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Abstract

Currently, there is much debate on the genetic architecture of quantitative traits in

wild populations. Is trait variation influenced by many genes of small effect or by a

few genes of major effect? Where is additive genetic variation located in the genome?

Do the same loci cause similar phenotypic variation in different populations? Great

tits (Parus major) have been studied extensively in long-term studies across Europe

and consequently are considered an ecological ‘model organism’. Recently, genomic

resources have been developed for the great tit, including a custom SNP chip and

genetic linkage map. In this study, we used a suite of approaches to investigate the

genetic architecture of eight quantitative traits in two long-term study populations of

great tits—one in the Netherlands and the other in the United Kingdom. Overall, we

found little evidence for the presence of genes of large effects in either population.

Instead, traits appeared to be influenced by many genes of small effect, with conserva-

tive estimates of the number of contributing loci ranging from 31 to 310. Despite con-

cordance between population-specific heritabilities, we found no evidence for the

presence of loci having similar effects in both populations. While population-specific

genetic architectures are possible, an undetected shared architecture cannot be rejected

because of limited power to map loci of small and moderate effects. This study is one

of few examples of genetic architecture analysis in replicated wild populations and

highlights some of the challenges and limitations researchers will face when attempt-

ing similar molecular quantitative genetic studies in free-living populations.
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Introduction

Studying genetic architecture in natural populations is

essential for understanding the evolutionary history,

and the adaptive potential, of quantitative traits in the

wild (Clutton-Brock & Sheldon 2010; Teplitsky et al.

2014). Considerable progress has been made in under-

standing the genetics of quantitative trait variation in

genetic model species (Flint & Mackay 2009), in humans

(Yang et al. 2011) and in species of agricultural and hor-

ticultural importance (Hill 2009). However, the lack of
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genetic resources and the difficulties of controlling envi-

ronmental influences have made the molecular dissec-

tion of quantitative traits considerably more challenging

in wild vertebrate populations (Slate et al. 2010; Jensen

et al. 2014; Schielzeth & Husby 2014).

Much of the research on the genetic architecture of

quantitative traits in wild populations has focused on

long-term studies of populations with known pedigree

relationships, but with small population size and often

limited migration (Slate et al. 2010; Schielzeth & Husby

2014). Quantitative trait locus (QTL) mapping in these

populations has revealed a number of loci potentially

influencing quantitative traits and provided some sup-

port for genes of major effect (see, for example, Slate

et al. 2002; Tarka et al. 2010; Poissant et al. 2012; John-

ston et al. 2013). However, estimated QTL effect sizes

from studies in natural populations to date are almost

certain to be overestimated. This is because overesti-

mated effect sizes are more likely than underestimated

effect sizes to reach statistical significance (Beavis 1994;

Xu 2003; Slate 2013). More recently, much larger sets of

markers have enabled genome-wide association studies

in wild populations (Santure et al. 2013; B�er�enos et al.

2015; Husby et al. 2015). These more recent studies sug-

gest that while some regions of the genome may

explain a significant proportion of the overall heritabil-

ity, there is likely a very large number of small-effect

loci that together contribute the majority of heritability

for quantitative traits. Overall, whether traits are influ-

enced by many genes of (mostly) small effect (i.e. have

a polygenic basis) or few genes of large effect (i.e. have

an oligogenic basis) will influence how populations in

the wild will be able to adapt to changing environmen-

tal conditions. If many loci contribute to a quantitative

trait, linkage disequilibrium (LD) between loci will

influence the response to selection (Hill & Robertson

1966). For example, deleterious alleles may be fixed as a

consequence of selection on a linked beneficial allele,

reducing the total response to selection had beneficial

alleles been fixed at both loci (Hill & Robertson 1966;

Hospital & Chevalet 1996). Similarly, these small-effect

loci will likely contribute to other traits through pleio-

tropic effects (either directly or via LD between loci

contributing to the traits), which may be subject to con-

flicting selection pressures (Lande 1982). In contrast, the

simpler architecture of oligogenic traits, with QTL less

likely to be linked to each other or to QTL for other

traits, is likely to result in fewer constraints on the

response to selection.

Great tits (Parus major) are considered an ecological

model organism and have been used to investigate the

evolution and ecology of a wide range of phenotypes,

for example, life history, morphological, behavioural

and physiological traits, as well as phenotypic

responses to climate change across their range (see, for

example, Lack 1964; Drent et al. 2003; Visser et al. 2003;

Garant et al. 2004; Gienapp et al. 2006; Quinn et al. 2009;

Bouwhuis et al. 2010; Chapman & Sheldon 2011). Their

extensive Eurasian distribution, abundance and amenity

to using nest boxes lend great tit populations to

detailed field study (Gosler 1993). Two of the longest

running great tit studies have been ongoing since the

1950s and are located in the Hoge Veluwe National

Park (Netherlands, NL; van Balen 1973) and Wytham

Woods (United Kingdom, UK; see, for example,

McCleery et al. 2004 and references therein). In the late

1980s, a subpopulation study was established adjoining

Hoge Veluwe at Westerheide, near Arnhem, NL (Dinge-

manse et al. 2002). In both NL and UK populations, trait

data and social pedigree relationships have been

recorded for most individuals. Maternal, morphological

and personality traits have been the focus of pedigree-

based quantitative genetic studies, and in both popula-

tions these traits have moderate heritabilities (see, for

example, Garnett 1981; van Noordwijk et al. 1988;

Dingemanse et al. 2002; McCleery et al. 2004; Quinn

et al. 2009; Husby et al. 2010), offering the opportunity

to dissect the genetic basis of multiple quantitative traits

in two independent populations.

Genomic resources have recently been developed in

the great tit, including a single nucleotide polymor-

phism (SNP) array with 9193 SNPs (van Bers et al.

2012) and an associated genetic linkage map based on

these SNPs (van Oers et al. 2014). The availability of

markers distributed throughout the great tit genome

offers the opportunity to determine whether traits are

polygenic or oligogenic (Jensen et al. 2014). Recent

research on the genetic architecture of clutch size, egg

mass and wing length in the UK population (Robinson

et al. 2013; Santure et al. 2013) lends support to the

hypothesis that the majority of quantitative traits are

influenced by many genes of small effect distributed

throughout the genome (Mackay et al. 2009; Yang et al.

