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Replication as a Rule for Determining the
Number of Clusters in Hierarchial Cluster Analysis
John E. Overall and Kevin N. Magee
University of Texas Medical School

A single higher-order cluster analysis can be
used to group cluster mean profiles derived from
several preliminary analyses. Replication is confirmed
when each higher-order cluster contains one cluster
mean profile from each of the several preliminary
analyses. This study evaluated the utility of
replication as a stopping rule in hierarchical cluster
analysis. Replication defined by higher-order
clustering identifies the correct number of under-

lying populations that have distinct density regions
in the multivariate measurement space. When

increased within-population variance obliterates

population distinctions, the replication criterion
provides an underestimation of the actual number
of latent populations. In the case of no true
cluster structure or in the case of only two latent

populations, chance replication can occur. Thus,
replication suggested by higher-order cluster
analysis is not a conservative test for the absence
of a cluster structure, but it does provide valid
evidence concerning the number of latent pop-
ulations when several are present. Index terms:

cluster analysis, cluster means, hierarchical cluster-

ing, replication in cluster analysis, stopping rule
in cluster analysis, validity of cluster analysis.

In the behavioral sciences, the aim of cluster

analysis is often to infer the nature of distinct

underlying populations within a heterogeneous
domain. &dquo;Population recovery&dquo; is the term used
for the ability of clustering methods to segregate
sample observations according to true differences
in the underlying population memberships. Good

population recovery requires determining the cor-
rect number of clusters, as well as establishing
concordance between cluster and population
memberships for the given number of clusters.

However, much of the empirical work evaluating
population recovery capabilities of cluster

analysis procedures has assumed that the correct
number of clusters is known (e.g., Blashfield,
1976; Milligan, 1980, 1981). The most serious un-
resolved problem in cluster analysis methodology
concerns the questionable adequacy of criteria
for determining the correct number of clusters

(Milligan & Cooper, 1985).
Hierarchical cluster analysis (HCA) methods

have contributed to the problem by routinely
providing cluster solutions at all different

hierarchical levels without adequate criteria for

selecting among the alternative solutions. The
hierarchical agglomerative procedures contained
in the Statistical Package for the Social Sciences

(sPss; Noru&scaron;is, 1986), Statistical Analysis System
(SAS; SAS Institute, 1987), and BMDP biomedical

computer library (Dixon, 1988) are the most

widely available. These cluster analysis programs
provide &dquo;fusion coefficients&dquo; that represent the

increasing distances between units that are com-
bined at successive hierarchical levels. SAS also

has incorporated additional quantitative criteria
for consideration as stopping rules in HCA.

Visual inspection of the pattern of fusion co-
efficients across hierarchical levels is similar to

the use of the &dquo;scree criterion&dquo; for determining
the number of factors to rotate in factor analysis.
Mojena (1975) and Mojena and Wishart (1980)
have attempted to define quantitative criteria for

identifying a &dquo;significant jump&dquo; in the pattern
of fusion coefficients, and some of these have
been incorporated into specialized computer pro-
grams that unfortunately are not widely available

(Wishart, 1982). Other authors have proposed
alternative quantitative indices that tend to

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



120

approach a minimum or maximum value at the
correct number of clusters (Davis & Bouldin,
1979) or that evaluate the fit between clustering
and a priori structure (Hubert & Schultz, 1976).
Textbook examples have been provided in which
clear &dquo;shoulders&dquo; in the pattern of fusion co-

efficients coincide with known population dif-
ferences (e.g., Aldenderfer & Blashfield, 1984;
Jain & Dubes, 1988); however, in practice such
clear demarcations are rare in the cases where

cluster analysis seems needed most. Users are left
with subjective choices among clustering levels,
and a personal view of &dquo;meaningfulness&dquo; often
dictates the solution that is reported.

Milligan and Cooper (1985) have provided
comparative evaluations of approximately 30 in-
ternal criteria for stopping a cluster analysis, but

simple higher-order cluster replication was not
considered. Yet replication is generally considered
a superior basis for scientific inference in most

endeavors, and the use of replication as the

criterion for selection of a final cluster solution

is not a new approach. Lorr (1966) and Lorr,
Klett, and McNair (1963) analyzed several subsets
of data and retained as reliable clusters only those
that replicated across different samples. Overall

(1974; Overall, Hollister, Johnson, & Pennington,
1966; Overall & Rhoades, 1982) has pursued
replication of cluster classification of psychiatric
symptom profiles. The present paper discusses a

procedure for using replication as a criterion and

presents analyses based on artificial mixture data

having known latent population composition.

