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Abstract

Environmental DNA (eDNA) metabarcoding is increasingly used to study the present and past biodiversity. eDNA

analyses often rely on amplification of very small quantities or degraded DNA. To avoid missing detection of taxa

that are actually present (false negatives), multiple extractions and amplifications of the same samples are often per-

formed. However, the level of replication needed for reliable estimates of the presence/absence patterns remains an

unaddressed topic. Furthermore, degraded DNA and PCR/sequencing errors might produce false positives. We used

simulations and empirical data to evaluate the level of replication required for accurate detection of targeted taxa in

different contexts and to assess the performance of methods used to reduce the risk of false detections. Furthermore,

we evaluated whether statistical approaches developed to estimate occupancy in the presence of observational errors

can successfully estimate true prevalence, detection probability and false-positive rates. Replications reduced the

rate of false negatives; the optimal level of replication was strongly dependent on the detection probability of taxa.

Occupancy models successfully estimated true prevalence, detection probability and false-positive rates, but their

performance increased with the number of replicates. At least eight PCR replicates should be performed if detection

probability is not high, such as in ancient DNA studies. Multiple DNA extractions from the same sample yielded

consistent results; in some cases, collecting multiple samples from the same locality allowed detecting more species.

The optimal level of replication for accurate species detection strongly varies among studies and could be explicitly

estimated to improve the reliability of results.
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Introduction

Environmental DNA (eDNA) metabarcoding, that is the

simultaneous identification of multiple taxa from the

DNA extracted from an environmental sample (e.g. soil,

water and faeces samples), is an emerging approach for

the study of the present and past biodiversity (Valentini

et al. 2009b; Taberlet et al. 2012a). The analysis of eDNA

has an increasing number of applications, such as the

description of biodiversity of microbes, plants and ani-

mals from a wide range of environments (e.g. Bienert

et al. 2012; Yoccoz et al. 2012; Zinger et al. 2012), the

analysis of diet (e.g. Deagle et al. 2005, 2009; Valentini

et al. 2009a; Pompanon et al. 2012; De Barba et al. 2014),

the reconstruction of the past biodiversity and/or envi-

ronmental changes (Jorgensen et al. 2012; Parducci et al.

2013; Boessenkool et al. 2014; Giguet-Covex et al. 2014;

Willerslev et al. 2014) and environmental monitoring

(Jerde et al. 2011, 2013; Hajibabaei et al. 2012; Darling

2014; Mahon et al. 2014; Nathan et al. 2014).

Analysis and identification of eDNA is used mainly

for two purposes in ecological studies. First, considering

a sample, we want to infer the list of all the taxa present

in the sampled environment, like in many studies on

microbial diversity (e.g. Zinger et al. 2012). Second,

considering a set of samples, we want to infer in which

of them a species or a set of species are present or absent

(e.g. Giguet-Covex et al. 2014). These types of analysis

are not faced with the same challenges. In the first case, a

major problem is to determine within the full list of

observed sequences which one corresponds to true

species and which one corresponds to experimental arte-

facts (PCR or sequencing induced errors). Conversely,
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the second case corresponds to studies in which we are

interested in deciphering the distribution of a defined set

of species, or in asserting the presence/absence of key

taxa in a given environment. Like with other conven-

tional inventory techniques, it is extremely important to

take into account the possibility that the present taxa

remain undetected (false negatives), but also the occur-

rence of false observations of the absent taxa (false posi-

tives) (Darling & Mahon 2011). Despite the high

sensitivity of techniques based on eDNA, researchers are

well aware that species detection using this approach is

imperfect. Indeed, these analyses are usually performed

with very little starting material and stochastic processes

are often implicated as to whether a given DNA mole-

cule is amplified. For instance, Ficetola et al. (2008)

reported several PCRs in which the DNA of a target spe-

cies was not detected, despite being present in the envi-

ronmental sample. To cope with this issue, eDNA

studies often perform replicated analyses: they can rely

on multiple environmental samples, perform multiple

extractions from the same environmental sample and/or

multiple amplifications of the same extracted DNA. The

number of replicates per environmental sample can be

highly variable among studies, ranging from two to >10
(e.g. Ficetola et al. 2008; Jerde et al. 2011, 2013; Parducci

et al. 2013; Giguet-Covex et al. 2014; Willerslev et al.

2014). Increasing the number of replicates certainly

reduces the risk of missing the present taxa, but inflates

costs and workload. Furthermore, false positives are

always possible, and the risk of false positives might

increase with the replication level.

