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Replica symmetry breaking and the nature of the spin glass phase

M. Mézard, G. Parisi (+), N. Sourlas, G. Toulouse (*) and M. Virasoro (+ +) 

Laboratoire de Physique Théorique de l’Ecole Normale Supérieure (**)

(+) Universita di Roma II, Tor Vergata, Italy
(*) Laboratoire de Physique de l’Ecole Normale Supérieure, Paris, France

(Reçu le 15 dgcembre 1983, accepté le 25 junvier 1984)

Résumé. _ Récemment, l’un d’entre nous a proposé, comme paramètre d’ordre pour les verres de spin, une dis-
tribution de probabilité. Nous montrons que cette probabilité dépend de la réalisation particulière des couplages,
même à la limite thermodynamique, et nous étudions sa distribution. Nous montrons aussi que l’espace des états
est muni d’une topologie ultramétrique.

Abstract. 2014 A probability distribution has been proposed recently by one of us as an order parameter for spin
glasses. We show that this probability depends on the particular realization of the couplings even in the thermo-
dynamic limit, and we study its distribution. We also show that the space of states has an ultrametric topology.

J. Physique 45 (1984) 843-854 MAI 1984,

Classification

Physics Abstracts
75.50K

1. Introduction.

The usual approach to investigate the different phases
of a physical system starts with the mean field approxi-
mation. In the case of spin glasses, even this first

step has required a lot of effort [1-5].
The mean field approximation has been formu-

lated by using the infinite range model [2]. The parti-
tion function is given by :

where the ai i = 1, ..., N are Ising spins, the sum E
i,j

runs over all pairs of spins, and Jij are random

couplings obeying a given probability distribution,
which we suppose to be symmetric, with variance

n,
In order to study the Hamiltonian (2), four main

approaches have been used The replica approach [1-2,
4-5] in which one considers n copies of the same

(**) Laboratoire Propre du Centre National de la Recher-
che Scientifique, associe a 1’Ecole Normale Superieure et à
l’Universit6 de Paris Sud. Postal Address : 24, rue Lhomond,
75231 Paris Cedex 05, France.

(+ +) Permanent address : Departimento di Fisica, Uni-
versita di Roma I, La Sapienza, Italy.

system, averages over the coupling distribution,
and at the end takes the limit n -+ 0. In this way one

computes the averages Oi(J) of the physical obser-
vables Oi(J) (free energy, magnetic susceptibility,
correlation functions, etc.) over the coupling distri-
bution. (In this paper we shall always denote the
thermal averages by ( ) and the averages over the
coupling distribution by .) The other three

approaches are the self-consistent field approach [3, 6],
the dynamical approach [7] and the numerical simu-
lations [2, 8].
The picture which has emerged from the four

above approaches is that the spin glass phase is

characterized by the existence of a large number
(infinite when N -+ oo) of equilibrium states a = 1, 2, ...
almost degenerate (free energy valleys separated by
free energy barriers becoming infinitely high in the
thermodynamic limit).

In a recent paper [10] (to be referred to later as [I]),
one of us has proposed an order parameter for the
spin glass phase and has shown its connection and
interpretation in terms of the many valley picture.
In the present paper we further continue this investi-

gation. A short version of the present work has been
published elsewhere [11]. The Boltzmann-Gibbs mea-
sure is :
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which can be decomposed as a sum over the pure
equilibrium (clustering) states :

We may characterize a pure state a of a spin glass
by the magnetization ma =  ai &#x3E; .. 

at each point i

of the system. Following [I] we define the overlap ifP
of the two pure states a and fl :

(q" is the familiar Edwards-Anderson order para-

meter tfE.A. = T? E  (1i &#x3E;;) and the probability Piq)
for a pair of states (a, fl) to have an overlap q :

We shall denote by P(q) the average of Pj(q) over the
coupling distribution :

Let us call qMax and q Min the maximum and the

minimum possible overlaps between two states at a
given temperature T and magnetic field H. Obviously
- 1 qMin qmax 1 1. As in [I] we define

and q(x) the inverse function of x(q). Because of (6)
and (8) : x(qMa.) = 1 and X(qMin) = 0.

