
operations. Commutative update MSets can be processed asynchronously in any order. Since
query :'ISets can be interleaved arbitrarily, they become cOlllmutative with respect to the
updates and can therefore be processed asynchronously in any order as well.

Divel'gence bounding: The inconsistency that query ETs lIlay see is derived from
illtermediate states between U ET operations through overlap. There arc no problems with
overlapping update ETs, since their 11Sets are commutative. If there is no hard limit 011

query ET divergence. then the system can run freely. However. if a limit is phced on the
degree of divergence of query ETs, their serialization Illay be affected by the interleaving of
update ETs. For exalllple, if all the update ETs on a log are conflicting and interleaved, then
the only way to make query ETs SR is to put them at the beginning or at the end.

One way to limit the amount of inconsistency seen by query ETs is to put a lock-counter
all each object being accessed. When updating an object, the U ET incremellts the object
lock-c011Jlter by one. The replica control keeps track of these lock-counters in the same
way as it handles the usual locks held by transactions. At the end of UET execution all
the lock-counters are decremented. \Ve Ca.1l cont.rol object a.ccess consistency by regulatillg
the lock-counter usage. For example, we can allow update ETs to run freely. [II this ca$C

I he query ETs are responsible for determining their own inconsistency. Each lock-counter
diflerent from zero means a certain degree of inconsistency added to the query ET.

~\lteJ'Jlatively. we can limit the update ETs in a.ddition to query ETs. For example, if the
lock-counter of an object exceeds a specified limit, then the update ET trying to write must

eit.her wait or abort. Quer:.' ETs st.ill have to ta.ke into consideration the inconsistency shown
in lock-counters, but the overlap of update ETs will be limited and query ETs h:we a better
chance of completion without wait.ing due to inconsistency limitations.

In this subsection we describe the modification needed in order to use two-phase lock­
illg for ETs. The three new classes of locks (Wu, Ru. and RQ) are the same in Table 2.
Table :3 shows the details of conflicts, where OK means alwa.ys compatible and "COIll1l1U"

means compatible when commutative. III particular, 1Yu locks are compatible with other
cOInmutative operations. (There are many examples of COllul1utative IVu operations bUI few
examples of commutativity between leVu and Ru). Finally. Ru locks are compatible with RQ,
and commuta.tive HTU , but not wit.h the others.

8

3.3 Read-Independent Timestamped Updates (RITU)

The RITU replica control method also uses update operation semantics, hut postpones access

ordering to subsequent read time. If updates do not have R/W dependencies. tlley can be

executed asynchronously. Of course, arbitrary updates may still have \V /\V dc-pendencies.

but RITU updates are commutative with respect to reads.

l'vISet delivery: Since RITU MSets are commutative with respect to themselves and

reads, we can apply the results and methods from Section 3.2.

MSet processing: An RITU update I\1Set may generate a new irnmutable version (ill

append-only systems) or overwrite a previous version that has an older timestamp. (An R lTV

update trying to overwrite a newer version is ignored.) The rcad-independent overwrite is

sometimes called a "blind-write".

Divergence bounding:

In case of single-version overwrites, the system assumes t.hat the I:tt.est version is th<'
desired data. In these cases, there is 110 divergence since by definition all the reads reqllest

the latest \·ersion. RITU reduces to COMI\lU.

The case of multiple versions aSSllllles that each qllery should be synchronized at. some

fixed time (for all the reads). For simplicity of presentation, we use the ~Iodlliar Synchro­

nization 1Iethod [I] to main tain versiolls, which makes versions of objects visible to queries in

such :l way that no smaller version can be created by any active or futlln' transa.ctions. This

visibility controL called a visible transaction number counter (VTNC), produces SR queries.