Replication as a Stopping Rule in HCA

Cluster analysis can be used to group together
multivariate profiles that have substantially
similar form. Profiles within each cluster can be

represented by a single mean profile that conveys
the features distinguishing members of the cluster
from members of other clusters. The term higher-
order cluster analysis will be used to indicate
cluster analysis applied to mean profiles for

clusters derived from several independent pre-
liminary analyses. A higher-order cluster analysis
is examined as a way of determining whether the

cluster mean profiles from the several preliminary
analyses are similar enough to be indicative of

replication. This is, of course, not the only way
that replication of cluster analysis results can be
examined (e.g., Breckenridge, 1989; NIcIntyre ~
Blashfield, 1980), but it is the method con-

sidered here.

Replication is suggested when cluster mean

profiles from different preliminary analyses are
similar enough to be grouped together by a

higher-order analysis. Perfect replication results
when higher-order clusters each contain exactly
one cluster mean profile from each of the several

preliminary analyses. For example, at the five-
cluster level of I~ preliminary analyses, perfect
replication would be realized if a higher-order
cluster analysis produced five clusters each con-

taining a single mean profile from each of the
I~ preliminary analyses. The objective criterion
of perfect replication is proposed to define the

appropriate number of clusters (stopping rule) in
HCA.

To use perfect replication as a stopping rule,
first randomly split the total available sample of
multivariate measurement profiles into K sub-

samples. Based on preliminary work with popula-
tion recovery as a criterion, the total sample in
this study was divided into four independent sub-

samples, although the strictness of the perfect
replication criterion obviously increases with the
number of preliminary analyses that contribute
cluster mean profiles to the higher-order analysis.
The aim here was to illustrate the method, rather
than to prematurely restrict its generality.
A preliminary HCA is conducted on each

of the independent subsamples to define solu-
tions at hierarchical levels 2 through M, where M
is a number substantially exceeding the poten-
tial number of replicating clusters. Next, the issue
of perfect replication is examined. Begin at the
two-cluster level and work progressively up the

hierarchy, performing a single higher-order
analysis of cluster mean profiles for each

level separately. Replication of the two-cluster
solution is evaluated at the two-cluster level of

the higher-order analysis; replication at the
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three-cluster level is evaluated at the three-cluster

level of the higher-order analysis; and so forth.

Thus, a separate higher-order analysis must be

accomplished on the cluster means derived from
each level of the hierarchy in the several

preliminary analyses. The appropriate hierar-
chical level to infer true underlying population
differences is the highest level at which perfect
replication can be documented.

The purpose is not to tie the proposed replica-
tion criterion to a particular form of cluster

analysis nor to specify four subsamples as a re-

quired number. The intended purpose here was
to demonstrate the utility of clustering of cluster
means as an objective criterion for replication.
The proposed algorithm can be summarized as
follows:

1. Randomly partition a dataset consisting of
N multivariate measurement vectors into K

independent subsamples.
2. Hierarchically cluster each of they sub-

sample datasets and calculate cluster mean

profiles separately at hierarchical levels

m = 1, 2, ..., M. e

3. At each hierarchical level m, subject the mK
cluster mean profiles to a higher-order HCA
and examine the replication at level m of that

analysis, disregarding results at the other
levels.

4. If none of the higher-order clusters at level
jn contains more than one mean profile from
each of the K original analyses, conclude that

perfect replication has been achieved at

cluster level m.

5. Identify the highest value of m at which

perfect replication is achieved and infer that
the original dataset contains that number of
latent populations.

In any content domain, some latent popula-
tions are likely to be more distinct and some more

overlapping in their distributions on the

measurements available for analysis. Obviously,
in the presence of highly overlapping latent

populations, it is possible that perfect replication
will not be observed at any level. In other cases,

some underlying populations will have distinct

modes that can be recognized by the cluster

analysis, whereas other populations cannot be
discriminated. Thus, perfect replication is pro-
posed as a criterion for defining a lower bound
for the number of latent populations present
within a heterogeneous domain.

