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Abstract

An asynchronous approach is proposed for replica control in distributed systems. This
approach applies an extension of serializability called epsilon-serializability (ESR), a correct-
ness criterion which allows temporary and bounded inconsistency in replicas to be seen by
queries. Moreover, users can reduce the degree of inconsistency to the desired amount. In the
limit, users see strict 1-copy serializability. Because the system maintains ESR correciness
(1) replicas always converges to global serializability and (2) the system permits read access
to object replicas before the system reaches a quiescent state.

Various replica control methods that maintain ESR are described and analyzed. Because
these methods do not require users to refer explicitly to ESR criteria, they can he easily
encapsulated in ligh-level applications that use replicated data.
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1 Introduction

Datareplication offers the benefits of autonomy, performance. and availability. Unfortunately.
ensuring that the replicas remain mutually consistent (coherency control)is a difficult problemn
because of the tradeoffs involved. Typical coherency control methods are synchronous. in the
sense that they require the atomic updating of some number of copies. From the point of
view of performance, synchronous methods decrease system availability and throughput as
the size of the system increases. From the point of view of autonomy, federated databases
may not wish to support this kind of tight coupling. On the other hand, a basic problem
with asynchronous coherency control methods is that the system enters an inconsistent state
in which replicas of a given object may not share the same value. Standard correctness
criterion for coherency control such as 1-copy serializability (1SR) [4] are hard to attain with
asynchronous coherency control.

Ipsilon-serializability (ESR ) is a correctness criterion which offers the possibility of main-
taining mutual consistency of replicated data asynchronously. First, ESR allows inconsistent
data to be seen, but requires that data will eventually converge to a consistent (1SR) state.
Moreover, ESR allows the degree of inconsistency to be controlled so that the amount of er-
ror (departure from consistency) can be reduced to a specified margin. A distributed system
which supports ESR permits temporary and limited differences among object replicas: these
replicas are required to converge to the standard 1SR coherency as soon as all the update
messages arrive and are processed. These systems benelfit from the increased asynchrony
allowed under ESR. and which results from (1) controlled inconsistency in queries and from
(2) use of operation semantics that go beyond the usual Read/Write operations.

Several practical replica control mechanisms can guarantee ESR. combining high auton-
omy, performance, and availability. A high-level interface called epsilon-transaction (I'T)
encapsulates the ESR abstraction so users need not explicitly deal with the theoretical condi-
tions satisfying ESR. The advantages of ESR are not supplied for “free™: cach replica control
method imposes some particular restrictions to achieve asynchronous consistency. Tor ex-
ample, the ordered-update method works by requiring update ETs to be executed in an SR
order. In exchange, this method allows query ETs to be processed in any order.

Just as coherency control and atomic transactions ensure synchronous mutual consistency
without requiring references to 1SR, replica control and ETs ensure asynchronous mutual
consistency without references to ESR. In this paper we view the role of both coherency
control and replica control as consistency maintenance among replicas of a given “logical”
object. We therefore only discuss replica control methods: the replicated system is assumed
to use standard (synchronous) concurrency control [4] or (asynchronous) divergence control
methods {24] in order to maintain consistency among different objects in the system.

In Section 2 we introduce the ESR terminology, model, and its properties. In Sections
3 and 4. two classes of asynchronous replica control methods are described. Some concrete
methods are analyzed, and are shown to provide ETs with ESR properties. Finally.in Section
5, we discuss some related work.



2 Replica Control

Loven if distributed systems are willing to pay the price of some inconsistency in exchange for
the freedom to do asynchronous updates, they will insist that (1) the degree of inconsistency
be bounded precisely, and that (2) the system guarantee convergence to standard notions
of “correctness”. Without such properties, the system in effect becomes partitioned as the
replicas diverge more and more from one another [10]. These important properties are pro-
vided by ESR, which is a theory of constrained inconsistency/divergence [24]. The key idea is
that asynchronous updates to replicas can be done approzimately atomically. i.e., updates are
atomic within certain time lags, but have the same value when completed. In our approacl,
replica control is supplied within epsilon-transactions (ETs), a high-level interface supplying
IZSR.

