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Abstract-We study the cache performance in a remote caching 
architecture. The high performance networks in many distributed 
systems enable a site to access the main memory of other sites 
in less time than required by local disk access. Remote memory is 
thus introduced as an additional layer in the memory hierarchy 
between local memory and disks. Eficient use of remote memory 
implies that the system caches the “right” objects at the “right” 
sites. Unfortunately, this task can be difficult to achieve for two 
reasons. First, as the size of the system increases, the coordinated 
decision making needed for optimal decisions becomes more 
difficult. Second, because the participating sites in a remote 
caching architecture can be autonomous, centralized or socially 
optimal solutions may not be feasible. In this paper we develop a 
set of distributed object replication policies that are designed to 
implement different optimization goals. Each site is responsible 
for local cache decisions, and modifies cache contents in response 
to decisions made by other sites. We use the optimal and greedy 
policies as upper and lower bounds, respectively, for performance 
in this environment. Critical system parameters are identified, 
and their effect on system performance studied. Performance of 
the distributed algorithms is found to be close to optimal, while 
that of the greedy algorithms is far from optimal. 

Index Terms- Autonomy, distributed systems, object replica- 
tion, performance comparison, remote caching. 
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I. INTRODUCTION 

N modern distributed systems, large numbers of computing I sites are connected together by fast networks. The availabil- 

ity of high speed interconnection has created the potential for a 

new type of resource sharing. In this environment, i t  is possible 

to develop efficient mechanisms that support request/response 

exchanges for objects that reside on a remote site. This ability 

to access objects cached at remote sites introduces a new level 

in the classic memory hierarchy-main memory accessed 

through the network-whose access time may be significantly 

faster than that of local disks. We call this rcwote memory. 
Unlike shared main-memory architectures, sites using remote 

memory do not require the capability of direct readiwrite into 

remote memory locations. 

Remote memory is important because disk access perfor- 

mance has been limited by seek time, stuck for decades in 

the range of a few tens of milliseconds. In contrast, current 

remote procedure calls (RPC) implementations over Ethernet 

take only a few milliseconds for  the round trip [27]. Moreover, 
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the bottleneck in communication protocols is CPU power 

and software overhead. With RISC technology doubling CPU 

speed every few years, we can expect even smaller ratios of 

remote memory versus local disk access time in the near future. 

Furthermore, faster gateways, higher network bandwidth, and 

specialized hardware [ 11 will steadily bring down communi- 

cation overhead over local and metropolitan area networks. 

Implementations of systems using remote memory are already 

being built [2], [6], [lo], [13], [19], [20], [26]. 

A remote caching architecture (RCA) makes use of remote 

memory by allowing all sites in the system to take advantage of 

each other’s local memory. The symmetric architecture blurs 

the distinction between clients and servers because all sites 

in the system can “serve” requests if their buffers (main- 

memory) contain the requested data item. An RCA resembles 

distributed shared virtual memory (DSVM) [20] in that both 

types of system take advantage of the aggregate memory 

that is available (through a network) in a distributed system. 

There are two main differences, however, between the systems. 

First. remote caching architectures emphasize the differences 

between the memory levels (i.e., local, remote, and disk), 

in contrast to the emphasis that DSVM places on a single 

large, homogeneous, memory space. As a result, RCA research 

focuses on such policy issues as what objects should be cached 

at what sites instead of simply caching objects on a demand 

basis as in DSVM. The systems also differ in impfementation. 
In an RCA, remote memory need not be mapped into a single, 

coherent, virtual memory space. Sites do not need to have the 

same page sizes or memory architectures; all they require is 

that they share a common naming scheme for objects in the 

system (the distributed object model). Because an RCA does 

not require the full functionality of a DSVM, system overhead 

can be reduced. Of course, an RCA can also be implemented 

in a DSVM: the key feature is that sites can request (and 

receive) objects from remote sites with an order of magnitude 

faster response time than even local disk access. 

Simulation studies have shown that performance in an RCA 

is better, over a wide range of cache sizes, than a distributed 

clientiserver architecture [23]. The performance gains are due 

to the large amount of remote memory made available by 

the (symmetric) remote caching architecture. However, the 

following tradeoff in object replication must be resolved in 

order to use memory resources efficiently. On the one hand, 

each site should replicate (i.e., cache) important objects in 

main-memory, and store less important objects on disk. On 

the other hand, such naive cache management in an RCA is 

ineficienr in the sense that memory resources are not utilized 
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as well as they would be in a centrally coordinated system 

[17]. Some sites should instead cache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAless important objects, 

and rely on remote memory to access important objects. This 

counter-intuitive approach can improve both local and overall 

system performance, because fewer objects must be accessed 

on disk. The problem, of course, is to make this idea precise: 

how many replicas of each object should be maintained? 

We first devise optimal object replication algorithms for an 

RCA. We consider both the cases of optimizing the aver- 

age performance and of optimizing the performance of the 

worst site. The former case is solved by reduction of the 

problem to a capacitated transportation problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 151. The 

optimal number of replicas is a function of the hot-set curve, 

available cache storage, and differences among site access 

patterns. However, sites in distributed environments might 

not wish to be constrained by the decisions of other sites. 

(This is known as autonomy [14].) Thus efficient use of RCA 

system resources is especially difficult to accomplish. Even if 

autonomy is not an issue, because optimal solutions require 

that decisions be coordinated among the sites, they may not 

scale up as the number of sites in the system increases. We 

therefore investigate two distributed algorithms that partition 

the cache management problem among the sites in the remote 

caching architecture. Each site maintains a snapshot of the 

system configuration, and as conditions change sites may 

change their own (local) cache management decisions. The 

same mechanisms that make remote memory possible (e.g., 

broadcast) are used to propagate dynamic state information 

as well. Site autonomy is factored in implicitly, because sites 

cannot directly affect the decisions of any other site. The two 

distributed algorithms differ in their objectives on whether 

to pursue local or global performance optimization. Also 

considered are two simple greedy algorithms. The optimal 

and greedy policies provide upper and lower bounds on the 

performance for this environment, respectively. 

In the next section, we describe our model of the RCA 

system, and formalize the problem of cache management 

in an RCA. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 presents various cache management 

strategies, and Section IV describes their implementation in 

this environment. The performance of these algorithms (as a 

function of various system parameters) is analyzed in Section 

V. In Section VI we summarize our results and discuss some 

future work suggested by this paper. 

11. REMOTE CACHING ARCHITECTURE 

A. The Model 

The memory hierarchy of the RCA consists of local main- 

memory, remote main-memory (accessed over the communi- 

cations network), and disk. In terms of access time, there are 

single order of magnitude differences between the local mem- 

ory (tenths of a millisecond), remote memory (milliseconds) 

and disks (tens of milliseconds). The RCA cache management 

system must implement the following three components: 1) 
an object location algorithm, 2) a replacement algorithm, and 

3) a consistent update algorithm. A set of these algorithms, 

together with a detailed discussion of execution paths for read 

and write file/object access, can be found in [23]. (Algorithms 

that maintain transaction serializability in such an environment 

are discussed in [4], [8], [30].) Basically, if a site fails to find 

a copy of an object in local cache, then the site broadcasts a 

request, and at the same time sets a timeout. All sites with a 

copy of the requested object queue for the network and reply: 

the requesting site simply discards all replies after the first.’ 

Expiration of the timeout period indicates that the object is 

not cached at any remote site. The object must then be fetched 

from disk. In other words, when an object is needed at a given 

site, the site traverses the memory hierarchy looking at local 

cache, remote cache, and disk in turn. 

Let ctJ denote the time needed to access the zth object at 

the j th  site zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i = 1,. . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM , j  = 1,. . . . N ) .  The cost function 

that we want to minimize involves c , ~ .  
Let p k H ,  p:H,  and p y H  denote, respectively, the Local Hit 

probability, Remote Hit probability, and No Hit probability, 

when accessing the ith object at the j th  site. These probabil- 

ities sum to 1.0 because they represent the traversal of the 

memory hierarchy that is done in order to access an object. 

Then, 

where tl is the time required to access local main memory, t, 
is the time to access remote main memory (including network 

delays), and td is the time needed to access the disk storing 

the ith object.2 (Of course, these access times are cumulative. 

For example, the time needed to test for a local cache hit adds 

to the total t ,  because remote memory is only accessed after 

attempting to access local memory.) 

The probability of an object being cached by a given site 

depends on 1) whether the object is considered important 

enough to cache in the first place, and 2) how many other 
objects are eligible for caching by that site. The second factor 

determines the hit ratio for eligible objects. Let X;j = 1 when 

the zth object is eligible for caching (i.e., it may be stored 

in main memory) at the j th  site, and Xij  = 0 otherwise. Let 

[ H , j ( X ) ]  be the matrix whose z,j th term is the hit ratio of 

object z at site zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj .  This matrix specifies the configuration of the 

system at a given moment. Then 

N 

P E H  = (1 - 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn (1 - H i k ( x ) ) )  x (1 - H i j ( x ) ) ,  (2) 
k = l k # j  

N 

p N H  = U(l- H i j ( X ) ) .  (3) 
j = 1  

These equations apply trivially in the situation where 

H i j ( X )  is binary-valued (i.e., a site never allows more 

objects to be cache “candidates” than it has storage for). 

’ Alternatives to the broadcast mechanism can be devised. For example, in a 
database environment with a centralized lock manager, lock retention schemes 
can track the location of objects in the RCA system [9]. 

2Note that our model ignores the issue of queueing and contention at sites 
in the system. These factors imply that the cost of accessing an object may 
depend on the site at which the object is cached. We believe, however, that 
these factors impose “second-order” effects which do not much change the 
development of the caching algorithms for the RCA. 
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They also apply in the situation where, because the site wants 

more objects in cache than it can physically store, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH 7 , ( X )  
varies between 0 and 1. Note that the matrix X (in theory) 

completely determines the hit-ratio because, regardless of the 

caching policy, once the system specifies the eligibility of 

objects at a given site, the hit ratio for that object is implicitly 

set as well. For example, if a naive replacement policy such 

as “uniform replacement” is used, then H 2 , ( X )  can be 

computed as M I S  (where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA4 is the number of objects and S 
is the per-site cache size) for all objects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. Less trivially, cache 

replacement algorithms such as LRU can also be approximated 

as a function of the X matrix [7], [28]. 

In this paper, we shall assume, for the most part, that H7] is 

indeed binary valued, with sites caching only those objects for 

which they have space. Because the H 2 , ( X )  term is included 

in the equations, our approach is easily extended to the case 

of more complicated hit-ratio functions. 

B. The Problem 

The problem addressed in this paper is how, given the RCA 

system parameters, can we best specify X so as to minimize 

the “cost” of the system. The task of specifying the X,,  is 

a version of the File Allocation Problem (FAP) [ l l ] ,  [29]. 

Certain versions of the FAP problem are NP-complete [ l l ] ,  

[25]. Heuristics which perform well have been proposed [5 ] ,  
[21], [25], [31]. In our case, there are M objects and N sites 

in the system, and each object can be cached at any site. There 

are thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2“”‘ possible values for X .  
Let C be the average time needed to access objects, given 

an RCA configuration X .  This cost function will, in general, 

be a function of the c,] of (1). The optimization approach 

will require complete and centralized information, and use a 

centralized algorithm to compute the file assignment. These 

limitations suggest that distributed algorithms may be worth- 

while-even if they do not yield optimal performance. The 

issue of autonomy, however, is the major difference between 

the classic FAP problem and the problem which arises in a 

remote caching architecture context. Prior work in the area 

of FAP assumes that the sites in the system are committed 

to optimizing overall system performance. In  an autonomous 

[ 141 RCA environment, however, a given workstation is not 

specifically interested in improving performance at another 

workstation, but is rather concerned with decisions that affect 

its own performance. Sites are willing to cooperate in servicing 

requests for copies, but they are not willing to constrain 

their caching decisions based on these requests. A given site 

can only make caching decisions regarding its resources. No 

site can make such decisions about another site’s resources. 