2011). Whether this conclusion can be extended to other

quantitative traits measured in this species and to dif-

ferent populations remains to be determined.

In this study, a panel of SNP markers was used to

dissect the genetic architecture of three maternal traits

(clutch size, egg mass and offspring weight at fledging),

four morphological traits (adult weight, weight at fledg-

ing, tarsus length and wing length) and one beha-

vioural trait (exploratory behaviour) in the NL and UK

great tit populations. Four different marker-based

approaches were applied in both populations: chromo-

some partitioning (Visscher et al. 2007; Robinson et al.

2013), quantitative trait locus mapping (Lynch & Walsh

1998; Slate 2005), genome-wide association (Amin et al.

2007; Aulchenko et al. 2007a) and estimating the
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number of loci contributing to variance (Guan & Ste-

phens 2011). By using different and somewhat indepen-

dent yet complementary approaches, all available

marker and phenotype information can be exploited to

explore the genetic basis of traits in the two popula-

tions, in particular, to determine whether there is evi-

dence for genes of large effect and to test whether the

trait architectures are concordant between the two pop-

ulations.

Methods

Study populations

The long-term study populations of great tits are

located at the Hoge Veluwe National Park and the

nearby Westerheide, the Netherlands (NL) (52°020N,

5°510E and 52°010N, 5°500E, respectively; given the prox-

imity of Westerheide and Hoge Veluwe (~5 km), and

known migration between the two regions, individuals

were merged into a single NL population in all analy-

ses), and Wytham Woods, United Kingdom (UK)

(51°460N, 1°200W). Both populations have been inten-

sively studied (see Appendix S1, Supporting informa-

tion for representative variables measured in the two

populations) (van Balen 1973; Dingemanse et al. 2002;

McCleery et al. 2004), and blood samples have been

taken from most birds in the populations since 2005.

Genotypes and genetic maps

A total of 1490 NL and 2644 UK wild individuals were

successfully genotyped on an Illumina iSelect BeadChip

(‘SNP chip’) (van Bers et al. 2012). Following pedigree

and identity checking (Appendix S2, Supporting infor-

mation; Santure et al. 2013; van Oers et al. 2014), a total

of 1407 NL and 2497 UK individuals of confirmed iden-

tity were included in further analyses. A subsample of

related individuals from the UK population and a cap-

tive population derived from the NL population were

used to construct two independent linkage maps (van

Oers et al. 2014). The linkage maps cover 32 of the 39

great tit chromosomes: 1–15, 17–24, 26–28, 1A, 4A, 25A,

25B, LGE22 and Z; a number of very small microchro-

mosomes, including chromosome 16, could not be

mapped as no SNPs on these chromosomes were geno-

typed. The maps were almost identical between the two

populations; therefore in the subsequent analyses, the

UK map distances were used. The different downstream

analyses required linkage maps with different marker

densities. For QTL mapping, a ‘framework without LD’

linkage map of 1524 markers was used, containing the

majority of markers from the framework linkage map

(Santure et al. 2013; van Oers et al. 2014). Markers on

the framework map were placed at map positions

where the best order was 1000 times more likely than

any other order. Note that a small number of marker

pairs with high linkage disequilibrium between them

appeared to contribute to convergence problems during

QTL mapping. Therefore, one of the two markers was

excluded from the framework map before analysis to

give the ‘framework without LD’ map, which covers

1.893 cM, with an average intermarker distance of

1.209 cM. For the genome-wide association study

(GWAS) and chromosome partitioning analyses, a set of

5591 ‘chromosome-assigned’ markers was used. The

chromosome-assigned marker set included 4878 mark-

ers placed in a ‘parsimonious’ linkage map (where

markers are added and the order with the highest likeli-

hood is chosen) plus an additional 713 markers that

were linked to markers in the parsimonious map and

could be assigned a putative mapping position (in cM)

based on comparative genomics with their predicted

zebra finch genome location (Santure et al. 2013).

Phenotypes

A number of quantitative traits were measured on the

genotyped individuals in the two populations (Table 1).

Egg mass was only available for individuals from the

UK population. Repeated measures were available for

all traits except exploratory behaviour and fledgling

weight (of individual) (Table 1). Important fixed and

random effects were identified to account for sources of

variation in addition to the additive genetic variance

(Appendix S1, Supporting information).

Genetic analyses

Pedigree- and marker-based heritabilities. Trait heritabilities

were determined by two approaches, first (i) using

pedigree information from each population and second

(ii) using the genomic marker relatedness between indi-

viduals. For each trait in each population, heritabilities

were estimated using a linear mixed model (the ‘animal

model’, Henderson 1984; Kruuk 2004), where the relat-

edness between individuals was estimated from the

pedigree (A matrix; approach i) or where the related-

ness between individuals was estimated from the mar-

ker data (G matrix; approach ii).

For (i), for consistency with the quantitative trait

locus analysis (see below), the pedigree was restricted

to genotyped related individuals. By including all first-

to fourth-degree family links, 666 NL individuals and

1733 UK individuals (Santure et al. 2013) were included

in a ‘QTL pedigree’ for the NL and UK, respectively.

Variance components were estimated in a restricted

maximum-likelihood (REML) framework using ASREML
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v3 (Gilmour et al. 2009), fitting random and fixed effects

as described in Appendix S1 (Supporting information).

The significance of the heritabilities was tested by com-

paring the log likelihood of a model where the heri-

tability was set to zero (L0) to the log likelihood of the

full model (L1) with a likelihood ratio test (LRT):

LRT = �2(L0�L1)

Under the null hypothesis, the LRT follows a 50:50

distribution of a chi-square with zero degrees of free-

dom and a chi-square with one degree of freedom

(Almasy & Blangero 1998).

For (ii), the genomic relatedness between every pair

of individuals within each population was calculated

using an approach that scales by the actual variance in

relatedness (approach 3; Robinson et al. 2013). These

genomic estimates of relatedness were then adjusted by

the known pedigree relationships between individuals,

weighting the marker-derived relatedness values

towards their expected pedigree-based values. This

approach reduces the sampling error around the

expected relatedness values and gives more accurate

additive genetic variance estimates (Robinson et al.