Let us also define :

which is the probability of two pure states to have
an overlap larger than q.

In the replica approach the order parameter is a
n x n matrix Qab. In the limit n - 0 (if we follow
the Parisi pattern of replica symmetry breaking)
the matrix Q is characterized by a function Q(x)
where 0  x , 1. It was shown in [I] that q(x) (the
inverse function of x(q) defined in (8)), is identical

to Q(x), thus giving a physical interpretation to the
replica symmetry breaking.

In the familiar case of an homogeneous ferro-

magnetic system (i.e. in the absence of any disorder),
if we start from the high temperature phase and
cool down below the Curie temperature, the proba-
bilities P+ and P_ of arriving to a state of magne-
tization + m(T) or - m(T), are well known to

depend on the boundary conditions we have imposed
on the system. So, even in this simple case, Pa and
therefore also Pj(q) are not « good, extensive quanti-

ties ». This trivial observation makes one strongly
suspect that the same is true in the more complicated
spin glass case. This suspicion will become a cer-
tainty in chapter 2, since we shall show that Pj(q)
depends on the realization of the couplings, even
in the thermodynamic limit : it is not a « self

averaging » quantity, in the sense that, as far as

Pj(q) is concerned, an increasing size of the sample
does not imply an average over all disorder configu-
rations.
The same properties are true for

We show that the probability distribution of Y,(q)
is calculable in the framework of the replica scheme.
We find that this distribution is such that the most

probable value of Yj is 1, and therefore differs from
its mean value y.
The possibility of such a behaviour for disordered

systems has been suspected before [12], but it is the
first time, to our knowledge, that this is demonstrated
in the context of the S.K. model. The order para-
meter, far from being a parameter, was shown to be
a function, interpreted as a probability law. And

now, on top of that, there appears a probability law
for this function, i.e. a probability law for a proba-
bility law.

In chapter 2 we show another remarkable pro-
perty of the spin glasses which is the ultrametric

topology of the space of states. Taking any three
pure spin glass states a, /!, y and computing the three
overlaps qfl, qOy, qYfZ, we find that at least two of them
are equal. Spaces with such a property are called
ultrametric spaces [13]. From this property we show
that for any value of q, by grouping together all the
states with an overlap bigger than q, we separate
the space of states into disjoint clusters. Each such
cluster is again divided into smaller clusters, by
grouping together the states with an overlap bigger
than q’ &#x3E; q. This procedure can be repeated indefi-
nitely. So we prove that the space of pure states has
a hierarchical structure. This hierarchical structure
is a characteristic property of ultrametric spaces.

In chapter 4 we compute the cluster distribution.
In particular we show that for any value of y in the
spin-glass phase (this means for T  Tg), the number
of clusters is infinite.

Another remarkable property of all the proba-
bility distributions we consider is their universality :
they depend on the different parameters of the problem
(temperature, magnetic field, the particular value

of q we are considering) only through the mean

value y of Yj(q).
We should emphasize that all our results are

obtained in the framework of the replica symmetry
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breaking scheme of reference [5], that is in purely
static terms.

Our paper is organized as follows. In chapter 2
we recall the replica symmetry breaking mechanism
from which we then derive the ultrametric structure

of the space of the pure spin glass states. We also
show that Pj(q) is not self-averaging in the thermo-
dynamic limit.

In chapter 3 we compute the probability distri-

bution of Y J(q). In chapter 4 we study the distri-

bution properties of the clusters in the space of the
spin glass states.