False positives are a particularly crucial issue in

ancient DNA metabarcoding studies performed on envi-

ronmental samples because the low amount of highly

degraded template DNA requires many PCR cycles.

False positives may for instance arise because of PCR or

sequencing errors not detected by dedicated software, or

through sporadic contamination (Willerslev et al. 2014).

To limit false positives, studies performed on degraded

DNA use multiple quality assurance practices (e.g. sam-

pling of localities where target taxa are notoriously

absent, extraction blanks and equipment controls) and,

additionally, sometimes consider a sequence only if it

was confirmed by at least two independent PCRs, while

those detected in one replicate only may be discarded or

considered dubious (Giguet-Covex et al. 2014; Willerslev

et al. 2014). Nevertheless, this approach has drawbacks,

as it might overlook taxa that are actually present at low

density or very difficult to detect.

Imperfect detection is an unavoidable feature of most

data on species presence/absence and abundance: even

during traditional ecological field studies, individuals

and species that are present at one site are not always

all detected, and failure in accounting for imperfect

detection may result in biased inference (Yoccoz et al.

2001; MacKenzie et al. 2006; Kery & Schmidt 2008;

Lahoz-Monfort et al. 2014). Several models have been

proposed by ecologists to limit these issues. In the last

decade, species occupancy models (SOMs) have been

developed to analyse species distribution when detec-

tion probability is lower than one. In short, SOMs can

use data on detection and nondetection at multiple occa-

sions in a number of sites to evaluate the detection prob-

ability of species when they are present. SOMs can allow

estimating the number of sites in which a target species

is present but remain undetected and can be integrated

with other analytical methods to better understand pop-

ulation dynamics and relationships between species and

habitat (MacKenzie et al. 2006; K�ery & Schaub 2012).

SOMs have been developed to analyse species distribu-

tion data obtained in the context of traditional field

studies (MacKenzie et al. 2002, 2006), but recent work

showed that SOMs can be successfully applied to the

analysis of eDNA data (Pilliod et al. 2013; Schmidt et al.

2013). SOMs may therefore allow the evaluation of the

probability of taxa detection through eDNA, and the

estimation of the number of replicates required for

reliable inference of taxon absence (Schmidt et al. 2013).

Species occupancy models were first developed to

analyse the data in which a species may remain unde-

tected (i.e. false absences are possible) but, when

detected, a presence is always considered as genuine (i.e.

false presences are impossible) (MacKenzie et al. 2002,

2006). However, misidentification of species is possible

even with traditional ecological data, and SOMs have

thus been expanded to account for potential false pres-

ences (Royle & Link 2006; Miller et al. 2011). These

approaches have never been applied in the context of

eDNA metabarcoding studies, but can be extremely

valuable to obtain measures of confidence on taxa

absences, to evaluate the possibility of false presences

and to estimate the optimal number of replicates

required for robust results.

In this study, we applied the use of SOMs to the

analysis of eDNA metabarcoding results and estimated

the number of technical replicates required to confi-

dently estimate the presence/absence of a taxon in a

given environment. We also evaluated the performance

of approaches currently used to control for false pres-

ence. First, we analysed simulated data with known

properties to answer the following questions: (i) what is

the optimal number of PCR replicates for present and

ancient eDNA metabarcoding analyses?; (ii) what is the

impact of imperfect detection, false presences and num-

ber of replicates on the results of eDNA metabarcoding

studies?; (iii) what is the impact of dismissing taxa

detected in only one of the replicated PCRs?; (iv) do

occupancy models allow estimating the frequency of
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false presences/false absences in eDNA metabarcoding

data?

Second, we applied occupancy models to empirical

eDNA metabarcoding data, to evaluate their detection

probability and rate of false presences. We compared

two different typologies of eDNA metabarcoding data

(earthworm DNA from present-day soils and ancient

DNA of mammals from lake sediment cores) to highlight

the range of differences occurring among eDNA meta-

barcoding data sets. Finally, we evaluated whether dif-

ferent replication approaches (multiple samples per site,

multiple DNA extractions per sample and multiple

amplifications per DNA extract) may influence the study

outcome.