Evaluation of the Replication Criterion

Any empirical multivariate sampling study
must necessarily focus on only a subset of the

many parameters that are of potential interest.
In this study, the number of underlying popula-
tions from which the mixture samples were ran-

domly drawn and the degrees of overlap among
those populations were systematically varied. The

population mean profiles were randomly varied
from one dataset to the next to enhance generali-
ty. Parameters that were not varied included a

fixed number of elements in the multivariate

measurement profiles, the equal base rates for the
latent populations, and the normality and

statistical independence of the multiple
measurements within the latent populations.
Ward’s (1963) method using squared Euclidean
distance measures was employed because

preliminary work by the authors provided
evidence of superior population recovery by that
method across different distance measures and

across different methods of cluster analysis.
Equal-sized populations and multivariate nor-

mality have been reported by others to favor the
use of Ward’s method (Aldenderfer & Blashfield,

1984). Again, the purpose was not to restrict utili-

ty of the cluster replication criterion to a single
clustering method. The selection of a clustering
method should be based on the type of data be-

ing analyzed and expectations concerning cluster
structure.

Method

Data were generated to represent random

samples from a mixture of two, three, four, or
six multivariate normal populations with seven
different levels of overlap in their sampling
distributions. With 100 sampling replications for
each combination of number of latent popula-
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tions and degree of overlap, a total of 2,800 mix-
ture datasets were generated for analysis. Because
some latent populations can be expected to dif-
fer more than others in terms of the particular
measurements available for analysis, a normal
random number generator was employed to de-
fine the population means, as well as the sample
observations, within each dataset separately. A
10-element mean profile was generated random-

ly to represent each latent population, and the

sample data were generated by adding independ-
ent random normal deviates of specified variance
to the 10 elements of the population mean pro-
files. The random normal deviate generator of

the IMSL (IMSL, 1982) software library was used
to generate both the population mean configu-
ration and the data sampled from those pop-
ulations for each of the 2,800 mixture datasets.
The generated data represented 100 independ-
ent random samples from two, three, four, or six

overlapping multivariate normal distributions
with diagonal covariance structures. Differences

among the population mean profiles introduced
correlations among the measurements across

the total sample, but it was assumed that

measurements were selected to represent separate
traits and that independent error alone separated
individuals within truly homogeneous popu-
lations.

The degree of overlap in the sampling distribu-
tions for the underlying populations is critical for

determining the 6 6clusterabzl~ty9 of data. The

variance of the independent random deviates,
which were added to the population mean pro-
files to generate sample data, was controlled to

produce different magnitudes of overlap for dif-
ferent series of analyses. Specifically, for each

dataset, the within-population variance was

scaled to be a constant fraction of the variance

of the randomly generated population means on
each of the 10 variables, and an intraclass cor-

relation coefficient (Winer, 1971, p. 248) was
calculated to describe the separation (or overlap)
of the population distributions. Because of this
method of scaling the within-population vari-
ances relative to the variability of the randomly

generated population means, a constant average
separation among the latent populations was
assured on each variable. However, because the

population means were randomly generated, it

was quite possible for individual pairs of popula-
tions to be indistinguishable within datasets con-

sisting of samples from more than two under-

lying populations.
As the within-population variance increased,

the overlap in sampling distributions eventually
obliterated any detectable differences among the

latent populations. One additional monte carlo
series of 100 datasets was run to evaluate the per-

formance of the perfect replication criterion

when samples were drawn from a single
homogeneous population without cluster struc-
ture. Those results are considered the limiting
case of increasing variance for the two, three,
four, and six population conditions. They are

reported as representing an intraclass correlation
of 0.

Monte carlo methods were used to evaluate the

utility of higher-order clustering for defining a
lower bound on the number of latent populations
that are present in a heterogeneous domain. For
each of the combinations of number of randomly
generated population means and specified
degrees of overlap, a series of 100 mixture

datasets was analyzed. Each dataset involved

independently generated population mean pro-
files to which the random sampling error was
added in specified magnitude. Each dataset con-
sisted of a total of 192 10-element sample pro-
files that were then randomly divided into four

subsamples of size n = 48. Four preliminary
cluster analyses were run on the four independ-
ent subsamples using the hierarchical ag-

glomerative cluster analysis program of SPSS

(Noru&scaron;is, 1986), based on Ward’s (1963)
method with squared Euclidean distance meas-
ures. Cluster mean profiles were calculated for
hierarchical levels 2 through 8 in the four

preliminary analyses, and a higher-order cluster

analysis was performed on the mean profiles at
each hierarchical level to identify the highest level
of perfect replicability.
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Results