2013). Variance components were estimated with AS-

REML, fitting random and fixed effects as described in

Appendix S1 (Supporting information).

Approach ii, in addition to allowing estimation of the

population-specific variances, also enables marker-based

additive genetic variances to be compared between the

two populations. To do so, a global matrix of pairwise

relatedness was calculated for all genotyped individuals

across the two populations. Genotypes were first stan-

dardized by the allele frequencies within each popula-

tion, and the relatedness between all individuals was

then calculated following approach 3 in Robinson et al.

(2013). As above, genomic relatedness estimates were

adjusted by known pedigree relationships within the

two populations to reduce sampling error. To test

whether, for each trait, additive genetic variances dif-

fered between the NL and UK, the likelihood of a

model where additive genetic variances and the covari-

ance were free to vary was tested against a model

where the additive variances and covariance were free

to vary but the variances were forced to be equal, with

significance tested using a chi-square with one degree

of freedom. For each trait, only fixed and random

effects that were measured in both populations were

included in the model.

Partitioning genetic variation across chromosomes. Chromo-

some partitioning is an approach to partition the addi-

tive genetic variance for complex traits across genomic

regions such as individual chromosomes (Visscher et al.

2007) and has recently been adapted to data sets with

complex pedigrees and close relatives (Robinson et al.

2013). A regression of the total variation explained by

each chromosome on chromosome size or gene content

provides a test for the trait architecture (Robinson et al.

2013). A positive regression indicates a polygenic trait

architecture, because if many genes contribute to varia-

tion, then larger chromosomes with more genes will

tend to explain more variation than small chromosomes

with fewer genes. In contrast, no relationship between

variance explained and chromosome size suggests that

the trait is either influenced by a small number of genes

of large effect, or that loci having small to moderate

effects are not randomly distributed throughout the

genome (Robinson et al. 2013; Schielzeth & Husby

2014).

Chromosome partitioning was performed as

described in Robinson et al. (2013) and Santure et al.

(2013). Given the small number of markers (<60) on

some chromosomes, the 5591 ‘chromosome-assigned’

SNPs were assigned to a total of 22 chromosomes or

chromosome sets; chromosomes 1–15, 17–20, 1A and 4A

were considered individually (n = 21), while a chromo-

some set was obtained by combining all markers from

microchromosomes 21–28 and linkage group LGE22.

The number of SNPs in the 22 sets ranged from 98 to

Table 1 Number of individuals [records available] for GWAS, chromosome (chr) partitioning and QTL mapping for quantitative

traits in the NL and UK populations

Trait

NL GWAS/chr

partitioning NL QTL mapping

UK GWAS/chr

partitioning UK QTL mapping

Maternal Clutch size 943 [1589] 403 [745] 1026 [1794] 722 [1362]

Egg mass — — 960 [1619] 678 [1224]

Fledgling weight (of offspring) 744 [8569] 327 [4146] 441 [4221] 328 [3167]

Morphological Adult weight 477 [1547] 408 [1365] 1872 [3904] 1360 [2937]

Fledgling weight (of individual) 416 [416] 357 [357] 1222 [1222] 1183 [1183]

Tarsus length 1378 [2586] 653 [1415] 872 [1921] 626 [1379]

Wing length 1275 [1908] 590 [901] 1949 [4293] 1410 [3221]

Behaviour Exploratory behaviour 912 [912] 462 [462] 1046 [1046] 743 [743]
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700 (Appendix S3, Supporting information). These

regions contained a total of 14 722 genes, predicted

from homology with the zebra finch genome (Santure

et al. 2013; van Oers et al. 2014). Genomic relatedness

between every pair of individuals was calculated using

an approach that scales by the actual variance in relat-

edness (approach 3; Robinson et al. 2013). These geno-

mic estimates of relatedness were then adjusted by the

known pedigree relationships between individuals,

reducing the sampling error around the expected relat-

edness values and giving more accurate additive

genetic variance estimates (Robinson et al. 2013). Vari-

ance components were estimated with ASREML, using the

raw phenotypes and fitting random and fixed effects as

described in Appendix S1 (Supporting information). For

every chromosome, two mixed models were con-

structed:

1 With the matrix of marker relatedness between indi-

viduals (G matrix) constructed from all markers

except those on the focal chromosome.

2 With G constructed from all markers except those on

the focal chromosome, plus G constructed with only

the markers on that chromosome.

Subsequently, a likelihood ratio test (LRT) was per-

formed for each chromosome to test whether it

explained significant variation in the trait, by compar-

ing the log likelihood of the genome-wide model with

the log likelihood of the genome-wide plus chromo-

some model.

Finally, linear regressions were fitted between the

variance explained by each chromosome and the num-

ber of genes they contained, to test whether traits were

influenced by a large number of loci distributed

throughout the genome.

Quantitative trait locus analysis. A two-step variance

components analysis (George et al. 2000; Slate et al.

2002) was performed to map loci contributing to

variance in the quantitative traits. Using the 1524

markers in the framework without LD map, the identi-

cal-by-descent (IBD) coefficients between all pairs of

individuals in the two QTL pedigrees (see above) were

derived at 5-cM intervals across the genome using the

software LOKI v2.4.5 (Heath 1997; Heath et al. 1997), with

100 000 iterations for each position. The statistical sig-

nificance of the QTL effects was then tested using a

likelihood ratio test comparing the log likelihood of a

polygenic model with the log likelihood of a polygenic

plus QTL model, fitting full mixed models to account

for the effects of important random and fixed effects on

the raw phenotypes (see Appendix S1, Supporting

information). QTL scans were performed in the two

populations for each trait. To account for the multiple

tests performed genome-wide, the approach of Lander

& Kruglyak (1995) was used to adjust the significance

thresholds based on the length of the linkage map

(19.16 morgans) and number of mapped chromosomes

(31). For these data sets, a logarithm of odds (LOD)

score (where LOD = LRT/2ln(10)) of 1.620, correspond-

ing to a nominal P value (P) of 0.003, is expected to

occur once by chance in every genome scan and is ter-

med ‘genome-wide suggestive linkage’, while a LOD

score of 3.062 (P = 9 9 10�5) is expected with probabil-

ity 0.05 every time a genome scan is performed and is

termed ‘genome-wide significant linkage’ (Lander &

Kruglyak 1995; Nyholt 2000). Nominal significance

(P < 0.05) requires a LOD score of ≥0.588.