2.1 ESR and ETs

An ET is a sequence of operations on data objects. These operations are divided into two
class: reads and writes. An ET containing only reads is a query ET (denoted by Q £7) and an
I2'I" containing at least one write is an update ET (denoted by UET). An UET preserves data
consistency. In other words, if the objects modified by an UET are initially in a consistent
state then, after the ET finishes (without interference from operations outside the ET), the
objects will remain in a consistent state.

If update ETs are executed concurrently, we require them to be serializable (SR) [4. 23].
lowever, I'Ts take advantage of operations which increase concurrency and allow more inter-
leaving. For example, commutative operations can be interleaved more freely than reads and
writes. Semantics-based consistency maintenance methods are in general termed divergence
control methods. Divergence control methods play an analogous role in replicated systems to
that of concurrency control methods: just as the latter maintain overall system consistency
hy ensuring SR correctness, the former maintain overall system consistency by ensuring ESR
correciness.

Query ETs are allowed to interleave with other ETs (both queries and updates) [reely.
Therefore, query ETs may see an inconsistent object state produced by update ETs. This
property does not disturb data consistency since query ETs do not chiange ob ject state. This
property does increase concurrency, because it increases the number of allowed interleavings.

In order to define the ET interface more precisely, we use an extension of the standard
SR model. which we first briefly summarize. A history or log' is a sequence of operations.
A serial log is a sequence of operations composed of consecutive transactions. A history
(also called a schedule or a log) of transaction operations (typically reads and writes) is said
to be serializable (SRlog) if it produces results equivalent to some scrial schedule. in which
the same transactions executed sequentially, one at a time. Concurrency control methods
that preserve SR (e.g., two-phase locking) are algorithms that restrict the interleaving of
operations in such a way that only SRlogs are allowed. In the standard model, a log is shown
to be an SRlog by rearranging its operations according to certain rules. These rules are called
read-write (R/W) and write-write (W /W) dependencies. Once a dependency is established

YThe term logis unrelated to the write-aliead log in database recovery.




between two operations, then we cannot move one past the other in the rearrangement, since
the resulting log would have produced a different database.

A log containing only query ETs and update ETs is called an e-serial log if, after deleting
query ETs from the log, the remaining update ETs form an SRlog. An ESRlog is a history
of operations of ETs that produce results equivalent to an c-serial log. An example of an
e-serial log is:

R1(a)Wi(b)Wa(b) R3(a)Wo(a)Ra(b) (1)

Even though UFT = Wy(b)Ws(a) and QFT = Ra(a)R3(b) arc not SR. the deletion of Q47
results in the log being an SRlog (actually a serial log) formed by U T and UET. As a result,
log (1) still qualifies as an e-serial log.

In an e-serial log, a query ET may overlap with update ETs. If the query ET accesses
objects that are affected by these update ETs (R/W dependencies). then the potential for
inconsistency exists. We define the overlap of a query ET as the sct of all update F'Ts that
had not finished at the first operation of the query ET. plus all the update ETs that started
during the query ET. (The term “update ETs” refers here to the set of update ETs that
actually affect objects that the query ET seeks to access). In our example log (1), U£T and
QFT overlap. The overlap is an upper bound of error on the amount of inconsistency that a
query ET may accumulate. If a query ET’s overlap is empty, then it is SR.

2.2 Replica Control and ESR

Replica control maintaining ISR correctness involves asynclironous propagation of replica
updates in a distributed system. Our model is that of a number of sites connected by a
network, where both individual sites and network links may fail. We factor out the problem
of internal system consistency due to site failures by encapsulating it in the local message
processing, which assumes each site is capable of maintaining local consistency. Similarly.
we factor out the problem of message losses by encapsulating it in stable queues which
persistently retry message delivery until successful. The problem of replica control, therefore.
is to keep replicas consistent with cach other with a technique that is robust in face of very
slow links, network partitions, and site failures.

We reiterate here the distinction between replica control, which ensures asynchronous
mutual consistency under ESR. and traditional coherency control, which ensures synchronous
mutual consistency under 1SR. Also, we distinguish replica control from the maintenance of
system internal consistency, termed divergence control. This distinction is analogous to the
distinction between coherence control (replicas of a single “logical” object) and concurrency
control (system internal consistency).