In an autonomous environment, even if sites are willing to 

cooperate in decision making, they will not agree to cache 

items if the result is substantially worse performance than other 

sites in the system. Autonomous sites may not even agree 

to suffer performance penalties-even if a given allocation 

policy results in better average performance for the system 

as a whole. Because sites cannot unilaterally determine the 

cache contents of other sites, classic FAP approaches will not 

necessarily extend to an autonomous environment. 

C. Dimensions of the Problem 

There are quite a few dimensions to the problem of deter- 

mining the optimal X .  We discuss some of them here, and 

then show where this work fits into the large state space. 

Cost Function 
We obviously need to specify the nature of the cost function 

C, which must be minimized. At one extreme, sites can be 

interested solely in local performance. At another extreme, 

sites can be interested in improving global performance. 

Alternatively, sites can implement a fair policy, in which 

no site does “much” worse than any other site. The issue 

of eflciency is closely related to that of the cost function. 

Under a global optimization policy, sites cooperate with one 

another, so that the number of object replicas in the overall 

system results in optimal (overall) performance. Thus, a site 

may cache an object that it rarely accesses, simply because 

other sites access it often. Under a local optimization policy, 

however, sites face the following tradeoff. On the one hand, 

a site can be “greedy” and simply cache as many of the 

most valuable objects as it can. On the other hand, if 

many sites replicate the same objects, then a given site 

is “wasting” cache storage because it could have used 

the space to cache an unreplicated object, and rely on 

other sites when it needs to access the replicated object. 

The key point is that even if a site caches relatively less 

important objects, and pays more (because it must go over 

the network) for more valuable objects, not only may overall 
system performance improve (because storage is used more 

efficiently), but local performance may improve as well. 

Eligibility for Replication 
When a site caches an object, this has a number of conse- 

quences. If the object is “read-only,” then the site obviously 

gains from reducing object access time. The only issue that 

must be resolved is how to trade-off the presence of one ob- 

ject in cache against the crowding out of another object from 

the cache. However, when objects are “read/write” the 

situation becomes far more complicated. Although the site 

still benefits in read situations, writes require the application 

of a consistency maintenance algorithm. The system must 

somehow ensure that replicas of an object maintain the same 

value: this process requires inter-site communication, inter- 

rupting the sites so as to receive the messages, and finally the 

update propagation. This cost of consistency maintenance is 

such that a site may actually incur a performance penalty 
by caching an object replica. 

In this paper, our approach is based on the following 

observation. A major reason for sites to cache read-write 

objects-despite the associated overhead for consistency 

maintenance-is that the object is so important that it must 

always be readily available for read access. In other words, 

the “delta” between disk and local memory access is so 

large that it makes sense to maintain replicas of “write” 

objects-despite the additional overhead. In an RCA, this 

motivation is not as strong-as long as a single copy of 

the object can be accessed from some site in the system. 

In such a case the delta that motivates object replication is 

only between local and remote memory, and the overhead 
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of consistency maintenance usually outweighs the smaller 

delta. 

This intrinsic characteristic of an RCA architecture there- 

fore suggests the following heuristic. Read-write objects 

are constrained to have at most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAone copy available in a 

site’s main-memory, eliminating the need for replication 

decisions. Sites do, of course, benefit from cached read-write 

objects; replication decisions, however, are only made about 

read-only objects. This paper investigates the more clear-cut 

tradeoffs involved with an object’s read value. 

9 Local Object Value 
The “value” (i.e., performance benefit) that a cached (read- 

only) object gives to the caching site, is proportional to 

the frequency that the object is accessed by transactions 

executing at the site. Sites can thus rank objects based on 
their access f r eq~ency .~  Access frequencies can be estimated 

with varying degrees of accuracy. At one end of the spec- 

trum, sites have perfect information. More realistically, sites 

can dynamically estimate these values (with an exponential 

weighting term, for example). At the other extreme, sites 

may not bother to calculate values explicitly, and simply 

manage cache with an LRU policy. (This dimension relates 

to the issue of whether object access rates vary over time. 
For example, in a “static’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ environment, perfect information 

is a much more reasonable assumption than in a dynamic 

environment .) 
Degree of Coordination 

If a site has no knowledge about the contents of other sites’ 

caches, then the site should simply cache as many of its 

most valuable objects as it can (see above). By contrast, 

if a site knows what objects are cached at other sites, 

it can rely on remote sites for those objects and instead 

cache objects that would otherwise be only accessible on 
disk. At one extreme, sites may make cache decisions in 

a completely coordinated fashion (this leads to optimal 

global performance). More realistically, sites may make 

decisions in a sequential (or synchronous) fashion. Only 

one site at a time makes a set of decisions. Information 

about decision outcomes are then passed to the next site. 

Alternatively, sites may make decisions in asynchronous 
fashion. Although sites make the results of their decisions 

available to other sites, these other sites may be making their 

own decisions simultaneously. (This dimension is related to 

the question of what information is communicated between 

sites. Useful analogies have been drawn to research in load 

sharing-for example ‘ ‘sender-initiated” versus “receiver- 

initiated” cache management [24].) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. The Problem, Revisited 

Given the discussion of the many issues implicit in deter- 

mining the optimal X, it is important to state which issues are 

addressed in this paper. We assume, as indicated above, that 

sites only make cache replication decisions about “read-only” 

objects. For the most part (except for the dynamic greedy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
’Note that, for simplicity of exposition, we assume that all objects have 

the same size so that the value does not need to be scaled by the amount of 
cache storage the object occupies. This is not a serious restriction since the 
algorithms can be modified to take varying size objects into account. 

algorithm), we also assume that sites have perfect information 

about object access rates. Because of these assumptions, the 

dimensions of replication eligibility and local object value 
do not pose especially difficult problems. However, because 

autonomy can be very important in an RCA environment, we 

focus on its implications for the dimensions of cost function 
and degree of coordination. In other words, we examine the 

problem of how performance is affected by 1) different cost 

functions that sites can use and 2) the different ways that sites 

can coordinate their decisions with one another. 

In the next section, we describe a set of cache allocation 

policies that use a variety of cost functions and have different 

degrees of coordination. Implementations of these policies, 

and their performance, are studied in Sections IV and V, 

respectively. 

111. RCA CACHE MANAGEMENT STRATEGIES 

Cache management requires that a system first determine 

which objects are eligible for caching, and then, when cache 

storage is full, determine which object should be swapped out 

to make room for an incoming object. As discussed in Section 

11-A, this paper focuses mainly on the eligibility issue and 

assumes that eligible objects are always available in cache. 

This is achieved by simply limiting the number of eligible 

objects to the amount of cache storage available. In other 

words, the hit ratio is always 1, so that the term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH i j ( X )  in 

(2)-(4) is either 0 or 1. (The performance of a dynamic greedy 

algorithm, which uses the classic LRU replacement algorithm, 

is also examined.) 

We investigate three classes of policies: centralized, dis- 
tributed, and isolationist policies. These classes are distin- 

guished by the amount of remote caching information that 

is used when making cache decisions. At one extreme, sites 

operating with isolationist policies make decisions in complete 

ignorance of the decisions made by other sites. At the other 

extreme, sites that centralize the decision-making for the 

entire system operate with optimal policies, because they 

make decisions in complete coordination with other sites. 

In distributed policies, sites make decisions independently 

of other sites, but also utilize information about previous 

decisions made by other sites. 

Within a single class-e.g., optimal policies (that make 

decisions in coordinated fashion)-policies can differ based 

on the performance goal. Performance goals affect an object’s 

eligibility for caching. The goal of the first optimal strategy 

is fairness: although sites want to achieve good overall per- 

formance, they insist that no site should suffer “unduly” in 

achieving such performance. The goal of the second strategy 

is simply to maximize overall (average) performance, without 

regard to how individual sites will do under a given object 

allocation. These strategies are both examples of global op- 

timization polices. In contrast, we examine both a local and 

global performance policy in the class of distributed policies. 

Each of the optimal strategies shares the following as- 

sumptions. First, all sites have complete knowledge about 

the access patterns at every other site. Second, eligibility 

decisions are completely coordinated, so that at any moment 



LEFF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc3f al.: REPLICATION ALGORITHMS IN REMOTE CACHING ARCHITECTURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I89 

the best decision is always made. Clearly, these assumptions 

are not realistic in real-world RCA environments. We are 

interested in these strategies because they give an upper- 

bound on RCA performance. The aggregate resources in an 

RCA are very large: it is important to determine the best 

performance that can be achieved through efficient use of 

system resources. The performance of the isolationist policy 

shows how important some degree of inter-site cooperation 

is for RCA efficiency. This policy does not completely ignore 

the benefits of the RCA architecture because sites zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill respond 

to requests from other sites-if the object is resident in cache. 

The point is that sites do not have (or ignore) information about 

remote cache contents that could guide local decisions about 

object eligibility. By investigating the differences between the 

optimal and greedy strategies, we gain insight into the problem 

of devising caching policies that can operate in distributed 
fashion. Our goal is to develop distributed strategies with 

performance between the optimal and greedy strategies. (In 

addition, the distributed algorithms are more adaptable to 

changes in system state than the optimal. Because the deci- 

sions are localized rather than centralized, sites make fewer 

changes to the cache configuration after detecting that, for 

example, access frequencies have changed.) Although these 

strategies require cooperation among sites, we believe that this 

requirement is not necessarily a violation of site autonomy. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Optimal Strategies 

Equations (1)-(3) show that the cost of accessing a single 
object at a given site depends on the probability of 1) the 

object being in local cache and 2) the probability of the 

object being in at least one other site’y cache. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,3 denote 

the robability of read-access for object I at site , I .  Then 

c l IP I I  represents the overall time needed to access 
objects at site , I .  Given the access probability distribution for 

all objects 2 at all sites , I ,  two cost functions can be specified 

to evaluate the performance of a given configuration X .  
(These definitions of the cost functions assume that sites have 

equal amounts of activity. Section V-G discusses the effect of 

different degrees of site activity.) 

2 

A policy that determines a configuration which minimizes 

(4) implies that the “worth” of the overall system is no better 

than the performance of the worst-performing site in the sys- 

tem. The goal of this policy is to use the combined resources 

of the sites in the RCA efficiently, and at the same time ensure 

“fairness.” If sites insist on overall “fairness” criteria, then 

other strategies cannot surpass the performance of the optimal 

fair policy. A policy that determines a configuration X which 

minimizes (5 )  corresponds to solving the basic file allocation 

problem (FAP) because it  minimizes average (overall system) 

response time, without allowing individual sites to impose any 

specific constraints on object allocation. If site autonomy is 

not an issue, then other strategies cannot surpass the RCA 

performance achieved by the optimal “average” policy. 

B. Distributed Strategies 

The key feature of the distributed strategies is that sites do 

not make decisions in a completely coordinated fashion, but do 
use information about other sites when making local decisions. 