To test whether the same regions of the genome

explain trait variation in the two populations, the corre-

spondence between the genome-wide test statistics

across populations obtained from the QTL scans was

tested using the permutation approach of Keightley &

Knott (1999) (Appendix S4, Supporting information). In

brief, the approach first calculates the correlation in test

statistics between two QTL scans. Test statistics are then

permuted while maintaining the autocorrelation

between linked test statistic values, that is whole chro-

mosomes (rather than individual sites) from one QTL

scan are permuted across the other QTL scan. The sig-

nificance of the observed correlation is tested against

the distribution of correlations from the permuted data

sets. Regions of the genome that were nominally signifi-

cant in both populations were also identified.

QTL mapping power analysis. The ability to draw conclu-

sions from a linkage mapping analysis depends on the

power to detect QTL of various effect sizes, and knowl-

edge about potential bias in reported effect sizes (Slate

2013). Following Slate (2013) and Santure et al. (2013), a

simulation approach was used to determine the power

to detect QTL explaining 0% (i.e. false detection of

QTL), 5%, 10%, 20% and 40% of the overall phenotypic

variance for each trait in each population (Appendix S5,

Supporting information). The simulations were also

used to assess the amount of bias in reported effect

sizes that may be expected at various significance

thresholds in the two populations.

Genome-wide association study. To test whether individ-

ual SNPs explained significant variation in each of the

traits, a genome-wide association study was conducted.

First, a univariate mixed model including all fixed and

random effects but excluding additive genetic effects

was fitted in ASREML, to give an expected phenotypic

value, or EPV, for each individual (Ekine et al. 2014).

EPVs for each trait were then standardized to mean 0

© 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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and variance 1. This approach was employed to reduce

phenotypes to a single value for each individual (rather

than repeated measures on each individual), and to

account for other important fixed and random effects

(Appendix S1, Supporting information), except for the

genetic differences between individuals that might asso-

ciate with the phenotype.

Within each population, SNPs were tested for allelic

association with each EPV (i.e. models did not include

previously controlled for fixed and random effects from

the model) using the ‘polygenic’ and ‘mmscore’ func-

tions in GENABEL (Aulchenko et al. 2007b), adjusting for

population stratification due to the presence of related

individuals by fitting the internally calculated genome-

wide kinship matrix as a random effect (Amin et al.

2007). The significance of association was assessed

using GENABEL P values, adjusted for multiple testing

using a Bonferroni correction based on the effective

number of independent tests. Taking into account LD

between markers using the package Keffective (Moskv-

ina & Schmidt 2008), the panel of chromosome-assigned

SNPs was determined to yield 5573 effective tests,

giving a genome-wide significant threshold of

P = 9.0 9 10�6.

The between-population correlation of absolute esti-

mated SNP effect sizes from the GWAS analyses was

calculated in R (R Development Core Team 2012) for

each trait. A significant correlation in SNP effect sizes

between a NL and UK trait would indicate that many

shared loci contribute to variation in the two popula-

tions. The significance of each correlation was tested by

permuting effect sizes across SNPs 10 000 times.

Finally, for each trait, standardized EPVs and geno-

types from each population were merged to test for

association across both data sets. SNP association was

tested by running a ‘polygenic’ mixed model in GENABEL,

where the genome-wide kinship matrix is fitted as a

random effect, population fitted as a fixed effect and

the first 10 principle components of the kinship matrix

fitted as fixed effects to account for population-level

SNP relatedness differences. The significance of associa-

tion was assessed from ‘mmscore’ P values after Bonfer-

roni correction.

Concordance between GWAS, QTL mapping and chromo-

some partitioning. The QTL mapping and GWAS

approaches described above exploit different marker

and phenotype information, with different numbers of

individuals and markers used. QTL mapping relies on

recombination events within families to define the

‘boundaries’ around a causal locus. In contrast, GWAS

analysis exploits ancestral recombination events, which

have broken down associations between markers and

phenotype for all loci except those in close physical

linkage to causal loci. Because the power to detect QTL

by linkage or association is dependent on the QTL mag-

nitude (Lynch & Walsh 1998; Sham et al. 2000) and the

power of GWAS is additionally dependent on the

amount of LD between causal variants and the markers

(Pritchard & Przeworski 2001), QTL mapping and

GWAS results may not necessarily be concordant. Gen-

ome-wide significance of both QTL mapping and

GWAS at the same region of the genome would give

clear support for a QTL at that location. However, if

both approaches do not reach genome-wide significance

but, for example, a position was nominally significant

in GWAS (P < 0.05) and reached genome-wide sugges-

tive linkage in the QTL mapping (LOD > 1.620,

P < 0.003), this would add some support for the pres-

ence of a QTL at that location.

Within each population, the concordance between

the (i) QTL mapping and GWAS analyses and (ii) QTL

mapping and chromosome partitioning analysis was

tested for each trait. First (i), the LOD score at the

mapping position (in cM) of each SNP marker was pre-

dicted from a linear regression of the LOD scores of

neighbouring QTL positions (e.g. LOD scores at 0 cM

and 5 cM were used to predict the LOD score of a

SNP mapped to 4.6 cM), and the P value for each

inferred LOD score was calculated and compared to

the P value from the GWAS. To determine whether the

number of genome positions nominally significant in

both analyses was greater than expected by chance, the

observed and expected counts were compared with a

chi-square test. Second (ii), those chromosomes with

nominally significant (P < 0.05) QTL mapping peaks

were compared with the nominally significant chromo-

somes from the partitioning approach with a Fisher’s

exact test (i.e. with counts of nominal significance in

both, one or neither approach). If a small number of

loci of major effect contribute to the trait, it might be

expected that all three approaches are concordant,

especially if major genes are located on small chromo-

somes.