Materials and methods

Simulations

We simulated data with known properties, mimicking

patterns of taxa detection/nondetection in eDNA meta-

barcoding studies. We generated data sets representing

100 environmental samples for which one taxon was

analysed, assuming that the taxon has a probability of

presence in each sample = 0.3 (latent occupancy, i.e. the

true, unobserved occupancy of the taxon; MacKenzie

et al. 2006). For each data set, we repeated 100 simula-

tions per combination of parameter sets (p, fp and Nr, see

below). Different values of taxon detection probability p

(p = 0.25, 0.5 and 0.75) and different occurrences of false

presences fp (fp = 0.002, 0.01 and 0.03) were used in sim-

ulations. These values of p represent taxa ranging from

very low to very high detection probability, which may

represent differences of abundance/biomass among

taxa, or differences between present and ancient DNA

studies (see Results, section ‘Analysis of empirical data’).

Similarly, the fp values represent error rates ranging

from very low to moderate. Per each combination of the

parameters p and fp, we generated patterns of taxon

detection/nondetection, with different numbers of repli-

cates Nr (Nr = 4, 6, 8 and 12). This number of replicates

reflects the range commonly observed in eDNA studies

(e.g. De Barba et al. 2014; Giguet-Covex et al. 2014; Wil-

lerslev et al. 2014). In our analysis, the number of repli-

cates represents the overall number of PCRs performed

on each environmental sample. In empirical studies, a

given level of replication may be reached through differ-

ent ways (e.g. eight replicates may be obtained by per-

forming one DNA extraction per sample and then eight

PCRs on the extract, or by performing two extractions

per sample and four PCRs per extraction). For simplicity,

in our simulations, the number of replicates just repre-

sents the total number of PCRs, independently on how

they were obtained, as analyses of empirical data suggest

that differences between replicating at the amplification

level or also at the extraction level are small (see Results

section).

We then analysed the simulated data using different

approaches:

1 Naive approach assuming perfect detection and no false

positives, and presence of a taxon at one site if it was

detected at least once. We estimated the frequency of

false absences (i.e. the number of samples in which the

taxon was present but remained undetected) and the

frequency of false presences (i.e. the number of sam-

ples in which the taxon was absent, but was errone-

ously detected because of false positives) by

comparing the patterns of detection/nondetection

with the true simulated data set. The frequency of false

absences and false presences was also calculated ana-

lytically using conditional probability, on the basis of

the known values of p, fp and Nr. Specifically, the over-

all probability of false presences across the Nr repli-

cates was calculated as 1 � the probability of not

finding any false presence [i.e. 1 � (1 � fp)Nr], while

the probability of false absences was calculated as the

probability of obtaining Nr false absences, conditional

to the probability of not finding any false presence [i.e.

(1 � p)Nr 9 (1 � (1 � fp)Nr)].

2 Conservative approach assuming perfect detection but

possibility of false presences. Taxon presence was con-

sidered ‘uncertain’ if it was detected only once out of

the Nr replicates. Uncertain presences were discarded,

and we then estimated the frequency of remaining

false presences and the number of true presences

incorrectly removed.

3 MacKenzie occupancy model: This approach analyses

replicated data of taxon detection/nondetection

assuming that detection probability is <1, that is false

absences are possible, while supposing that all detec-

tions are correct (i.e. no false presences) (MacKenzie

et al. 2002). Using this approach, we estimated the

detection probability of the taxon and its occupancy

(the frequency of samples where the taxon is actually

present). As this approach hypothesizes that all detec-

tions are correct, we assumed that a taxon was absent

if taxon presence was uncertain (i.e. if it was detected

in one replicate only).

4 Miller occupancy model: This approach analyses data of

taxon detection/nondetection assuming that detection

probability is <1 and that false presences are possible

(Miller et al. 2011). We classified taxon presences as

certain if the taxon was detected in at least two repli-

cates and uncertain if it was detected in one replicate

only. Using this approach, we estimated the taxon

detection probability, the rate of false presences and

the occupancy.
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Both occupancy models were run using the package

unmarked in R 3.0 (Fiske & Chandler 2011; R Develop-

ment Core Team 2013). The R code used for simulation is

available as Supporting Information (Appendix S1).

Empirical data – molecular methods

Earthworm data. We sampled 12 sites of 1 ha in the Ver-

cors massif (Northern French Alps), of which five were

situated in pasture, four in deciduous forests and three in

coniferous forests. In each site, we collected 100 core sam-

ples (about 50 g each) of mineral soil and litter every

10 m over a regular grid of 100 9 100 m and pooled them

together. The sampling procedure was repeated twice for

each site. Extracellular DNA extraction was performed

using the protocol described by Taberlet et al. (2012b). For

each soil sample, we carried out two extractions (i.e. four

extractions per site) and two different PCRs per extraction

(total: eight PCR replicates per site). DNA was amplified

using the ewD/ewE primers that target short sequences

(about 70 bp) on the mitochondrial 16S gene (Bienert et al.