Recall from Section 11-A that cll is the cost of accessing object zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 at site j ,  and is composed of the costs of accessing each 

of the memories in the storage hierarchy, weighted by the 

probabilities of needing to access a given memory. Assume 

that site k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE sites{ 1.. . . , N }  is making caching decisions. If 

site k turns object zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,i ‘‘on,’’ this has two effects. First, there 

is a local effect because site k now has object zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi in the fastest 

media. Second, there is a global effect because object i is now 

available to all the other sites in the second fastest media. 

Note that while the first effect always improves performance, 

the second effect will tend not to effect performance if some 

other site j has already cached object %.4 If site k turns the 

object “off” then the magnitude of the first effect depends on 
whether site k can already access the object through remote 

memory at some other site. Even if site k has remote access, 

performance will always get worse because the object is no 

longer available in local main-memory. Other sites will only 

suffer if the copy maintained at site X: was the only replica. 

If a strategy is concerned with local optimization, then 

only the first effect is relevant. If a strategy does global 

optimization, then both effects are important. Because we are 

dealing with read-only objects, the marginal value, m z k ,  of 

caching object ,i can be calculated independently of cache 

decisions regarding other objects.5 The value, 7 n i k ,  is always 

positive and is based on the difference between the (local or 

overall) access time for object i when it is cached at site k: 
and the (local or overall) access time for the object when it 

is not cached. Under either type of strategy, the magnitude 

of the marginal benefit depends on 1) the ‘‘local’’ importance 

of the object and 2) the presence of the object in some other 

site’s memory. The value of m , k .  must, of course, be weighted 

by the (local or overall) probability of accessing the object. 

Notice that these strategies differ from the greedy strategy 

described below in that an object which, from a purely local 

context, is valuable, will have less value when the site realizes 

that the object is cached in remote memory. Under the local 

distributed strategy, sites also operate in a greedy fashion, but 

the marginal value calculations factor in information about the 

state of other sites’ caches. 

The strategies discussed here make cache decisions in 

synchronous fashion, and then broadcast the results of the 

‘If site is closer (or faster) than site .I to other sites in the system, then 
there will be a global effect when site k also caches the object. This effect, 
however, is minimal compared to the local effect. More importantly, in this 
paper we examine RCA performance in the context of a LAN environment. 
In consequence, remote sites are “symmetric” in the sense that all sites are 
equally distant from one another. 

‘We use the term “marginal value” to emphasize the fact that we are not 
examining the net effect of caching one object while swapping out another 
object. We examine only the performance benefit that results from caching 
the object. The constraint of having only a given amount of cache available 
is factored in later (see Section IV-B). 
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decisions to other sites. As a result, when site zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk makes 

local cache decisions, the information that determines marginal 

benefit is up-to-date. The key point here is that a single, hard 

problem is partitioned into N smaller problems. Instead of 

the overall system trying to solve the problem in centralized 

fashion, each site tries to minimize the given cost function on 

its own. Of course, the composition of N individually optimal 

pieces may be suboptimal. The hope is that the distributed 

solution will not differ greatly from the optimal solution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Isolationist Strategies 

I )  Static Greedy Strategy: The static greedy strategy repre- 

sents an extreme of autonomous (“isolationist”) behavior in 

an RCA: essentially, each site ignores all other sites’ caching 

decisions when making its own caching decisions. Each site 

simply caches the objects that maximize the percentage of 

access probability distribution available in its own cache. The 

greedy algorithm can result in much system replication, as 

heavily accessed objects are replicated at each site. On the 

other hand, each site is guaranteed to get its most heavily 

accessed objects with minimal cost. In contrast, under the 

optimal strategies and under the distributed strategies, sites 

are aware of other site’s decisions. Under the distributed local 

policy a site may well cache a relatively unimportant object 

because it relies on other sites for access to more valuable 

objects. 

2) Dynamic Greedy Strategy: The final strategy examined 

in this paper uses no knowledge of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPij at all, but otherwise 

resembles the static greedy strategy in that sites simply cache 

(what they perceive to be) their most valuable objects. It is 

a “greedy” strategy in that sites do not attempt to avoid 

caching highly replicated objects by snooping on other sites. 

Essentially, sites assign LRU-based values to objects, and use 

these values to determine which objects should be swapped 

out to make room for incoming objects. 

D. Performance Issues Between the Strategies 

Before discussing the implementation of the strategies, we 

summarize the issues that differentiate them. Three degrees of 

coordinated decisions (through exchange of state information) 

are examined: centralized, distributed, and isolationist. Three 

performance goals are examined: maximizing average, fair, 
and local performance. Two ways of assigning local object 

values are examined: exact access frequency and LRU-based.6 
Table I lists, for each strategy discussed in this paper, where 

the strategy lies on the spectrum. 

IV. STRATEGY IMPLEMENTATIONS 

In this section, we develop implementations of the RCA 

6Although most of the algorithms analyzed here make use of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ priori 
knowledge of object access rates, this does not imply that the algorithms 
are not “implementable.” In practice, sites would periodically do dynamic 
estimation of the access frequencies based on previous history (e.g., through 
exponential weighting). After some period of time sites would do a fresh 
determination of the optimal configuration. Because we do not consider that 
dynamic frequency estimation imposes any difficulty (as opposed to the use 
of exact knowledge), we chose to reduce simulation time by using static 
knowledge. 

TABLE I 
DIFFERENCES AMONG THE STRATEGIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~~ 

RCA Performance Dimensions 

Strategies Coordination Goal Object Value 

Optimal Average centralized average access frequency 
Optimal Fair centralized fair access frequency 
Distributed Local distributed local access frequency 
Distributed Global distributed average access frequency 
Static Greedy isolationist local access frequency 
Dynamic Greedy isolationist local LRU stack position 

cache strategies. Solutions for the optimal object configura- 

tions can be determined analytically; the solution approach is 

detailed in Section IV-A. The configurations for the distributed 

strategies are obtained through event driven simulations of the 

algorithms described in Section IV-B. The dynamic greedy 

strategy is also evaluated through simulations. For the static 

greedy strategy, determining the configuration is trivial: the 

most frequently accessed objects at each site are cached in its 

memory. 

A. Implementing the Optimal Strategies 

The problem of determining the optimal RCA configura- 

tion given by (6) involves a nonlinear binary programming 

problem. We want to solve for minimal 

where cij is a nonlinear function of X; j  [note the product term 

in (2)-(3)]. The X i j ,  of course, are binary valued. We now 

show that this problem is, in fact, reducible to the capacitated 

transportation problem [15]. As a result, the optimal solution 

can be determined fairly easily [3]. First we define an objective 

function that differs from the RCA function by a constant, so 
that the optimal solutions are identical, Then we show that the 

optimal solution to the new function will necessarily meet the 

constraints of the RCA problem. 

Recall that there are M objects and N sites. Construct an 

augmented M by N + 1 matrix, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, in the following way. 

The entries in the first N columns are Pij ( t r  - ti), and 

the entries in the last column are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Ej x i P i j } ( t r  - t d ) .  

(Here i = 1, . . . , M ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = 1,. . , N.) The Pij terms are the 

(normalized) object access rates discussed above. The ti, t,, 
and t d  terms denote the access time for local memory, remote 

memory, and disk, respectively. Consider the optimization 

problem of determining the maximum value of ZI, xi ZikX ik  

(k = 1,. . , N + 1) subject to the constraints that 

1) c~,x ik  2 1. 
2)  xi XiI, 5 B (B = site cache size) for k 5 N .  
3) xi Xik < cc (for k = N + 1). 

4) XiI, is binary. 

Constraints 1-4 correspond exactly to the model of the 

capacitated transportation problem [15]. The first is a row 

constraint; the second and third are column constraints. We 

first show that this objective function differs from the RCA 
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function by a constant. The first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN columns represent an initial 

state in which all objects can be accessed, by all sites, from 

remote memory. The idea zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis that we then solve for maximum 

incremental benefit from the initial state. The last column 

allows us to model the situation of having to access an object 

from disk (because of memory constraints). An X,k. = 1 entry 

in the last column means that no copy of the ith object is in 

main-memory. As a result, sites have to pay the incremental 

(with respect to remote memory access) cost of accessing the 

object on disk. 

We now show that the optimal solution to the transportation 

problem is also the optimal solution to the RCA problem. Note 

that the optimal transportation solution will never have both an 

X7k = 1 for some k 5 Nand also X,[.y+l~ = 1, since entries 

in the last column represent “negative” benefit. Also, because 

all elements in the first N columns are positive, the sum of 

each column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 N (in the optimal solution) will equal B. 
The optimal solution will therefore correspond to the optimal 

solution for the RCA. First, sites do not access an object on 

disk if it is present in main-memory. Second, each site uses all 

of its available main-memory for cache storage in the RCA. 

B. Implementing the Distributed Strategies 

The distributed strategies were discussed in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111-C. 
Under the FAP constraint of H , , ( X )  = 1 for all “on” objects, 

the equations needed for calculating marginal value have a 

very simple form. Let R,., = 1 iff there is a remote (with 

respect to site , j )  replica of object ‘i (0 otherwise). Say that site 

k: is making a caching decision with respect to object %. Under 

the local optimization strategy, the local marginal value is 

nl,,~. = Pik((trRik) + ( f ( l ( 1  - RTk)) - f / ) .  (7) 

This follows because site k: is only concerned with the locul 
effect of caching object i .  Under a global optimization strategy, 

site A; is also concerned with the overall system improvement 

that results from the caching decision. 

The marginal value of site k: caching object i for another 
site , j  # I; is 

(8) 
if R;, = I ,  and (“ P,,(f,l - t r )  otherwise. 

Then, under the global optimization policy, the overall value 

of site k: caching object i is 

‘ r r l ,k .  =P,k.((t,.R,I.) + ( f r i ( l  - R,A.)) - t , )  
.\- 

+ (1 - R,,/)P,J(f<l - f ,  ).  (9) 
/=  1 ../ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# I ~  

Each of the distributed algorithms contains the following 

steps. When a site I; makes a set of caching decisions, it 

has a snapshot X which gives the state of the other sites in 

the system at a given time. X is the same eligibility matrix 

discussed in Section 11-A-except that the cache contents of 

site I; is uninitialized. Site k then uses a greedy algorithm 

which proceeds as follows. 

1)  For all objects i ,  site k: calculates m , k .  

2 )  Site k: orders the objects by decreasing m.,k.. 

3) For cache size B, site k: then simply sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx& = 1 for the 

The distributed algorithms are implemented in a detailed 

discrete event simulation. In the simulation, each site main- 

tains a table of its cache contents. One simulation module 

implements the cache management algorithms, while the other 

one generates the object requests and determines whether a 

local hit or remote hit occurs. In  the simulation, the distributed 

algorithms execute the cache eligibility algorithm periodically: 

we found that the rate of convergence was very rapid (see 

Section V-F). (The simulation does not “charge” when sites 

swap objects in and out of memory. Again, this is to facilitate 

comparison with the optimal algorithms, which do not change 

the configuration after it is initially determined. Because 

the distributed algorithms converge rapidly to an “optimal” 

configuration, the cost of adjusting to dynamic changes in the 

object access frequencies would be small.) 

first B objects, and sets Xlk = 0 for all other objects. 

C. Implementing the Isolationist Strategies 

Under the isolationist strategies, a site simply caches the 

objects that maximize the percentage of access probability 

distribution available in its own cache. The static strategy does 

this trivially because information about the Pz3 is available. 

The dynamic greedy strategy is also implemented in the 

detailed discrete event simulation. In the simulation module 

implementing the cache management algorithms, the dynamic 

greedy strategy simulates an LRU replacement algorithm for 

each site independently. 

