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Abstract

Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one
of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information
about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated
candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic
heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene
variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55
candidate genes have been analyzed in three geographically independent population groups from India. We report the
genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni
correction, p,5.5E204) with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene
passed the genome wide significance threshold (combined P value = 2.05E208) in the studied populations. We also
observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2
gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci
in combined population with Odds Ratio (OR),1.38 increased to OR= 2.44, (95%CI = 1.67–3.59) when the risk providing
genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions
evaluation in complex disorders like T2D.
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Introduction

The prevalence of type 2 diabetes (T2D), a complex disorder, is

increasing at an alarming rate and becoming a major health

problem. The highest incidence of T2D is seen in developing

countries where 80% of deaths occur due to diabetes [1]. It has

been proposed that the highest number of diabetic patients would

be in Asia by the year 2025 [2,3]. The increased prevalence of type

2 diabetes (T2D) is thought to be due to environmental factors,

acting on genetically susceptible individuals [4]. The heritability of

T2D is one of the best established among common diseases [5,6],

and consequently, genetic risk factors for T2D have been the

subject of intense research [7]. Linkage studies have reported

many T2D-linked chromosomal regions and have identified

putative, causative genetic variants in CAPN10, ENPP1, HNF4A,

WFS1 and ACDC [8–10]. In parallel, candidate-gene association

studies have reported many T2D-associated loci, with coding

variants in the nuclear receptor PPARG (P12A) [11] and the

potassium channel KCNJ11 (E23K) [12] being among the very few

that have been replicated in most of the populations. Multiple

genome wide association studies identified the genes including

TCF7L2, as well as a non-synonymous SNP in the zinc transporter

SLC30A8 and variants in HHEX, CDKAL1, IGF2BP2 and

CDKN2A/B [13–17]. Study by WTCCC involving a common

set of controls for the seven UK wide case cohorts led to the

finding of FTO to be associated with T2D through its effect on

body mass index (BMI) [18]. The Diabetes and Genetics

Replication and Meta-Analysis (DIAGRAM) consortium was

formed to carry out meta-analyses of three of the previously

published studies; WTCCC, DGI and FUSION [13–15]. This

international collaborative effort identified six new loci JAZF1,

CDC123-CAMK1D, TSPAN8-LGR5, THADA, ADAMTS9 and

NOTCH2 [19]. Few studies from East-Asian ancestry identified

additional loci, KCNQ1, PTPRD, SRR, 13q13.1, UBE2E2 and
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CDC4A, CDC4B associated with T2D [20–24]. However, a major-

ity of loci show association in some populations but did not

replicate in others, most plausibly a result of genetic heterogeneity

in T2D, instead of all being false positive associations. India

comprises one of the largest global populations, which had 62.4

million people with type 2 diabetes in year 2011. International

Diabetes Federation has predicted it to be 100 million people by

year 2030 [25]. It makes it important to replicate and evaluate the

previously associated candidates to identify common T2D

associated variations/genes, as well as identify novel genetic

variations in various Indian population groups to understand the

extent of genetic heterogeneity. In the present study, we tried to

address it and analyzed 91 SNPs from 55 candidate genes, most of

which are previously associated with T2D susceptibility (Table S1)

in different world-populations, in three geographically isolated

Indian population groups.

Results and Discussion

Type 2 Diabetes (T2D) is a syndrome of multiple metabolic

disorders. It includes abnormally high blood glucose levels

(hyperglycemia); involving insulin resistance related signaling

pathways and defects in insulin-mediated glucose uptake in

muscle; impaired insulin secretion due to dysfunction of pancreatic

b cells; disruption of secretary function of adipocytes and an

impaired insulin action in liver. The etiology of human T2D

involves a strong genetic background [26]. Various approaches

including the linkage, candidate gene and the recent genome-

wide-studies have been successful to identify more than 40

common genetic variants associated with T2D [27,28]. These

gene variants are related to different metabolic pathways in the

disease [29]. However, the total genetic variants roughly account

for 10% of the heritability of T2D, suggesting that much remains

to be discovered [30]. There is a need to replicate previously

associated loci in multiple populations of the world, specifically in

Asia including India, where relatively fewer studies have been

carried out to identify the common global T2D associated

variations/genes; and simultaneously assess the genetic heteroge-

neity among different population groups for these loci.

The three different population groups of India (Punjab; Jammu

and Kashmir; Orissa) recruited in this study were genotyped for 91

SNPs from 55 candidate genes, including those previously

associated with T2D susceptibility (Table S1). IBS (Identity by

state) analysis (Table S2) showed no significant difference among

the cases and controls, in any of the three studied population sets,

suggesting those as homogeneous population groups. The detailed

description of SNPs, status of Hardy Weinberg equilibrium, allelic

frequencies in cases and controls is provided in Table S3.

Univariate analysis identified strong association of five genes with

the susceptibility to diabetes (Table 1 and Table S4).