Query ETs may read versions newer than VTN C, knowing that the newer value III a.)' in tro­

duce inconsistency. Each time a query ET reads such a version its "inconsistency coullter"

is increased by one. (This is a consen'ative approach since it is possible that the value will

be committed a.nd become valid.) The replica controllilllits the amoullt. of incollsistency in a

([uery ET by not allowing reading versions that are newel' (han VT:.JC, W"<'1l its inconsislcIIC)'

counter has reached a specified limit.

4 Backward Replica Control Methods

4.1 Analysis of Compensations

Forward replica control methods (described in Section :n aSSllllle that (1) the update prop­

agation ET has committed and (2) that each 11Set should \)(' executed until a success is

reported. Backward replica control deals with the situation ,\There. because a failure occurs.

inconsistency is introduced between copies. In addition, for performance reasons, t.he sys1.(,1II

may start running MSets before the global update is committed. To allow all ~ISel to comlllit

asynchronously, the system must be able to compensate for its results if the global update

aborts. Therefore, only MSets that support their corresponding compensation ~vISets llIay

run under backward replica control.

The difficulty with compensation is the need to lIndo and redo the entire log. as done
in Tillie Warp [18]. This problem can be illustrated by a simple exampl<,. Let an :vfSl't be

Inc(x.10), which increments the object x by 10. and its compensation Dec(x, 10). Consider

a.nother IvISet Mul(x.2), which multiplies the object;/: by 2. and its COlll)l0llsatioll Div(.1.·,2).

9

It is ea.sy to see that

fnc(x, lOlA! ul(x, 2)Dec(x.lO) :/= Alul(x. 2).

\Ve lleed to undo the intervening non-commutative operation:

Inc(x, 10)Mul(x, 2)Dit1(x. 2)Dec{x, lO)Mul(x, 2) = M ul(x. 2).

Although in general we need to rollback the entire log, optimization is possible for re­
stricted cases. For example, if all the operations on an object are cOIlllTlutative then rollback
of entire log is not necessary.

4.2 Compensation-based Replica Control (COMPE)

lVISet. processing: The processing of MSet can be unconstrained, in which case we need to
rollback the entire log. This is the case with OROUP operations. On the other hand, if all
~ISds are commutative, then the system call simply apply the compensation without allY

overhead. The COMPE replica control method must remember the executed :MSets until
there is no risk of rollback.

Compensation MSet delivery: If the entire log needs to be rolled hack (e.g., in case

of on DUP), COMPE runs the compensation l'.ISet for each MSet in the log (up to the
desired MSet) in reverse order. The log is thell replayed. the MSets re-executed, and the
system continues. In order to rollback RITU with overwrite we must also record the vallie
being overwritten on the log. If all IvISets all the log are commutative, then CO;'vIPE simply

rllns the compensation IvlSet and continues. This is the case with COMl\,IU and RITU with
!l1ultiple versions. Multiple versions can support compensation by deleting the version. or by
adding another version with the same timestamp but bearing the previous value.

Divergence bounding:

Compensation MSets introduce inconsistency into query ETs because they are not rolled

b:tck and re-executed as the update ETs are. Each time a rollback happens the system needs

to increa.se t.he inconsistency counter of conflicting query ETs. This ta.sk is 11lllch harder for
the query ETs that have just finished. since they have left the system.

Bot h forward and backward rE~plica control must cooperate in including potent ial C01i1-

pensations so that bounds can be placed OIl the inconsistency. If unlimited compensations

arc' allowed. it is easy to sec that qm'l"y ETs cannot bound their error lwcallsP compensations

Illay introduce additional inconsistency after they haye finished. There are two ways to limit
the inconsistency caused by compensations. First, we can limit the number of compensations
allO\\'ed, thus limiting the total amount of after-conclusion inconsistency. Second. we can take
illto account the number of potential compensations when running query ETs. For exam pit"
in a system supporting Sagas [1;j], we can maintain the lock-counter yalne throughout a saga,
sillce dllring the saga each step may be compellsated for. Dy clearing t.he lock-counters only
a t the end of the entire saga the query ETs have a conservative estimate (upper bound) of
t he total potential inconsistency.

