
1

Replication Routing in DTNs: A Resource

Allocation Approach
Aruna Balasubramanian Brian Neil Levine Arun Venkataramani

Department of Computer Science, University of Massachusetts, Amherst, USA 01003

{arunab, brian, arun}@cs.umass.edu

Abstract—Routing protocols for disruption-tolerant networks
(DTNs) use a variety of mechanisms, including discovering
the meeting probabilities among nodes, packet replication, and
network coding. The primary focus of these mechanisms is to
increase the likelihood of finding a path with limited information,
and so these approaches have only an incidental effect on such
routing metrics as maximum or average delivery delay. In this
paper, we present RAPID, an intentional DTN routing protocol
that can optimize a specific routing metric such as the worst-
case delivery delay or the fraction of packets that are delivered
within a deadline. The key insight is to treat DTN routing as
a resource allocation problem that translates the routing metric
into per-packet utilities which determine how packets should be
replicated in the system. We evaluate RAPID rigorously through
a prototype deployed over a vehicular DTN testbed of 40 buses
and simulations based on real traces. To our knowledge, this is
the first paper to report on a routing protocol deployed on a
real outdoor DTN. Our results suggest that RAPID significantly
outperforms existing routing protocols for several metrics. We
also show empirically that for small loads, RAPID is within 10%
of the optimal performance.

I. INTRODUCTION

Disruption-tolerant networks (DTNs) enable transfer of

data when mobile nodes are connected only intermittently.

Applications of DTNs include large-scale disaster recovery

networks, sensor networks for ecological monitoring [34],

ocean sensor networks [26], [22], vehicular networks [24],

[7], and projects such as TIER [2], Digital Study Hall [14],

and One Laptop Per Child [1] to benefit developing nations.

Intermittent connectivity can be a result of mobility, power

management, wireless range, sparsity, or malicious attacks. The

inherent uncertainty about network conditions make routing in

DTNs a challenging problem.

The primary focus of many existing DTN routing protocols

is to increase the likelihood of finding a path with extremely

limited information. To discover such a path, a variety of

mechanisms are used, including estimating node meeting

probabilities, packet replication, network coding, placement of

stationary waypoint stores, and leveraging prior knowledge of

mobility patterns. Unfortunately, the burden of finding even one

path is so great that existing approaches have only an incidental

rather than an intentional effect on such routing metrics as

worst-case delivery latency, average delay, or percentage of

packets delivered. This disconnect between application needs

and routing protocols hinders deployment of DTN applications.

Currently, it is difficult to drive the routing layer of a DTN

by specifying priorities, deadlines, or cost constraints. For

example, a simple news and information application is better

served by maximizing the number of news stories delivered

before they are outdated, rather than eventually delivering all

stories.

In this paper, we formulate the DTN routing problem as a

resource allocation problem. The protocol we describe, called

RAPID (Resource Allocation Protocol for Intentional DTN) rout-

ing, allocates resources to packets to optimize an administrator-

specified routing metric. At each transfer opportunity, a RAPID

node replicates or allocates bandwidth resource to a set of

packets in its buffer, in order to optimize the given routing

metric. Packets are delivered through opportunistic replication,

until a copy reaches the destination.

RAPID makes the allocation decision by first translating

the routing metric to a per-packet utility. DTNs are resource-

constrained networks in terms of transfer bandwidth, energy,

and storage; allocating resources to replicas without careful

attention to available resources can cause more harm than good.

Therefore, a RAPID node replicates packets in the order of

their marginal utility of replication, i.e., the first packet to

be replicated is the one that provides the highest increase in

utility per unit resource used. We show how RAPID can use

this simple approach to optimize three different routing metrics:

average delay, worst-case delay, and the number of packets

delivered before a deadline.

RAPID loosely tracks network resources through a control

plane to assimilate a local view of the global network state. To

this end, RAPID uses an in-band control channel to exchange

network state information among nodes using a fraction of

the available bandwidth, and uses the additional information

to significantly improve routing performance. RAPID’s control

channel builds on insights from previous work. For example,

Jain et al. [18] suggest that DTN routing protocols that use more

knowledge of network conditions perform better, and Burgess et

al. [7] show that flooding acknowledgments improves delivery

rates by removing useless packets from the network.

We present hardness results to substantiate RAPID’s heuristic

approach. We prove that online algorithms without complete

future knowledge and with unlimited computational power,

or computationally limited algorithms with complete future

knowledge, can be arbitrarily far from optimal.

We have built and deployed RAPID on a vehicular DTN

testbed, DieselNet [7], that consists of 40 buses covering

a 150 square-mile area around Amherst, MA. We collected

58 days of performance traces of the RAPID deployment. To

our knowledge, this is the first paper to report on a routing

2

protocol deployed on a real outdoor DTN. Similar testbeds have

deployed only flooding as a method of packet propagation [34].

We also conduct a simulation-based evaluation using real traces

to stress-test and compare various protocols. We show that

the performance results from our trace-driven simulation is

within 1% of the real measurements with 95% confidence. We

use this simulator to compare RAPID to four existing routing

protocols [21], [29], [7] and random routing. We also compare

the protocols using synthetic mobility models.

We evaluate the performance of RAPID for three different

routing metrics: average delay, worst-case delay, and the

number of packets delivered before a deadline. All experiments

include the cost of RAPID’s control channel. Our experiments

using trace-driven and synthetic mobility scenarios show that

RAPID significantly outperforms the four routing protocols.

For example, in trace-driven experiments under moderate-to-

high loads, RAPID outperforms the second-best protocol by

about 20% for all three metrics, while also delivering 15%

more packets for the first two metrics. With a priori mobility

information and moderate-to-high loads, RAPID outperforms

random replication by about 50% for high packet loads. We also

compare RAPID to an optimal protocol and show empirically

that RAPID performs within 10% of optimal for low loads.

II. RELATED WORK

a) Replication versus Forwarding: We classify related

existing DTN routing protocols as those that replicate packets

and those that forward only a single copy. Epidemic routing

protocols replicate packets at transfer opportunities hoping to

find a path to a destination. However, naive flooding wastes

resources and can severely degrade performance. Proposed

protocols attempt to limit replication or otherwise clear useless

packets in various ways: (i) using historic meeting informa-

tion [13], [8], [7], [21]; (ii) removing useless packets using

acknowledgments of delivered data [7]; (iii) using probabilistic

mobility information to infer delivery [28]; (iv) replicating

packets with a small probability [33]; (v) using network

coding [32] and coding with redundancy [17]; and (vi) bounding

the number of replicas of a packet [29], [28], [23].