This study identified the genetic variants in five candidate genes

passing the Bonferroni correction (p,5.50E204) in combined

population (Table 1). Interestingly these genes, transcription

factors (TCF7L2, HHEX), insulin degrading enzyme (IDE), fat

mass and obesity associated genes (ENPP1 and FTO), showed

a consistent association with diabetes susceptibility, involving

identical model and risk alleles, as reported earlier in literature. In

meta-analysis, Cochrane’s Q test statistic, a test of heterogeneity

among the studies, which was not significant for all these SNPs

(except rs5015480 of HHEX gene with marginal significance,

p = 0.049) also showed consistent association in fixed-effect as well

as random effects model. TCF7L2, HHEX and IDE genes are

located at chromosome 10q23-25, the region which has shown

strong linkage peak in various genome-wide linkage studies
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[31,32]; and was replicated in genome-wide association and

candidate gene studies [16,17]. We wanted to explore whether the

association signal is independent of each other or these genes are

in linkage disequilibrium (LD). LD analysis of 14 SNPs of TCF7L2,

IDE, HHEX along with SIRT1 genes located at chromosome

10q23-25 was performed using Haploview software. Interestingly,

the LD analysis showed a very weak or no LD between SNPs from

these genes (Figure S1), suggesting an independent risk effect of

each locus. These loci remained significant in logistic regression

analysis after adjustment with BMI, age and gender as covariates,

(Table S5). Along, with the common disease associated variations,

shared by all the groups, we observed some variations showing

association in population specific manner (p,0.05) and are

provided in Table S4. These variations either represent the

genetic heterogeneity among the populations or are some false

positives, which warrant screening in larger sample sets.

Further, analysis of studied SNPs, using one way Anova and

linear correlation, with epidemiological/clinical parameters of

diabetes [waist to hip circumference ratio (WHR), BMI, Blood

glucose fasting/Postprandial] showed a significant association of

SNP, rs7903146 of TCF7L2 gene with blood glucose (fasting as

well as postprandial) in combined population (Table S6), probably

indicating that Indian diabetic patients commonly fall in the

category of being deficient in Insulin secretion rather than having

insulin resistance [33,34]. TCF7L2, a transcription factor, is

reported to be involved in glucose homeostasis, insulin secretion

and biosynthesis through GLP1 and wingless type (wnt) signaling

pathway is also involved in developmental and growth regulatory

mechanism of cells [35–37].

The other associated SNPs in this study also belong to

important genes that play an important role in various metabolic

pathways of diabetes pathobiology. HHEX, a hematopoietically

expressed homeobox protein is another transcription factor that is

suggested to reduce the b cell secretion capacity and sensitivity of

insulin [38]. IDE, a major enzyme (Zn2+ - regulated metallopro-

teinase) expressed ubiquitously including all insulin-responsive

tissues responsible for insulin degradation and thereby influencing

the extent of the cellular response to insulin [39,40]. The substrate

specificity of IDE coincides with peptides capable of amyloid

formation, and may prevent accumulation of amyloidogenic

peptides. Disruption of this scavenging function might promote

aggregation of the islet amyloid, a characteristic of type 2 diabetes

[41]. Interestingly, some other studies have shown the risk allele of

rs1887922 in association with increased post loading hyper-

insulinemia [42]. ENPP1, an ectonucleotide pyrophosphatase

phosphodiesterase, has a role in the insulin resistance by directly

inhibiting insulin-induced conformational changes of the insulin

receptor, thereby affecting its activation and downstream signal-

ing, which resulted in fasting hyper-insulinemia, a strong predictor

for the subsequent development of obesity in children [9,43]. FTO

gene variant has been strongly associated with predisposition to

diabetes through an effect on BMI [18,44]. We wanted to see if

these biologically related and significantly associated candidate

genes show any interactive affect in association to T2D, hence we

evaluated interaction in the significantly associated SNPs. The

risks provided by the independent loci in our study were moderate

(OR,1.38, in combined population, at all loci) as has been shown

in other studies [7]. Interaction analysis of genotype combinations

of these SNPs with diabetes susceptibility showed an increased

effect in associations. We observed that the pair-wise interaction

analyses followed by multiple gene interactions (Table S7) shows

an increased risk (p = 4.52E206, OR=2.44, 95%CI=1.67–3.59)

when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and

FTO genes were combined (distributed in 7.24% of patients

compared to 3.08% of controls). An increased protection

(p = 2.68E209, OR=0.28, 95%CI= 0.19–0.43) was also ob-

served for the protection providing genotype combination of

IDE, HHEX, ENPP1 and FTO genes (present in 7.63% of controls

as compared to 2.12% patients). The observations suggest the

importance of identifying not only novel loci in providing disease

risk but also understand the role of other mechanisms including

the gene-gene and pathway based interaction between multiple

functionally important genes, in complex diseases like T2D.

In conclusion, our study suggests TCF7L2, HHEX, IDE, ENPP1

and FTO as commonly associated T2D susceptibility genes in the

three Indian populations. Interaction analyses have shown an

increased effect in associations suggesting the importance of gene-

gene and pathway based interaction between multiple functionally

important genes. This study also highlights the importance of

multiple population groups based studies in identifying common

disease causing genes. Genetic heterogeneity and phenocopies are

among the vagaries of complex disorders like T2D, which make

understanding of such diseases challenging. It is anticipated that

sub-categorization of sample sets by clinical parameters as well as

by social groupings like religions castes, etc. and studies of larger

data sets will help us better understand the genetic heterogeneity,

in complex diseases like T2D especially in Indian populations, our

perspective of future studies.