10

5 Related Work

5.1 User Specification

ETs proyide an interface to ESR. ESR is a correctness criterion that allows bounded diver­

gence. Replica control methods can enforce different diyergence bounds. Although ESR is a

general theory of controlled inconsistency [24], this paper has applied it within the more lim­
ited domain of replica control. Other examples of specification methods have been proposed

for this domain.

\Viederhold and Qian [28] have introduced the notation called identity connedion to
specify the constraints binding the replicas of an object. They classify the upda.te prop­
:1gation into four classes: immediate updates, deferred updates. independent updates, and

potentially inconsistent updates. ETs can be used implement each of these classes. While im­
mediate updates are done within standard transactions (ETs with no divergence), deferred

updates correspond to ETs with deadlines. Similarly, indcpPlldent updates cOITPspond to

CTs applied periodically, and potentiaJiy inconsistent updates to ETs with backward replica

control. Although \Viederhold and Qian propose a temporal constraint resolver [29] to im·

plement transaction processing satisfying these specifications, it would require considerable

overhead to test their satisfiability. Heplica control methods orrer more efficient exc'clltion <II.

the price of less concurrency.

Sheth and Rusinkiewicz [21] have proposed a taxonomy for interdependent data manage·

ment. They separate data consistency criteria into temporal and spatia.l dimensions. The
temporal consistency has two kinds. Eventual consistency refers to the leillporal constraints

specified by identity connections. Lagging consistency refers to asynchronous updated copies.
in the same style of quasi-copies [2]. The spatial consistency criteria are divided into three

cases. Inconsistency is controlled by limiting either (1) the number of data items changed
asynchronollsly, (2) the data value changed asynchronously, or (:3) til(' number of :lllowecl

asynchronous operations. An implementation of interdependent data management is de­

scribed in [26]: it essentially corresponds to ORDUP. Conservath·e ESR directly models the

idea of limiting the number of asynchronous operations: replica control Illethods implelIlell t
this idea.. In order to implement the other spatial consist.ency criteria. replica control JIlethods

would need to explicitly include these factors.

Another specification approach is Controlled Inconsistency proposed by Barbara and

Garcia-:~I'!olina [3), which generalizes their work on quasi-copies. Controlled Incollsistency

specifies arithmetic consistency constraints, similar to the data value limit in interdcp('IHiellt,

data management. They constrain updates to be safe operations. defined by some s(,lIIantic

correctness criteria appropriate to the application. In contrast. the replica control methods

discussed in this paper are meant to be more applicatioll independent.

5.2 Read-only Redundancy

Replica control methods llIust deal with the divergence introduced by updates. Head opera­
tions, howeycr, can access existing replicas: if updates are ISH. then the system will remain

consistent. Such read-only 1'edunc!ancy can be maintained in several ways. and is useful ill

many applications. ETs offer an addi tional benefi t in situations such as time-cri tical appli-

11

cations where a ISR update has not yet been propagated. The available values may then be

lOO old to be useful.

:\n early example of read-ollly redundallcy is timestampcd versions [.1]. Qlleries that are

seriaJizcd in the "past" do not block, and immutable versions can be replicated freely.

Another early proposal using the idea of read-only redundancy is weak consistency [I:!]
defined over the class of read-ollly transactions. A read-only transaction satisfies weak con­

sistency if it is locally consistent, but may cause non-Sn. results in the global log formed by

the union of local logs. ESR diff"ers in two major \\lays from weak-consistency: first. it a]]ows

more interleaving (because query ETs are permitted to see local inconsistency). and. second.

weak consistency does not incorporate methods that can tune the degree of inconsistency.

Quasi-copies [2] offers a theoretical fOllndation for illcreased read-only ava.ila.bility. bul

require that all updates be ISn.. As a result, the primary copy is always consistent in the

ISn. sense. Inconsistency is only introduced because quasi-copies may lag the primary copy.