2012). Amplicons were then sequenced on a high-

throughput sequencer (Illumina HiSeq 2000, 2 9 100 bp,

pair-end reads; Illumina inc., www.illumina.com/).

Finally, sequences were filtered to remove PCR/sequenc-

ing errors and chimeras using the OBITools software

suite (http://metabarcoding.org/obitools) and assigned

to the relevant taxon by comparison to a reference data-

base (J. Pansu, S. De Danieli, J. Puissant, J.-M. Gonzalez,

L. Gielly, L. Zinger, J.-J. Brun, P. Choler, P. Taberlet & L.

Cecillon, unpublished). Only sequences assigned up to

the species level with >95% similarity were used (J.

Pansu, S. De Danieli, J. Puissant, J.-M. Gonzalez, L. Gielly,

L. Zinger, J.-J. Brun, P. Choler, P. Taberlet & L. Cecillon,

unpublished; see Appendix S2 for additional methodo-

logical details, Supporting information).

Ancient DNA from lake sediment cores. We analysed

ancient DNA data previously published by Giguet-Covex

et al. (2014). Giguet-Covex et al. (2014) extracted ancient

DNA from a 20.2-m-long sediment core from Lake An-

terne (2063 m asl, Northern French Alps); 47 slices of

approximately 1 cm thickness, were sampled, corre-

sponding to 10 160 cal. before present (i.e. 8210 BC) to

nowadays. Each sample was divided in two subsamples,

with two DNA extractions per subsample (i.e. four per

sample) and two independent PCRs per extraction, result-

ing in eight amplification replicates per core slice. Mam-

mal DNAwas amplified using the MamP007 primers pair

targeting a 60- to 84-bp fragment on the mitochondrial

16S gene (Giguet-Covex et al. 2014). Sequencing was per-

formed using the Illumina HiSeq 2000 platform

(2 9 100 bp, pair-end reads). PCR/sequencing errors

and chimeras were also filtered out from the obtained

data set, and sequences were assigned to the relevant taxa

(see Giguet-Covex et al. 2014 for details).

Empirical data – data analysis

To evaluate the detection probability, false presences and

occupancy, we analysed the empirical data using the

MacKenzie et al. (2002) (earthworm data set) and the

Miller et al. (2011) (ancient DNA data set) occupancy

models, following the same procedure of simulated data.

We used two different approaches for the two data sets

because uncertain presences only occurred in the ancient

DNA data sets (see Results).

For empirical data, three different approaches were

used to obtain replicates: multiple samples from the

same site/core sample, multiple DNA extractions from

the same sample and multiple amplifications on the same

DNA extract. We therefore used the analysis of similarity

(ANOSIM) to evaluate whether there are significant differ-

ences among communities obtained from different envi-

ronmental samples from the same site, or from different

DNA extractions of the same sample (Legendre & Legen-

dre 2012). Similarity among communities was evaluated

using the Bray–Curtis distance (Legendre & Legendre

2012); significance of ANOSIM was assessed through 999

simulations using VEGAN (Oksanen et al. 2013; R Develop-

ment Core Team 2013). This analysis was not performed

for the ancient DNA data, because many PCRs did not

detect the DNA of any taxon, therefore hampering most

of pairwise comparisons among replicates.

Results

Analysis of simulated data

Naive approach. When assuming perfect detection, taxon

occupancy was severely underestimated if the number of

replicates was low, and if detection probability was low,

results of simulations and analytical solutions showed

high concordance (Table 1, Fig. 1a–d). For instance, if

p = 0.25 and Nr = 4, the taxon remained undetected in

about one-third of samples where it was actually present

(Table 1, Fig. 1a). Six replicates were needed to avoid the

false absences if detection probability = 0.5, and 12 repli-

cates were needed if detection probability was very low

(Fig. 1b–d). However, with this approach, a high number

of false positives exist in the data, particularly if fp was

high and many replicates were run (Fig. 1e–h, Table 1).

With many replicates, the number of false positives

remained limited only if fp was very low.