V. PERFORMANCE ANALYSIS 

In this section, we compare the different RCA cache strate- 

gies based on their performance in various system configu- 

rations. Important system dimensions are varied, while basic 

system characteristics are held constant in this analysis. In 

Table I1 we show the constant system parameters of a remote 

caching architecture implemented in a workstation environ- 

ment.’ We are not that concerned with the exact values in 

Table I1 because the benefits of using an RCA apply over a 

wide range of system parameters and access frequencies [23]. 

The key performance characteristic of the system is that order- 

of-magnitude differences in access speed exist between layers 

of the memory hierarchy. The number of objects is kept small 

to facilitate generation and analysis of the results. In Section 

V-F we show that the distributed algorithms scale to a system 

that is at least two order of magnitude larger. 

’The values of the access timc parameters assume the following. The RCA 
sites are connected by an Ethernet network, and the generic “object” is a 
packet on the order of SO0 bytes. Raw bus time is then approximately 0.5 ms. 
Disk access consists of one third of the end-to-end seek time plus one half 
of the rotational latency. Sites make one disk access to retrieve an object’s 
index, and make another to access the object itself. With a slow file system 
adding file system overhead, we use the round figure of 50 ms per object 
“access.” (Objects are assumed to be partitioned at the disk level; the cost for 
disk access reflects average object timc.) Local main memory access timevery 
conservatively takes 1 ms (including hash-table access followed by a 500 byte 
copy). The RPC time is taken from [27]. Given these “raw” access times, 
the memory hicrdrchy access times are calculated as described in Section 11. 
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TABLE 11 TABLE 111 
CONSTANT PARAMETERS IN THE RCA ANALYSIS NUMBER OF OBJECTS COMPRISING THE HOT-SET 

System Parameters Parameter Values Hot-Set Curves 25th percentile 50th percentile 

Number of Sites 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.1 3 objects 7 objects 
Number of Objects 1000 0 = 0.05 6 objects 14 objects 

49 objects Local Main-Memory Access Time 1 ms B = 0.001 25 objects 
Remote Main-Memory Access Time 6 ms 
Disk Access Time 63 ms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A. Performance Parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I) Hot-Set Parameter: In order to study the effect of dif- 

ferent access probability distributions on performance, we 

introduce a hot-set parameter 0 that models data skew and 

variability. The hot-set parameter determines the access proba- 

bility distribution for the data objects. If objects are ordered by 

decreasing access frequency, access frequency can be graphed 

on the “y-axis” against object identifier on the “x-axis.” We 

refer to the resulting (monotonic decreasing) curve as a hot-set 
curve, because it shows the objects that are accessed most often 

at a site. When the distribution curve is “steep,” then fewer 

objects comprise the hot-set. When the curve is flat, then many 

objects comprise the hot-set. Intuitively, caching becomes 

less and less effective as the hot-set curve becomes flatter, 

because more objects must be cached in order to maintain a 

given cache-hit ratio. Let Pz3 denote the probability of site j 
-accessing object i .  Then, when sites have identical hot-sets, 

we model a site’s hot-set curve by setting 

PZJ = ~ (10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 
where i is the object number, 8 is the hot-set parameter, 

M is the total number of objects, and T = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE::, e-” is a 

normalization constant. In other words, the hot-set curve is a 

normalized negative exponential distribution for the specified 

8. Thus, smaller 6’ values represent flatter hot sets. Hot-set 

curves generated with a given 8 maintain their shape for all 

values of M :  the precise PZ3 will of course depend on the 

number of objects in the system. In Table 111 we show the 

minimum number of objects that are needed to cache 25% 

and 50% of the access distribution for various hot-sets (when 

the total number of objects is 100). 
2) Correlation of Site Hot-Set Curves: Equation (7) assumes 

that all sites have the same hot-set curve-i.e., all sites access 

a given object with the same frequency. In modeling the 

situation where sites have different hot-set curves, we do 

not change the value of 8: what varies is that the objects 

comprising the hot-sets are different. Intuitively, we want to 

capture the degree of overlap or correlation between hot-sets 

with a single parameter. To do so, we follow [32] .  Note that 

the M objects in the system can be ordered, in descending 

order, by access frequency. Hot-set correlation is described 

by a single parameter p that takes on integer values between 

1 and M. Consider object 1, the most frequently accessed 

object at site 1. Object 1 occupies position 1 (i.e., most 

valuable) relative to all other objects. At all other sites, object 

1 occupies a randomly chosen position between 1 and p. 
More generally, object i of the original curve is placed in 

Effect of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp on Inter-Site Correlotion 
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Fig. 1, Effect of p (1 00 objects). 

a randomly chosen position from 1 to MIN(p + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - 1, M )  
except that the position occupied by a previous step is not 

allowed. The larger the p, the smaller the correlation between 

sites. Thus p = 1 corresponds to perfect correlation among the 

hot-set curves; p = M corresponds to a random relationship 

between the hot-set curves. To get an idea of how p affects the 

inter-correlation of sites’ hot-set curves, examine Fig. 1. The 

average Spearman correlation (used because of its robustness 

compared to Pearson’s r )  [12] of the hot-set contents for sites 

2, . . . , l o  with that of site 1, is shown for p values 1 , .  . . ,100. 
3) Relative Site Activity: Although 8 determines the shape 

of a site’s hot-set curve, because Pt3 is normalized to sum 

to 1.0, it cannot model differences in relative site activity. 

Picture a situation where site 1 has five times the activity of 

the other sites in the system. A global optimization policy will 

weight the needs of site 1 more heavily than the needs of 

the other sites. In contrast, under a local optimization policy, 

sites will not take the fact of different degrees of site activity 

into account when making cache decisions. As a result, overall 

system performance will be relatively worse as compared to a 

situation with equal degrees of site activity. 

Let v denote the parameter that determines relative 

site activity. The activity of each site is given by a3 
= l / ( A  * ~ ~ ‘ - 0 )  where A = E:=, l / j 1 ’ - V .  In other 

words, the relative site-activity distribution has a “Zipf- 

like” shape [16], controlled by the value of V .  When 77 
= 1.0, then sites have the same amount of activity. When 

q is 0.0 (and N = 10) then the relative site activity 

is {1.00,0.50,0.33,0.25,0.20.0.17.0.14,0.12,0.11.0.10}. 

Individual site mean response time is ct3Pz3, but overall 
AI 
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21 
(system) mean response time is x;ll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,=~ ( . , J ~ , J .  we 

look at the performance implications of three values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71: 

1.0, 0.5, and 0.0. 

B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPerformance Stutistics 

We report algorithm performance in two ways. First, the 

performance of the optimal average algorithm is graphically 

shown as a function of values of H ,  0, and cache size. This 

algorithm serves as a baseline for the “best” possible results 

for a given RCA configuration. The performance of the other 

algorithms is shown relative to that of the optimal average 

algorithm. These figures allow us to get a feel for the RCA 

“state space.” Second, we take a closer look at algorithm 

behavior by presenting tables of statistics for the performance 

of a small slice of the state space. Per-site cache size (L?) is 

held constant at 5% of the total number of objects. In order to 

“normalize” values of H across any number of objects, we use 

STORE~I~.A~\-, defined to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACL, P,l when the P,., are sorted 

in decreasing order. That is, STORE,![ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA.\- is the maximum 

percent of a site’s hot-set that can be stored locally by that 

site. Values of H are adjusted so that, if a site simply caches 

objects in static greedy fashion, i t  can cache STORE,~I.~.\- 
percent of its hot-set. We report two sets of statistics: the first 

gives a sense of “absolute” performance, the second gives a 

sense of “how” the algorithm achieves its performance. 

RTime (Response Time) is the basic performance metric 

used to judge the effectiveness of a given algorithm. We 

report mean object response (i.e., access) time. 

STDev (Standard Deviation) is the standard deviation of 

RTime over the sites in the system. Certain algorithms 

may offer good overall performance, but at the cost of 

large site-to-site variations. 
CHIT (Cache Hit) is the percent of object requests that 

were met by either local or remote cache. Effective 

policies will get the most frequently accessed objects into 

the faster localiremote main-memory media, and therefore 

have high CHIT values. We report the mean value over 

all sites. 
REPL (Degree of Replication) is the number of object 

replicas stored under a given configuration. Assuming that 

at least one copy of an object is resident in system cache, 

we report the mean number of object replicas. In the case 

of the static algorithms, only one system configuration 

needs to be evaluated. In the case of the distributed 

algorithms, this statistic (as well as that of B N F T )  is 

the “mean of the means” under all system configurations 

generated by the algorithm. 
B N F T  (Benefit) is the average benefit that each cache 

slot gives the system. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 1  = f, l  - tl and s 2  = tcf - f r .  

Then s1 *PI ,  is the (weighted) benefit that a site gets from 

caching an object locally, and $ 2  * PI.) is the (weighted) 

benefit that remote sites get from the presence of the 

replica in remote memory. Let there be ‘ti,1 object replicas. 

If 711 is at least 1, then 7 i ~  = N - 711 sites can access the 

object through remote memory. (The presence of multiple 

copies does not increase the remote benefit.) Then the 

benefit that the overall system gets from the cache slots 

devoted to that object is ‘ n 1  * s1 + 712 * 9 2 .  (Pi, is used 

to weight the benefit that a given site actually gets from 

the cached object.) We report the benefit averaged over 

all cached objects. Intuitively, an efficient strategy will 

have high B N F T  values because its eligibility criteria 

will tend to reflect the need to 1) use cache storage most 

effectively by caching the most important objects, and 2)  
limit the amount of replication of a given object. 

In the performance tables (Tables IV-XII) four values 

are examined for H (those generating the four STORE,U..I.Y 
values), and four for p (1, 10, 50, and 100). These values 

represent two extreme points for the parameter in addition 

to two intermediate points. The total number of objects in 

the system is 100, so that when p = 100, the sites have only 

“random” correlation among their hot-sets. Per-site cache size 

is held constant at 5% of the total number of objects. 

In the performance figures, per-site cache sizes vary from 

1‘%# to 10%) of the total number of objects. Values of 0 vary 

from 0.001 to 0.082 in increments of 0.009, and values of p 
vary from 1 to 96 in increments of 5 .  

The performance of the optimal and the static greedy algo- 

rithms is derived analytically, while that of the distributed and 

the dynamic greedy algorithms is from simulations. Because 

the distributed algorithms use exact knowledge of object 

access rates, their simulation did not require a “warm up” 
period. The dynamic greedy algorithm had a warm up period 

of 1000 object accesses. Each simulation ran for 10 000 object 

accesses. Preliminary results showed that the performance 

statistics reported from this single large run were indistinguish- 

able from “batched means” simulations that used a stopping 

criterion of a relative half width of 0.1 and a 95% confidence 

interval. (The reason for such behavior is the relative lack of 

“noise” in the simulations.) We therefore used single-batch 

simulations to generate the data points for the figures. 

C. Optimal Average Performance 

When sites have no cache storage at all, then mean response 

time will be 63 ms (see Table 11). If all objects are cached 

locally, then mean response time will be 1 ms; if all objects 

are available in either local or remote memory, then mean 

response time will be between 1 and 6 ms. To the extent that 

sites must access objects at disk, response time will, of course, 

exceed main-memory access times. 

In Fig. 2, the performance of the optimal average algorithm 

is shown as a function of 0 and cache size. The larger the value 

of H (i.e., the smaller or sharper the hot set), the fewer objects 

need to be cached in order to attain a given cache-hit ratio. 