2. Hierarchical organization of the spin glass states.

We first recall the replica symmetry breaking (R.S.B.)
mechanism because in the following we will make
an explicit use of it
The n x n matrix Qab is constructed through the

following recursive algorithm of successive R.S.B.

a) No symmetry breaking : Q (’) = Qo for a 0 b,
Qaa = 0. 

b) First R.S.B. : The n x n matrix Q(’) is broken

into x - blocks (submatrices) QAt,Bl, A1, B1 = 1,
m1 m1

..., n where the QAB are mi x mi matrices. For the
mi

non-diagonal submatrices A, 0 Bi, Q.AIBI = Qo and
Q aa = 0, ab = Q1, a :0 b for the diagonal
submatrices. This completes the construction of the
matrix Q (1).

c) Second R.S.B. The same procedure of R.S.B.
is repeated with the diagonal submatrices Q AIAI

They are broken into m1 x m1 submatrices QA2B2,
m? M7

Fig. 1. - Iterative procedure for the construction of the
matrix Qa6.

d) The same procedure is repeated indefinitely.
The whole process is illustrated in figure 1.

By construction n &#x3E;, m, &#x3E;, --- &#x3E;, mm &#x3E; 1. In the

n -+ 0 limit this becomes 1 &#x3E; mm ... a mi a 0,and
in the limit M -+ oo, the mi’s become a continuous
variable mi -+ x, 0  x  1, mi+l -+ x + dx. The

Qi’s become the well-known function Q(x).
It was shown in [I] that the characteristic function

g(Y)

can be computed in the replica framework and is

given by

where the sum is over all pairs of distinct replica indices [14].
Let us now consider any three pure states al, a2, a3 and Pj(ql, q2, q3) the probability for them to have

overlaps ql = cf2a.B q2 = qa3al, q3 = qa.la.2, respectively. PJ(ql’ q2, q3) is obviously symmetric under permu-
tations of its arguments. In order to compute Pj(ql, q2, q3) in the R.S.B. scheme, following [I], we consider
the generalized Laplace transform

and we take three identical copies of the systems, with spins ri, U2’ 63 and Hamiltonian H3(a,, a2, a3) =
H(U1) + H(a2) + H(a3). Then
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where )3 means that the expectation value is taken with respect to the Hamiltonian H3. It is then possible
to compute the average over the J’s

By introducing n replicas and letting n -+ 0

As in [I] the sum in (16) must run over all replica indices because of the presence of R.S.B. (In this context see
also [14].) Using the R.S.B. algorithm one constructs the matrices Aab(Y) = eyQab for a # band Aaa(Y) = 0.
Then

As usual, in the n -+ 0 limit one has to replace mi -+ x and Qi -i, Q(x). Thus, after some algebra, we get :
(P(ql, q2, q3) P,(ql, q2, q3)

This formula is quite interesting. It means that if we take any three states, at least two pairs of them will have
the same overlap with probability one. This property is reminiscent of ultrametric spaces [13] (1).

Let’s now consider two states y and y’ such that q"’ &#x3E;, q, q’y’ &#x3E; q. It follows from (18) that if qaY = cfY’
then qyy &#x3E; q and if q’y =A q’y’ then qyy’ = qay or qyy’ = q’zy’.

It follows from this property that the states are organized in non overlapping clusters.
Let a and fl be two pure states of our system, Ia(q) the set of states y which have an overlap with a bigger

or equal to q (qaY &#x3E; q for every y) and similarly for I,(q) (b E Ip(q) ==&#x3E; qfl’ q ). It follows from the previous
remark that for any pair of states y, y’ belonging to la(q) (or to Ip(q)  qyy’ q. It is a consequence of (18) that
two sets Ia(q) and I,(q) are always either identical or disjoint because if there existed a pure state y, belonging to
both Ia(q) and I,(q), i.e. qay &#x3E; q and qfly &#x3E;, q, then by equation (18) one would get qllfl -&#x3E;, q.

The following hierarchical structure of the states of the spin glass phase emerges from the previous remarks.
For any q, qmi.  q  qMa,,, the states are organized into disjoint clusters, such that any pair (a, P) pf states
inside the same cluster has an overlap q"fl &#x3E; q. Now one can again divide each of the previous clusters into
disjoint smaller clusters by choosing a q’, q  q’ K qMax and grouping together the states with overlap bigger
than q’. This procedure can be repeated indefinitely. We have proved that the space of pure states has a hierar-
chical structure (characteristic of ultrametric spaces).