We therefore restate the ESR model in terms of replica control in a distributed system.
First of all, we are only concerned with ETs in the system that carry information about
replicated data. At each site. an E'T is represented by a message set or MSet. Query L'Ts
use query MSets to read the values of an object’s copy. An update MSel is a set of replica
maintenance operations which propagates updates to object replicas. Thatis, when an update
is originated in a client node the results of the update are propagated to the replicas in MSets.
IZach local system is responsible for applying its MSet and preserving internal consistency.

Note that the propagation of MSets to each site is asynchronous. We assume the system




maintains the unprocessed MSets in some stable storage, such as stable queues [3] and persis-
tent pipes [17]. Each MSet is stored as an element in a stable queue. Due to the asynchronous
propagation of MSets, replicas of a “logical” object can diller at any given moment. This
is the source of inconsistency seen by the query ETs. A key observation, however, is that
under ISR all replicas converge to the same 1SR value when the update MSets queued at
individual sites are processed, and the system reaches a quiescent state.

Since a query ET may see the intermediate results of update ETs, it is clear that a
query ET may vield a results some distance away from that of an SR query. One of the
important points of ESR replica control is the ability to control the length of overlap (amount
of inconsistency) in practice. At the one end of spectrum, replica control may allow zero
inconsistency and no overlap, producing SR queries. At the other end of spectrum. replica
control may let a query ET's error grow, by allowing a very long overlap - but ultimately
the overlap still bounds the query ET’s error.

2.3 Asynchronous Replica Control

All replica control methods have to solve the following problem: how can operations be per-
mitted to execute with the greatest possible concurrency and not interfere with onc another.
The problem is complicated because replica control methods must permit updates to proceced
asynchronously. Each of the methods that we discuss restricts the set of poteutial concurrent
executions in one way or another. The key point is that these methods. at the same time,
anplicitly specify ESR correctness criteria. In sections 3 and 4 these methods are shown to
satisfy the ESR requirements discussed in section 2.1 and 2.2. As a result, these methods
maintain ESR correctness for ETs.

The advantages of using a replica control method that maintains IXSR can best be seen
in the following context. Picture a distributed system comprised of a collection of cooper-
ating components. Each component maintains a set of objects that support sophisticated
operations, such as read, write, increment, append a timestamped version, elc.

If the overall system is correct in terms of ESR. this implies that when all ongoing E'T
updates have been applied, the system converges to SR. ESR. allows more concurrency than
strict SR in two ways. First. query ETs may interleave other ETs. Second. update ETs may
be serialized by divergence control methods that apply operation semantics. The important
point is that ETs produce results equivalent to a serial schedule and therefore consistent.
IFurthermore, the amount of incousistency in the query ETs is bounded by the number of
concurrent update ETs with which they interleave.

The known replica control methods can be classified into two families. The first. termed
“forward methods”. prevents inconsistency by restricting some system parameter. For ex-
ample, il update ETs contain only commulative operations. then the system supports ESR
since update operations can be reordered into a serial schedule. Another example of replica
control is ordered updatcs. which maintains the processing order of update EET operations.
Ordered updates maintain system consistency, and query ETs can be processed in any order
to increase concurrency. Read-independent timestamped updates also preserve ESR. because
update ETs can be scheduled in any order, and query ETs are scheduled more or less freely
depending on consistency and concurrency trade-offs.




ORDUP COMMU RITU COMPENSATION
Kind of message operation operation “operation
Restriction delivery semantics semantics value”
Applicability | Forwards Forwards Forwards Backwards
Asynchronous Query Query & Query & Query &
Propagation only Update Update Update
Sorting Time | at update | doesn’t matter | at read N/A

Table 1: Replica-Control Methods

The second family of replica control. termed “backward methods™, is based on compen-
sation operations. The replicated system may optimistically allow operations to proceed in
parallel. If inconsistencies are detected later. then the system rolls them back with compen-
sation operations or compensation ETs. Since update ETs are serializable with respect to
other update II'I's, ESR compensation is sale and carries low overhead.

In summary, the forward methods assume the updates have been “committed” and are
being propagated through a reliable communication mechanism, while the backward methods
supply some recovery mechanism in case the updates are “aborted”. Table 1 lists some
important characteristics of each of the replica control methods discussed in the paper. We
have already discussed the issue of “forwards™ versus “backwards™ methods. The significance
of the other dimensions will be discussed as each method is analyzed.