In contrast, forwarding routing protocols maintain at most

one copy of a packet in the network [18], [19], [31]. Jain et

al. [18] propose a forwarding algorithm to minimize the average

delay of packet delivery using oracles with varying degrees of

future knowledge. Our deployment experience suggests that,

even for a scheduled bus service, implementing the simplest

oracle is difficult; connection opportunities are affected by

many factors in practice including weather, radio interference,

and system failure. Furthermore, we present formal hardness

and empirical results to quantify the impact of not having

complete knowledge.

Jones et al. [19] propose a link-state protocol based on

epidemic propagation to disseminate global knowledge, but

use a single path to forward a packet. Shah et al. [27] and

Spyropoulos et al. [31] present an analytical framework for the

forwarding-only case assuming a grid-based mobility model.

They subsequently extend the model and propose a replication-

based protocol, Spray and Wait [29]. The consensus appears

to be [29] that replicating packets can improve performance

(and security [6]) over just forwarding, but risk degrading

performance when resources are limited.

b) Incidental versus Intentional: Our position is that most

existing schemes only have an incidental effect on desired

performance metrics, including commonly evaluated metrics

such as average delay or delivery probability. Therefore, the

effect of a routing decision on the performance of a given

resource constrained network scenario is unclear. For example,

several existing DTN routing algorithms [29], [28], [23], [7]

route packets using the number of replicas as the heuristic, but

the effect of replication varies with different routing metrics.

Spray and Wait [29] routes to reduce delay metric, but it does

not take into account bandwidth or storage constraints. In

contrast, routing in RAPID is intentional with respect to a given

performance metric. RAPID explicitly calculates the effect of

replication on the routing metric while accounting for resource

constraints.

c) Resource Constraints: RAPID also differs from most

previous work in its assumptions regarding resource constraints,

routing policy, and mobility patterns. Table I shows a taxonomy

of many existing DTN routing protocols based on assumptions

about bandwidth available during transfer opportunities and the

storage carried by nodes; both are either finite or unlimited. For

each work, we state in parentheses the mobility model used.

RAPID is a replication-based algorithm that assumes constraints

on both storage and bandwidth (P5) — the most challenging

and most practical problem space.

P1 and P2 are important to examine for valuable insights

that theoretical tractability yields but are impractical for real

DTNs with limited resources. Many studies [21], [13], [8],

[28] analyze the case where storage at nodes is limited, but

bandwidth is unlimited (P3). However, we find this scenario to

be uncommon. Bandwidth is likely to be constrained for most

typical DTN scenarios. Specifically, in mobile and vehicular

DTNs, transfer opportunities are typically short-lived [16], [7].

We were unable to find other protocols in P5 except

MaxProp [7] that assume limited storage and bandwidth.

However, it is unclear how to optimize a specific routing metric

using MaxProp, so we categorize it as an incidental routing

protocol. Our experiments indicate that RAPID outperforms

MaxProp for each metric that we evaluate.

Some theoretical works [35], [30], [28], [5] derive closed-

form expressions for average delay and number of replicas in

the system as a function of the number of nodes and mobility

patterns. Although these analyses contributed to important

insights in the design of RAPID, their assumptions about

mobility patterns or unlimited resources were, in our experience,

too restrictive to be applicable to practical settings.

III. THE RAPID PROTOCOL

A. System model

We model a DTN as a set of mobile nodes. Two nodes

transfer data packets to each other when within communication

range. During a transfer, the sender replicates packets while

retaining a copy. A node can deliver packets to a destination

node directly or via intermediate nodes, but packets may not

3

Problem Storage Bandwidth Routing Previous work (and mobility)

P1 Unlimited Unlimited Replication Epidemic [23], Spray and Wait [29]: Constraint in the form of channel
contention (Grid-based synthetic)

P2 Unlimited Unlimited Forwarding Modified Djikstra’s et al. [18] (simple graph), MobySpace [20] (Powerlaw)

P3 Finite Unlimited Replication Davis et al. [13] (Simple partitioning synthetic), SWIM [28] (Exponential),
MV [8] (Community-based synthetic), Prophet [21] (Community-based
synthetic)

P4 Finite Finite Forwarding Jones et al. [19] (AP traces), Jain et al. [18] (Synthetic DTN topology)

P5 Finite Finite Replication This paper (Vehicular DTN traces, exponential, and power law meeting
probabilities, testbed deployment), MaxProp [7] (Vehicular DTN traces)

TABLE I
A CLASSIFICATION OF SOME RELATED WORK INTO DTN ROUTING SCENARIOS

be fragmented. There is limited storage and transfer bandwidth

available to nodes. Destination nodes are assumed to have

sufficient capacity to store delivered packets, so only storage for

in-transit data is limited. Node meetings are assumed to be short-

lived. The nodes are assumed to have sufficient computational

capabilities as well as enough resources to maintain state

information.

Formally, a DTN consists of a node meeting schedule and a

workload. The node meeting schedule is a directed multigraph

G = (V,E), where V and E represent the set of nodes

and edges, respectively. Each directed edge e between two

nodes represents a meeting between them, and it is annotated

with a tuple (te, se), where t is the time and s is the size

of the transfer opportunity. The workload is a set of packets

P = {(u1, v1, s1, t1), (u2, v2, s2, t2), . . .}, where the ith tuple

represents the source, destination, size, and time of creation

(at the source), respectively, of packet i. The goal of a DTN

routing algorithm is to deliver all packets using a feasible

schedule of packet transfers, where feasible means that the

total size of packets transfered during each opportunity is less

than the size of the opportunity, always respecting storage

constraints.

In comparison to Jain et al.[18] who model link properties

as continuous functions of time, our model assumes discrete

short-lived transfers; this makes the problem analytically more

tractable and characterizes many practical DTNs well.

B. RAPID design

RAPID models DTN routing as a utility-driven resource

allocation problem. A packet is routed by replicating it until a

copy reaches the destination. The key question is: given limited

bandwidth, how should packets be replicated in the network

so as to optimize a specified routing metric? RAPID derives a

per-packet utility function from the routing metric. At a transfer

opportunity, it replicates a packet that locally results in the

highest increase in utility.