Materials and Methods

Ethics Statement
A written informed consent was obtained from all the

participants. The data were analysed anonymously, and the study

was approved by the ethical committee of Jawaharlal Nehru

University.

Subjects
In the present study, a total of 2900 samples, independent from

our previous studies [45], including 1583 well characterized

diabetes patients and 1317 controls belonging to three geo-

graphically independent population groups of India (649 patients

and 600 controls from Punjab, 507 patients and 300 controls from

Jammu and Kashmir; 427 patients and 417 controls from Orissa),

were included. Diagnosis of T2D was made according to the

criteria of World Health Organization (Expert Committee 2003).

The patients with a history of ketoacidosis/requiring continuous

insulin treatment since diagnosis/having exocrine pancreatic

disease/or with exceptionally early age of onset (,30 years), were

excluded. Patients with severe liver or renal dysfunction were also

excluded. Non-diabetic individuals with no known positive family

history of diabetes were included in the study. The studied

individuals were confirmed of being unrelated for three genera-

tions. Anthropometric measurements and other features are

summarized in Table S8.

Assessment of the Clinical Parameters
The patient was diagnosed with hypertension when the systolic

blood pressure (SBP) was 140 mmHg and the diastolic blood

pressure (DBP), 90 mmHg. Overweight and Obese together were

clinically characterized by body mass index (BMI) of .24.9 (BMI

is defined by ratio of weight in kilograms to square of height in

meters) and the increased abdominal fat was measured by waist to

hip circumference ratio (WHR) of 0.94.

SNP Selection and Genotyping
SNPs in this study (Table S1) were included from those genes

which have been implicated with T2D or diabetes related traits

Replication of T2D Candidate Henes Variations
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through genome-wide association studies, mostly in European

populations, and further replicated in other populations using

candidate gene approach [13,16,17,46–57]. In addition, other

gene SNPs that have been studied with T2D susceptibility but not

replicated or studied in multiple populations were also included.

Genotyping of SNPs was performed using High-throughput

genotyping MassArray platform (SEQUENOM) as described

earlier [58]. SNP genotyping success rate was .95%. For quality

control of SNP genotyping, each 96 well plate contained three or

more duplicate samples and a negative control. The concordance

rate for genotyping was .99.5%.

Statistical Analyses
Statistical analyses were mainly performed using PLINK v. 1.07

(http://www. pngu.mgh.harvard.edu/purcell/plink/). Each SNP

was tested for Hardy Weinberg Equilibrium. Pairwise IBS

(Identity by state) distances between all individuals have also been

calculated with respect to binary phenotype (non-significant SNPs

of this study only), to know if there are hints of group differences.

IBS analysis is most robust for genome-wide data; however, this

analysis provides a preliminary evidence of no population

stratification. Significant association of SNPs was tested by 362

Chi square test for overall genotype frequency distributions

between diabetes patients and controls. Association of SNP with

type 2 diabetes was further confirmed by conditional logistic

regression analysis with forward conditional method adjusted for

possible confounding factors: age, gender and BMI. Odds ratios

(ORs) were calculated with respect to risk allele. Meta-analysis was

performed by combining summary estimates both under random

effect and fixed effect models using PLINK v. 1.07, which also

provides Cochrane’s Q test statistic, a test of heterogeneity among

the studies, P value ,5.561024 (0.05/91)) was considered

significant after Bonferroni correction. We also explored genotypic

interactions of significantly associated SNPs using logistic re-

gression with forward conditional method. These analyses were

performed using statistical software SPSS v20.0 (SPSS, Chicago

III, IL, USA.

Association of SNPs with quantitative traits was determined

using one way ANOVA adjusted for age, sex, population and BMI

as appropriate, in control, patients and total population. P value

,2.7761024 (0.05/180) was considered significant after Bonfer-

roni correction (10 SNPs66 parameters in 3 population groups).

Epidemiological parameters [Age, Waist/Hip ratio, BMI, Gender,

Systolic Blood pressure, Diastolic Blood pressure] were compared

between patients and controls using linear regression analysis.

Statistical power of the study was estimated using QUANTO

version 1.2 (http://hydra.usc.edu/gxe/). Sample size included in

this study had 70–97% power to detect the association with OR of

1.3–1.5 assuming minor allele frequency of 0.20.

Supporting Information

Figure S1 Linkage disequilibrium (LD) analysis (r2

value) of 14 SNPs of TCF7L2, IDE, HHEX and SIRT1

genes located at chromosome 10q23-25.

(TIF)

Table S1 Details of the SNPs selected for present study.

(XLS)

Table S2 Permutation test for: between group (case-

control) Identity by State (IBS) difference with respect to

binary phenotype for independent analysis of three

populations.

(DOC)

Table S3 Characteristic of 91 SNPs from 55 genes

studied in three different populations (Punjab; Jammu

and Kashmir; and Orissa) of India.

(XLS)
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