2.4 Framework for Replica Control

In [24) formal proofs are given for the assertion that these replica control methods maintain
ESR. We are concerned here with the issue of implementing these methods in a replicated sys-
tem. Traditional coherency control methods. such as weighted voting [15]. update a number
of replicas (e.g.. write quorum) in an atomic transaction. Similarly. replica control methods
apply the updates in an update ET. We say that a coherency control method is synchronous
because a distributed transaction requires a commit agreement protocol to synchronize the
transaction outcome. This is a big handicap when network links have very low bandwidth or
moderately high latency. To solve this problem, replica control propagates updates indepen-
dently; these methods are therefore asynchronous.

The first step in replica control is the generation of update MSets and their delivery to the
replica sites. Each MSet is delivered asynchronously to its destination. and local sites execute
the MSet independently of the processing of other MSets that update the same replica. At
this stage, potential inconsistency arises because of the asynchronous updates, so we need to
analyze the degree of divergence and control it.

Replica control depends on some additional restriction (in addition to that of SR) on
the execution of MSets to control the divergence. This restriction may happen during the
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first “MSet delivery” step, which is the case of ordered updates (ORDUP). described in
Section 3.1. Alternatively, the restriction may be on the kind of operations allowed, during
the second “MSet processing” step, as in the case of both commutative operations method
(COMMU), described in Section 3.2, and read-independent timestamped update method
(RITU), deseribed in Section 3.3. Finally, the restriction may be on the MSct processing
as a whole, which is the case of backward replica control methods based on compensations
described in Section 4.

Ve note that each restriction is independent of the other restrictions. Concretely, ORDUP
doces not restrict the kind of operations in any way. Similarly, COMMU does not restrict
the ordering of MSet execution, nor does RITU. However, the analysis of replica control
combinations is beyond the scope of this paper.

For cach replica control method, we will describe its steps, from “MSet delivery”, to
“MSet processing”, ending with an analysis of the divergence allowed and an algorithm to
limit the divergence on replicas (“Divergence bounding”). There are several ways divergence
may arise and users may want to control each of them (see a discussion in Section 5.1). Here,
we exhibit an existential proof of such techniques, without any aspiration for a complete
coverage of the subject.

3 Forward Replica Control Methods
3.1 Ordered Updates (ORDUP)

The idea behind the ORDUP replica control method is to execute the MSets by updating
different replicas of the same object asynchronously— but in the same order. In this way the
update ETs are SR. We can process query ETs in any order because they are allowed to see
inconsistent results. It is easy to see that the log composed of ordered updates is e-serial
since the update ETs are SR.

MSet delivery: The client generating the MSets does not have to deliver them in order.
In other words, a “later”™ MSet can be delivered before an “earlier” MSet. However, since
their ezcecution must be in order, the MSet must include information about its execution
order. Ilach site simply waits for the next MSet in the execution sequence to show up before
running other MSets. Although such ordering can be generated easily by a centralized order
server. sometimes true distributed control is desired. In those cases we may use a Lamport-
stvle global timestamp [21] to mark the ordering. In that case the MSets should somehow he
delivered in order, since it is not easy to see whether there is another MSet coming in with
just a slightly earlier timestamp.

MSet processing: Once the local system determines the next MSet. that MSet may
be processed immediately. Note that the execution of MSets at cach site may be locally
interleaved, as long as the end result is an ESRlog. For example. the basic-timestamyp (or
other timestamp-based) concurrency control method applied to update ETs will produce an
SRlog. Query ETs may interleave with the update ETs (and other query ETs) in any order.

Divergence bounding: The amount of inconsistency which a query ET may sce is
bounded by its overlap with update ETs. If we allow arbitrary interleaving. a query IX'l' can
conceivably start at the beginning of log and finish at the end. Such a query would contain
as miuch inconsistency as there are conflicts.



Ry | Wy | Re

Ry ||OK| — | OK

W || — | — | OK

Rq || oK | OK | OK

Table 2: 2PL Compatibility for ORDUP ETs

To limit the amount of inconsistency seen by query ETs, we use the divergence control
of update ETs. The detailed algorithm depends on the particular global ordering algorithm
adopted. The idea is to give each query ET its own global order number. If these are ordered
the same way as the update ETs. then the overlap will be empty. yielding an SRlog. To control
the degree of inconsistency of a query ET. we maintain an “inconsistency counter™ for each.
Each time a QE7 is found to overlap an UET the inconsistency counter is incremented by 1.
\When the inconsistency counter reaches a pre-specified number. the query ET is allowed to
proceed only when it is running in the global order.