Consider a routing metric such as minimize average delay

of packets, the running example used in this section. The

corresponding utility Ui of packet i is the negative of the

expected delay to deliver i, i.e., the time i has already spent

in the system plus the additional expected delay before i is

delivered. Let δUi denote the increase in Ui by replicating i
and si denote the size of i. Then, RAPID replicates the packet

D(i) Packet i’s expected delay = T (i) + A(i)
T (i) Time since creation of i

a(i) Random variable that determines the
remaining time to deliver i

A(i) Expected remaining time = E[a(i)]
MXZ Random variable that determines inter-meeting time between

nodes X and Z

TABLE II
LIST OF COMMONLY USED VARIABLES.

with the highest value of δUi/si among packets in its buffer;

in other words, the packet with the highest marginal utility.

In general, Ui is defined as the expected contribution of i
to the given routing metric. For example, the metric minimize

average delay is measured by summing the delay of packets.

Accordingly, the utility of a packet is its expected delay. Thus,

RAPID is a heuristic based on locally optimizing marginal

utility, i.e., the expected increase in utility per unit resource

used.

Using the marginal utility heuristic has some desirable

properties. The marginal utility of replicating a packet to a

node is low when (i) the packet has many replicas, or (ii) the

node is a poor choice with respect to the routing metric, or

(iii) the resources used do not justify the benefit. For example,

if nodes meet each other uniformly, then a packet i with 6

replicas has lower marginal utility of replication compared to

a packet j with just 2 replicas. On the other hand, if the peer

is unlikely to meet j’s destination for a long time, then i may

take priority over j.

RAPID has three core components: a selection algorithm,

an inference algorithm, and a control channel. The selection

algorithm is used to determine which packets to replicate

at a transfer opportunity given their utilities. The inference

algorithm is used to estimate the utility of a packet given the

routing metric. The control channel propagates the necessary

metadata required by the inference algorithm.

C. The selection algorithm

The RAPID protocol executes when two nodes are within

radio range and have discovered one another. The protocol is

symmetric; without loss of generality, we describe how node

X determines which packets to transfer to node Y (refer to

the box marked PROTOCOL RAPID).

4

PROTOCOL RAPID(X, Y):

1) Initialization: Obtain metadata from Y about packets

in its buffer as well as metadata it collected over

past meetings (detailed in Section IV-B).

2) Direct delivery: Deliver packets destined to Y in

decreasing order of creation times.

3) Replication: For each packet i in node X’s buffer

a) If i is already in Y ’s buffer (as determined

from the metadata), ignore i.
b) Estimate marginal utility, δUi/si, of replicat-

ing i to Y .

c) Replicate packets in decreasing order of

marginal utility.

4) Termination: End transfer when out of radio range

or all packets replicated.

RAPID also adapts to storage restrictions for in-transit data.

If a node exhausts all available storage, packets with the

lowest utility are deleted first as they contribute least to overall

performance. However, a source never deletes its own packet

unless it receives an acknowledgment for the packet.

D. Inference algorithm

Next, we describe how PROTOCOL RAPID can support

specific metrics using an algorithm to infer utilities. Table II

defines the relevant variables.

1) Metric 1: Minimizing average delay: To minimize the

average delay of packets in the network we define the utility

of a packet as

Ui = −D(i) (1)

since the packet’s expected delay is its contribution to the

performance metric. RAPID attempts to greedily replicate the

packet whose replication reduces the delay by the most among

all packets in its buffer.

2) Metric 2: Minimizing missed deadlines: To minimize

the number of packets that miss their deadlines, the utility is

defined as the probability that the packet will be delivered

within its deadline:

Ui =

{

P (a(i) < L(i) − T (i)), L(i) > T (i)
0, otherwise

(2)

where L(i) is the packet life-time. A packet that has missed

its deadline can no longer improve performance and is thus

assigned a value of 0. The marginal utility is the improvement

in the probability that the packet will be delivered within its

deadline.

3) Metric 3: Minimizing maximum delay: To minimize

the maximum delay of packets in the network, we define the

utility Ui as

Ui =

{

−D(i), D(i) ≥ D(j) ∀j ∈ S
0, otherwise

(3)

where S denotes the set of all packets in X’s buffer. Thus, Ui is

the negative expected delay if i is a packet with the maximum

expected delay among all packets held by Y . So, replication

is useful only for the packet whose delay is maximum. For

the routing algorithm to be work conserving, RAPID computes

utility for the packet whose delay is currently the maximum; i.e.,

once a packet with maximum delay is evaluated for replication,

the utility of the remaining packets is recalculated using Eq. 3.

IV. ESTIMATING DELIVERY DELAY

How does a RAPID node estimate expected delay in Eqs. 1

and 3, or the probability of packet delivery within a deadline in

Eq. 2? The expected delivery delay is the minimum expected

time until any node with the replica of the packet delivers the

packet; so a node needs to know which other nodes possess

replicas of the packet and when they expect to meet the

destination.

To estimate expected delay we assume that each node

with the copy of the packet delivers the packet directly to

the destination, ignoring the effect of further replications.

This assumption simplifies the expected delay estimation,

and we make this assumption only for networks with dense

node meetings, were every node meets every other node. In

Section IV-A2, we describe a modification to this assumption

for networks with sparse node meetings. Estimating expected

delay is nontrivial even with an accurate global snapshot of

system state. For ease of exposition, we first present RAPID’s

estimation algorithm as if we had knowledge of the global

system state, and then we present a practical distributed

implementation.

A. Algorithm Estimate Delay

A RAPID node uses the algorithm ESTIMATE DELAY to

estimate the delay of a packet in its buffer. ESTIMATE DELAY

works as follows (refer to box marked ALGORITHM ESTI-

MATE DELAY): In Step 1, each node X maintains a separate

queue of packets Q destined to a node Z sorted in decreasing

order of creation times; this is the order in which the packets

will be delivered when X meets Z in PROTOCOL RAPID.

In Step 2 of ESTIMATE DELAY, X computes the delivery

delay distribution of packet i if delivered directly by X . In

Step 3, X computes the minimum across all replicas of the

corresponding delivery delay distributions; we note that the

delivery time of i is the time until the first node delivers

the packet. ESTIMATE DELAY assumes that the meeting time

distribution is the same as the inter-meeting time distribution.

The Assumption 2 in ESTIMATE DELAY is a simplifying in-

dependence assumption that does not hold in general. Consider

Figure 2(a), an example showing the positions of packet replicas

in the queues of different nodes. All packets have a common

destination Z and each queue is sorted by T (i). Assume that

the transfer opportunities and packets are of unit-size.