Estimating the number of SNPs contributing to

variance. QTL mapping and GWAS aim to identify loci

that make a large contribution to trait variation, but do

not provide an estimate for the total number of loci

contributing to phenotypic variation. The number of

SNPs explaining trait variation and the overall pheno-

typic variance explained by the SNPs were estimated

using a Bayesian variable selection regression model

(Guan & Stephens 2011) implemented in the software

PIMASS (http://www.haplotype.org/pimass.html). This

approach fits a linear model where phenotype is deter-

mined by a subset of SNPs, each of which have an esti-

mated effect size on the phenotype. In each iteration,
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6 A. W. SANTURE ET AL.

https://www.bcm.edu/research/centers/childrens-nutrition-research-center/mcmcmc/index.cfm?pmid=18997


SNPs may be kept, added or removed from the model,

with SNPs with strongest associations with the pheno-

type added to the model with highest probability. The

total number of SNPs contributing to the phenotype,

and the total amount of variation explained by these

SNPs, is calculated from the model at each iteration

and defines the posterior distributions on these parame-

ters. While this approach does not explicitly account for

population stratification due to the presence of related

individuals, the likelihood of false-positive associations

between SNPs and traits caused by this population

structure is reduced by estimating SNP effect sizes after

controlling for other SNPs in the model (some of which

may already account for population structure) (Guan &

Stephens 2011; Gompert et al. 2013).

The multi-SNP analysis was performed on EPVs for

each trait using PIMASS to obtain MCMC samples from

the joint posterior probability distribution of the model

parameters. For each trait, the model was run three

times for 110 000 iterations, with parameter values

recorded every 10th iteration after discarding the first

10 000 iterations. Results were similar across replicate

runs; therefore, results (median values, mean values

and 95% equal tail probability credible intervals) are

presented across all three replicates for all but two

traits, where poor convergence was observed in one

replicate, and hence, results are presented for the

remaining two replicates.

The estimated number of SNPs contributing to trait

variance, and the total proportion of variance explained,

was compared for each trait between the two popula-

tions, by determining whether 95% credible intervals on

the estimates overlapped.

Results

Pedigree- and marker-based heritabilities

In agreement with previous studies, there was evidence

that all traits were heritable as estimated using either or

both pedigree- or marker-based relatedness to partition

the additive genetic variance (Table 2; although note

that the marker-based estimate for UK fledgling weight

(of individual) when all available random and fixed

effects were fitted did not differ significantly from

zero). Although pedigree- and marker-based heritabili-

ties were reasonably consistent across and between

populations, there were some large differences between

estimates in some cases. For example, the UK marker-

based heritability estimate of fledgling weight (of indi-

vidual) is nearly 0.5 lower than the UK pedigree value

when fitting all available random and fixed effects. To

test for population-specific heritabilities, the NL and

UK data sets were merged and marker-based heritabili-

ties estimated, fitting only random and fixed effects

measured in both populations. Fledgling weight (of

individual) was the only trait for which the marker-

based additive genetic variance significantly differed

between populations (Table 2).

Partitioning genetic variation across chromosomes

For all traits, there was a positive relationship between

variance explained and chromosome size (Fig. 1), with

a significant relationship (P < 0.05) for fledgling weight

(of individual) and tarsus length in the NL population

and for clutch size, egg mass, adult weight and wing

length in the UK population (Table 3). There were three

instances where chromosomes that explained significant

variation in one population explained significant varia-

tion in the other (Fig. S1, Supporting information); chro-

mosome 12 explained significant variation in both NL

and UK clutch size, chromosome 3 explained significant

variation in both NL and UK tarsus length, while chro-

mosome 1A explained significant variation in both NL

and UK wing length (details for the amount of varia-

tion explained by each chromosome, and their signifi-

cance, are provided in Appendix S3, Supporting

information). In addition, chromosome 1 explained a

reasonably large proportion of variation in clutch size

in both populations, although the proportion was not

significant in the NL population (Fig. 1; Fig. S1, Sup-

porting information). However, the three instances of

chromosomes explaining significant variation in both

populations were not a greater number than expected

by chance (binomial test, P = 0.188 for three or more

shared chromosomes).

QTL analysis

For six of the seven NL traits and all of the eight UK

traits, no regions of the genome reached genome-wide

significance (Fig. S2a–h; Appendix S6, Supporting

information). There were three genome-wide significant

peaks for NL adult weight, on chromosomes 11, 15

and 28 (Fig. S2d, Supporting information), accounting

for 96%, 100% and 100% of the heritability, respec-

tively, when estimated individually, clearly demon-

strating the overestimation of effect sizes that reach

significance. Fitting all three QTL in the same model

accounted for 100% of total heritability, with chromo-

somes 11, 15 and 28 accounting for 27%, 35% and 38%

of heritability, respectively. There were a relatively

large number of suggestive peaks for NL and UK

adult weight (peaks on 13 chromosomes in the NL

and on four chromosomes in the UK) and for UK tar-

sus length (peaks on a total of six chromosomes,

Fig. 2). One false-positive genome-wide suggestive

© 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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peak is expected by chance every time a genome scan

is performed, and hence, the excess of suggestive

peaks in these traits suggests that while some are

likely to be false positives, others may be true QTL

that have failed to reach genome significance. All sug-

gestive positions, along with their LOD scores and esti-

mated effect sizes, are provided in Appendix S6

(Supporting information).