Conservative approach. If detection in one replicate only

was considered uncertain and discarded, the false posi-

tive rate was very low (Fig. 2e–h), with false presences

© 2014 John Wiley & Sons Ltd
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Table 1 Frequency of false absences and false presences obtained using the na€ıve approach, estimated analytically and on the basis of

simulations

Detection probability N replicates False presences

False absences

Analytical Simulations

0.25 4 0.03 0.280 0.267

0.25 4 0.02 0.304 0.267

0.25 4 0.002 0.314 0.317

0.25 6 0.03 0.148 0.133

0.25 6 0.02 0.168 0.167

0.25 6 0.002 0.176 0.167

0.25 8 0.03 0.078 0.067

0.25 8 0.02 0.092 0.100

0.25 8 0.002 0.099 0.100

0.25 12 0.03 0.022 0.000

0.25 12 0.02 0.028 0.033

0.25 12 0.002 0.031 0.033

0.50 4 0.03 0.055 0.067

0.50 4 0.02 0.060 0.067

0.50 4 0.002 0.062 0.067

0.50 6 0.03 0.013 0.000

0.50 6 0.02 0.015 0.000

0.50 6 0.002 0.015 0.000

0.50 8 0.03 0.003 0.000

0.50 8 0.02 0.004 0.000

0.50 8 0.002 0.004 0.067

0.50 12 0.03 <0.001 0.000

0.50 12 0.02 <0.001 0.000

0.50 12 0.002 <0.001 0.000

0.75 4 0.03 0.003 0.000

0.75 4 0.02 0.004 0.000

0.75 4 0.002 0.004 0.000

0.75 6 0.03 <0.001 0.000

0.75 6 0.02 <0.001 0.000

0.75 6 0.002 <0.001 0.000

0.75 8 0.03 <0.001 0.000

0.75 8 0.02 <0.001 0.000

0.75 8 0.002 <0.001 0.000

0.75 12 0.03 <0.001 0.000

0.75 12 0.02 <0.001 0.000

0.75 12 0.002 <0.001 0.000

*

N

replicates

False

presences

False absences

Analytical Simulations

4 0.03 0.115 0.114

4 0.02 0.039 0.038

4 0.002 0.008 0.000

6 0.03 0.167 0.171

6 0.02 0.059 0.057

6 0.002 0.012 0.014

8 0.03 0.216 0.210

8 0.02 0.077 0.079

8 0.002 0.016 0.005

12 0.03 0.306 0.307

12 0.02 0.114 0.110

12 0.002 0.024 0.014

*Results are unaffected by detection probability, as the false absences are estimated on the sites where the species is actually absent.
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remaining in the data only if fp was high and many repli-

cates were run (Fig. 2h). However, this conservative

approach incorrectly removed many true presences

(Fig. 2a–d). For instance, if only four replicates were run

and detection probability was low, this approach

removed two-third of true presences. The number of

incorrectly removed presences was limited only if detec-

tion probability was very high (p = 0.75), or if many rep-
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Fig. 1 Analysis of simulated data using

the Naive approach. (a–d) The number of

simulated environmental samples in

which the species was incorrectly

assumed to be absent, depending on the

number of replicates performed; (e–h)

number of simulated environmental sam-

ples in which the species was incorrectly

assumed to be present, depending on the

number of replicates performed. Symbols

represents medians � 95% CI: fp, fre-

quency of false presences; diamonds,

detection probability = 0.25; squares,

detection probability = 0.5; circles, detec-

tion probability = 0.75.
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licates were run (8–12 replicates, depending on detection

probability) (Fig. 2 a–d).

MacKenzie occupancy model. The accuracy of the MacKen-

zie et al. (2002) occupancy model in the estimation of

detection probability strongly depended on the number

of replicates and on the actual values of p (Fig. 3a–d).

With just four replicates, detection probability was

correctly estimated only if it was high (0.75, Fig. 3a). Six

replicates were needed to correctly estimate a detection
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Fig. 2 Analysis of simulated data using

the conservative approach. (a–d) The

number of simulated environmental sam-

ples in which the species was incorrectly

assumed to be absent, depending on the

number of replicates performed; (e–h)
number of simulated environmental sam-

ples in which the species was incorrectly

assumed to be present, depending on the

number of replicates performed. Symbols

represents medians � 95% CI: fp, fre-

quency of false presences; diamonds,

detection probability = 0.25; squares,

detection probability = 0.5; circles, detec-

tion probability = 0.75.
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probability = 0.5, and 8–12 replicates were needed if

detection probability was low (0.25, Fig. 3c–d). If the

number of replicates was not large enough, the MacKen-

zie model tended to overestimate detection probability.

