
Replication Management
using the State-Machine

Approach
Fred B. Schneider

Summary and Discussion :
Hee Jung Kim and Ying Zhang

October 27, 2005

Introduction

State Machines

Fault Tolerance

Fault-tolerant State Machines

Tolerating Faulty Output Devices

Tolerating Faulty Clients

Using Time to Make Request

Reconfiguration

Why Replication ?
Two kinds of replication are ..
State machine Approach is ..
What can be discussed in each
sections

Introduction

A general method for implementing a fault-
tolerant service by replicating servers and
coordinating client interactions with server
replicas.

State-Machine Approach

State machine consist of
- State Variables
- Commands.
Command might be implemented by
- Sharing data amongst procedures,
- Queuing requests
- Using interrupt handlers.

State Machines

Requests from clients processed in
causal order.
– O1: Requests issued by a single client
processed by sm in the order they are
issued
– O2: r1 could have caused r2 => r1
processed by
sm before r2

Assumption !

“ Outputs of a state machine are
completely determined by the
sequence of requests it processes,
independent of time or any other
activity of a system”

Semantic Characterization

monitor: process
do true -> val := sensor;

<pc.adjust, val>;
delay D

od
end monitor

Is this a state machine ?
pc: state-machine

var q:real;
adjust: command(sensor-val: real)

q := F(q, sensor-val);
send q to actuator
end adjust

end pc

No !!

Yes !!

Byzantine failures:
“arbitrary and malicious”
Failstop failures:
“other components [can] detect
that a failure has occurred”

Fault Tolerance

“A system consisting of a set of distinct
components is t fault-tolerant if it
satisfies its specification provided that
no more than t of those components
become faulty during some interval of
interest.”

T Fault-Tolerance

Replicate State Machines and run on
separate processors.
Each replica

– Starts in the same initial state
– Executes same requests in the same order

Assuming independent failure
– Combine outputs of the replicas of this

ensemble .

Fault-tolerant SM

Replica Coordination
All replicas receive and process the same
sequence of requests.
– Agreement :

Each Non-Fault replica receives every
request.

– Order : Each Non-Fault replica processes
the requests in the same relative order.

Fault-tolerant SM

Any protocol that allows a designated
processor called the transmitter so that

– IC1: All non-faulty processors agree on the
same value.

– IC2: If the transmitter is non-faulty, then
all non-faulty processors use its value as the
one on which they agree.

Agreement

Order requirement can be satisfied by

– Assigning unique ids to requests.
– Processing the requests according to a

total ordering on the unique ids.

Order and Stability

Order Implementation

“A replica next processes the stable
request with smallest unique ids.”

Using Logical Clocks.
Synchronized Real-Time Clocks.
Using Replica-Generated Identifiers.

Using Logical Clocks

A logical clock is a mapping T from
events to the integers.
LCl: Tp is incremented after each
event at P.
LC2: Upon receipt of a message -with

timestamp ts, process p resets Tp,:
Tp := max(Tp, ts) + 1.

Using Logical Clocks

Assumption to property of
communication channels.
– FIFO channels between processors
– Failure Detection Assumption (for fail-
stop processors) : A processor p detects
that a fail-stop processor q has failed only
after p has received the last message sent
to p by q.

Logical Clocks Stability Test

Every client periodically makes some-
possibly null-request to the state machine.

Request stable at smi if a request with
larger timestamp has been received from
every client running on a non-faulty
processor.

Synchronized Real-time Clocks

Tp(e) : the real-time clock at processor p
when event e occurs.
Unique id : Tp(e) appended by fixed bit
string that uniquely identifies p.

- O1 satisfied if only one request in between
successive clock ticks

- O2 satisfied if degree on synchronization
is better than the minimum message
delivery time.

Synchronized Real-time Clocks
(cont’d)

Real-time Clock Stability Test I
r is stable at smi executed at p if the local clock
at p reads ts and uid(r) < ts– td

Real Clock Stability Test II
r is stable at smi if a request with larger uid has
been received from every client.

Using Replica-Generated Ids.

Unique ids assigned by the replicas
Two phase protocol
– Replicas propose candidate unique ids
– One candidate is selected
Elaboration of the protocol

– Seen : smi has seen r once it has received r and
proposed a candidate unique id for it.
– Accepted: smi has accepted r once it knows the
final choice of uid(r).

Using Replica-Generated Ids.