The detection of out-of-order execution depends on the particular divergence control
method used for local operation ordering. In case of basic timestamps, for example, cach
object maintains the timestamp of the latest access. The divergence control checks the or-
dering of each access. In an SR execution. out-of-order reads are either rejected or cause an
abort of a write. In an ESR exccution, the divergence control increments the inconsistency
counter and decides whether to allow the read depending on the specified divergence limit.

Although a complete presentation of divergence control methods, is beyond the scope of
this paper. we present here an outline of how the standard two-phase locking (2PI.) concur-
rency control algorithm would be modified.

The standard 2PL lock compatibility table shows R/R compatible and the other cases
(R/W, W/R, W/W) incompatible. Table 2 shows the resulting lock compatibility for 12Ts.
Ry denotes a read lock by an update ET, Wy a write lock by an update ET. and Rg denotes
a read lock by a query ET.

3.2 Commutative Operations (COMMU)

The idea behind the COMMU replica control method is the use of operation semantics. If the
final result is equivalent to some serial execution, then the actual execution order does not
matter. In essence, we order updates at their completion time. Since query ETs are allowed
to interleave update ETs, QFT reads become commutative with respect to the commutative
UET writes. Total concurrency increascs since we have eliminated a major bottleneck - the
lack of commutativity between reads and updates.

MSet delivery: Since the MSets are commutative, there is no restriction on the ordering
ol messages delivered. We still need stable queues, however, since lost MSets cannot be
recovered.



Ry wu | Ro

Ry OK Commu | OK

Wy || Commu | Commu | OK

Ro || OK OK |OK

Table 3: 2PL Compatibility for COMMU ETs

MSet processing: We assume that update operations on each object are commutative.
[f this is not the case, then care must be taken to preserve the serialization of non-commutative
operations. Commutative update MSets can be processed asynchronously in any order. Since
query MSets can be interleaved arbitrarily, they become commutative with respect to the
npdates and can therefore be processed asynchronously in any order as well.

Divergence bounding: The inconsistency that query ETs may see is derived from
intermediate states between UET operations through overlap. There are no problems with
overlapping update ETs, since their MSets are commutative. If there is no hard limit on
query LT divergence, then the system can run freely. However, if a limit is placed on the
degree of divergence of query ETs, their serialization may be affected by the interleaving of
update ETs. For example, i all the update ETs on a log are conflicting and interleaved, then
the only way to make query ETs SR is to put them at the beginning or at the end.

One way to limit the amount of inconsistency seen by query ETs is to put a lock-counter
on cach object being accessed. When updating an object, the UET increments the object
lock-counter by one. The replica control keeps track of these lock-counters in the same
way as it handles the usual locks held by transactions. At the end of UET execution all
the lock-counters are decremented. We can control object access consistency by regulating
the lock-counter usage. For example, we can allow update ETs to run freely. In this case
the query ETs are responsible for determining their own inconsistency. Each lock-counter
diflerent from zero means a certain degree of inconsistency added to the query F'I.

Alternatively, we can limit the update ETs in addition to query ETs. For example, il the
lock-counter of an object exceeds a specified limit, then the update ET trying to write must
either wait or abort. Query ETs still have to take into consideration the inconsistency shown
in lock-counters, but the overlap of update ETs will be limited and query ETs have a better
chance of completion without waiting due to iuconsistency limitations.

In this subsection we describe the modification needed in order to use two-phase lock-
ing for ETs. The three new classes of locks (1¥y, Ry. and Rg) are the same in Table 2.
Table 3 shows the details of conflicts, where OK means always compatible and “Commu”
means compatible when commutative. In particular, W locks are compatible with other
commutative operations. (There are many examples of commutative Wy operations bul few
examples of commutativity between Wy and Ry). Finally, Ry locks are compatible with Rg,
and commutative Wy, but not with the others.



3.3 Read-Independent Timestamped Updates (RITU)

The RITU replica control method also uses update operation semantics, but postpones access
ordering to subsequent read time. If updates do not have R/W dependencies. tliey can be
executed asynchronously. Of course, arbitrary updates may still have \W/W dependencies,
but RITU updates are commutative with respect to reads.