In Figure 2(a), packet b may be delivered in two ways: (i)

if W meets Z; (ii) one of X and Y meets Z and then one

of X and Y meet Z again. These delay dependencies can be

represented using a dependency graph as illustrated in Fig 2(b);

packets with the same letter and different indices are replicas.

A vertex corresponds to a packet replica. An edge from one

node to another indicates a dependency between the delays

of the corresponding packets. Recall that MXY is the random

variable that represents the meeting time between X and Y .

5

ALGORITHM ESTIMATE DELAY:

Node X storing a set of packets Q to destination Z
performs the following steps to estimate the time until

packet i ∈ Q is delivered

1) X sorts all packets i ∈ Q in the descending order

of T (i), time since i is created.

a) Let b(i) be the sum size of packets that precede

packet i in the sorted list of X . Figure 1 illustrates

a sorted buffer containing packet i.

b) Let B be the expected transfer opportunity in

bytes between X and Z. (For readability, we drop

subscript X since we are only talking about one

node; in general b(i) and B are functions of the

node). Node X locally computes B as a moving

average of past transfers between X and Z.

2) Assumption 1: Suppose only X delivers packets to

Z with no further replication.

Let aX(i) be the delay distribution of X delivering

the packet. Under our assumption, X requires

⌈b(i)/B⌉ meetings with Z to deliver i.
Let M be a distribution that models the inter-

meeting times between nodes, and let MX,Z be the

random variable that represents the time taken for

X and Z to meet. We transform MX,Z to random

variable M ′

X,Z that represents the time until X and

Z meet ⌈b(i)/B⌉ times. Then, by definition

aX(i) = M ′

X,Z (4)

3) Assumption 2: Suppose the k random variables

ay(i), y ∈ [1, k] were independent, where k is the

number of replicas of i.
The probability of delivering i within time t is the

minimum of the k random variables ay(i), y ∈ [1, k].
This probability is:

P(a(i) < t) = 1 −

k
∏

y=1

(1 − P(ay(i) < t) (5)

a) Accordingly:
A(i) = E[a(i)] (6)

ESTIMATE DELAY ignores all the non-vertical dependencies.

For example, it estimates b’s delivery time distribution as

min(MWZ ,MXZ + MXZ , MY Z + MY Z),

whereas the distribution is actually

min(MWZ ,min(MXZ ,MY Z) + min(MXZ ,MY Z)).

Estimating delays without ignoring the non-vertical de-

pendancies is challenging. Using a simplifying assumption

that the transfer opportunities and packets are unit-sized,

we design algorithm DAG DELAY(described in a Technical

report citerapid-tr), that estimates the expected delay by taking

into account non-vertical dependancies. Although DAG DELAY

B bytes (Average transfer
size)

b(i) bytes (Sum of packets
 before i)

Sorted
list of packets
destined to Z

i

Fig. 1. Position of packet i in a queue of packets destined to Z.

a2

b3

c1
Node W Node X Node Y

(a) Packet destined to Z buffered
at different nodes

a1b1

b2d1

d2

Node W Node X Node Y

(b) Delay dependancies between
packets destined to node Z

b

d

a

b

d

a

b

c

Fig. 2. Delay dependencies between packets destined to Z buffered
in different nodes.

is of theoretical interest, it cannot be implemented in practice

because DAG DELAY assumes that — (i) the transfer opportu-

nity size is exactly equal to the size of a packet.This assumption

is fundamental for the design of DAG DELAYand (ii) nodes

have a global view of the system.

In general, ignoring non-vertical edges can arbitrarily inflate

delay estimates for some pathological cases (detailed in a

Technical report [3]). However, we find that ESTIMATE DELAY

works well in practice, and is simple and does not require a

global view of the system.

1) Estimating delays when transfer opportunities are ex-

ponentially distributed: We walk through the distributed

implementation of ESTIMATE DELAY for a scenario where the

inter-meeting time between nodes is exponentially distributed.

Assume that the mean meeting time between nodes is 1
λ . In the

absence of bandwidth restrictions, the expected delivery delay

when there are k replicas is the mean meeting time divided

by k, i.e., P(a(i) < t) = 1− e−kλt and A(i) = 1
kλ . (Note that

the minimum of k i.i.d. exponentials is also an exponential

with mean 1
k of the mean of the i.i.d exponentials [9].)

When transfer opportunities are limited, the expected delay

depends on the packet’s position in the nodes’ buffers. In Step 2

of ESTIMATE DELAY, the node estimates the number of times

it needs to meet the destination to deliver a packet as a function

of ⌈b(i)/B⌉. According to our exponential meeting time

assumption, the time for some node X to meet the destination

⌈b(i)/B⌉ times is described by a gamma distribution with

mean 1
λ · ⌈b(i)/B⌉.

If packet i is replicated at k nodes, Step 3 computes the

delay distribution a(i) as the minimum of k gamma variables.

We do not know of a closed form expression for the minimum

of gamma variables. Instead, if we assume that the time taken

for a node to meet the destination b(i)/B times is exponential

with the same mean 1
λ · ⌈b(i)/B⌉. We can then estimate a(i)

as the minimum of k exponentials.

Let n1(i), n2(i), . . . , nk(i) be the number of times each of

6

the k nodes respectively needs to meet the destination to deliver

i directly. Then A(i) is computed as:

P(a(i) < t) = 1 − e
−(λ

n1(i)
+ λ

n2(i)
+...+ λ

nk(i)
)t

(7)

A(i) =
1

λ
n1(i)

+ λ
n2(i)

+ . . . + λ
nk(i)

(8)

When the meeting time distributions between nodes are

non-uniform, say with means 1
λ1

, 1
λ2

. . . 1
λk

respectively, then

A(i) = (λ1

n1(i)
+ λ2

n2(i)
+ . . . + λk

nk(i))
−1.

2) Estimating delays when transfer opportunity distribution

is unknown: To implement RAPID on the DieselNet testbed,

we adapt Eq. 8 to scenarios where the transfer opportunities are

not exponentially distributed. First, to estimate mean inter-node

meeting times in the DieselNet testbed, every node tabulates the

average time to meet every other node based on past meeting

times. Nodes exchange this table as part of metadata exchanges

(Step 1 in PROTOCOL RAPID). A node combines the metadata

into a meeting-time adjacency matrix and the information is

updated after each transfer opportunity. The matrix contains

the expected time for two nodes to meet directly, calculated

as the average of past meetings.