The frequencies with which the perfect replica-
tion criterion selected different hierarchical levels

in the presence of different numbers of underly-
ing latent populations and different degrees of

(average) overlap in their sampling distributions
are presented in Table 1. The intraclass correla-

tion coefficients, which were calculated from

sample data, represent the ratio of true popula-

tion differences to true variance plus sampling
variance and were calculated separately for the
10 elements of the individual data profiles and
then averaged. When mixture samples involved

three, four, or six latent populations with

reasonably discriminable distributions, as in-

dicated by the intraclass correlation coefficients

greater than .7, the replication criterion was

essentially perfect as a stopping rule. As the

degree of overlap among the randomly generated

Table 1

Replication Frequencies at Different Cluster Levels
and Different Levels of Intraclass R
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latent populations increased, the frequency with
which some populations could not be separated
by cluster analysis increased. Thus, in the

presence of highly overlapping populations, the

replication criterion tended to underestimate the
actual number of latent populations. When there
were only one or two populations, replicability
was observed at levels beyond the actual number
of latent populations. This is explained by the
fact that chance agreement with any particular
cluster pattern has a higher probability when the
number of profiles to be sorted is small. Never-

theless, even with a small number of latent pop-
ulations, these results show that the higher-order
replication criterion generally performed well.

The final row of each section of Table 1

reproduces results obtained in an application of
the higher-order replication criterion to four

samples from a single homogeneous population,
which is equivalent to a theoretical intraclass
coefficient of 0.0. In this case of no true underly-
ing population differences, the four-sample
replication criterion incorrectly suggested the

presence of more than a single population in 24%
of the homogeneous datasets. Thus, higher-order
replication across four subsamples appears inade-

quate as a test for the absence of any true popula-
tion differences. However, if the perfect replica-
tion criterion is met at hierarchical level 3 or

above, there is basis for confidence that the data
derive from a mixture of underlying populations,
even in the presence of substantial population
overlap. This is evident in the fact that only 2 of
100 datasets drawn randomly from a single pop-
ulation resulted in perfect replication at the three-
cluster level and none at a level beyond that.

Table 2 summarizes the probabilities of iden-

tifying correctly the actual number of latent

populations (two, three, four, or six) as a func-
tion of population overlap. At no level of overlap
among two or more underlying populations, as

represented by intraclass correlation coefficients
above 0, did the probability of overestimation
exceed .05. For intraclass coefficients greater than

.7, higher-order replication based on four in-

dependent subsamples had a hit rate exceeding

Table 2

Accuracy of Classification of the Number of

Underlying Latent Populations for Various Levels
of Intraclass Correlation (R)

g5 ~7a for correct identification of the actual

number of latent populations represented in the
mixture datasets. For intraclass coefficients below

.7, the frequencies of underestimation pro-

gressively increased as the degree of population
overlap increased.

Discussion and Conclusions

The adequacy of higher-order cluster analysis
as a criterion for inferring the number of underly-
ing latent populations is demonstrated for the

particular conditions that were examined here-
which included sampling from equal size multi-
variate normal populations having diagonal
covariance structure. These conditions were

selected to represent what might be considered
the ideal design for cluster analysis research. Nor-

mality of error distributions is a generally ac-

cepted condition of measurements within

naturally-occurring homogeneous populations,
although appropriate scaling of measurements

may be required to reflect this. Based on this ex-

pectation, univariate &dquo;mixture model&dquo; methods
consider departures from normality to be

evidence of heterogeneity.
Because heterogeneous correlations among

profile elements imply differential weightings of

primary underlying dimensions of individual
differences in profile similarity indices, cluster

analysis research generally uses measurements
that are both conceptually and statistically in-

dependent. Although complete within-population
independence of profile elements may not be

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



125

achieved in practice, it is reasonable to take into
account when simulating data for evaluating
methods. Although measurements are uncor-
related within underlying populations, differences
in the population mean profiles will produce cor-
relations across samples from a mixture of the

populations. Assuming that conceptually distinct
measurements should be uncorrelated within

homogeneous populations, independence of

measurements within clusters can be viewed as

justification for homogeneity, much as univariate
mixture analysis uses normality of score distribu-
tions as a criterion for homogeneity. Thus, in-

dependence of multiple profile elements within

underlying populations is a reasonable model to
assume in generating sampling data.