MSet delivery: Since RITU MSets are commutative with respect to themselves and
reads, we can apply the results and methods from Section 3.2.

MSet processing: An RITU update MSet may generate a new immutable version (in
append-only systems) or overwrite a previous version that has an older timestamp. (An RITU
update tryving to overwrite a newer version is ignored.) The read-independent overwrite is
sometimes called a “blind-write”.

Divergence bounding:

In case of single-version overwrites, the system assumes that the latest version is the
desired data. In these cases, there is no divergence since by definition all the reads request
the latest version. RITU reduces to COMMU.

The case of multiple versions assumes that each query should be synchronized at some
fixed time (for all the reads). For simplicity of presentation, we use the Modular Synchro-
nization Method [1] to maintain versions, which makes versions of objects visible to queries in
such a way that no smaller version can be created by any active or future transactions. This
visibility control, called a visible transaction number counter (VITNC), produces SR queries.
Query ETs may read versions newer than VINC, knowing that the newer value may intro-
duce incomnsistency. Each time a query ET reads such a version its “inconsistency counter”
is increased by one. (This is a conservative approach since it is possible that the value will
be committed and become valid.) The replica control limits the amount of inconsistency in a
query E'T by not allowing reading versions that are newer than V'I'NC, when its inconsistency
counter has reached a specified limit.

4 Backward Replica Control Methods

4.1 Analysis of Compensations

Forward replica control methods (described in Section 3) assume that (1) the update prop-
agation ET has committed and (2) that each MSet should be executed until a success is
reported. Backward replica control deals with the situation where. because a failure occurs.
inconsistency is introduced between copies. In addition, for performance reasons, the system
may start running MSets before the global update is committed. To allow an MSet to commit
asynchronously, the system must be able to compensate for its results if the global update
aborts. Therefore, only MSets that support their corresponding compensation MSets may
run under backward replica control.

The difficulty with compensation is the need to undo and redo the entire log. as done
in Time Warp [18]. This problem can be illustrated by a simple example. Let an MSet be
Inc(z.10), which increments the object 2 by 10. and its compensation Dec(z,10). Consider
another MSet M ui(z.2), which multiplies the object & by 2. and its compensation Din(2,2).



1 is easy to see thal
Ine(z, 10)Mul(z,2)Dec(2.10) # Mul(z. 2).
\We need to undo the intervening non-commutative operation:
Ine(z,10)Mul(z,2)Div(z.2)Dec(z,10)Mul(z,2) = Mul(z.2).

Although in general we need to rollback the entire log, optimization is possible for re-
stricted cases. For example, if all the operations on an object are commutative then rollback
of entire log is not necessary.

4.2 Compensation-based Replica Control (COMPE)

MSet processing: The processing of MSet can be unconstrained, in which case we need to
rollback the entire log. This is the case with ORDUP operations. On the other hand, if all
MScts are commutative, then the system can simply apply the compensation without any
overhead. The COMPE replica control method must remember the executed MSets until
there is no risk of rollback.

Compensation MSet delivery: If the entire log needs to be rolled back (e.g.. in case
of ORDUP), COMPE runs the compensation MSet for each MSet in the log (up to the
desired MSet) in reverse order. The log is then replayed. the MSets re-executed, and the
svstem continues. In order to rollback RITU with overwrite we must also record the value
being overwritten on the log. If all MSets on the log are commutative, then COMPE simply
runs the compensation MSet and continues. This is the case with COMMU and RITU with
multiple versions. Multiple versions can support compensation by deleting the version. or by
adding another version with the same timestamp but bearing the previous value.

Divergence bounding:

Compensation MSets introduce inconsistency into query ETs because they are not rolled
back and re-executed as the update ETs are. Each time a rollback happens the system needs
to increase the inconsistency counter of conflicting query ETs. This task is much harder for
the query ETs that have just finished. since they have left the system.