Similarly, this approach correctly estimated true occu-

pancy if detection probability was high, or if many repli-

cates were performed. Four replicates were sufficient to

estimate occupancy if detection probability was high
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(0.75), while 12 replicates were needed if p was very low

(0.25). If the number of replicates was not large enough,

the MacKenzie model underestimated occupancy

(Fig. 3e–h).

Miller’s occupancy model. Estimates of detection proba-

bility and occupancy using the Miller et al. (2011)

model were highly consistent with those of the Mac-

Kenzie model. If detection probability was high, four

replicates were sufficient to estimate occupancy and

detection probability, while 12 replicates were needed

if p was very low (Fig. 4a–h). Furthermore, if a suffi-

cient number of replicates (8–12) were run, the Miller’s

model estimated false presences with a good accuracy.

Estimates of false presence were overestimated if detec-

tion probability was low, or if too few replicates were

run (Fig. 4i–l).

Analysis of empirical data

Earthworm data. Nine earthworm species were identified

in the data set (Table 2). In all the samples and for all the

species, three or more replicated PCRs confirmed species

presence; therefore, no presences were considered uncer-

tain, and data were thus analysed using the MacKenzie

et al. (2002) model. For all the earthworm species, the

estimated detection probability was high, ranging from

0.52 to >0.9, and observed frequency of species corre-

sponded very well to their estimated occupancy

(Table 2a).

Distinct soil samples from the same locality some-

times yielded slightly different communities. Specifi-

cally, ANOSIM detected significant differences between soil

samples from the same site (at P < 0.05) in six of the

twelve study sites. In the cases where ANOSIM detected

differences between soil samples, one or two species

were detected in only one of the two samples. Con-

versely, we never detected significant differences

between extractions performed on the same soil sample

(for all comparisons, P ≥ 0.33).

Ancient DNA from lake sediments. Two mammal taxa

(Bos and Ovis) were identified; sequences perfectly

matched published sequences of domestic cow and

sheep (Giguet-Covex et al. 2014). For the two taxa, in a

few cases, we obtained a single positive amplification

not confirmed by PCR replication (from three samples

for Bos and four samples for Ovis). Consequently, we

used the Miller et al. (2011) approach that takes into

account uncertain presence. For both taxa, the esti-

mated detection probability was moderate (0.36–0.38).

Nevertheless, the observed and estimated occupancies

were extremely similar, because the number of repli-

cates was high (eight replicates per sample). The esti-

mated rate of false presences remained limited (about

1.3%) (Table 2b).

Discussion

Careful planning is a key phase for all ecological studies.

The optimal level of replication is an important parame-

ter that often results from complex trade-offs. Inadequate

replication may yield inconclusive and inconsistent

results, while performing many replicates is costly and

time-consuming. DNA metabarcoding is an emerging

area of research where the optimization of a replication

strategy is particularly important. Species detection from

small amounts of degraded DNA is clearly imperfect,

still laboratory and sequencing costs limit replication. In

recent years, researchers are increasingly combining

analyses of simulated and empirical data to assess the

effect of incomplete sampling and for the evaluation of

the performance of analytical methods (Guillera-Arroita

et al. 2010; Zurell et al. 2010; Ficetola et al. 2014). In this

study, the analysis of simulated data allowed the identi-

fication of optimal strategies that limit the frequency of

false presences and false absences in eDNA metabarcod-

ing data, and we found that SOMs can help the analysis

of eDNA data by providing accurate information on

detection probability, false presences and true

occupancy.

How many replicates should we perform? Increasing

the number of replicated PCRs quickly reduces the risk

of false negatives, improving the reliability of results. In

practice, if only four replicates are run, the number of

false absences can be very high, particularly if detection

probability is low, and species occupancy may be

severely underestimated (Fig. 1, Table 1). To limit the

false absences, at least six replicates are needed when

detection probability is about 0.5, and at least eight are

needed if detection probability is lower. In many cases,

metabarcoding studies target multiple organisms, with

wide variation of detection probability. For instance, p

varied between 0.5 and >0.9 for the earthworm species

analyses, while it was clearly lower for the mammals of

the ancient DNA data set. If we want a reliable detection

of the community, replication level should match the

requirements of species with both low and high p. Eight

replicates may represent an appropriate level of replica-

tion if no a priori information is available on the detec-

tion probability of species, as they may be suitable even

for detecting species under difficult conditions, such as

with ancient DNA. Nevertheless, it should be remarked

that the optimal level of replication needed will also

depend on the particular study and research objectives.

