Replication Management
using the State-Machine
Approach

Fred B. Schneider

Summary and Discussion :
Hee Jung Kim and Ying Zhang

October 27, 2005

v Introduction

v State Machines

v Fault Tolerance

v Fault-tolerant State Machines

v 10

v 10

erating Fau

erating Fau

ty Output Devices
ty Clients

v Using Time to Make Request

v Reconfiguration

Introduction

v Why Replication ?
v Two kinds of replication are ..
v State machine Approach is ..

v What can be discussed in each
sections

State-Machine Approach

v A general method for implementing a fault-
Bl tolerant service by replicating servers and
coordinating client interactions with server
replicas.

- State Variables

- Commands.

v Command might be implemented by
- Sharing data amongst procedures,
- Queuing requests
- Using interrupt handlers.

State Machines
v State machine consist of
L
o

Assumption |

v Requests from clients processed in
causal order.
- O1: Requests issued by a single client

processed by smin the order they are
issued

- O2: rl could have caused r2 =» rf
processed by

sm before r2

Semantic Characterization

+ " Outputs of a state machine are
completely determined by the
sequence of requests it processes,
independent of time or any other
activity of a system”

Is this a state machine ?

pc: state-machine
var g:real;
adjust: command(sensor-val: real) No |l
q := F(q, sensor-val);
send q to actuator
end adjust
end pc

monitor. process
do frue -> val = sensor;
<pc.adjust, vab; Yes |
delay D

od
end monitor

Fault Tolerance

v Byzantine failures:
“arbitrary and malicious”
v Failstop failures:

“other components [can] detect
that a failure has occurred”

T Fault-Tolerance

"A system consisting of a set of distinct
components is t fault-tolerant if it
satisfies its specification provided that
no more than 1 of those components

become faulty during some interval of
interest.”

Fault-tolerant SM

v Replicate State Machines and run on
separate processors.

B v Eachreplica

- Starts in the same initial state

- Executes same requests in the same order
v Assuming independent failure

- Combine outputs of the replicas of this
ensemble .

Fault-tolerant SM

v Replica Coordination

All replicas receive and process the same
sequence of requests.

- Agreement :

Each Non-Fault replica receives every
request.

- Order : Each Non-Fault replica processes
the requests in the same relative order.

Agreement

+ Any protocol that allows a designated
processor called the transmitter so that

- IC1: All non-faulty processors agree on the
same value.

- IC2: If the transmitter is non-faulty, then
all non-faulty processors use its value as the
one on which they agree.

Order and Stability

Order requirement can be satisfied by

e Assigning unique ids to requests.

- Processing the requests according to a
total ordering on the unique ids.

Order Implementation

"A replica next processes the stable
request with smallest unique ids.”

v Using Logical Clocks.
v Synchronized Real-Time Clocks.
v Using Replica-Generated Identifiers.

Using Logical Clocks

v A logical clock is a mapping T from
events to the integers.

v LCl: Tp is incremented after each

[
event at P.
v LC2: Upon receipt of a message -with
L

timestamp ts, process p resets Tp,:
Tp := max(Tp, ts) + 1.

Using Logical Clocks

v Assumption to property of
communication channels.

- FIFO channels between processors

- Failure Detection Assumption (for fail-
stop processors) : A processor p detects
that a fail-stop processor ¢ has failed only
after p has received the last message sent

to p by ¢.

Logical Clocks Stability Test

v Every client periodically makes some-
possibly null-request to the state machine.

v Request stable at sm/if a request with
larger timestamp has been received from
every client running on a non-faulty
processor.

Synchronized Real-time Clocks

v Tp(e) : the real-time clock at processor p
when event e occurs.

Unique id : Tp(e) appended by fixed bit
string that uniquely identifies p.

- O1 satisfied if only one request in between
successive clock ticks

- O2 satisfied if degree on synchronization
is better than the minimum message
delivery time.

Synchronized Real-time Clocks
(cont'd)
v Real-time Clock Stability Test I

ris stable at sm/executed at pif the local clock
- at preads tsand wid(r) < ts- td

v Real Clock Stability Test IT

ris stable at sm/if a request with larger uid has
been received from every client.

Using Replica-Generated Ids.

v Unique ids assignhed by the replicas

Two phase protocol

- Replicas propose candidate unique ids

- One candidate is selected

Elaboration of the protocol

- Seen : smi has seen ronce it has received rand
proposed a candidate unique id for it.

- Accepted: smihas accepted ronce it knows the
final choice of wid(r).