Table 2 NL and UK heritabilities for great tit quantitative traits. In each cell, NL parameter estimates are shown first, with standard

errors shown in parentheses. Note that pedigree-based heritabilities are estimated using QTL mapping individuals, while marker-

based heritabilities are estimated from all GWAS/chromosome partitioning phenotyped individuals (see Table 1)

Pedigree-based

heritabilities,

full model†

Marker-based

heritabilities,

full model†

Marker-based

heritabilities,

restricted model‡

Significant difference in

marker-based additive

genetic variances‡

Clutch size 0.483 (0.043)* 0.237 (0.066)* 0.297 (0.086)* No

0.395 (0.088)* 0.424 (0.079)* 0.390 (0.075)*

Egg mass — — N/A N/A

0.396 (0.042)* 0.424 (0.036)*

Fledgling weight

(of offspring)

0.376 (0.088)* 0.389 (0.091)* 0.161 (0.093)* No

0.365 (0.126)* 0.237 (0.108)* 0.506 (0.126)*

Adult weight 0.454 (0.086)* 0.285 (0.075)* 0.298 (0.083)* No

0.394 (0.042)* 0.345 (0.037)* 0.381 (0.038)*

Fledgling weight

(of individual)

0.698 (0.175)* 0.604 (0.120)* 0.646 (0.113)* Yes

0.595 (0.060)* 0.114 (0.072) 0.412 (0.066)*

Tarsus length 0.592 (0.073)* 0.301 (0.054)* 0.630 (0.066)* No

0.632 (0.072)* 0.246 (0.049)* 0.571 (0.066)*

Wing length 0.353 (0.081)* 0.270 (0.076)* 0.316 (0.066)* No

0.568 (0.040)* 0.511 (0.040)* 0.520 (0.040)*

Exploratory behaviour 0.284 (0.103)* 0.140 (0.066)* 0.272 (0.097)* No

0.185 (0.088)* 0.263 (0.080)* 0.260 (0.081)*

*P < 0.05 (LRT of >2.706).
†Model where all available fixed and random effects were fitted.
‡Model where fixed and random effects were fitted only if they were available for both the NL and UK population.
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Fig. 1 Relationship between chromosome size (Mbp) and variance explained for maternal, morphological and behaviour traits for the

NL and UK populations.
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There was no evidence of correspondence between

the QTL test statistics for each trait obtained from the

NL and UK QTL scans (including adult weight). Cor-

relations of test statistics between the populations

ranged from �0.083 to 0.175, with all but two

negative, and none were significant when tested using

the approach of Keightley & Knott (1999)

(Appendix S4 and Fig. S3a–g, Supporting information).

A number of traits shared nominally significant QTL

peaks; eleven genomic regions for adult weight were

shared between the NL and UK, two regions were

shared for fledgling weight (of individual), one region

was shared for tarsus length, and two regions were

shared for wing length (Appendix S7, Supporting

information).

QTL mapping power analysis

The QTL power analysis (Appendix S5, Supporting

information) suggests that for all NL traits, there was

very little power to detect QTL of major effect, with less

than 20% of QTL simulated to explain all additive

genetic variance detected at genome-wide significance

in the highest powered data sets (tarsus and wing

length) and close to 0% detected in other traits. At the

suggestive linkage threshold, the number of detected

QTL that were simulated to explain all additive genetic

variance ranged from 2% for exploratory behaviour to

54% for tarsus length. For the UK data set, close to

100% of QTL simulated to explain all additive genetic

variance were detected at genome-wide significance for

Table 3 Relationship between the proportion of variance explained by each chromosome and chromosome size (Mbp) for traits in

the NL and UK populations

Trait

NL UK

R2 Slope (9 10�4) P R2 Slope (9 10�4) P

Clutch size 0.104 3.359 0.143 0.182 4.701 0.048*

Egg mass — — — 0.648 9.559 0.000*

Fledgling weight

(of offspring)

0.096 2.620 0.160 0.023 1.693 0.505

Adult weight 0.177 10.268 0.051 0.271 2.615 0.013*

Fledgling weight

(of individual)

0.214 19.050 0.030* 0.046 1.131 0.336

Tarsus length 0.536 9.430 0.000* 0.019 0.747 0.540

Wing length 0.062 2.217 0.263 0.257 2.616 0.016*

Exploratory behaviour 0.137 4.045 0.090 0.022 0.941 0.510

*P < 0.05.
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Fig. 2 QTL scans for tarsus length in the NL and UK populations. Blue dashed lines show nominal (LOD = 0.588), suggestive

(LOD = 1.620) and significant (LOD = 3.062) scores. Chromosome labels are shown beneath the plots; chromosomes 25A and 25B

(plotted after chromosome 24) and LGE22 (after 28) are not labelled.
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adult weight, fledgling weight (of individual) and wing

length, although very few were detected for fledgling

weight (of offspring) and exploratory behaviour (0%

and 3%, respectively). At the suggestive threshold, 21%

and 26% of QTL explaining all additive genetic variance

were detected in the fledgling weight (of offspring) and

exploratory behaviour simulations. There is unlikely to

be power to detect QTL of more reasonable effect sizes

in either the NL or UK data sets; QTL simulated to

explain 5% of phenotypic variation were never detected

in the NL simulations and were rarely detected in the

UK simulations. As expected, the estimated effect sizes

for QTL detected in the simulations were highly

inflated (Beavis 1994; Slate 2013). Power to detect QTL

was dependent on QTL effect size and the number of

individuals (P < 0.001 in both cases; tested using an

analysis of variance with the lm function in R (R Devel-

opment Core Team 2012); other effects including trait

heritability, population, the number of trait records and

whether traits were maternal or individual were not

significant. Thus, QTL mapping is only likely to detect

loci of very large effect, and even then, interpretation of

effect sizes is problematic.

GWAS

None of the 5591 SNPs tested for association with any

of the seven NL or eight UK traits reached genome-

wide significance after adjustment for multiple testing

(Fig. S4a–h, Supporting information). There was no evi-

dence for some chromosomes having more nominally

significant SNPs than others (chi-square test on the

observed and expected counts of nominally significant

SNPs per chromosome, P > 0.05 for all traits).

The correlation between absolute estimated SNP

effect sizes from the GWAS analysis was estimated

between the NL and UK for each trait (Table 4, Fig. S5,

Supporting information). If many shared loci contribute

to variation in the two populations and these loci are

tagged by the genotyped SNPs, then the same SNPs

will have similar effects in both populations, and a sig-

nificant correlation between SNP effect sizes in the NL

and UK would be expected. However, such correlations

were not observed, suggesting that either the same SNP

markers are not tagging the same causal variants in the

two populations (either because there are different cau-

sal variants in each population, or perhaps due to dif-

ferences in LD structure) or, perhaps more likely, that

there is limited LD between genotyped SNPs and causal

variants in both populations, and hence, SNP effect

sizes are generally small and inaccurately estimated. In

addition, no SNPs were significantly associated with

any of the traits when UK and NL data sets were

merged, suggesting that despite increased power, no

SNPs had large enough effect across the two data sets

to reach genome-wide significance (Fig. S4a–h, Support-

ing information).