Both forward and backward replica control mmust cooperate in including potential com-
pensations so that bounds can be placed on the inconsistency. If unlimited compensations
are allowed. it is easy to sce that query ETs cannot bound their error becanse compensations
may introduce additional inconsistency after they have finished. There are two ways to limit
the inconsistency caused by compensations. First, we can limit the number of compensations
allowed. thus limiting the total amount of after-conclusion inconsistency. Second, we can take
into account the number of potential compensations when running query ETs. For example,
in a system supporting Sagas [13], we can maintain the lock-counter value throughout a saga,
since during the saga each step may be compensated for. By clearing the lock-counters only
at the end of the entire saga the query ETs have a conservative estimate (upper bound) of
the total potential inconsistency.
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5 Related Work

5.1 User Specification

ETs provide an interface to ESR. ESR is a correctness criterion that allows bounded diver-
gence. Replica control methods can enforce different divergence bounds. Although ESR is a
general theory of controlled inconsistency [24], this paper has applied it within the more lim-
ited domain of replica control. Other examples of specification methods have been proposed
for this domain.

Wiederhold and Qian [28] have introduced the notation called identity connection to
specify the constraints binding the replicas of an object. They classily the update prop-
agation into four classes: immediate updates, deferred updaltes. independent updates, and
potentially inconsistent updates. ETs can be used implement each of these classes. \Vhile im-
mediate updates are done within standard transactions (ETs with no divergence), deferred
updates correspond to E'l's with deadlines. Similarly, independent updates correspond to
IZ'Ts applied periodically, and potentially inconsistent updates to ETs with backward replica
control. Although Wiederhold and Qian propose a temporal constraint resolver [29] to im-
plement transaction processing satisfying these specifications, it would require considerable
overhead to test their satisfiability. Replica control methods offer more cfficient exccution at
the price of less concurrency.

Sheth and Rusinkiewicz [27] have proposed a taxonomy for interdependent data manage-
ment. They separate data consistency criteria into temporal and spatial dimensions. The
temporal consistency has two kinds. Iiventual consistency refers to the temporal constraints
specified by identity connections. Lagging consistency refers to asynchronous updated copies.
in the same style of quasi-copies [2]. The spatial consistency criteria are divided into three
cases. Inconsistency is controlled by limiting either (1) the number of data items changed
asynchronously, (2) the data value changed asynchronously, or (3) the number of allowed
asynchronous operations. An implementation of interdependent data management is de-
scribed in [26]: it essentially corresponds to ORDUP. Conservative ESR directly models the
idea of limiting the number of asynchironous operations: replica control methods implement
thisidea. In order to implement the other spatial consistency criteria. replica control methods
would need to explicitly include these factors.

Another specification approach is Controlled Inconsistency proposed by Barbara and
Garcia-Molina [3], which generalizes their work on quasi-copies. Controlled Inconsistency
specifies arithmetic consistency constraints, similar to the data value limit in interdependent
data management. They constrain updates to be safe operations. defined by some semantic
correctness criteria appropriate to the application. In contrast. the replica control methods
discussed in this paper are meant to bhe more application independent.

5.2 Read-only Redundancy

Replica control methods must deal with the divergence introduced by updates. Read opera-
tions, however, can access existing replicas: if updates are 1SR, then the system will remain
consistent. Such read-only redundancy can be maintained in several ways. and is useful in
many applications. ETs offer an additional benefit in situations such as time-critical appli-
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cations where a 1SR update has not yet been propagated. The available values may then be
too old to be useful.

An early example of read-only redundancy is timestamped versions [4]. Queries that are
scrialized in the “past” do not block. and immutable versions can be replicated freely.

Another early proposal using the idea of read-only redundancy is weak consistency (1]
defined over the class of read-ouly transactions. A read-only transaction satisfies weak con-
sistency if it is locally consistent, but may cause non-SR results in the global log formed by
the union of local logs. ESR differs in two major ways from weak-consistency: first. it allows
more interleaving (because query ETs are permitted to see local inconsistency). and. second.
weak consistency does not incorporate methods that can tune the degree of inconsistency.

Quasi-copies [2] offers a theoretical foundation for increased read-only availability, but
require that all updates be 1SR. As a result, the primary copy is always consistent in the
1SR sense. Inconsistency is only introduced because quasi-copies may lag the primary copy.
One similarity between quasi-copies and ESR is the notion of specifying the relationship
between replicas. Quasi-copies uses a “closeness” specification in the trigger mechanism
which propagates updates to quasi-copies. Replica control methods, in contrast. constrain
the degree of inconsistency of ETs directly.