One similarity between quasi-copies and ESR is the notion of specifying the relationship

between replicas. Qllasi-copies IIses a "closeness" specification in the trigger mechanisll1

which propagates updates to quasi-copies. Replica control methods, in contrast. constrain

the degree of inconsistency of ETs directly.

5.3 Network Partition Merging

Communication failure causes divergence between object copies in different partitions. Da\'id­
son et al [10] have surveyed the approaches to data replication under network parti tions. They

di\'ide the approaches into two g,'ollps: pessimistic vs. optimistic. Pessimistic algorithms are
sYllchronous. since they use commit protocols to maintain replica mutual-consistency. Opti­

mistic algorithms allow updates to proceed asynchronously. but try to merge the operations
at partition reconnection time. Both types, however, maintain ISH. correctness. As a re­

sult, the optimistic a.lgorithms are application specific. Anot.her cha.racteristic or optimist.ic

techniques is that they are essentially "off-line": repairs are based 011 merging logs from the

different partitions. Of course. ETs use a weaker correctness criterion than lSIL The replic\

cont.rol methods used by ETs differ princi pally ill that they allow COil trolled divergence \\' h ilc

queries alld updates a.re in progress. That is, instead of processing logs at recollllcction time,
0111' methods control divergence dynamically.

An ea.rly example of such off-line algorithm work is Faissol's thesis [12]. He identifies .')

classes of methods: they can be roughly equated to the methods discussed in t.his pape·r.

Class A is similar to IUTU overwrite; classes Band C arc similar to CO~HdU; and classes

J) :1nd E are similar to CO~IPE.

Another example. log transformation [0] is a method proposed to speed up the merging of

updat.es from different partitions when they reconnect. They use operation properties such

as comrnlltativity and overwrite to merge independent updates. If some updates cannot be

merged then they try backward recovery by rolling back some updates and redoing them.

This is all off-line algorithm that may be useful when logs grow long in prolonged partitions.

1\lorc recent work has also focllssed on optimizing the work needed for log-merging. One

example of such a system is OSCAR [11]. Their architecture is based on two cooperating

agents. called replicators and mediators. The replicators propagate replica updates and

rite mediators recover from replicator failures. Three methods in OSCAR can he used hy

12

the appropriate application using the so-called weak-consistency updates: commuta.tiye and
associative, overwrite, and site-sequential. ETs are a high-level interface to such lllcthods: ill

additioll, replica control methods give users the ability to control thc amoll nt or i Ilconsistency
in the system.

5.4 Services for Asynchronous Updates

The idea of applying updates asynch,'ollollsly is not new, and specific a.pplications and prim­

ith'es for their implementation have been proposed in the literature. ESR differs principally

by (1) providing a high-level and general (ET) interface and by (2) allowing fine-grained

control over inconsistency through replica control methods.

Clea.ringhouse [22] and Grapevine [S] are early example of directory systems developed at
Xerox. They propagate the changes between replicas periodica.lly. Depending on the volume.

they send incremental updates or a complete reload.

Ficus distributed file system [16] uses a two-phase flooding algorithm to detect replica

propagation stability and conflicts asynchronously. However. they neither pre\'ent nor resolve
conflicts.

Coda distributed file system [2.5] (ll'Ovides optimistic replication thr01lgh a malilla.! repair
tool [19]. The tool supports semantics-dependent rules for automatic recovery of specific

applications such a.s directories. No general rules are supplied.

In addition to directory /file-systell1 propagation. asynchronous communication techniques
have also been developed. An example of t.he latter is Lazy Replication [20]. It provides t.hree

classes of ordered messages, plus unordered delivery. This facility is at a much lower level of

abstraction than transactions and ETs. Another example, is Isis [6] which provides rOLlr kinds

of multicast and broadcast facilities, including causal broadcasts. These communications

facili ties have been used to provide replication in a way similar to 0 RD U P [7].