In order to see whether the probabilities P,(q) approach a definite limit or fluctuate when the number N
of spins becomes infinite, we will now compute PJ(ql) Pj(q2) - P(ql) P(q2). One way of computing PJ(ql) Pj(q2)
is to consider four pure states al, a2, a3, a4, compute the averaged over J probability P(q,, q2) to have qala2 = ql,
q1314 = q2. The computation of P(ql, q2) is similar to the computation of P(q,, q2, q3) : we consider the gene-
ralized Laplace transform g(Yl’ Y2) of P(q,, q2) and use again the replica trick.

We finally get

(1) The definition of an ultrametric space requires the definition of a distance. A natural choice is

As q"" = qE,A. for almost all states a (see (47)), one has simply d(a, P) = 2(qE.A. - q’Il). The characteristic property of ultra-
metric spaces is that if one takes any three points of the space, they form an isosceles triangle, with the two equal angles
larger than or equal to the third one.
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where the sum is restricted to ensembles of replicas a, b, c, d which are all different.
Taking the n - 0 limit we get :

Formula (20) is a direct and manifest proof that Pj(q) (and therefore xJ(q)) fluctuates with J even after the ther-
modynamic limit is taken. 

In the next section we will compute the probability distribution of Yj(q).
We should emphasize that all our results have been obtained within the framework of the replica symmetry

breaking scheme of reference [5].

3. Reconstruction of the probability distribution.

As the structure of the ensemble of pure states depends on the realization of the couplings, the function Pj(q)
fluctuates and one would like to know the probability distribution of this function. This could, in principle,
be studied from the moments Pj(q,) PJ(q2) ... PJ(qk), but it turns out that the direct computation of these
moments with the method we have sketched before is a difficult task, as soon as k gets larger than 3 or 4.

We shall see in the following that it is much easier to calculate the moments O (all the Yj(q) taken at
the same value of q ). The second moment is already contained in equation (20)

We have computed similarly

The remarkable property of these two equations is that the n’th moment of Yj(q) (n = 1, 2, 3) is expressed in
terms only of its mean value y(q) (it is in fact a n’th degree polynomial in y). In particular there is no coupling
between different values of q. Those properties are true for any n in the R.S.B. scheme of reference [5] and are due
to the ultrametric topology of the replica space itself, whose signature has been seen in other properties [18].

In fact we can interpret Qab as the overlap between replicas a and b :
- With the first symmetry breaking, the n replicas are organized in n jml clusters of size mt. The overlap

between two replicas within the same cluster is Q13 while the overlap between two replicas belonging to different
clusters is Qo. As Q(x) is a monotonous function, Q, is larger than Qo and hence the overlap of the replicas within
a cluster is larger than the overlap between replicas in different clusters, as it should be.
- Performing the second breaking, one sees that the replicas inside one cluster of size ml are themselves

grouped in subclusters of size m2, etc.

The structure of replica space can be pictorially described as in figure 2. It is an ultrametric space where
the sizes of all the clusters at a given scale Qk are the same and are equal to mk (2).

Now let us suppose that we want to compute a quantity such as Yj(q)P which involves only one scale of
distances q between pure states. As was shown in the previous section, this quantity can be obtained by using
the replica formalism : in the precise case of Yj(q)PI one must choose p pairs of replicas such that
- all the replicas be distinct
- the overlap between the two replicas of a pair be larger than q.
From the ultrametric topology of replica space, the choice of a scale of distances q naturally induces a

partition of the n replicas into n/m disjoint .clusters of size m, such that the overlap of replicas inside the same
cluster be larger than q, while replicas in different clusters have an overlap smaller than q. So if we are interested
in only one scale q, we can forget about all the other structures of the replica space. This means that we can

compute Yj(q)P by applying only one replica symmetry breaking (i.e. from the matrix Qt)constructed in the

(2) As Qaa is taken equal to zero, the ultrametric structure is true, strictly speaking, only if one doesn’t consider the
self overlap of a replica.
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Fig. 2. - Representation of the ultrametric structure of
replica space.

previous chapter) provided Qo  q  61 With full R.S.B., it is known that the numbers mk, in the limit n - 0,
are equal to the value of x for which q(x) = qk. So the right value of m for this single R.S.B. is m = x(q) =1- y(q).