Consequently, the larger the 0, the better the performance. The 

shape of the performance curve mirrors the access distribution. 

Thus, when the hot-set curve is flat (0 = O.OOl), performance is 

a linear function of cache size. When the hot-set curve is sharp 

( H  = 0.1), performance is a nonlinear function of cache size, 

because 50% of read accesses are to only 7% of the objects. 

Fig. 3 shows mean access time (ms) as a function of both H 
and p (per-site cache size is maintained at 2% of the number 

of objects). As before, when other factors are held constant, 

performance improves with larger H.  As p increases from 1 
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Optimal Performance as function of 0 and D 

Fig. 3. Optimal performance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C‘5rz~ = 2%) 

to M ,  the system is in one of three configurations: sites have 

a) identical hot-sets, b) partial hot-set overlap, or c) random 

hot-set relationship. In configuration a) performance is best, 

because the smaller system-wide hot set implies that caching 

is most effective. In configuration c), performance is worst, 

because the system hot set is large. In moving from a) to c), 

performance tends to degrade-but there are dips and valleys. 

Even if there is slightly less overlap among the sites’ hot-sets, 

sites can get a higher local hit-ratio, and therefore improve 

performance slightly. 

D. Optimal Fair Performance 

Only the optimal average algorithm (henceforth ‘‘average”) 

explicitly optimizes for the performance metric; the optimal 

fair (henceforth ‘‘fair”) algorithm can therefore never exceed 

the former’s performance. Figs. 4 and 5 show the relative 

performance of the algorithm compared to average. We show 

relative mean access time: i.e., the ratio of access time under 

Relative Performonce to Optimol Algorithm 
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Fig. 4. Optimal fair algorithm (8 = 0.082). 
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Fig. 5.  Optimal fair algorithm (0 = 0.046). 

R e l o h e  Performonce to Optimol Algorithm 

7 - p - y  2 

Fig. 6. Static greedy algorithm (8 = 0.082). 

the fair strategy to the access time under the average strategy. 

(Similar ratios are reported in Figs. 6-15.) These figures are 

quite ‘‘jagged’ ’ because the performance range among sites 

depends on the exact composition of their hot-sets and on the 

amount of cache storage in the RCA system. Because of the 

randomness associated with p, the relative performance of the 

fair (a “min/max”) algorithm can vary a great deal despite 

small changes in system configuration. Nevertheless, certain 

trends are quite clear. 



LEFF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: REPLICATION ALGORITHMS IN REMOTE CACHING ARCHITECTURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1195 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Relative Performonce t o  Optimol Algorithm 

Fig. 7. Static greedy algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 = 0.046). 
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Fig. 8. Static greedy algorithm (0 = 0,001). 
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Fig. 10. Dynamic greedy algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( H  = 0.046). 
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Fig. 11. Dynamic greedy algorithm (0 = 0.001). 
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Fig. 9. Dynamic greedy algorithm (0 = 0.082) 

The performance gap increases for larger values of 8, and 

the reason for this involves the fairness criterion. When 8 
is large, then the few objects in the hot-set are valuable 

and other objects are not. On the one hand, if sites repli- 

cate locally valuable objects, then cache storage is wasted 

because other objects could be stored locally, with access 

to the valuable objects being through fast remote memory. 

Fig. 12. Distributed local algorithm (0 = 0.082). 

(Performance of the isolationist algorithm suffers precisely 

because too many replicas are made of valuable objects.) 

On the other hand, if there are too few replicas of valuable 

objects, performance suffers because local memory access is 

still faster than remote memory access. The optimal algorithm 

caches the optimal number of valuable objects at some sites 

and caches less valuable objects at other sites. Sites with 

valuable objects do better than other sites. Overall RCA 
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Fig. 13. Distributed local algorithm (0 = 0.046). 

Relative Performance to Optimal Algorithm 

Fig. 14. Distributed global algorithm (0 = 0.082). 

performance is optimized because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall sites benefit from remote 

memory. Such a configuration is not always “good” for 

the fair algorithm because sites responsible for caching less 

valuable objects do individually worse than those caching 

more valuable objects. Because the fair policy optimizes 

the performance of the worst performing site, the improved 

overall solution is ignored in favor of a solution in which 

all sites have good (but not optimal) performance. As hot- 

sets become flatter (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5), cache decisions about a given 

object have less effect on performance because objects are 

individually less valuable. This leads to smaller “min versus 
max” performance gaps, and fair performance approaches that 

of the average. At the limit of flat hot-sets, the performance 

of the two algorithms is identical. Table IV shows that for a 

given amount of cache, the difference between the optimal and 

fair algorithms can decrease-even though the hot-set curve 

becomes flatter (compare the “20%” and “30%” entries for 

p = 50 and 100). The reason for this is that, for a given 

amount of storage, the system can cache the global hot-set 

while still maintaining a fair policy. Overall, however, the 

largest performance differences between the algorithms occur 

with a sharper hot-set curve. 

The fairness criterion also tends to cause the fair algorithm 

to do relatively worse (in general) as hot-sets overlap less 

and less. When hot-sets are closely related there are relatively 

Fig. 15. Distributed global algorithm (8 = 0.046). 

few “good” configurations because objects, in general, give 

approximately the same benefit to all sites. As correlation 

decreases, there are many more configurations that the average 

algorithm can exploit, because caching an object at one site 

has different implications than caching it at another site. Only 

a subset of these configurations “make sense” for the fair 

algorithm, because while some sites will benefit from the 

cached object, other sites get little benefit. 

The SDev values shown in Table IV show that the fair 

algorithm succeeds in ensuring that no site does badly. The 

large difference between the SDev of the algorithms for large 6 
and p shows that the average algorithm gets its performance by 

requiring some sites to cache objects primarily for the benefit 

of other sites. Moreover the CHIT values (representing local 

and remote cache hits) show that the fair algorithm is forced 

to leave certain objects on disk-because caching them at 

any site would cause the performance spread among sites to 

become too wide. It is interesting to note that in Table V (for 

per site cache storage of 5% of total number of objects) the 

average and fair policies maintain only a single object replica 

for all values of 6 and p considered. The benefit per cached 

object, however, is slightly greater for the average than for 

the fair when the correlation is less. In other words, even 

though the coordinated decisions of the fair algorithm result 

in no “replication,” it does not cache the same amount of 

“value” because this would not satisfy the fairness criterion. 

Note that the two algorithms get the same amount of benefit 

when sites have flat hot-sets. Even when sites have relatively 

sharp hot-sets ( S T O R E ~ ~ A ~ ~  = 30%), the algorithms still have 

the same B N F T  when sites have strong correlation. Only 

when correlation is low and sites have sharp hot-sets does the 

performance of the two algorithms diverge. 

E. Performance of the Isolationist Strategies 

Figs. 6-11 show the performance (relative to the optimal) 

of the two isolationist (or “greedy”) algorithms. The static 

and dynamic greedy algorithms have features in common, but 

also differ significantly in their behavior. 

First we examine the behavior of the static greedy algorithm 

(Figs. 6-11). When hot-sets are identical or closely overlap, 

relative performance is quite bad. As hot-sets diverge more, 
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TABLE V 
REPLlCArlON DONE BY T H E  OPTIMAL AND SIAIIC G K L ~ D Y  

ALGORI~HMS (PER-SIIb CACHE STORAGE HOl US 5% OF OBJFCIS) 

are not evaluated. This leads to low remote cache hit-ratios. 

This performance aspect is accentuated for small p (at the 

limit, remote cache hit-ratios are 0). Note that this “correlation 

effect” is only observed for large cache sizes in Fig. 11. When 

hot-sets are large, the static greedy policy results in small local 
hit-ratios: The key performance issue is the effective use of 

remote cache even when sites have little hot-set overlap. As 
a result, relative performance does not improve much with 

decreasing correlation. Only when sites have large amounts of 

cache does decreasing correlation lead to relative performance 

improvement. 

Note that when sites have small amounts of cache storage, 

relative performance is fine; relative performance is worse for 

a sharper hot-set than for a flat hot-set. However, when sites 

have large amounts of cache storage, then relative performance 

degrades as hot-sets become flatter. The key characteristic 

of the greedy algorithm is that sites do local optimization 

without knowledge of conditions at other sites. The local 

benefit of caching object / at site ,I when no other site has 

cached that object is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPtj(fd - t l ) .  If one replica is already 

cached at some other site, then the benefit is reduced to 

P,,(t, - t l ) .  Consider the task of selecting among a set of 

cache candidates. Under the optimal algorithm, sites often 

cache objects with smaller PLJ because they can already 

access the more valuable objects through remote memory. 

Cache benefit is increased by reducing the access time for 

less valuable objects-i.e., objects are moved up the memory 

hierarchy from disk access to main-memory access. Under 

the greedy policy, the “memory hierarchy” factor is ignored 

in favor of the “object importance” factor. With sharp hot- 

sets and small cache sizes, the P,, factor is large, so the 

“penalty” for local caching of an already replicated object 

is high. In other words, the alternative candidates for caching 

are sufficiently important that ignoring them greatly degrades 

relative performance. When sites have sharp hot-sets and lots 
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relative performance levels out (as a function of 1)). Under the 

static greedy algorithm, sites that have much overlap among 

their hot-sets cause N-degree replication for valuable objects 

and no caching for less important objects. As correlation 

decreases, the degree of (wasteful) replication is automatically 

reduced-even under the greedy policy-because sites seek 

to cache different objects. When hot-sets are small, the static 

greedy policy at least succeeds in achieving high local cache 

hit-ratios. Relative performance (compared to the optimal) 

suffers because the tradeoffs between local and remote cache 
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TABLE VI 
ILLUSTRATION OF THE BENEFITS OF REMOTE CACHING 
(PER-SITE CACHE STORAGE HOLDS 5% OF OBJECTS) 

Optima, LRU, Remote LRU, Without 
Cache Remote Cache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 

1 7.1 19.5 44.4 
10 7.1 20.5 44.4 
50 14.2 30.8 44.4 
100 20.8 34.6 44.4 

1 11.2 27.1 47.8 
10 11.5 27.8 47.8 
50 19.6 35.0 47.8 
100 24.9 37.3 47.8 

1 22.5 37.3 50.4 
10 22.9 37.4 50.4 
50 28.0 39.1 50.4 
100 30.3 39.6 50.4 

1 34.0 40.5 51.0 
10 34.0 40.5 51.0 
50 34.0 40.5 51.0 
100 34.0 40.5 51.0 

Mean Object Access Time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

of cache, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPij term is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvery small (sites operate at the tail 

end of the access distribution), so that the overall penalty is 

relatively small. Conversely, when sites have flat hot-sets, the 

Pij factor is small, so that the penalty is relatively small. 

Consequently, if sites have small amounts of cache, because 

the Pij term is small and the penalty is taken over relatively 

few decisions, relative performance is not too bad. However, 

when sites have large amounts of cache, the penalty is taken 

for many cache decisions, so that relative performance is bad. 

The dynamic greedy algorithm differs from the static greedy 

algorithm in the way that its performance is affected by the 

inter-site correlation parameter p .  The static greedy algorithm 

tends to do better with decreasing correlation-dramatically 

better, in fact, except in the case of a flat hot-set. The effect 

of p on the dynamic greedy algorithm is not as clear-cut, 

and is related to hot-set shape and cache size. When hot-sets 

are sharp or moderate (Figs. 9 and lo), the performance of 

the dynamic greedy algorithm is less than three times worse 

than optimal for p < 50. As sites have less correlation, 

the relative performance degrades greatly (for larger cache 

sizes). Recall that the dynamic greedy algorithm manages 

local cache with an LRU policy. When hot-sets are relatively 

small sites can cache much of their hot-sets locally. The 

key performance issue is whether remote cache can be used 

given a local cache-miss. Even though sites do not know 

which objects are “statically” important, the small hot-set size 

means that “hot” objects will tend to be valuable objects. 