6 Conclusion

Asynchronous updates have the potential of increasing performance and availability while

allowing autonomy. The major problem has been the trade-off between asynchrony and
consistency among the replicas. In this paper we describe an approach that guara.ntees replica.

convergence while at the same time taking advantage of asynchronous update propagation.

Updates to replicas are done via epsilon-transactions (ETs). which ensure the epsilon­

serializability (ESR) correctness criterion. Update ETs remain serializable as in the standard

(I-copy serializable) model and the system therefore remains consistent in a strong sense.

Query ETs. however, can interleave with other ETs rreely, thus seeing incollsistt'llt \'a.lues of

replicas. The inconsistency visible to query ETs is bounded, and can be controlled by the

user.

Just as coherency control methods ensure ISH. there arc replica control 1I1l'1 hods I ha I

ensure ESR. Practical replica control methods work hy imposing restrictions on the sel. of
concurrent executions. Several methods, such as one based 011 commutative olH'rations and
one based on compensations are described and analyzed in this paper. These methods enable
applications to using ETs to omit explicit reference to ESR. The analysis of 1 he replica

13

divergence permitted under these methods shows that. in the limit, the divergence of ETs

call be reduced to zero, making all ETs strictly serializable.

[lJ D. Agrawal and S. Sengupta.

1Ioclular synchronization in multiversion databases: Version control alld concurrency
control.

In Proceedings of the 1989 A CM SIGMOD International Conference on Management of

Data, Portland. 1989. ACMjSIGivIOD.

[2] ll. Alonso, D. Da.rbara, and H. Garcia-l\lfolina.

Quasi-Copies: Efficient data. sharing for information retrieval systems.

;\ CM Transactions on Database Systems, 1990.
To a.ppea.r.

[:3] D. Barbara and H. Garcia-Molina.

The case for controlled inconsistency in replicated data.
In Proceerling8 of the IVorkshop on Management of ReplicatEd Data. pages :35-·12, HULls­

ton, November 1990.

[.t] P.A. Bernstein, V. Hadzilacos, and N. Goodman.

Con.currency Control and RecoveT'y in Database Systems.

Addison- Wesley Publishing Company, first edition, 1987.

[5] P.A. Bernstein, 1v1. Hsu, and B. Mann.

Implementing recoverable requests using queues.

In Proceedings of 1990 SIGMOD International Conference on Alanagement of Data.
pages 112-122, May 1990.

[6} K. Birman and T. Joseph.

Exploiting virtual synchrony in distributed systems.

In Proceedings of the Eleventh Symposium on Opemting Systems Principles. pages 123-
1:38. ACMjSIGOPS. November 1987.

[i] T\en Birman.

I{eplication and fault-tolerance in the Isis system.

1 n Proceedings of the Tenth Symposium on OpeT'ating Systems Principles, pages 79-S6.

ACMjSIGOPS, December 1985.

[kJ A.D. Birrell. R. Levin, R.M. Needham. and M.D. Schroeder.

Grapevine: An exercise in distributed computing.
Communications of ;lCU, 25(4):260-274, April 1982.

[9] 13.1'. Blaustein and C.W. K;lllfrnan.

Updating replicated data during communication failures.
Tn Pmceedirzgs of the Eleventh International Conference on Very Large Data Ra.<;es, pages

'19-.58, Stockholm. August 1985.

[10] S.U. Davidson, H. Garcia-Molina. and D. Skeen.

14

Consistency in a partitionednctwork.

ACM Computing Surveys, 17(3)::341-370, September 1985.

[11] A.lL Dowlling, LB. Grecnberg, and J.:\1. Peha.

OSCAR: An architecture for weak-consistency replication.

In Proceedings of PARBASE-90 International Conference on Databases, PaTYIl/el Archi­

tectures, and Their Applications. pages 350-358. 1990.

[12] S.Z. Faissol.