Concordance between GWAS, QTL mapping and
chromosome partitioning

For all traits in both the UK and NL, there was no sig-

nificant excess of positions in the genome that were

nominally significant in both the QTL and GWAS anal-

yses (chi-square test on the observed and expected

counts of SNPs being nominally significant in both,

one or neither the GWAS nor QTL analysis, see

Appendix S8, Supporting information for P values).

There was no evidence that chromosomes that con-

tributed significantly to overall variance (measured as

the significance of the LRT, see Appendix S3, Support-

ing information) were more likely to harbour nominally

significant QTL peaks (detected from the QTL mapping

approach), compared to chromosomes that did not con-

tribute significantly to overall variance [two-tailed Fish-

er’s exact test, P > 0.05 for all traits except UK clutch

size P = 0.046 (not significant after accounting for multi-

ple testing)].

Estimating the number of SNPs contributing to
variance

There was good agreement in the SNP estimated effect

sizes from the GWAS and from the multi-SNP analysis

(Appendix S9, Supporting information), suggesting that

the multi-SNP analysis was not biased by within-popu-

lation structure. Estimates for the proportion of variance

explained (PVE) differed considerably between traits

and between populations in the multi-SNP association

analysis (Table 5), ranging from 0.034 to 0.581. For all

traits, the number of SNPs contributing to variation was

considerable, with median values ranging from 31 to

310 (Table 5).

The median number of SNPs explaining variance was

lower in the NL, but the credible intervals were large

Table 4 Interpopulation correlations between GWAS-estimated

effect sizes per SNP for each trait; none are significant after

adjusting for multiple testing

Trait Correlation P

Clutch size 0.017 0.115

Fledgling weight (of offspring) 0.009 0.254

Adult weight 0.000 0.333

Fledgling weight (of individual) �0.020 0.068

Tarsus length �0.029 0.018

Wing length 0.000 0.135

Exploratory behaviour �0.009 0.257

© 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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and overlapping for all pairs of traits between the NL

and UK (Table 5). There was a significantly positive

correlation (P = 0.016) between the estimated median

number of SNPs explaining variance in the two popula-

tions (Fig. 3). The proportion of phenotypic variance

explained by the SNPs differed between populations for

clutch size and wing length, with estimates being lower

in the NL than in the UK (Table 5).

Discussion

Evidence that traits are polygenic

The architecture of maternal, morphological and beha-

viour traits in two natural populations of great tits was

investigated using chromosome partitioning, QTL map-

ping, GWAS and by estimating the number of SNPs

contributing to variation. All four approaches lend

some support to the hypothesis that the quantitative

traits studied here are influenced by many genes of

small effect distributed throughout the genome.

Although not all regressions were significant, it is

notable that the relationship between chromosome size

and variance explained was positive for all traits in

both populations (Table 3, Fig. 1), with no evidence in

any trait that a gene of major effect contributes to a

large proportion of trait variance (see simulations in

Robinson et al. 2013). The variation in the relationship

between chromosome size and variance explained for

each trait is likely to be a consequence of our marker

density; more markers in stronger linkage disequilib-

rium with each other would better capture the true

relatedness between individuals across a chromosome

and would reduce the error on the estimates for the

contribution of each chromosome. However, the chro-

mosome partitioning results are generally consistent

with the traits having a polygenic rather than oligogenic

architecture; in every trait, more than a handful of chro-

mosomes explain at least some variation.

For the majority of traits, the QTL analyses failed to

detect any regions of the genome contributing signifi-

cantly to trait variation. There was evidence that

specific regions of the genome contributed signifi-

cantly to variation in adult weight in the NL popula-

tion; however, it is notable that there was no overall

similarity in test statistics between the two popula-

tions, and there is no agreement between chromosome

Table 5 Median proportion of variance explained (PVE) and median number of SNPs (nSNP) explaining trait variation, predicted by

the multi-SNP association analysis

Trait

NL UK

PVE nSNP PVE nSNP

Clutch size 0.141 (0.015, 0.251) 169 (5, 304) 0.646 (0.559, 0.721) 310 (272, 349)

Egg mass — — 0.720 (0.619, 0.773) 309 (271, 342)

Fledgling weight

(of offspring)

0.034 (0.000, 0.159) 31 (0, 160) 0.086 (0.000, 0.322) 60 (0, 252)

Adult weight 0.394 (0.232, 0.557) 163 (45, 288) 0.279 (0.217, 0.335) 288 (208, 330)

Fledgling weight

(of individual)

0.581 (0.393, 0.754) 241 (124, 313) 0.312 (0.225, 0.398) 245 (164, 310)

Tarsus length 0.196 (0.107, 0.291) 243 (109, 309) 0.354 (0.228, 0.477) 269 (168, 330)

Wing length 0.131 (0.039, 0.231) 238 (25, 306) 0.350 (0.256, 0.408) 297 (208, 339)

Exploratory behaviour 0.157 (0.048, 0.257) 94 (26, 255) 0.162 (0.065, 0.252) 200 (87, 295)

Numbers in parentheses are 95% credible intervals.
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Fig. 3 The estimated median number of SNPs explaining trait

variation in the NL and UK populations. Trait abbreviations:

C = clutch size, Fo = fledgling weight (of offspring), A = adult

weight, Fi = fledgling weight (of individual), T = tarsus length,

W = wing length, E = exploratory behaviour.
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partitioning, GWAS and QTL analysis within the NL

population. It should be noted, however, that the QTL

analysis may be identifying QTL that are not in LD

with any of the genotyped SNPs and hence not likely

to show a signal for association; a higher SNP density

in these regions of the genome may be able to dissect

the true contribution of these loci to quantitative trait

variation. Given the inevitable overestimation of QTL

effect sizes (Beavis 1994; Slate 2013), the estimates for

the variation explained by each QTL peak (27%, 35%

and 38% of the total heritability for peaks on chromo-

somes 11, 15 and 28, respectively, when all three are

included in the same model) are unlikely to reflect

the true contribution of these QTL to adult weight.