For example, studies aiming at screening the possible

biodiversity present in the samples (e.g. Bienert et al.

2012; Thomsen et al. 2012; Yoccoz et al. 2012; Parducci

© 2014 John Wiley & Sons Ltd
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et al. 2013; Boessenkool et al. 2014), as the two real data

sets analysed here, would differ from diet studies, where

the main goal is to detect food items of biological impor-

tance for the animals (Pompanon et al. 2012; De Barba

et al. 2014). In this latter case, nondetecting food items

consumed only in traces or small quantities, and there-

fore present with low detection probabilities in some

samples, would not affect the study conclusions, and a

limited replication will most likely be sufficient.

Sequencing depth, choice of primer and sequencing plat-

forms are additional parameters that influence taxa

detection and should be also considered during the plan-

ning of studies (Tang et al. 2012; Zinger et al. 2012; Dea-

gle et al. 2013; Smith & Peay 2014).

Researchers working with eDNA metabarcoding are

well aware that false positives are always a risk, because

of contamination or because of errors during PCR and

sequencing, and it is not unusual to detect sequences of

taxa that are actually exotic to the study sites. Blank and

positive controls are key tools to identify these taxa (Coo-

per & Poinar 2000; De Barba et al. 2014). An additional

approach is to exclude as ‘uncertain’ the taxa that have

been detected only once out the Nr replicates (Giguet-

Covex et al. 2014; Willerslev et al. 2014). Our simulations

showed that, with moderate levels of false positives, this

method can successfully remove all the false presences

(Fig. 2), but again it requires a sufficient number of repli-

cates: if replicates are not enough, this approach may be

too conservative and would remove taxa with low detec-

tion probability.

Species occupancy methods have excellent perfor-

mance in the estimation of detection probability, true

occupancy and even false presences, and can be success-

fully applied to eDNA data (Schmidt et al. 2013). SOMs

can be a key resource for metabarcoding studies, but

unfortunately they are only seldom used. In our simula-

tions, two major approaches to SOMs (MacKenzie et al.

2002; Miller et al. 2011) yielded similar results in the esti-

mation of occupancy and detection probability. Their

performance was generally good and improved with the

number of replicates and if target taxa showed high

detection probability (Mackenzie & Royle 2005; Guillera-

Arroita et al. 2010). If the number of replicates and detec-

tion probability were too low, these approaches tended

to overestimate the detection probability and underesti-

mated occupancy, while they required at least eight rep-

licates for a robust inference over a wide range of p

values (Figs 3 and 4). Furthermore, SOMs can be success-

fully applied to eDNA data for the estimation of error

rate (Miller et al. 2011), if taxa that have been detected

only once out of the Nr replicates are considered ‘uncer-

tain’. This is excellent news for eDNA metabarcoding

studies, in which dubious presences occur, as it may be

possible to provide a measure of the reliability of such

dubious presences. Importantly, if we know the error

rate, we can eventually change the minimum number of

positives required to consider taxon presence as ‘genu-

ine’, and therefore identify taxon-specific or study-spe-

cific thresholds for the filtering of uncertain presences.

For instance, at least three positive PCRs might be

required to confirm the presence of species for which the

risk of false detection is high.

Nevertheless, the approach described here has some

limitations. First, PCR and sequencing errors may result

in highly reproducible sequences. These errors may be

found in multiple replicates and therefore incorrectly

assumed to be genuine. We stress the importance of

using the appropriate procedures of bioinformatic filter-

ing, to limit the occurrence of these artefacts; the

approach described here does not ensure removal of this

kind of error. Second, this approach may be particularly

suited for metabarcoding studies focusing on a restricted

number of potential taxonomic units, or for which it is

particularly relevant to evaluate whether a given taxon is

present or absent in a sample. Examples of this applica-

tion of metabarcoding include studies on bioindicators,

or targeting taxa for which a relatively good proportion

of species is well known. However, many metabarcoding

studies try to describe the biodiversity of cryptic, poorly

known taxa such as soil microorganisms. In this case,

thousands of potential operational taxonomic units are

potentially present, many of which have very low occur-

rence. In this case, other approaches should be devel-

oped, for instance, for the estimation of the richness of

present taxa using accumulation curves (Lundberg et al.

2013).