Operation of Distributed Database Systems Under Network Partitions.
PhD thesis, Department of Computer Scicnce, University of California, Los Angeles,

1981.

[I:l] H. Garcia-Nlolina and 1\. Salem.

Sagas.
In Proceedings of ACM SIGMOD Con/enTIce 011 Management oj Data. pages 2"19-:2.59.

r..lay 1987.

[II] H. Garcia-!vIolina and C. Wiederhold.

Read-only transactions in a distributed database.

A CM Transactions on Database Systems, 7(2):209-234, .J une 1982.

[15] D.K. Gifford.

Weighted voting for replicated data..

In Proceedings of the Seventh Symposium on Operating Systems Principles. pages 1.50··
162. ACf,ljSIGOPS, December 1979.

[16] R.C. Guy, J.S. Heidemann, \V. :Mak, T.W. Page, G.J. Popek. a.nd D. Rothmeier.
1m plemen ta.tiOIl of t he Ficus replicated file system.

In Proceedings of 1990 Usenix Summer Conference, pages 6:3-71. Anaheim, CA. June

1990. Usenix.

[17] M. Hsu and A. Silbcrschatz.

Persistent tl'ansmission and unilatera.l commit,

In Procef:dings of Workshop on Muldatabases and Semantic InleroperalJility. pages -18-.')2.
November 1990.

[18] D.IL Jefferson.

Virtual time.

A CAr Transactions on Programming Languages ami Syslems. 7(:3):40'1--125. July 198.).

[19] P. Kumar.
Coping with conflicts in an optimistically replicated file system.

In Proceedings of the Workshop on the Management of Replicated Data, pages GO-64.

Houston, November 1990. IEEB/TeOS.

[20] R. Ladin. B. Liskov, a.nd L. Shrira ..

Lazy replication: Exploiting the semantics of distributed services.

In Proceedings of the Ninth A CM Symposium 011 Pr'inciples of Distributed C0171IJlItin[j.

Quebec City. August 1990. ACI\I/SIGACT-SIGOPS.

[21] 1. Lamport.

15

Time, clocks and ordering of events in a distributed system.
Communications of ACM, 21(7):.558-565, July 1978.

[22] D.C. Oppen and Y.K. Dalal.
The Clearinghouse: A decentralized agent for locating named objects in a distributed

en vi ronment.
A CM Transactions on Office Information Systems, 1(3), .luly 1983.

[2:3] C.H. Papa.dimitriou.
Serializability of concurrent updates.
Journal of ACM, 26(4):631-653, October 1979.

[24] C. Pu and A. Leff.
Epsilon-seri alizabili ty.
Tech n ical Report CU CS- 054- 90, Depa.rt IIWll t of Com pu tel' Sciencc, Colllln bia U ni v('l'si ty,

December 1990.

[25] :\1. Satyanarayanan. J. Kistler. P. Kumar, ~J. Okasaki. E. Siegel. and D. Steere.
Code: A highly available file system for a distributed workstation endronment.
IEL~E Tmnsactions on Compu.ters, C-3D('I):.147-459, April 1990.

[2G] A. Sheth and P. Krishnamurthy.
Redundant data management in bellcore and bcc databases.
Technical Report TM-STS-015011/1. Hell Communications Research. December 1989.

[17] :\. Sheth and (vI. Rusillkiewicz.
Management of illterdepenent data: Specifying dependency and consistency require­

ments.
In Proceedings of the I\'or/.:s/zop on Management of Replicated Data. pages }:3:3-136,

HOllston. November 1990.

[28] C. Wiederhold and X. Qian.

!v[odelillg asynchrony in distributed databases.
In Proceedings of the Third International Conference 011 Data Engineering. pages 2,16-

250. February 1987.

[29] G. Wiederhold and X. Qian.
Consistency control of rcplicated data in federated databases.
In Proceedings of the Workshop on i\Imwgement of Ueplicated Data. pages 130-1 :32.

Houston, Noyember 1990.

16