Furthermore, the chromosome partitioning analysis

lends no support for loci of large effect to be located

on the chromosomes with significant QTL peaks; in

the NL population, chromosomes 11, 15 and 28 con-

tain significant QTL peaks, but only one of these,

chromosome 11, explained significant variation in the

chromosome partitioning analysis. There was no

excess of nominally significant peaks from the NL

GWAS analysis on the QTL-significant chromosomes,

and the estimates for the number of SNPs explaining

variation were 163 and 288 SNPs for the NL and UK,

respectively. Therefore, despite the results from the

QTL linkage analysis, there appears to be little sup-

porting evidence from partly independent analyses

that loci of major effect contribute to adult weight

variation in either population. In the absence of gen-

ome-wide significant results, and a lack of support

from the GWAS or chromosome partitioning analyses,

we suggest that the QTL that are significant at the

suggestive threshold are very likely to be overesti-

mated and that some may represent false-positive

associations.

Overall, our results lend support to the hypothesis

that quantitative trait architecture is likely to be deter-

mined by many loci of small effect distributed through-

out the genome, agreeing with recent conclusions from

studies in humans, livestock and model organisms (see,

for example, Mackay et al. 2009; Hayes et al. 2010; Yang

et al. 2011) and other wild populations (B�er�enos et al.

2015; Husby et al. 2015).

Do different populations share a common genetic
architecture?

Given that these traits appear to be influenced by a very

large number of genes and that the two study popula-

tions have very little genetic differentiation (global

FST = 0.01; minor allele frequency correlation = 0.98,

van Bers et al. 2012), it seems reasonable to ask whether

the genetic architectures are shared to some degree

between populations. The observation that additive

genetic variances between traits are not significantly dif-

ferent between populations for all traits except fledgling

weight (of individual) lends some support to this

hypothesis. In addition, the number of SNPs estimated

to contribute to variation for each trait was similar in

the two populations. However, regions of the genome

that appeared to explain variation in one population

did not explain significant variation in the other popu-

lation more often than expected by chance. There are

several possible explanations. One is that neither popu-

lation has sufficient power to identify causal loci nor to

assign statistical significance to chromosomal contribu-

tions to variance. Therefore even if the same loci (or a

subset of the causal loci) contribute to trait variation in

both populations, the probability of detecting an over-

lap of significant results is low. Alternatively, different

loci could contribute to trait variation in both popula-

tions; the data are not inconsistent with any given trait

having a polygenic architecture caused by different loci

in different populations, although given that allele fre-

quencies are highly correlated between populations

(van Bers et al. 2012), we regard this as unlikely.

Although alternative explanations are possible, we sug-

gest that most of the traits studied here are highly poly-

genic, and it is likely they share, at least in part, a

common genetic architecture.

Prospects for molecular quantitative genetics in wild
populations

The results of four complementary approaches in two

populations lend support to the hypothesis that all

eight traits are polygenic. However, our efforts high-

light the lack of power even a study of this size (within

population, between 416 and 1949 phenotyped individ-

uals genotyped at 5591 SNPs) may have to dissect the

genetic architecture of quantitative traits. In particular,

it is now becoming clear that a QTL linkage analysis

approach suffers from very limited power in pedigreed

wild populations (Santure et al. 2013; Slate 2013; and

data presented in this manuscript) and will in most

cases only allow the identification of genes of very large

effect sizes. Our simulation results (Appendix S5, Sup-

porting information) indicate that for most traits, it

would be impossible to make robust conclusions about

trait architectures from the QTL results alone. This low

power is most strongly influenced by the limited num-

bers of phenotyped individuals available in such popu-

lations (as illustrated by the power analysis,

Appendix S5, Supporting information), but is also likely

to be affected by the structure of the pedigree. For

example, short lifespans and high fledgling mortality in

great tits mean that there are likely to be relatively few
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12 A. W. SANTURE ET AL.



close relative pairs where IBD can be accurately

inferred (compared to, for example, longer-lived species

where half- or full-sib families are more common).

Similarly, although the data set currently represents

one of the largest genomic data sets for a wild popula-

tion, LD between the SNP markers is low (I. De

Cauwer, A. W. Santure, K. van Oers, N. E. M. van Bers,

R. P. M. A. Crooijmans, B. C. Sheldon, M. E. Visser, M.

A. M. Groenen & J. Slate, unpublished data), suggesting

that the set of SNP markers provides insufficient power

to detect causal variants using genome-wide association

scans. The fact that for many traits the proportion of

phenotypic variance explained by the SNPs is substan-

tially lower than the heritability supports the hypothesis

that the genome is not adequately tagged by the current

set of SNPs. Identifying loci contributing to trait varia-

tion, and testing for shared genetic architectures in

these populations, will therefore likely require many

more markers. With that in mind, we would advise

researchers to work towards the development of SNP

data sets that will allow GWAS, chromosome partition-

ing and other molecular quantitative genetic analyses,

which are likely to enable much finer-scale dissection of

genetic architectures and trade-offs than will be possible

from QTL mapping. SNP data sets of ~37 000 SNPs

(after quality control) enabled the identification of a

handful of loci influencing clutch size in collared fly-

catchers (Husby et al. 2015) and leg length traits in Soay

sheep (B�er�enos et al. 2015), although it should be noted

that these loci explain a minor proportion of total heri-

tability. Further, the use of genomic relatedness is likely

to offer a promising approach for estimating heritabili-

ties in wild populations when pedigrees may be incom-

plete or incorrect, and may also allow for more accurate

estimation of maternal effects (B�er�enos et al. 2014). For

some species such as great tits, which have a very large

effective population size and correspondingly low levels

of LD, describing the genetic architecture of polygenic

traits likely means genotyping many hundreds of thou-

sands of loci. Perhaps more soberingly, regardless of

LD, accurate inferences about the genetic architecture of

quantitative traits in wild populations may require phe-

notypic data from considerably larger numbers of indi-

viduals than will be possible to sample under most

circumstances, and in many cases, the availability of

phenotypic data for analysis will depend on decisions

taken by investigators in the past.
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