Because of the randomness introduced by the LRU policy, 

one site’s cache contents does not duplicate another site’s 

cache. These two factors result in relatively better performance 

than static greedy. However, as inter-site correlation decreases, 

the dynamic greedy (i.e., local cache management) policy 

degrades because the percent of remote cache-hits decreases 

especially for large cache sizes. 
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When hot-sets are flat (Fig. 11) the performance of the 

dynamic greedy algorithm (for a given amount of cache) is 

almost completely unaffected by p .  Instead, the key determi- 

nant of performance is cache size. When per-site cache size 

is less than 8% of the total number of objects, then relative 

performance is less than two times worse than the optimal. As 
cache size increases, relative performance degrades to more 

than 4.6 times worse than the optimal. Because hot-sets are 

so large, one object is about as valuable to a given site as 

any other object. The LRU policy leads to an almost random 

relationship between sites’ cache contents. As a result, for large 

hot-set the percent of remote cache hits increases despite the 

fact that local cache hits decrease, The large performance gap 

between the optimal and dynamic greedy algorithms occurs 

when there is enough cache storage in the system that the 

penalty for suboptimal decisions begins to really add up. 

The above analysis also explains the performance differ- 

ences between the greedy algorithms. For sharp or moderate 

hot-sets, the static greedy algorithm does better than the 

dynamic except in the case of strong inter-site correlation. 

Conversely, when hot-sets are flat, the dynamic greedy al- 

gorithm does better than the static except in the case of very 

weak correlation. Both algorithms do too much replication (see 

Tables V and VIII) because they are not aware of the cache 

decisions at other sites. The dynamic algorithm avoids com- 

plete duplication of cache contents because cache contents are 

dynamically determined by the actual (i.e., dynamic) pattern 

of object accesses. The advantage of the static algorithm is 

that it has complete knowledge about object value. Sharp hot- 

sets imply that local cache-hit ratios are quite high, regardless 

of remote cache. Except in the case of strong site correlation 

(where the static greedy algorithm does, in the limit, N-site 
replication), higher local cache hits are more important than 

higher remote hits. Flat hot-sets imply that local cache is 

ineffective, and that remote cache must be used efficiently for 

good performance. The dynamic greedy therefore does better 

than the static (except when the weak correlation automatically 

leads to LRU type of randomness), Tables V and VI11 confirm 

this analysis. Note how the mean number of replicas declines 

“automatically” under the static greedy algorithm as inter- 

site correlation declines. Although the number of replicas 

also declines for the dynamic algorithm, the range is much 

smaller. For low values of p, the mean benefit per replica is 

much higher under the dynamic algorithm. As p increases, the 

situation reverses, and the static algorithm has higher BNFT 
values. When sites have flat hot-sets (STOREMAX = 5%), 
the dynamic algorithm has BNFT = 4.6 for all values of p. 
The static algorithm has lower values-except at the extreme 

of random correlation, where BNFT = 4.7. 
I )  Benefits of Remote Caching: Although the focus of this 

subsection has been on the weaknesses of the isolationist 

algorithms as compared to the optimal, it is also important 

to note that the benefits of remote caching apply for all 

algorithms. In Table VI we compare the performance of two 

systems that use the LRU policy to manage local cache. The 

systems differ in that in one (the second column) sites are able 

to access remote cache; in the other system (the third column) 

remote caching is not supported. We see that with only ten sites 
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in the system, remote caching offers a very large performance 

improvement. Performance in the non-RCA system is not 

affected by the degree of inter-site correlation because sites 

cannot access remote cache in any case. It is also interesting 

to note that even with random correlation among the sites’ 

data access, the RCA system using the LRU algorithm still has 

much superior performance compared to the non-RCA system. 

The benefits of remote memory architecture compared to more 

traditional client/server architectures are described more fully 

in [17]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F. Performance of the Distributed Strategies 

The distributed algorithms fill the performance gap between 

the optimal and greedy algorithms. Instead of order of magni- 

tude performance differences, the distributed local (henceforth 

“local”) algorithm never does worse than 1.4 times optimal. 

The distributed global (henceforth “global”) does even better. 

When per-site cache sizes are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5% or less of the total number of 

objects, then performance is less than 1.03 worse than optimal. 

Even with larger cache sizes, performance is never worse than 

1.15 of optimal. 

The isolationist algorithms do relatively worse with increas- 

ing cache size, and (for small cache sizes) do better with 

sharp hot-sets. This behavior is due to the ineffective use 

of remote memory. In contrast, the relative performance of 

distributed algorithms is much less affected by cache size, 

and gets better with flat hot-sets. (At the extreme of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = 0.0, 

performance is indistinguishable from the optimal). Tables V 

and VI11 show that the greedy algorithms maintain a high 

number of replicas per cached object. These replicas crowd 

out other objects which must then be accessed on disk. In 

contrast, the distributed algorithms have REPL values which 

are very close to optimakg This indicates that sites are aware 

of the cached objects at other sites and take advantage of these 

replicas to bring other objects into main-memory. Because 

these algorithms factor remote site decisions into local cache 

decisions, the performance gap with respect to the optimal has 

to do with the issue of coordinated decision making (and the 

cost function in the case of the local algorithm). 

The relative performance of both distributed algorithms is 

clearly dependent on the shape of the hot-set: the sharper 

the hot-set, the worse the relative performance. Compare, for 

example, Fig. 12 to Fig. 13 and Fig. 14 to Fig. 15. At the limit 

of completely flat hot-sets, the performance of the distributed 

algorithms is indistinguishable from the optimal. The reason 

for this behavior is that, to the extent that these algorithms 

make suboptimal decisions, a greater performance penalty is 

incurred when objects are individually more valuable. 

Cache size also has an important effect on relative perfor- 

mance. In Fig. 14, if per-site cache size is less than 6% of the 

total number of objects then the performance gap is less than 

1.05. The performance gap only exceeds 1.10 when per-site 

‘In a symmetric topology caching a second replica cannot improve the 

performance of remote sites because all sites are equally distant from one 
another. The LAN environment investigated here has a symmetric topology, 
which is why the optimal R E P L  values are about 1 in all cases. In contrast, 
thc greedy algorithms have much higher R E P L  valucs than the optimal, 
while the distributed algorithms have small R E P L  value\. 

cache size is 10%. Although the performance gap of the local 

algorithm is larger than the global, the gap in Fig. 12 becomes 

large only when per-site cache size exceeds 4%. Similar 

behavior is seen in Figs. 13 and 15. This behavior resembles 

the effect of hot-set shape: the penalty for suboptimal decisions 

increases as the ratio of per-site cache storage to the total 

number of objects increases. 

Inter-site correlation plays a role in  system behavior. In  

examining Fig. 14 we see that (when per site cache size is 

larger than 6%) relative performance degrades as correlation 

is reduced beyond the point of p = 35. In Fig. 15, when per 

site cache size is larger than 7%, performance degrades as 

correlation decreases for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp greater than 50. 

The consequences of decreasing inter-site correlation on 

the effectiveness of distributed processing impact both the 

global and local algorithms. The local algorithm, however, also 

degrades with increasing correlation. As a result, relative local 

performance degrades at both extremes of the p parameter, and 

does best for intermediate values. In the case of sharp hot-sets 

(Fig. 12), local performance tends to degrade with increasing 

correlation. Although local algorithm does use information 

about remote memory, this information per se is not enough 

(for optimal average performance) when sites have strong 

correlation among their hot-sets. Sites replicate the same set of 

valuable objects-even though the objects are already cached 

at other sites. The “object importance” factor is sufficiently 

large that, coupled with the difference between local and 

remote access time, caching valuable objects benefits sites 

more than bringing less valuable objects off disk. Observe 

in Table VI11 how the local algorithm has the largest REPL 
values for sharp hot-sets and strong correlation. 

The global algorithm therefore has the greatest performance 

improvement, compared to to the local, when sites have large 

amounts of cache and their hot-sets are closely correlated. 

Under the global strategy, certain sites are constrained to cache 

less important objects so that no site has to access the disk 

for these objects. Note that these constraints causes all sites 

to improve their performance. The standard deviation of site 

performance (Table VII), when hot-sets are either moderate- 

flat or when correlation is strong, is about the same for both 

the local and global algorithms. This shows that some sites 

do not do appreciably better than other sites-despite the 

fact that they are doing local optimization. Instead, all sites 

suffer about the same magnitude of performance loss. Under 

sharp hot-sets and little correlation, the standard deviation is 

much greater under the local than under the global algorithms. 

Local optimization causes sites that happen to benefit from 

remote cache (due to the randomness caused by p) to do much 

better than other sites. The cooperation caused by the global 

optimization goal “smoothes out” the intrinsic randomness 

of the system. 

When sites have moderate hot-sets (Fig. 13), the local 

algorithm (relative to the optimal) exhibits different behav- 

iors depending on the amount of cache storage. When sites 

have little cache, then performance can actually degrade with 

decreasing correlation. Only for large amounts of storage does 

performance improve with decreasing correlation. The hot-sets 

of Fig. 13 are larger than in Fig. 12. Consequently, when 
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STOREni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 

30% 1 

30% 10 

30% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 
30% 100 

20% 1 

20% 10 

20% 50 
20% 100 

10% 1 

10% 10 

10% 50 

10% 100 

TABLE VI1 
PERFORMANCE OF THE DISTRIBUTED AND DYNAMIC GREEDY ALGORITHMS (PER-SITE CACHE STORAGE HOLDS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5% OF OBJECTS) 

Distributed Local Distributed Global Dynamic Greedy 

RTime SDev C H I T  RTime SDev C H I T  RTime SDev C H  17 

8.4 0.5 0.942 7.1 0.5 0.972 19.5 0.3 0.747 

8.0 0.6 0.949 7.3 0.4 0.966 20.5 0.6 0.729 

14.7 2.1 0.823 14.4 2.2 0.716 30.8 1 .0 0.549 

23.3 4.9 0.671 21.0 2.5 0.716 34.6 0.9 0.804 

11.2 0.3 0.900 11.2 0.3 0.900 27.1 0.3 0.619 

11.9 0.6 0.886 11.6 0.4 0.891 27.8 0.3 0.608 

20.2 2.3 0.735 19.8 2.2 0.745 35.0 1 .o 0.482 

27.3 3.7 0.605 25.0 2.1 0.652 37.3 0.5 0.441 

22.5 0.3 0.702 22.5 0.2 0.702 37.3 0.3 0.44.5 

23.1 0.4 0.692 22.9 0.4 0.695 37.4 0.3 0.445 

28.4 1 .5 0.599 28.1 1.7 0.605 39.1 0.5 0.415 

31.7 1.7 0.534 30.4 1 .5 0.561 39.6 0.3 0.407 

Distributed 
Global zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

REPL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABNFT 

1.1 11.0 

1.0 11.0 

1.0 9.6 

1.0 8.3 

1.1 10.2 

1.0 10.1 

1.0 8.5 

1.0 7.5 

1.1  7.9 

1.0 7.8 

1.0 6.9 

1.0 6.4 

1.1 5.6 

1.0 5.6 

1.0 5.7 

1.0 5.7 

5% 
5% 
5% 
5% 

Dynamic 
Greedy 

REPL BNFT 

1.8 8.7 

1.8 8.4 

1.4 6.4 

1.3 5.6 

1.5 7.2 

1.5 7.0 

1.3 5.6 

1.3 5.1 

1.3 5.2 

1.3 5.2 

1.3 4.7 

1.2 4.7 

1.3 4.6 

1.2 4.6 

1.2 4.6 

1.2 4.6 

1 34.0 0.3 0.499 34.0 0.3 0.499 40.5 0.3 0.391 

100 34.0 0.4 0.501 34.0 0.4 0.501 40.3 0.395 

sites are evaluating the cache candidate set, the “object impor- 

tance” factor is smaller and the “memory hierarchy” factor 

implies that sites should concentrate on bringing nonreplicated 

objects from disk into main-memory. Closer overlap among 

sites then leads to larger remote cache-hit ratios. As sites have 

more available cache storage decisions are made about objects 

at the tail end of the access distribution. Local optimization 

then encourages replicating even marginally (locally) impor- 

tant objects as opposed to caching even less important objects 

that would tend to benefit the overall system. In this situation, 

the local strategy does relatively better when low inter-site 

correlation implies that sites can benefit from the differing 

cache contents of other sites. 