Node X estimates E(MXZ), the expected time to meet

Z, using the meeting-time matrix. E(MXZ) is estimated as

the expected time taken for X to meet Z in at most h hops.

(Unlike uniform exponential mobility models, some nodes in

the trace never meet directly.) For example, if X meets Z via

an intermediary Y , the expected meeting time is the expected

time for X to meet Y and then Y to meet Z in 2 hops. In our

implementation we restrict h = 3. When two nodes never meet,

even via three intermediate nodes, we set the expected inter-

meeting time to infinity. Several DTN routing protocols [7],

[21], [8] use similar techniques to estimate meeting probability

among peers.

RAPID estimates expected meeting times by taking into

account transitive meetings. However, our delivery estimation

(described in ESTIMATE DELAY) assumes that nodes do

not make additional replicas. This disconnect is because, in

DieselNet, only few buses meet directly, and the pair-wise

meeting times between several bus pairs is infinity. We take

into account transitive meetings when two buses do not meet

directly, to increase the number of potential forwarders.

Let replicas of packet i destined to Z reside at nodes

X1, . . . , Xk. Since we do not know the meeting time dis-

tributions, we simply assume they are exponentially distributed.

Then from Eq. 8, the expected delay to deliver i is

A(i) = [

k
∑

j=1

1

E(MXjZ) · nj(i)
]−1 (9)

We use an exponential distribution because bus meeting times

in the testbed are difficult to model. Buses change routes several

times in one day, the inter-bus meeting distribution is noisy,

and we found them hard to model even using mixture models.

Approximating meeting times as exponentially distributed

makes delay estimates easy to compute and performs well

in practice.

B. Control channel

Previous studies [18] have shown that as nodes have the

benefit of more information about global system state using

oracles, they can make significantly better routing decisions.

We extend this idea to practical DTNs where no oracle is

available. RAPID nodes gather knowledge about the global

system state by disseminating metadata using a fraction of the

transfer opportunity.

RAPID uses an in-band control channel to exchange acknowl-

edgments for delivered packets as well as metadata about every

packet learnt from past exchanges. For each encountered packet

i, RAPID maintains a list of nodes that carry the replica of i, and

for each replica, an estimated time for direct delivery. Metadata

for delivered packets is deleted when an ack is received.

For efficiency, a RAPID node maintains the time of last

metadata exchange with its peers. The node only sends

information about packets whose information changed since

the last exchange, which reduces the size of the exchange

considerably. A RAPID node sends the following information

on encountering a peer: (i) Average size of past transfer

opportunities; (ii) Expected meeting times with nodes; (iii)

Acks; (iv) For each of its own packets, the updated delivery

delay estimate based on current buffer state; (v) Delivery delay

of other packets if modified since last exchange.

When using the control channel, nodes have only an imper-

fect view of the system. The propagated information may be

stale due to changes in number of replicas, changes in delivery

delays, or if the packet is delivered but acknowledgments have

not propagated. Nevertheless, our experiments confirm that (i)

this inaccurate information is sufficient for RAPID to achieve

significant performance gains over existing protocols and (ii)

the overhead of metadata itself is not significant.

V. THE CASE FOR A HEURISTIC APPROACH

Any DTN routing algorithm has to deal with two uncertain-

ties regarding the future: unpredictable meeting schedule and

unpredictable workload. RAPID is a local algorithm that routes

packets based on the marginal utility heuristic in the face of

these uncertainties. In this section, we show two fundamental

reasons that make the case for a heuristic approach to DTN

routing. First, we prove that computing optimal solutions is hard

even with complete knowledge about the environment. Second,

we prove that the presence of even one of the two uncertainties

rule out provably efficient online routing algorithms.

A. Computational Hardness of the DTN Routing Problem

THEOREM 2: Given complete knowledge of node meetings

and the packet workload a priori, computing a routing schedule

that is optimal with respect to the number of packets delivered

is NP-hard and has a lower bound of Ω(n1/2−ǫ) on the

approximation ratio.

Proof: Consider a DTN routing problem with n nodes

that have complete knowledge of node meetings and work-

load a priori. The input to the DTN problem is the

set of nodes 1, . . . , n; a series of transfer opportunities

{(u1, v1, s1, t1), (u2, v2, s2, t2), . . .} such that ui, vi ∈ [1, n],
si is the size of the transfer opportunity, and ti is the time

7

of meeting; and a packet workload {p1, p2, . . . ps}, where

pi = (u′

i, v
′

i, s
′

i, t
′

i), where u′, v′ ∈ [1, n] are the source and

destination, s′ the size, and t′ the time of creation of the

packet, respectively. The goal of a DTN routing algorithm is to

compute a feasible schedule of packet transfers, where feasible

means that the total size of transferred packets in any transfer

opportunity is less than the size of the transfer opportunity.

The decision version On,k of this problem is: Given a DTN

with n nodes such that nodes have complete knowledge of

transfer opportunities and the packet workload, is there a

feasible schedule that delivers at least k packets?

LEMMA 1: O(n, k) is NP-hard.

Proof: We show that O(n, k) is a NP-hard problem using

a polynomial-time reduction from the edge-disjoint path (EDP)

problem for a directed acyclic graph (DAG) to O(n, k). The

EDP problem for a DAG is known to be NP-hard [11].

The decision version of EDP problem is: Given a DAG

G = (V,E), where |V | = n, E ∈ V × V : ei = (ui, vi) ∈ E,

if ei is incident on ui and vi and direction is from ui to vi. If

given source-destination pairs {(s1, t1), (s2, t2)...(ss, ts)}, do

a set of edge-disjoint paths {c1, c2...ck} exist, such that ci is

a path between si and ti, where 1 ≤ i ≤ k.

Given an instance of the EDP problem, we generate a DTN

problem O(n, k) as follows:

As the first step, we topologically order the edges in G,

which is possible given G is a DAG. The topological sorting

can be performed in polynomial-time.

Next, we label edges using natural numbers with any function

l : E → ◆ such that if ei = (ui, uj) and ej = (uj , uk), then

l(ei) < l(ej). There are many ways to define such a function

l. One algorithm is:

1) label = 0

2) For each vertex v in the decreasing order of the topolog-

ical sort,

a) Choose unlabeled edge e = (v, x) : x ∈ V ,

b) label = label + 1

c) Label e; l(e) = label.