With a single breaking of the replica symmetry, the moments can be computed much more easily. Let us for
instance compute in detail the second one, defined as :

a, fl, y, 6 label the pure states, and 0 is the usual step function. As explained in section 2, one obtains, with the
replica formalism :

where the symbol £’ means that the four replica indices a, b, c, d, must be different.
At the scale q, the replicas are grouped into clusters of size m, and one has two possibilities :
- Either the two pairs of replicas are in the same cluster, which we describe as :

This contribution to the sum is -L20132013-201320132013201320132013"which gives, as n -+ 0, m --,, 1 2013 y( q) : 31 ! y(1 + y) (2 + y).
n(n - 1)(n - 2)(n - 3) 3 !

2013 Or the two pairs are in different clusters :

which gives a contribution : n(m - 1) (n - m) (m - 1) = 31! y2(1 - y). So the final result for Yj(q)2 is (we now
omit the explicit reference to the scale q) :
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One can write down the rules which give the general moment YP :
- One must takep pairs of replicas and distribute them in all the possible distinct ways between the clusters.

The diagram obtained :

gives a contribution

where

k = Ni is the number of clusters containing at least one pair
- Nr is the number of clusters containing at least r pairs
- S is the symmetry factor of the diagram, given by :

With these rules we have computed the first seven moments :

(3) We have noticed that, up to the 7th moment, the following formulas are true :

We have also shown that, up to K = 3, the polynomials RK(y) which give yK :

are simply related to the number of diagrams of different types (planar or non planar) of a free field matrix theory : considering
a free field theory for N x N real symmetric matrices Ma6, with the constraint that the diagonal elements Maa = 0, one
finds that, up to K = 3 :
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We have not been able to obtain a general formula for the coefficients of the polynomial giving YP. Instead we
have numerically reconstructed the probability distribution of the variable Y at a given q : 77y( Y) (the index y
is here to remind us that this distribution depends on y(q) only).

In order to compute ny(Y) from its moments, it would be useful to control eventual singularities. In partir-
cular, the behaviour of Ily(Y) around Y - 1 is reflected by the large p behaviour of the moments yp = YP (if
]7y( Y) - ( 1 - Y) - 11, then /.tp - p - ’ "). From the seven first moments we tentatively conclude to a singularity
of the type I7y(Y) - (1- Y)-y. (We will give a different argument for this singularity in the next section.) We have
inverted the moments yp by developing ny(Y) on the basis of the Jacobi polynomials which are orthogonal on
the interval [0, 1] ] with respect to the integration measure (1 2013 Y) - y. This amounts to factorizing the (1 - Y) - y
singularity into the integration measure and developing a smoother function on the polynomials. A good test
of the method was its rapid convergence. We have also tried the maximum entropy method with similar results
(see Fig. 3) [17].

Fig. 3. - (a) Probability distribution of the variable Y,
for the average value y = 0.7, reconstructed by projecting
II( Y) on the Jacobi polynomials. The dashed curve is the

probability obtained by inverting the first 6 moments while
the full line is obtained from the first 7 moments.

(b) Probability distribution of the variable Y, for the

average value y = 0.9, reconstructed by projecting II(Y)
on the Jacobi polynomials. The dashed curve is the pro-

bability obtained by inverting the first 6 moments while

the full line is obtained from the first 7 moments.

(c) Probability distribution of the variable Y, for the

average value y = 0.7, reconstructed from the maximum
entropy method. The dashed curve is the probability
obtained by inverting the first 6 moments while the full line
is obtained from the first 7 moments.