1) Convergence Properties of the Distributed Algorithms: 
By its nature, the solution achieved by either of the distributed 

algorithms improves monotonically with each new iteration 

of the algorithm. Two questions therefore arise. First, how 

quickly do the distributed algorithms converge to a stable 

solution? (A stable solution can be defined as one which does 

not change through any further iterations of the algorithm. Be- 

cause of the monotonicity property and the finite cardinality of 

the state space, a stable solution must be reached eventually.) 

Second, how close is this stable solution to the global optimal 

solution? (Since each iteration of the algorithm can change 

only the eligibility decisions at one site, global optimality may 

not be achieved.) In this subsection we answer these questions 

for the distributed global algorithm. 

In Table IX statistics for the distributed global algorithm 

are presented. (The cases examined are the same as in Table 

VU.) Entries in the third and fourth columns indicate the 

number of algorithm iterations needed to reach a given percent 

of the optimal algorithm’s performance. For example, when 

STOREMAX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 30% and p = 1, then a solution which 

is at least 95% as good as the optimal is reached by the 

TABLE VI11 
REPLICATION DONE BY DISTRIBUTED AND DYNAMIC GREEDY 

ALGORITHMS (PER-SITE CACHE STORAGE HOLDS 5% OF OBJECTS) 

20% 

20% 

20% 

20% 

10% 

10% 

10% 

10% 

5% 

5% 
5% 

5% 

- 
P 

1 

10 

50 

100 

1 
10 

50 

100 

- 

1 

10 

50 

100 

1 
10 

50 

100 

Distributed 
Local 
- 
REPL 

1.4 

1.2 

1 .0 

1 .o 

- 

1.1 

1.1 

1 .o 
1 .0 

1.1 

1.1 

1 .o 
1 .0 

1.1 

1 .0 

1 .o 
1 .n 

- 
BNFT 

10.7 

10.8 

9.5 

7.8 

- 

10.1 

10.0 

8.4 

7.0 

7.8 

7.7 

6.8 

6.1 

5.6 

5.6 

5.7 

5.7 

1 

ninth site on the first round of cache decisions (denoted by 

“1,9”). Because individual cache decisions at the first nine 

sites can yield so much benefit, good overall performance is 

achieved-even though the tenth site has not yet made its 

first set of decisions. An additional site (the tenth) must make 

its decisions in order to reach a solution which is at least 

98% as good as optimal (“2,O”). Clearly, very good solutions 

are reached quite rapidly. In fact, though not indicated in 

the table, all examples achieved stability by the third round 

of iterations. The EQUIV column indicates whether or not 
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the stable solution reached by the distributed global optimal 

algorithm is within 0.1% of the global optimal solution. 

Obviously, not all examples achieve this. 

Table IX shows that the rate of improvement is not related 

to whether this equivalence of solutions actually occurs. For 

example, when p = 100 the rate of improvement is the 

most rapid of all the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASTOREJ~.A.~-  = 30% cases. However, 

equivalence does not ultimately occur- in  contrast to the case 

of p = 1 ,  which has a slower improvement rate. 

Recall that the optimal algorithm determines the optimal 

configuration A- in “one” step. The distributed algorithms 

are heuristics in which each site makes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB eligibility decisions 

(where L3 is the cache size) before the next site makes its 
decisions. The set of these decisions is supposed to transform 

the site’s cache contents into the state i t  has in the optimal 

configuration. In practice, one site’s decisions constrain the 

decisions of all other sites. As we have seen, because the 

sites under the distributed algorithm do not make coordinated 

decisions, the union of locally optimal decisions do not always 

equal the globally optimal configuration. Globally suboptimal 

decisions have, of course, a greater effect when individual 

cache slots are more valuable (large S T O R E . ~ I , ~ . ~ ) .  Equally 

importantly, when sites have less correlation among their hot- 

sets, the implications of one site’s decisions on other sites are 

more subtle than when they are closely correlated. As a result, 

the issue of coordinated decisions (i.e.. the optimal algorithm) 

plays a larger role. 

The rapid improvement of the distributed algorithms points 

to an important advantage over the optimal algorithm. If the 

system need only determine a configuration once, then i t  would 

make sense to use the optimal rather than the distributed 

algorithm. In practice, of course, sites do not have access to 

exact, a priori knowledge of access frequencies. A dynamic 

estimation, based on previous system history, would then be 

done periodically; the new estimate of the P,,, would then 

be input to a new invocation of the optimization algorithm. 

Because the optimal algorithm requires a set of coordinated 

decisions, changes in access frequencies can potentially require 

many changes in sites’ caches. In contrast, the localized 

decisions made by under the distributed algorithms means that 

fewer cache changes need be made if only some sites have 

different access frequencies. Since the distributed algorithms 

improve rapidly, an RCA implementation would prefer them 

over the optimal because they can afford to do the optimization 

more frequently than the optimal algorithm. 

number 

of objects, -If, in the experiments described in the tables 

and figures is set to 100 in order to facilitate generation and 

analysis of the results. By varying the ratios of per-site cache 

size to AI we can predict the behavior of a system with much 

larger ,ZI and proportionally more cache storage. An obvious 

issue is the scalability of the distributed algorithms. The 

complexity of the optimal algorithm i s  a linear function of the 

number of sites and the number of objects (see Section IV-A). 

As explained in Section IV-B, the distributed algorithms are 

more efficient than the optimal algorithms. However, if the 

performance of the distributed algorithm is also a function of 

the amount of per-site cache storage B ,  then the algorithm 

will not scale well in a realistic system. 

To analyze the scalability of the distributed global algorithm 

we perform the following experiment (see Table X). The 

number of objects in the system is increased by two orders 

of magnitude (from 100 to 1 0  000). The 0 values are adjusted 

to maintain the same STORE\r.A.l- values of Table VI1 and 

Table VIII. Four “correlation” values are listed per case: 

“total” corresponds to = I ;  “random” corresponds to p 
= ,If. The values of 0.9 and 0.5 correspond, respectively, to 

setting p to be one tenth and one half of A f .  Per-site cache 

storage is maintained. in both cases, at 5% of M. We find that 

the algorithm scales very well. Performance for most cases 

i s  identical. Differences between the performance are due to 

the effect of p being an input to the process of a random 

generation of site hot-sets. In some cases (the second case 

of S T O R E . J I , ~ . ~  = 30%), performance is better when M is 

10 000. In other cases (the fourth case of STOREJI .A .~  = 
30%), performance is better when ,4f is 100. 

2) Scalubility of the Distributed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlgorithms: The 

G. The Effect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof TI oii Performunce 

The previous analysis of performance involves the situation 

where all sites have uniform relative activity (i.e., r/ = 1.0). 

Each site’s contribution to average performance is thus the 

same as any other site. We now examine situations in which 

some sites have greater activity than others. Table XI shows 

how the optimal average algorithm performs for three values 

of 71. Recall that smaller ‘r/ implies a few, very active, sites; 

other sites in the system are much less active. 

One clear trend is that mean access time decreases as 

relative site activity is more skewed (i.e., as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7) decreases). 

Also, the improvement is more marked when sites have sharp 

hot-sets (large values). Finally, the relative 

improvement (over ‘rI values) is more pronounced when sites 

have less hot-set correlation (large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0). 
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STOREAT~,I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 

30% 1 

30% 10 

30% 50 

30% 100 

20% 1 

20% 10 

20% 50 

20% 100 

10% 1 

10% 10 

10% 50 

10% 100 

TABLE X 
SCALABILITY PERFORMANCE OF THE DISTRIBUTED GLOBAL ALWRJTHM FOR 

TWO VALUES OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM (PER-SITE CACHE STORAGE HOLDS 5% OF OBJECTS) 

Optimal Average zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.0 0 = 0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 = 0.0 

7.1 7.0 6.9 

7.1 7.0 6.9 

14.2 13.6 12.3 

20.8 20.5 19.2 

11.2 11.2 11.1 

11.5 11.5 11.3 

19.6 19.0 17.7 

24.9 24.9 23.6 

22.5 22.5 22.5 

22.9 22.8 22.8 

28.0 27.6 26.8 

30.3 30.3 29.6 

Distributed Global 

1tr = 100 nr = 10 000 

TOTAL 
30% 0.9 7.3 7.2 

30% 0.5 14.4 13.9 

30% RANDOM 21.0 22.0 

20% 

20% 

20% 

20% 

TOTAL 11.2 11.2 

0.9 11.6 11.5 

0.5 19.8 19.2 

RANDOM 25 .0 25.7 

10% 

10% 

10% 

10% 

TOTAL 22.5 22.5 

0.9 22.9 22.9 

0.5 28.1 27.6 

RANDOM 30.4 30.5 

5% 

5% 

5% 

5% 

TOTAL 34.0 34.0 

0.9 34.0 34.0 

0.5 34.0 34.0 

RANDOM 34.0 34.0 

As 7) decreases, a few sites become increasingly more 

important relative to the other sites in the system. When other 

system characteristics are held constant (e.g., per-site cache 

size, hot-set distribution, and inter-site hot-set correlation), 

then the optimal decision is for unimportant sites to cache 

objects for the important sites. These sites behave, in a sense, 

as “object servers” rather than as independent workstations. 

Important sites therefore have higher remote cache-hit ratios. 

Although less active sites may suffer a performance loss 

(because locally important objects are not stored on-site), 

overall system performance improves because the active sites 

serve a greater number of object requests. Caching a hot object 

yields higher cache-hit ratios when hot-sets are sharper. As a 

result, benefits from the “object-serving’’ of less active sites 

increase for sharper hot-sets. 

Changes in overall system performance (due to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7)  are 

relatively small when sites exhibit much correlation between 

their hot-sets. In such a case, sites already cache much of one 

another’s objects: emphasizing the importance of certain sites 

has little effect on replication decisions. In other words, when 

sites already get maximum benefit from the RCA system (due 

to small p ) ,  changes in 7 do not change the contents of the 

system hot-set much. As sites have less correlation, however, 

the system’s hot-set is much larger. Decreasing q implies that 

the system hot-set must be weighted by an object’s importance 

(i.e., the site-weighted frequency of access). The large hot-set 

that exists for 77 = 1.0 becomes much smaller when q = 0.0. 

Under the optimal algorithm, sites cooperate to cache globally 

important objects, and performance improves considerably. 