Since vertices are topologically sorted, if ei = (ui, uj) then

ui < uj . Since the algorithm labels all edges with source ui

before it labels edges with source uj , if ej = (uj , uk), then

l(ei) < l(ej).
Given a G, we define a DTN routing problem by mapping

V to the nodes (1, .., n) in the DTN. The edge (e = {u, v} :
u, v ∈ V) is mapped to the transfer opportunity (u, v, 1, l(e)),
assuming transfer opportunities are unit-sized. Source and

destination pairs {(s1, t1), (s2, t2), . . . , (sm, tm)} are mapped

to packets {p1, p2, . . . , pm}, where pi = (si, ti, 1, 0). In other

words, packet p is created between the corresponding source-

destination pair at time 0 and with unit size. A path in graph

G is a valid route in the DTN because the edges on a path

are transformed to transfer opportunities of increasing time

steps. Moreover, a transfer opportunity can be used to send

no more than one packet because all opportunities are unit-

sized. If we solve the DTN routing problem of delivering k
packets, then there exists k edge-disjoint paths in graph G, or

in other words we can solve the EDP problem. Similarly, if

the EDP problem has a solution consisting of k edge-disjoint

paths in G, at least k packets can be delivered using the set

of transfer opportunities represented by each path. Using the

above polynomial-time reduction, we show that a solution to

EDP exists if and only if a solution to O(n, k) exists. Thus,

O(n, k) is NP-hard.

COROLLARY 1: The DTN routing problem has a lower

bound of Ω(n1/2−ǫ) on the approximation ratio.

Proof: The reduction given above is a true reduction

in the following sense: each successfully delivered DTN

packet corresponds to an edge-disjoint path and vice-versa.

Thus, the optimal solution for one exactly corresponds to an

optimal solution for the other. Therefore, this reduction is an

L-reduction [25]. Consequently, the lower bound Ω(n1/2−ǫ)
known for the hardness of approximating the EDP problem [15]

holds for the DTN routing problem as well.

Hence, Theorem 2.

The hardness results naturally extend to the average delay

metric for both the online as well as computationally limited

algorithms.

B. Competitive Hardness of Online DTN Routing

P = {p1, p2...pn}

u1

u2

un

Intermediate

un−1

Destination

vn

v1

destined topi vi

Fig. 3. DTN node meetings for Theorem V-B. Solid arrows represent node
meetings known a priori to the online algorithm while dotted arrows represent
meetings revealed subsequently by an offline adversary.

Let ALG be any deterministic online DTN routing algorithm

with unlimited computational power.

THEOREM 1(a). If ALG has complete knowledge of the

workload, but not of the schedule of node meetings, then ALG

is Ω(n)-competitive with an offline adversary with respect to

the fraction of packets delivered, where n is the number of

packets in the workload.

Proof: We prove the theorem by constructing an offline

adversary, ADV, that incrementally generates a node meeting

schedule after observing the actions of ALG at each step. We

show how ADV can construct a node meeting schedule such

that ADV can deliver all packets while ALG, without prior

knowledge of node meetings, can deliver at most 1 packet.

Consider a DTN as illustrated in Fig. 3, where

P = {p1, p2, . . . , pn} denotes a set of unit-sized packets;

U = {u1, u2, . . . , un} denotes a set of intermediate nodes;

and V = {v1, v2, . . . , vn} denotes a set of nodes to which

the packets are respectively destined, i.e. pi is destined to vi

8

for all i ∈ [1, n]. The following procedure describes ADV’s

actions given ALG as input.

PROCEDURE FOR ADV:

• Step 1: ADV generates a set of node meetings involving

unit-size transfer opportunities at time t = 0 between A
and each of the intermediate nodes u1, . . . , un respectively

(refer to Figure 3).

• Step 2: At time t1 > 0, ADV observes the set of transfers

X made by ALG. Without loss of generality, X : P → U
is represented as a (one-to-many) mapping where X(pi)
is the set of intermediate nodes (u1, u2 · · ·un) to which

ALG replicates packet pi.

• Step 3: ADV generates the next set of node meet-

ings (u1, Y (u1)), (u2, Y (u2)), . . . , (un, Y (un)) at time

t1, where Y : U → V is a bijective mapping from

the set of intermediate nodes to the destination nodes

v1, v2, · · · vn.

ADV uses the following procedure to generate the mapping

Y given X in Step 3.

PROCEDURE GENERATE Y(X):

1) Initialize Y (pi) to null for all i ∈ [1, n];
2) for each i ∈ [1, n] do

3) if ∃j : uj /∈ X(pi) and Y (uj) = null, then

4) Map Y (uj) → vi for the smallest such j;

5) else

6) Pick a j: Y (uj) = null, and map Y (uj) → vi

7) endif

LEMMA 2: ADV executes Line 6 in GENERATE Y(X) at

most once.

Proof:

We first note that the procedure is well defined at Line 6:

each iteration of the main loop map exactly one node in U
to a node in V , therefore a suitable j such that Y (uj) = null

exists. Suppose ADV first executes Line 6 in the m’th iteration.

By inspection of the code, the condition in Line 3 is false,

therefore each intermediate node uk, k ∈ [1, n], either belongs

to X(pi) or is mapped to some destination node Y (uk) 6=
null. Since each of the m − 1 previous iterations must have

executed Line 4 by assumption, exactly m−1 nodes in U have

been mapped to nodes in V . Therefore, each of the remaining

n−m + 1 unmapped nodes must belong to X(pi) in order to

falsify Line 3. Line 6 maps one of these to vi leaving n − m
unmapped nodes. None of these n − m nodes is contained in

X(pk) for k ∈ [m+1, . . . , n]. Thus, in each of the subsequent

n − m iterations, the condition in Line 3 evaluates to true.

LEMMA 3: The schedule of node meetings created by Y
allows ALG to deliver at most one packet to its destination.

Proof:

For ALG to deliver any packet pi successfully to its

destination vi, it must be the case that some node in X(pi)
maps to vi. Such a mapping could not have occurred in Line

3 by inspection of the code, so it must have occurred in Line

6. By Lemma 2, Line 6 is executed exactly once, so ALG can

deliver at most one packet.

LEMMA 4: The schedule of node meetings created by

Y allows ADV to deliver all packets to their respective

destinations.