Constraints on the proposed
ids(cuid(smi,r))
– UID1: cuid(smi,r) < = uid(r)
– UID2: if r’ SEEN at smi after r has been
accepted then uid(r) < cuid(smi,r’)
Replica-Generated Id Stability Test:
r that has been accepted by smi is stable provided
there is no request r’ that has
i) Been seen by smi
ii) Not been accepted by smi
iii) cuid(smi,r’) < = uid(r)

Using Replica-Generated Ids.

Replica-generated Unique Identifiers :
smi maintains

– SEENi : largest cuid(smi,r) so far assigned by smi
– ACCEPT i : largest uid(r) so far assigned by smi on
receipt of r
– cuid(smi,r) = max() + 1+ i
– Disseminates cuid(smi,r) to other replicas, awaits
receipt of a candidate uid from every non-faulty
replica.

– uid(r) = maxj(cuid(smi,r))

Outputs used outside system :
Use replicated voters and output devices.
Outputs used inside system :

the client need not gather a majority of
responses to its request to the state
machine. It can use the single response
produced locally.

Tolerating Faulty Output Devices

Replicate the client
- However, requires changes to state machines
that handle requests from that client.

Defensive programming
- Sometimes, a client cannot be made
fault-tolerant by using replication.
- Careful design of state machine can limit the
effects of requests from faulty clients.

Tolerating Faulty Clients

Assume that
- All clients and state machine replicas have
clocks synchronized to within r, and
- Election starts at time strt and known to all clien
ts and state machine replicas.
Transmitting a default vote
- If client has not made a request by time strt + r,
then a request with that client’s default vote has
been made.

Using Time to Make Request

“ An ensemble of state machine replicas c
an tolerate more than t faults if it is pos
sible to remove state machine replicas ru
nning on faulty processors from the ense
mble and add replicas running on repaired
processors.”

Reconfiguration

Combining Condition:
P(t) - F(t) > X for all 0 <=t
where X :
-. P(t)/2 (Byzantine failure)
-. 0 (fail-stop failure)
P(t) = total number of processors at time t
F(t) = faulty number of processors at time t

Reconfiguration

Unbounded total number of
faultsis possible if ..

Fl: Byzantine failures, removed faulty replica from
the ensemble before the Combining Condition is
violated by subsequent processor failures.

F2: Replicas running on repaired processors are
added to the ensemble before the Combining
Condition is violated by subsequent processor
failures.

Configuration
The configuration of the system is defined as:

C: The clients
S: The state-machine replicas
O: The output devices

To change system configuration ..
- the value of C,S,O must be available
- whenever C,S,O added, state must be updated

Managing Configuration

A non -faulty configurator satisfies ..

C1: Only a faulty element is removed
from the configuration.
C2: Only a non-faulty element is added
to the configuration.

Integration with Failstop Processors
and Logical Clocks

If e is a client or output device, then smi sends the state
variables to before sending any output with ids > rjoin.

If e is a state-machine replica, smnew, then smi:
1. sends state variables and copies of any pending
requests to smnew,
2. sends smnew subsequent request r received from c
such that uid(r) < uid(rc), where rc is the first request
that smnew received directly from c after being
restarted.

Integration with Failstop Processors
and Realtime Clocks

If e is a client or output device, then smi sends the state
variables to before sending any output with ids > rjoin.

If e is a state-machine replica, smnew, then smi:
1. sends state variables and copies of any pending
requests to smnew,
2. sends to smnew every request received
during the next interval of duration.

Simplified !!

Stability Revised
When requests made by a client can be
received from two sources-the client and via
a relay.
The stability test must be changed ..

Stability Test During Restart :
r received directly from c by a restarting
smnew is stable only after the last request
from c relayed by another processor has
been received by smnew

State Machines approach is ..

Coping with failures (Byzantine, Failstop) ..

-. Fault-tolerant State Machines

-. Tolerating Faulty Output Devices

-. Tolerating Faulty Clients

Optimization :

- . Using time to request

Dynamic reconfiguration

-. Managing the configuration

-. Integrating a repaired object

Summary

Thank you !!!

Any question ???

	Introduction
	State-Machine Approach
	State Machines
	Assumption !
	Semantic Characterization
	Fault Tolerance
	Fault-tolerant SM
	Agreement
	Order and Stability
	Using Logical Clocks
	Using Logical Clocks
	Tolerating Faulty Output Devices
	Tolerating Faulty Clients
	Using Time to Make Request
	Reconfiguration