(d) Probability distribution of the variable Y, for the average
value y = 0.9, reconstructed from the maximum entropy
method. The dashed curve is the probability obtained by
inverting the first 6 moments while the full line is obtained
from the first 7 moments.
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The 77y we have obtained are plotted in figure 3 for various values of y. It is interesting to notice that the
average value y of Y is very different from its most probable value yM.p., which is in general equal to 1. In this
case if one keeps to the most probable value, one gets a curve yM.P,(q) = 1 for every q, which is a replica symmetric
behaviour, while the average value y(q) obtained with the replica symmetry breaking is very different from yM.p..
It has been emphasized many times that this kind of behaviour often appears in disordered systems [12].

On the other hand the most important property of this probability distribution of Y at a given q is the fact
that it does not depend on anything else than y(q). This explains why the integrated probability y (or equivalently
x) is so interesting : in terms of this variable, there exists a universal behaviour of the glassy phase in the following
sense : for a given value of the parameters (temperature and magnetic field) T1’ HI, and a given scale of overlap
ql, the probability distribution of Y is entirely determined by y. If one changes the parameters to values T2, H2,
there exists a change of scale of overlaps ql -+ q2 such that the probability distribution of Y(q2) in this second
system be exactly identical to the probability distribution of Y(ql) in the first system; the rescaling in overlaps
is given by : YTtJIt(ql) = YT2Jl2(q2). The universality comes from the fact that the whole dependence on H
and T is through the function YT,,ff(q). But in order to compute the dependence of y on q, T, H, we must minimize
the free energy and for this the entire sequence of R.S.B.’s is required

Finally let us emphasize the crucial role played by the ultrametric topology of the replica space : because
of this topology, a quantity which involves p scales of distances q 1, ..., qp can be computed with p explicit break-

ings of the replica symmetry. This allowed us to compute the moments YJ(q)r to an arbitrarily large order,
with a single replica symmetry breaking.

4. Distribution properties of the clusters of spin glass states.

We have shown that the space of pure states has a hierarchical structure that consists of clusters contained in

clusters. In this section we will try to give more information on this structure, especially on the numbers and sizes
of the clusters.

As in the previous section, given a certain scale q, we group into clusters all the states that have an overlap
larger than q, defining in this way a partition of the ensemble of pure states into K clusters. Let us call WI the
weight of the rth cluster :

obviously

We are interested in the distribution of the weights Wl. (It is clear that the knowledge of all the WI’s for
every scale q completely characterizes the space of states.) In order to take advantage of the universality demon-
strated in the previous section we shall define the scale through the variable y == y(q).

Let fj(W, y) dW be the number of clusters that have weights WI between W and W + dW, for a given
distribution of couplings J :

The average function fj(W, y) can be computed in the following way : the moments Mk = f w" fiW, y)
are given by :

This is the total probability that k states are in the same cluster :

In the same way as in the previous section, this quantity can be calculated by going to replica space, with one
R.S.B. at the scale q : Mk is equal to the probability of choosing k different replicas, all belonging to the same
cluster (in replica space) :
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In the limit n - 0, m - 1 - y, we get :

It turns out that these moments can be inverted, yielding :

A number of physical conclusions can be obtained from this expression :

1) The average multiplicity of clusters is infinite for any value of y :

2) The infinite number of clusters is concentrated around W = 0, and their overall weight is infinitesimal :
indeed, if one introduces a cut-off 8 in the region of small weights, one gets an average number of clusters :

which diverges as e -+ 0, but their total weight

goes to one. For each J, the total number of clusters having a weight larger than s is an integer between 0 and 1/s.
But the average number Ke is much smaller since it behaves like Ey-1.