Proof: We first note that, by inspection of the code, Y
is a bijective mapping: Line 4 and 6 map an unmapped node

in U to vi in iteration m and there are n such iterations. So,

ADV can route pi by sending it Y −1(vi) and subsequently to

vi.

Theorem 1(a) follows directly from Lemmas 3 and 4.

COROLLARY 2: ALG can be arbitrarily far from ADV with

respect to average delivery delay.

Proof: The average delivery delay is unbounded for ALG

because of undelivered packets in the construction above while

it is finite for ADV. If we assume that that ALG can eventually

deliver all packets after a long time T (say, because all nodes

connect to a well-connected wired network at the end of the

day), then ALG is Ω(T)-competitive with respect to average

delivery delay using the same construction as above.

We remark that it is unnecessary in the construction above

for the two sets of n node meetings to occur simultaneously

at t = 0 and t = t1, respectively. The construction can

be easily modified to not involve any concurrent node meetings.

THEOREM 1(b). If ALG has complete knowledge of

the meeting schedule, but not of the packet workload, then

ALG can deliver at most a third of the packets delivered by

an optimal offline adversary.

Proof: We prove the theorem by constructing a procedure

for ADV to incrementally generate a packet workload by

observing ALG’s transfers at each step. As before, we only

need unit-sized transfer opportunities and packets for the

construction.

Consider the basic DTN “gadget” shown in Fig. 4(a)

involving just six node meetings. The node meetings are known

in advance and occur at times T1 and T2 > T1 respectively. The

workload consists of just two packets P = {p1, p2} destined

to v1 and v2, respectively.

LEMMA 5: ADV can use the basic gadget to force ALG to

drop half the packets while itself delivering all packets.

Proof: The procedure for ADV is as follows. If ALG

transfers p1 to v′1 and p2 to v′2, then ADV generates two more

packets: p′2 at v′1 destined to v2 and p′1 at v′2 destined to v1.

ALG is forced to drop one of the two packets at both v′1 and

v′2. ADV can deliver all four packets by transferring p1 and

p2 to v′2 and v′1 respectively at time T1, which is the exact

opposite of ALG’s choice.

If ALG instead chooses to transfer p1 to v′2 and p2 to v′1,

ADV chooses the opposite strategy.

If ALG chooses to replicate one of the two packets in both

transfer opportunities at time T1 while dropping the other

packet, ADV simply deliver both packets. Hence the lemma.

Next, we extend the basic gadget to show that ALG can

deliver at most a third of the packets while ADV delivers

all packets. The corresponding construction is shown in

Figure 4(b).

The construction used by ADV composes the basic gadget

repeatedly for a depth of 2. In this construction, ADV can

force ALG to drop 2/5th of the packet while ADV delivers

all packets. We provide the formal argument in a technical

9

S

A

(a) The basic gadget forces ALG to

drop half the packets.

T1 T2

Basic Gadget

T1

(b) ADV can use a gadget of depth 2 to force

ALG to deliver at most 2/5'th of the packets

T1 T2 T3 T4 T5

R

p1, p2

p1, p2

v
′

1

v
′

1

v
′

2

v
′

2

v1

v1

v2

v2

v3

v4v
′′

4

v
′′

2

v
′′

3

v
′′

1

p
′

1

p
′

2

p
′

1

p
′

2

p3

p4

Fig. 4. DTN construction for Theorem V-B. Solid arrows represent node
meetings known a priori to ALG while vertical dotted arrows represent packets
created by ADV at the corresponding node.

report [3] in the interest of space. Similarly, by creating a

gadget of depth 3, we can show that ADV can force ALG to

deliver at most 4/11’th of the packets. Effectively, each new

basic gadget introduces 3 more packets and forces ALG to

drop 2 more packets. In particular, with a gadget of depth i,
ADV can limit ALG’s delivery rate to i/(3i − 1). Thus, by

composing a sufficiently large number of basic gadgets, ADV

can limit the delivery rate of ALG to a value close to 1/3.

Hence, Theorem 1(b).

VI. IMPLEMENTATION ON A VEHICULAR DTN TESTBED

We implemented and deployed RAPID on our vehicular

DTN testbed, DieselNet [7] (http://prisms.cs.umass.edu/dome),

consisting of 40 buses, of which a subset is on the road each

day. The routing protocol implementation is a first step towards

deploying realistic DTN applications on the testbed. In addition,

the deployment allows us to study the effect of certain events

that are not perfectly modeled in the simulation of our routing

protocol. These events include delays caused by computation,

wireless channel interference, and operating system delays.

Each bus in DieselNet carries a small-form desktop computer,

40 GB of storage, and a GPS device. The buses operate a

802.11b radio that scans for other buses 10 times a second and

an 802.11b access point (AP) that accepts incoming connections.

Once a bus is found, a connection is created to the remote

AP. (It is likely that the remote bus then creates a connection

to the discovered AP, which our software merges into one

connection event.) The connection lasts until the radios are out

of range. Burgess et al. [7] describes the DieselNet testbed in

more detail.

A. Deployment

Buses in DieselNet send messages using PROTOCOL RAPID

in Section III, computing the metadata as described in Sec-

tion IV-B. We generated packets of size 1 KB periodically on

each bus with an exponential inter-arrival time. The destinations

of the packets included only buses that were scheduled to be

on the road, which avoided creation of many packets that could

never be delivered. We did not provide the buses information

about the location or route of other buses on the road. We

set the default packet generation rate to 4 packets per hour

generated by each bus for every other bus on the road; since

the number of buses on the road at any time varies, this is the

simplest way to express load. For example, when 20 buses are

on the road, the default rate is 1,520 packets per hour.

During the experiments, the buses logged packet generation,

packet delivery, delivery delay, meta-data size, and the total size

of the transfer opportunity. Buses transfered random data after

all routing was complete in order to measure the capacity and

duration of each transfer opportunity. The logs were periodically

uploaded to a central server using open Internet APs found on

the road.

B. Performance of deployed RAPID

We measured the routing performance of RAPID on the buses

from Feb 6, 2007 until May 14, 20071. The measurements

are tabulated in Table III. We exclude holidays and weekends

since almost no buses were on the road, leaving 58 days of

experiments. RAPID delivered 88% of packets with an average

delivery delay of about 91 minutes. We also note that overhead

due to meta-data accounts for less than 0.2% of the total

available bandwidth and less than 1.7% of the data transmitted.