<\

Using Replica-Generated Ids.

v Constraints on the proposed
ids(cuid(smi,r))
- UIDL: cuid(smi,r) < = uid(r)

- UID2: if r'SEEN at sm/after rhas been
accepted then wid(r) < cuid(smi,r)

v Replica-Generated Id Stability Test:

r that has been accepted by sm/is stable provided
there is no request r'that has

i) Been seen by sm/
ii) Not been accepted by sm/
i) curd(smi,r) < = uid(r)

Using Replica-Generated Ids.

v Replica-generated Unique Identifiers :
sm/ maintains

- SEEN : largest cuid(SM,r) so far assigned by 5m,

- ACCEPT i largest wid(r) so far assigned by S/, on
receipt of r

- cuid(smi,r) = max() + 1+ /

- Disseminates cuia(M, r) to other replicas, awaits

receipt of a candidate uid from every non-faulty
replica.

T
l - wid(r) = max f(cuid SM,r))

Tolerating Faulty Output Devices

v Outputs used outside system :
Use replicated voters and output devices.
B8 ./ Outputs used inside system :

the client need not gather a majority of
responses to its request to the state
machine. It can use the single response
produced locally.

Tolerating Faulty Clients

v Replicate the client

- However, requires changes to state machines
B that handle requests from that client.

v Defensive programming
- Sometimes, a client cannot be made

fault-tolerant by using replication.
- Careful design of state machine can limit the

]
. effects of requests from faulty clients.

Using Time to Make Request

v Assume that
- All clients and state machine replicas have
clocks synchronized to within r, and

- Election starts at time s7rtand known to all clien
ts and state machine replicas.

v Transmitting a default vote

- If client has not made a request by time strt+ r,
then a request with that client's default vote has
been made.

Reconfiguration

v " An ensemble of state machine replicas ¢
an tolerate more than t faults if it is pos
sible to remove state machine replicas ru
nning on faulty processors from the ense
mble and add replicas running on repaired

processors.”

Reconfiguration

v Combining Condition:
P(t) - F(t) > X for all O <=t
where X :
-. P(t)/2 (Byzantine failure)
-.0 (fail-stop failure)
P(t+) = total number of processors at time t
F(t) = faulty number of processors at time t

Unbounded total number of
faultsis possible if ..

Fl: Byzantine failures, removed faulty replica from
the ensemble before the Combining Condition is
violated by subsequent processor failures.

F2: Replicas running on repaired processors are
added to the ensemble before the Combining
Condition is violated by subsequent processor
failures.

Configuration

The configuration of the system is defined as:

C. The clients
S: The state-machine replicas
O: The output devices

To change system configuration ..
- the value of C,S,0 must be available
- whenever C,S,0 added, state must be updated

Managing Configuration

A non -faulty configurator satisties ..

Cl: Only a faulty element is removed
from the configuration.

C2: Only a non-faulty element is added
to the configuration.

Integration with Failstop Processors
and Logical Clocks

If eis a client or output device, then sm. sends the stat
variables to before sending any output with ids > ryg,.

If e is a state-machine replica, sm,,,. then sm:

1. sends state variables and copies of any pending
requests tfo sm,.,.

2. sends sm,,, subsequent request r received from ¢
such that uid(r) < uid(r,), where r_ is the first request
that sm,,, received directly from c after being
restarted.

Integration with Failstop Processors
and Realtime Clocks

If eis a client or output device, then sm. sends the state
variables to before sending any output with ids > ryg,.

If e is a state-machine replica, sm,,,, then sm:

1. sends state variables and copies of any pending
requests fo sm,.,.

2. sends to sm,,, every request received

during the next interval of duration.

simplified !

Stability Revised

When requests made by a client can be
received from two sources-the client and via
a relay.

The stability test must be changed ..

Stability Test During Restart :

rreceived directly from ¢ by a restarting
sm,.,, IS stable only after the last request
from ¢ relayed by another processor has
been received by sm,,,,

Summary

v State Machines approach is ..
v Coping with failures (Byzantine, Failstop) ..
-. Fault-tolerant State Machines

-. Tolerating Faulty Output Devices
-. Tolerating Faulty Clients

v Optimization :

- . Using time to request

v Dynamic reconfiguration

-. Managing the configuration

-. Integrating a repaired object

Thank you !l

Any question ???

	Introduction
	State-Machine Approach
	State Machines
	Assumption !
	Semantic Characterization
	Fault Tolerance
	Fault-tolerant SM
	Agreement
	Order and Stability
	Using Logical Clocks
	Using Logical Clocks
	Tolerating Faulty Output Devices
	Tolerating Faulty Clients
	Using Time to Make Request
	Reconfiguration