Note that this analysis of the behavior of the optimal 

algorithm’s performance under different values of rl does not 

involve the issue of coordinated versus distributed decision 

making. The factor of relative site activity only affects the 

value that a site assigns to the presence of an object from 

5% 

5% 

5% 

5% 

cache. This only involves the issue of the optimization goal. 

As one would therefore expect, we found that the relative 

performance of the distributed global algorithm (compared to 

the optimal) is unaffected by changes in q. In almost all cases, 

the distributed global algorithm does not suffer noticeable 

degradation of its relative performance as site activity becomes 

more skewed. 

Under the static greedy and the distributed local algorithms, 

individual sites do local optimization. Table XI1 shows the 

relative performance of these algorithms (compared to the op- 

timal) for three different instances of relative site activity. The 

factors that determine relative performance when sites have 

the same amount of activity were previously discussed. The 

local optimization goal means that individual sites maintain the 

same behavior for all values of 7. As relative activity diverges, 

overall performance depends on which site has what degree of 

importance. For example, if site 1 had the best performance 

of all sites-a purely random occurrence with no bearing on 

system modeling- then mean performance will improve as 

77 decreases. Analysis of these algorithms (i.e., holding other 

variables constant, and varying 7)  is therefore complicated 

because of the effect of these “random” inputs. Nevertheless, 

a few trends are clear. 

When individual cache slots are not valuable (because of 

flat hot-sets), then relative performance is almost completely 

unaffected by decreasing 77 (e.g., STOREMAX = 10% and 

5%). As shown in Table XI, in such cases the optimal algo- 

rithm can hardly exploit the varying site activity because the 

presence of any given object has little effect on performance. 

The actual performance of the local optimization algorithms 

is unaffected by 7 for similar reasons. 

When sites have sharp hot-sets, then relative performance 

is mainly affected by the degree of inter-site correlation. 

Table XI1 shows that the distributed local algorithm suffers 

1 34.0 34.0 34.0 

10 34.0 34.0 34.0 

50 34.0 34.0 34.0 

100 34.0 34.0 34.0 
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= 0.5 

1.19 

1.12 

1.06 

1.17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 .oo 
1 .02 

1.04 

1.13 

1.00 

1.01 

1.02 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.06 

1 .00 

1.00 

1 .oo 
I .oo 

TABLE XI1 
RELATIVE PEKFORMANCE OF THE LOCAL OPTIMILA’I I O N  AI GOKllHMS FOR 

THREE VAI.UBS OF /] (PER-SITk CACHE STORAGF HOLDS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5% OF OBJECTS) 

r /  = 0.0 

1.20 

1.13 
1.13 
1.30 

1 .33 
1.02 

1.08 

1.22 

1 .oo 
1 .01  

1.02 

1 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO 

1.00 

1.00 

1 .00 
I .or) 

30% 

30% 

30% 

30% 

1 
10 
50 

100 

1 
10 

50 

100 

I 

10 

50 

100 

1 

I O  
50 

100 

20% 

20% 

20% 

20% 

6.24 6.30 

4.14 4.09 

1.76 1.81 

1.34 1.38 

4.40 4.50 
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performance degradations (as a function of decreasing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71) 

when p = 100. The relative performance of the static greedy 

algorithm also degrades for smaller values of p. When sites 

can benefit from each other’s cache, then the penalty for local 

optimization is not too high-active sites can still utilize the 

contents of less active sites’ cache. As correlation among sites’ 

hot-sets decreases, then local optimization does increasingly 

(relatively) worse for the case with smaller hot set, because 

less active sites cannot benefit the other sites in the system. As 

before, the distributed local algorithm does better than static 

greedy. 

VI. CONCLUSION AND FUTURE WORK 

The high performance networks in many large distributed 

systems enable a site to reach the main memory of other sites 

more quickly than the time to access local disks. Remote 
memory can serve as an additional layer in the memory 

hierarchy between local memory and disks, but optimizing 

performance in the remote cache architecture is complicated 

by the fact that local sites may make replication decisions 

independently of other sites. 

Remote caching architectures offer immediate benefit be- 

cause of the opportunity to take advantage of objects that are 

cached at remote sites. Eficient use of the memory resources 

in such a system depends critically on replica management. 

A tradeoff exists between simplistic replication of valuable 

objects (eliminating the need to pay the extra cost of remote 

access), and using local cache storage to cache unreplicated 

objects. This paper shows that the optimal selection of objects 

for caching is a function of the hot-set curve, available cache 

storage, differences between the access patterns of the sites, 

and the criterion for optimal performance. 

In this paper we have: 

1) Introduced the idea of a remote caching architecture. 

2)  Analyzed the issues affecting its performance. 

3) Developed optimal replica management algorithms. 
4) Examined the issues of cost function and remote caching 

information as they effect algorithm performance. 

5) Analyzed the interaction of ‘‘object importance” factor 

with “memory hierarchy” factor. 

6) Developed a distributed global optimization algorithm 

with performance very close to optimal. 

7) Developed a distributed local optimization algorithm 

(that maintains site autonomy) with mean access times 

that are generally close to optimal. 

8) Devised greedy algorithms for replica management. 

We identified and analyzed the factors that are critical 

to system performance. The performance of two optimal 

algorithms was used as an upper bound on remote caching 

architecture performance: Optimality results from the fact 

that sites make coordinated decisions. Two greedy algorithms 

are used as a lower bound on system performance. These 

algorithms do not factor information about the state of other 

sites into local site decisions. We showed that while locally 

“greedy” decisions can lead to far worse performance than 

“optimal” decisions, the degree of performance degradation 

depends on the amount of cache storage available, the kind 

of access pattern, and the variation among the sites’ access 

patterns. Two distributed algorithms are then developed which 

provide performance that is close to the optimal-even though 

decisions are made in distributed fashion. The algorithms work 

by exchanging information between sites. This information is 

used as input for local cache decisions. One algorithm does 

local optimization, and the other does global optimization. 

The performance differences between the two point to the 

autonomy tradeoffs in a remote caching architecture. 

This paper demonstrates the potential of remote memory to 

reduce the number of disk acesses, and thus to improve per- 

formance. It  also discusses distributed algorithms that, given 

knowledge of object access rates, enable sites to achieve close 

to optimal performance. Optimality refers here to average ob- 

ject access time, and assumes that object accesses are “static” 

for significant periods of time. A major direction of future 

research in this area is dynamic replica management. A key 

issue for remote caching is the development of an LRU analog 

that captures global-in addition to local-object access 

patterns [18]. As this paper shows, algorithms which only cap- 

ture local object value have order-of-magnitude performance 

gaps compared to the optimal. Another area of research is 

applying the distributed algorithms to a nonsymmetric network 

topology. In a symmetric topology, the “arithmetic” of these 

algorithms is greatly simplified because, from the perspective 

of any given site, all sites can be characterized as either 

“local” or “remote’.’ This categorization is, of course, valid 

for LAN-like topologies. In more complicated topologies, i t  

might be necessary to modify the algorithms to reduce the 

amount of information that must be stored to keep track of 

71 sites’ constraints. In addition, synchronous site decisions 

would be less reasonable in such topologies, and algorithms 
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be devised. Implementation of remote memory requires that 

these issues be addressed; this paper shows that RCA potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Prediction of Performance and Processor 

Requirements in Real-Time Data Flow Architectures 
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Abstract-The purpose of this paper is to present a new data 
flow graph model for describing the real-time execution of iter- 
ative control and signal processing algorithms on multiprocessor 
data flow architectures. Identified by the acronym ATAMM, 
for Algorithm to Architecture Mapping Model, the model is 
important because it specifies criteria for a multiprocessor op- 
erating system to achieve predictable and reliable performance. 
Algorithm performance is characterized by execution time and 
iteration period. For a given data Row graph representation, the 
model facilitates calculation of greatest lower bounds for these 
performance measures. When sufficient processors are available, 
the system executes algorithms with minimum execution time and 
minimum iteration period, and the number of processors required 
is calculated. When only limited processors are available or when 
processors fail, performance is made to degrade gracefully and 
predictably. The user off-line is able to specify tradeoffs between 
increasing execution time or increasing iteration period. The 
approach to achieving predictable performance is to control the 
injection rate of input data and to modify the data Row graph 
precedence relations so that a processor is always available to ex- 
ecute an enabled graph node. An implementation of the ATAMM 
model in a four-processor architecture based on Westinghouse’s 
VHSIC 1750A Instruction Set Processor is described, and the 
performance of a real-time space surveillance algorithm on this 
system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  investigated. 

Index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATerms- Algorithm to Architecture Mapping Model 
(ATAMM); iterative control and signal processing algorithms; 
multiprocessor data flow architectures; periodic, nonpreemptive, 
dynamic multiprocessor scheduling; real-time systems; time 
performance and processor requirement prediction. 

I .  INTRODUCTION 

ULTIPROCESSOR computing systems are being used M to obtain high-speed computing performance through 

concurrency, while at the same time achieving a high level 

of fault tolerance and reliability [ 11. The data flow strategy is 

gaining wide acceptance as an excellent computational model 

for multiprocessor systems [2]. In the data flow paradigm, 

an algorithm is expressed as a collection of tasks which are 

to be executed according to a set of precedence constraints. 

The algorithm is represented by a data flow graph, a directed 

graph in which the nodes represent tasks and the arcs represent 
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communication paths between nodes [ 3 ] .  The presence of data 

on an arc is denoted by the placement of a token on that arc. 

A node is said to be enabled when all incoming arcs contain 

a token. An enabled node is executed (fired) by an available 

processor by encumbering one token from each incoming arc, 

delaying for a time equal to the execution of the node, and 

the depositing one token on each outgoing arc. A number of 

experimental data flow multiprocessor architectures have been 

developed and tested [4]. 

An emerging area of considerable interest is to use data flow 

computers for real-time computing applications such as the 

implementation of control and signal processing algorithms for 

aerospace, factory automation, and remote sensing [5 ] .  Real- 

time control and signal processing algorithms possess unique 

features often not shared with general-purpose computing 

problems. First, these algorithms periodically process infinite 

sequences of input data and produce infinite sequences of out- 

put data. The process of consuming one input token, executing 

all algorithm tasks once, and producing one output token is 

called an iteration. Because control and signal processing al- 

gorithms repetitively perform algorithm iterations, computing 

concurrency is achieved in two ways. Different processors can 

be assigned to simultaneously perform different tasks for the 

same iteration. This intraiteration concurrency is referred to 

as parallel concurrency because i t  is the result of inherent 

parallelism in the algorithm. In addition, however, different 

processors can be assigned to simultaneously perform tasks for 

different iterations. This interiteration concurrency is referred 

to as pipeline concurrency because the algorithm is repeated 

periodically for successive iterations, like a pipeline. Thus, 

real-time algorithms have an additional degree of freedom for 

achieving concurrency. Second, real-time algorithms gener- 

ally require consideration of at least two time performance 

measures. The time which elapses between the encumbering 

of an input token and the production of the corresponding 

output token for a single iteration is called the iteration 

execution time, or simply the execution time. Execution time is 

important in real-time control and signal processing algorithms 

because it  corresponds to time delay or phase lag. The time 

which elapses between the production of output tokens for 

successive iterations is called the iteration period. The inverse 

of the iteration period is the iteration frequency or sample 

frequency, a measure of algorithm throughput. The sample 

frequency is important because i t  limits the bandwidth of 

input and output signals. When task execution schedules for 

successive algorithm iterations are allowed to overlap, the 

performance measures execution time and iteration period 
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