Table 2 Results of occupancy models applied to present-day

soil DNA metabarcoding data (earthworms) and to ancient

DNA of mammals from lake sediments

Taxon

Observed

frequency w p fp

(a) Earthworms

Aporrectodea caliginosa 0.750 0.750 0.939 —
Aporrectodea icterica 0.167 0.167 0.867 —

Aporrectodea longa 0.583 0.583 0.849 —
Aporrectodea rosea 0.833 0.833 0.892 —

Dendrodrilus rubidus 0.250 0.274 0.519 —
Lumbricus castaneus 0.750 0.750 0.826 —

Lumbricus rubellus 0.333 0.334 0.565 —

Lumbricus terrestris 0.417 0.417 0.919 —
Octolasion cyaneum 0.917 0.917 0.963 —

(b) Ancient DNA from lake sediments

Bos sp. 0.273* 0.283 0.377 0.013

Ovis sp. 0.113* 0.118 0.363 0.014

Ψ, estimated occupancy; p, estimated detection probability; fp,

estimated rate of false presences.

*Calculated using samples with two detections or more.
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In addition, occupancy modelling works well only if

detection probability is reasonably high. Occupancy mod-

elling is thus applicable to taxa with moderately low

detection probability (about 0.25) only if at least eight rep-

licates are performed. However, biodiversity is domi-

nated by many extremely rare species that likely have

very low detection probability. An unrealistically high

number of replicates would be needed to apply occu-

pancy modelling to these taxa. Inappropriately applying

occupancy modally to taxa that are very rare and difficult

to detect may lead to inaccurate conclusions (e.g. Fig. 3e).

DNA metabarcoding data are increasingly used for

ecological inference (Ji et al. 2013). Objective measures of

data reliability, such as rate of false presences and false

absences, can also be used to improve the outcome of

ecological analysis. For instance, strategies exist to inte-

grate measures of detection probability within models

relating taxa occurrence to environmental variables

(MacKenzie et al. 2006; Fiske & Chandler 2011; G�omez-

Rodr�ıguez et al. 2012). If detection probability is not per-

fect, these approaches (e.g. mixture models) allow better

ecological inference and help identifying the factors

determining biodiversity (MacKenzie et al. 2006; K�ery

et al. 2009). Furthermore, in our study, we simplistically

assumed that detection probability and false presences

are constant across the samples. However, these param-

eters may be influenced by environmental, biological

(e.g. sample age, substrate, environmental temperature

and differences among species) and technical factors

(e.g. differences among operators and laboratories, pref-

erential detection of shorter sequences, bias linked to

the specific PCR and sequencing protocol). Occurrence

of potential sources of biases may be tested and, if

needed, integrated into models to limit their impact on

the conclusion of studies. Finally, some studies are com-

paring the effectiveness of eDNA sampling with more

traditional methods (e.g. amphibian calls, electroshock-

ing and pit traps) (Dejean et al. 2012; Tr�eguier et al.

2014). These comparisons should take into account that

both eDNA and traditional approaches are imperfect

methods affected by false presences and false absences,

and require the application of appropriate occupancy

models.

Through this study, we broadly used the term ‘repli-

cation levels’ to indicate the total number of PCR

replicates for each sample, but a given number of

replicates may be reached through multiple ways (multi-

ple samples per localities, multiple extractions per

sample and multiple PCRs per extraction). Replication

strategies are extremely different among studies: some

researchers favour multiple PCRs on the same sample,

while others favour multiple samples per site. Are these

different approaches to replication equivalent? In the

analysis of earthworm communities, we never found dif-

ferences between distinct DNA extractions performed on

the same environmental sample. This suggests that tech-

nical reproducibility is high when studying present-day

samples (De Barba et al. 2014). Conversely, in some

cases, two samples from the same locality yielded

slightly different results, suggesting that microhabitat

heterogeneity may be strong, and stressing that DNA

metabarcoding results often represent very well local

communities. Collecting multiple environmental sam-

ples per site may help limiting the effects of microhabi-

tat/spatial heterogeneity, allowing more exhaustive

results.

Replication level may have a strong impact on eDNA

metabarcoding studies. Researchers should adjust repli-

cation level, depending on their aims and on the features

of their study system. Before performing biological infer-

ence from eDNA metabarcoding data, we suggest (i)

running occupancy models to evaluate the detection

probability and rate of false presences; (ii) evaluating

whether the current level of replication is appropriate to

control for false negatives; (iii) if needed, removing

‘uncertain presences’, that is positives not confirmed by

multiple PCRs. These three steps may allow improving

the robustness of conclusions based on eDNA metabar-

coding data.
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