The assumption of equal population base rates
is less easily justified. Although there are

theoretical grounds to justify multivariate nor-

mality and diagonal covariance structure within
latent populations, there is indeed no theoretical
basis for assuming that underlying populations
should be of equal size, as was the case in this

investigation. Equal population base rates were
used here because the interest was in examining
the higher-order cluster replication criterion, not
in comparing different clustering methods.

Ward’s (1963) method was selected because it has
been reported to be especially prone to define

equal-size clusters. As will be noted, it should

probably be preferred for the higher-order
analysis, regardless of the rationale for selection
of a clustering procedure at the preliminary data

stage.
Two issues regarding equal-size clusters are in-

volved here. One pertains to the number of

clusters obtained in application to the original
mixture samples, and the other pertains to

replication confirmed by higher-order analysis of
cluster mean profiles. If the relative sizes of the

underlying latent populations are substantially
different, then it is likely that the smaller popula-
tions would be represented adequately in sample
data less often, and the perfect replication
criterion would tend to underestimate the true

number of latent populations. A cluster method

other than Ward’s (1963) might have some

advantages in that case, but the general tendency
to miss small-size populations still would be

present. On the other hand, the perfect replica-
tion criterion demands equal-size clusters in the

higher-order analysis of cluster means. As long
as replication is judged by higher-order clusters
that contain exactly one cluster mean from each

preliminary analysis, a method of cluster analysis
that favors equal-size clusters is logically required
for the higher-order analysis, regardless of the
method used for the several preliminary analyses.
However, if the possibility of substantially un-

equal population base rates is admitted, and a

clustering method that readily defines unequal-
size clusters is used on independent samples at
the preliminary stage, the definition of perfect
replication might be modified to require only that
no more than one cluster mean from a single
preliminary analysis be included in each higher-
order cluster, even though every preliminary
analysis might not be represented in each higher-
order cluster. In that case, the higher-order
analysis would have to combine results from dif-
ferent hierarchical levels of the several preliminary
analyses. A key to whether that might be con-
sidered important would be the appearance of
clusters of highly variable sizes within all, or

most, of the several preliminary analyses. Ob-

viously, there is room for additional work in ex-

ploring the variations that are possible in real
data and their implications for evaluating
replicability of cluster results.

The results reported here, however, confirm
that under reasonably representative conditions
the replication demonstrated by clustering mean

profiles from several preliminary cluster analyses
of independent subsets of multivariate profiles
is an adequate criterion for inferring the correct
number of underlying populations when those
latent populations are reasonably well separated.
As the overlap in the sampling distributions in-

creases, there is a tendency for the replication
criterion to underestimate the number of latent

populations. However, randomly generated
population means may be so similar that in-
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creasing variance might render the overlapping
distributions indistinguishable in some cases. A
similar problem of underestimation has been re-
ported for other stopping rules in the presence
of &dquo;weakly clustered data&dquo; (Jain & Dubes, 1988,
pp. 187-188). It is inappropriate to fault failure
of cluster replication in cases where underlying
populations are not discriminably different. True

multimodality is necessary for cluster analysis to

recognize consistently different underlying
populations.

The present results show that higher-order
cluster analysis is an inadequate basis for deter-

mining that no true population differences are

present. The relative inadequacy of this method
as a criterion when there are no more than two

underlying populations reflects the same

weakness. Given purely random data, HCA will

produce clusters. When a higher-order analysis
is limited to sorting only eight mean profiles at
the two-cluster level, a random sort has substan-
tial likelihood of assigning one and only one
mean profile from each preliminary analysis to
each of two higher-order clusters. The problem
is compounded by the fact that cluster analysis
at the two-cluster level tends to partition available

samples into contrasting groups, even if no true
cluster structure is present. The tendency to par-
tition the sample distributions into contrasting
clusters is enhanced by the presence of correla-
tions among the profile elements. This enhances
the likelihood that cluster means from different

samples will have patterns similar enough to be
sorted into contrasting groups by a forced parti-
tion at the second or third hierarchical level, even
if no true population differences are present.