5.3 Network Partition Merging

Communication failure causes divergence between object copies in different partitions. David-
son et al [10] have surveyed the approaches to data replication under network partitions. They
divide the approaches into two groups: pessimistic vs. optimistic. Pessimistic algorithms are
synchronous. since they use commit protocols to maintain replica mutual-consistency. Opti-
mistic algorithms allow updates to proceed asynchronously. but try to merge the operations
at partition reconnection time. Both types. however, maintain 1SR correctness. As a re-
sult, the optimistic algorithms are application specific. Another characteristic of optimistic
techniques is that they are essentially “off-line”: repairs are based on merging logs from the
different partitions. Of course. E'T's use a weaker correctness criterion than 1SR. The replica
control methods used by ETs differ principally in that they allow controlled divergence while
queries and updates are in progress. That is, instead of processing logs at reconnection time,
our methods control divergence dynamically.

An early example of such off-line algorithm work is Faissol’s thesis [12]. He identifies 5
classes of methods: they can be roughly equated to the methods discussed in this paper.
Class A is similar to RITU overwrite; classes 3 and C are similar to COMMU; and classes
) and IS are similar to COMPE.

Another example. log transformation [9] is a method proposed to speed up the merging of
updates from different partitions when they reconnect. They use operation properties such
ns commutativity and overwrite to merge independent updates. If some updites cannot be
merged then they try backward recovery by rolling back some updates and redoing them.
This is an off-line algorithm that may be useful when logs grow long in prolonged partitions.

More recent work has also focussed on optimizing the work needed for log-merging. One
example of such a system is OSCAR [11]. Their architecture is based on two cooperating
agents. called replicators and mediators. The replicators propagate replica updates and
the mediators recover from replicator failures. Three methods in OSCAR can be used by
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the appropriate application using the so-called weak-consistency updates: commutative and
associative, overwrite, and site-sequential. ETs are a high-level interface to such methods: in
addition, replica control methods give users the ability to control the amount of inconsistency
in the system.

5.4 Services for Asynchronous Updates

The idea of applying updates asynchronously is not new, and specific applications and prin-
itives for their implementation have been proposed in the literature. ESR differs principally
by (1) providing a high-level and general (ET) interface and by (2) allowing fine-grained
control over inconsistency through replica control methods.

Clearinghouse [22] and Grapevine [8] are early example of directory systems developed at
Xerox. They propagate the changes between replicas periodically. Depending on the volume.
they send incremental updates or a complete reload.

Ficus distributed file system [16] uses a two-phase flooding algorithm to detect replica
propagation stability and conflicts asynchronously. Hlowever. they neither prevent nor resolve
conflicts.

Coda distributed file system [25] provides optimistic replication through a manual repair
tool [19]. The tool supports semantics-dependent rules for automatic recovery of specific
applications such as directories. No general rules are supplied.

In addition to directory/file-system propagation, asynchronous communication techniques
have also been developed. An example of the latter is Lazy Replication [20]. It provides three
classes of ordered messages, plus unordered delivery. This facility is at a much lower level of
abstraction than transactions and ETs. Another example, is Isis [6] which provides four kinds
of multicast and broadcast facilities, including causal broadcasts. These communications
facilities have been used to provide replication in a way similar to ORDUP [7].

6 Conclusion

Asynchronous updates have the potential of increasing performance and availability while
allowing autonomy. The major problem has been the trade-ofl between asynchrony and
consistency among the replicas. In this paper we describe an approach that guarantees replica
convergence while at the same time taking advantage of asynchronous update propagation.

Updates to replicas are done via epsilon-transactions (ETs). which ensure the epsilon-
serializability (ESR) correctness criterion. Update ET's remain serializable as in the standard
(1-copy serializable) model and the system therefore remains consistent in a strong sense.
Query ETs. however, can interleave with other ETs freely, thus seeing inconsistent values of
replicas. The inconsistency visible to query ETs is bounded, and can be controlled by the
user.

Just as coherency control methods ensure 1SR, there are replica control methods that
ensure ESR. Practical replica control methods work by imposing restrictions on the set of
concurrent executions. Several methods, such as one based on commutative operations and
one based on compensations are described and analyzed in this paper. These methods enable
applications to using ETs to omit explicit reference to ESR. The analysis of the replica
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divergence permitted under these methods shows that. in the limit, the divergence of E'Ts
can be reduced to zero, making all ET's strictly serializable.
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