3) y is precisely the average size of clusters : this is in fact nothing but the definition of y, and this result is
valid for each configuration of the couplings, since :

4) The average probability, when choosing a state at random, that it be in a cluster of weight W is
Wfj(W, y). When y -+ 1, this probability is strongly peaked around W = 1. (The integrated probability in the
interval [0, 1/2], and in any finite interval that does not contain 1, goes to zero when y - 1.) But for each J, there
can be at most one cluster in the interval ] 1 /2, 1 ] (since £ W, =1)? and therefore in the limit y - 1 there is, for
each J, one large isolated cluster that dominates. I 

5) The same kind of argument explains the nature of the singularity at Y = 1 of the function H,,(Y) compu-
ted in chapter 3 : IIy( Y) is defined as :

For Y near to 1, the configurations which contribute are those for which one cluster dominates :

where WM is the weight of the largest cluster. Thus from (34) :

One can go further in this analysis by computing the fluctuations j
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We have to compute only the term in which I =A I’. This can be done in the same way as before : one computes
all the moments (in W 1 and W2) by going to replica space. The result is :

This result can be generalized :

(The Z’ means that all the indices II’ ..., Ik are different.)
One can deduce that the probability distribution of the number of clusters having a weight larger than s is

not peaked :

We have a rather clear picture of the structure of the ensemble of pure states : there is an infinity of states
in small clusters, carrying a total weight also small, and as soon as y goes near to one, there is one isolated cluster
that dominates.

5. Conclusions.

In the previous sections we have shown how the infor-
mation contained in Parisi’s R.S.B. scheme can be

decoded to derive the structure of the space of states of

the system. We showed that the fluctuations with Jik
do not disappear even in the N - oo limit. Henceforth
we gave examples about how the distribution probabi-
lity for these fluctuations can be estimated by inverting
the moments.

Our calculations suggest a new set of numerical
simulations whereby this dependence would be expli-
citly checked. This would be a crucial test of our results.
It would be also interesting to see whether our pre-
dictions survive in a finite dimensional system with
short range forces.
We again stress the « universality » of the results

of our calculations. Through the change of variable

We were able to eliminate all references to the parti-
cular order parameter q(x), the stationary point of
Pari’s free energy. As a consequence the two following
probability distributions are equal :

(a) the probability distribution of the Boltzmann-
Gibbs factor of the pure states a(Pa) at To  Tg;

(b) the probability distribution of the WI of the
clusters at T,  To defined through the equatipn :

The additional information that the order para-
meter q(x) has a plateau, i.e.

implies that, up to sets of zero probability, all states
must have

On the other hand, the choice of scale q = qE.A.(T)
induces a partition of the states into clusters. Each
cluster must contain at most one state a, and the only
states which contribute are those with q" &#x3E;, qE,A.( ‘ l’
But we have proven that, whatever the scale of the

partition into clusters I : L WI = 1. Hence we obtain
1

for all a : 

q«« = qE,A. (with probability one) . (46)

Then from formula (37), one finds :

If the function q(x) has a plateau, as it is commonly
believed, the right hand side of this equation is nothing
but the length of this plateau. As Pa  1, one can then
conclude that a few states a dominate the sum Y p.2.

Several questions remain open :

a) are there physical observables such that their
infinite volume limits do not fluctuate with J ?

b) what happens when one adds corrections to the
mean field approximation ? In this context we remark
that it has recently been proved [15] that the free
energy is self-averaging in the thermodynamic limit
for short range interactions. This has also been shown
in the S.K. model, and the finite volume corrections
have been computed [16].
The hierarchical structure (ultrametric topology)

of states was demonstrated for the J average but it

obviously applies for every realization of J. The



854

equality of the probability distributions mentioned
above suggests the following picture : when heating
a spin glass from zero temperature up to T9 we go
through a series of micro phase transitions charac-
terized by the melting of two or more states into one
state at the higher temperature. Furthermore we

should have

where K is in dependent of a, and Fa is the free energy
density of the state a.

Finally we point out that the ultrametric structure
allows the definition of a non ergodic Brownian
motion. Indeed, if in an ultrametric space a point
can jump up to a distance 6 in a single step, after N
steps it can arrive only at distance 6. (This follows from
the well known fact that two overlapping spheres
coincide in an ultrametric space.) We think that this
fact will have interesting consequences for the dynami-
cal approach to equilibrium of the spin glass.
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