The weakness of overestimating the number
of latent populations can be removed by increas-

ing the number of preliminary analyses that con-
tribute cluster means to the higher-order analyses,
but doing that enhances the probability of fail-

ing to distinguish clusters that may not be

separated well. Perfect replication is less likely to
occur by chance across a larger number of pre-
liminary analyses. To examine this phenomenon,
datasets of Il = 192 were randomly generated

simulating sampling in equal numbers from a
mixture of two overlapping 10-dimensional latent

populations. The within-population variances
were scaled to produce an intraclass correlation
R = .686 (see Table 1). However, each total sam-

ple was randomly partitioned into six rather than
four subsamples on which six preliminary hierar-
chical cluster analyses were accomplished. The

perfect replication criterion correctly identified
the two-cluster level in 99 out of 100 runs, with

perfect replication at the three-cluster level in the

remaining case. When this analysis was repeated
using six preliminary subsample analyses with a

greater population overlap (l~ = .209), the

perfect replication criterion across the six

preliminary cluster analyses correctly identified
the two-cluster level in only 53 out of 100 runs.
The strict replication criterion was not satisfied
at any hierarchical level in 43 of the 100 analyses.

The practical issues are what number of

preliminary analyses to recommend and how to

accomplish multiple preliminary analyses with
limited datasets. Fortunately, no more than four

preliminary analyses appear required to avoid the

problem of overestimating the number of distinct
latent populations when that number exceeds
two. Recognizing the danger of failing to iden-

tify population differences that are present by use
of an overly strict replication criterion, four sub-

sample analyses are recommended to evaluate

perfect replication, thus accepting a modest
chance of overestimating the number of latent

populations when there are no more than two.
Overestimation is not a significant problem when
the number of underlying populations exceeds
two. However, underestimation is likely when
several latent populations are substantially
overlapping in their distributions on the

measurements available for analysis.
The conservatism of the replication criterion

can be relaxed by decreasing the number of

subsample analyses to three. This will produce
better estimation for a larger number of overlap-
ping latent populations, but it enhances the prob-
ability of chance replication of false clusters that
do not recover the true population differences.
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This is why the four subsample replication
criterion is recommended, although it tends to
be conservative when several latent populations
with substantially overlapping distributions are

present.
In cases in which the number of latent popula-

tions is small, the sample sizes for the preliminary
analyses need not be as large as required to sup-
port a larger number of clusters. With expecta-
tion of reasonably comparable base rates for the
different latent populations, minimum sample
sizes for the preliminary analyses should be 8 to
10 times the number of latent populations. Thus,
if empirical results, or a priori considerations,
suggest only two or three distinguishable popula-
tions, preliminary cluster analyses on subsamples
of size n = 30 should be adequate.

If the total available dataset is too small to per-

mit partitioning into mutually exclusive sub-

samples, random sampling with replacement
from a total rc = 100 or more should be adequate
to verify the presence of two to four latent pop-
ulations. The strategy of minimizing duplication
has been used, rather than strict random samp-
ling. This can be done by randomly splitting the
total available sample into two equal parts, then

randomly splitting each of the two parts and

combining those halves into two additional

samples having no more than 50% overlap with
the first two subsamples. In this way, two pairs
of subsamples are mutually exclusive and the
other two are minimally overlapping.

Although perfect replication was emphasized
here as a stopping rule for HCA, something short
of perfect replication (as defined here) should
serve as a useful basis for inferring the popula-
tion reality of preliminary clusters that do

replicate across four independent subsamples.
&dquo;Near-perfect replication&dquo; is present in higher-
order clusters that contain cluster means from at

least three of the four preliminary analyses and
no more than two cluster means from any one
of the preliminary analyses. In this case, one or
more of the higher-order clusters may be dis-
counted as failing to provide adequate evidence
of replication. Obviously, perfect replication is

preferred, but in circumstances in which several
latent populations are reasonably expected to be

highly overlapping in terms of the available

measurements, the weaker replication criterion

may be required. Because it involves greater prob-
ability of chance replication, at least four latent

populations should be confirmed by the higher-
order analysis when the weaker criterion is to be
relied on as a basis for inference. That is, near-

perfect replication is inadequate to support the

reality of only two or three underlying latent

populations, because that has an unacceptable
likelihood of occurring by chance.

Replication is a trusted foundation for scien-
tific inference, and higher-order clustering is a

convenient, logical, and objective way to evaluate

replication. Except in the case of a mixture of

only two latent populations, four preliminary
subsample analyses should provide an adequate
basis for defining a lower bound on the number
of distinguishable latent populations. It is a lower
bound primarily because some latent populations
may be indistinguishable in terms of the available
measurements. That was particularly true when

population mean profiles were randomly gen-
erated, as they were in this evaluation of the

higher-order clustering approach to replication.
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