C. Validating trace-driven simulator

In the next section, we evaluate RAPID using a trace-driven

simulator. The simulator takes as input a schedule of node

meetings, the bandwidth available at each meeting, and a

routing algorithm. We validated our simulator by comparing

simulation results against the 58-days of measurements from

the deployment. In the simulator, we generate packets under

the same assumptions as the deployment, using the same

parameters for exponentially distributed inter-arrival times.

Figure 5 shows the average delay characteristics of the real

system and the simulator. Delays measured using the simulator

were averaged over the 30 runs and the error-bars show a 95%

confidence interval. From those results and further analysis, we

find with 95% confidence that the simulator results are within

1% of the implementation measurement of average delay. The

close correlation between system measurement and simulation

increases our confidence in the accuracy of the simulator.

1The traces are available at http://traces.cs.umass.edu.

10

Avg. buses scheduled per day 19

Avg. total bytes transfered per day 261.4 MB

Avg. number of meetings per day 147.5

Percentage delivered per day 88%

Avg. packet delivery delay 91.7 min

Meta-data size/ bandwidth 0.002

Meta-data size/ data size 0.017

TABLE III
DEPLOYMENT OF RAPID: AVERAGE DAILY STATISTICS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

A
v
e

ra
g

e
 D

e
la

y
 (

m
in

)

Day

Real
Simulation

Fig. 5. Trace: Average delay for 58 days of RAPID real deployment compared
to simulation of RAPID using traces

VII. EVALUATION

The goal of our evaluation is to show that, unlike existing

work, RAPID can improve performance for customizable

metrics. We evaluate RAPID using three metrics: minimize

maximum delay, minimize average delay, and minimize missed

deadlines. In all cases, we found that RAPID significantly

outperforms existing protocols and also performs close to

optimal for small workloads.

A. Experimental setup

Our evaluations are based on a custom event-driven simulator,

as described in the previous section. The meeting times between

buses in these experiments are not known a priori. All values

used by RAPID, including average meeting times, are learned

during the experiment.

We compare RAPID to five other routing protocols: Max-

Prop [7], Spray and Wait [29], Prophet [21], Random, and

Optimal. In all experiments, we include the cost of RAPID’s

in-band control channel for exchanging metadata.

MaxProp operates in a storage- and bandwidth-constrained

environment, allows packet replication, and leverages delivery

notifications to purge old replicas; of recent related work, it

is closest to RAPID’s objectives. Random replicates randomly

chosen packets for the duration of the transfer opportunity.

Spray and Wait restricts the number of replications of a packets

to L, where L is calculated based on the number of nodes in

the network. For our simulations, we implemented the binary

Spray and Wait and set2 L = 12. We implemented Prophet with

2We set this value based on consultation with authors and using LEMMA
4.3 in [29] with a = 4.

Exponential/ Trace-driven
Power law

Number of nodes 20 max of 40
Buffer size 100 KB 40 GB
Transfer opp. size 100 KB given by trace
Duration 15 min 19 hours each trace
Size of a packet 10 KB 10 KB
Packet generation rate 50 sec mean 1 hour
Delivery deadline 20 sec 2.7 hours

TABLE IV
EXPERIMENT PARAMETERS

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6

A
v
g

 d
e

la
y
 w

it
h

 u
n

d
e

liv
e

re
d

 (
m

in
)

Number of packets generated in 1 hour per destination

Optimal
Rapid: Instant global control channel

Rapid: In-band control channel
Maxprop

Fig. 15. (Trace) Comparison with Optimal: Average delay of RAPID is
within 10% of Optimal for small loads

parameters Pinit = 0.75, β = 0.25 and γ = 0.98 (parameters

based on values used in [21]).

We also perform experiments where mobility is modeled

using a synthetic distribution – in this work we consider expo-

nential and power law distribution. Previous studies [10], [20]

have suggested that DTNs among people have a skewed, power

law inter-meeting time distribution. The default parameters

used for all the experiments are tabulated in Table IV. The

parameters for the synthetic mobility model is different from

the trace-driven model because the performance between the

two models are not comparable.

Each data point is averaged over 10 runs; in the case of trace-

driven results, the results are averaged over 58 traces. Each of

the 58 days is a separate experiment. In other words, packets

that are not delivered by the end of the day are lost. In all

experiments, MaxProp, RAPID and Spray and Wait performed

significantly better than Prophet, and the latter is not shown

in the graphs for clarity.

B. Results based on testbed traces

1) Comparison with existing routing protocols: Our exper-

iments show that RAPID consistently outperforms MaxProp,

Spray and Wait and Random. We increased the load in the

system up to 40 packets per hour per destination, when Random

delivers less than 50% of the packets.

Figure 6 shows the average delay of delivered packets using

the four protocols for varying loads when RAPID’s routing

metric is set to minimize average delay (Eq. 1). When using

RAPID, the average delay of delivered packets are significantly

lower than MaxProp, Spray and Wait and Random. Moreover,

RAPID also consistently delivers a greater fraction of packets

as shown in Figure 7.

11

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40

A
v
g

 d
e

la
y
 (

m
in

)

Number of packets generated in 1 hour per destination

Rapid
MaxProp

Spray and Wait
Random

Fig. 6. (Trace) Average Delay: RAPID has up to
20% lower delay than MaxProp and up to 35% lower
delay than Random

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

%
 d

e
liv

e
re

d

Number of packets generated in 1 hour per destination

Rapid
MaxProp

Spray and Wait
Random

Fig. 7. (Trace) Delivery Rate: RAPID delivers up
to 14% more than MaxProp, 28% than Spray and

Wait and 45% than Random

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40

M
a

x
 D

e
la

y
 (

m
in

)

Number of packets generated in 1 hour per destination

Rapid
MaxProp

Spray and Wait
Random

Fig. 8. (Trace) Max Delay: Maximum delay of
RAPID is up to 90 min lower than MaxProp, Spray

and Wait, and Random

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

%
 d

e
liv

e
re

d
 w

it
h

in
 d

e
a

d
lin

e

Number of packets generated in 1 hour per destination

Rapid
MaxProp

Spray and Wait
Random

Fig. 9. (Trace) Delivery within deadline: RAPID
delivers up to 21% more than MaxProp, 24% than
Spray and Wait, 28% than Random

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
v
g

 d
e

la
y
 w

it
h

 u
n

d
e

liv
e

re
d

 (
m

in
)

Percentage Metadata (of the available bandwidth)

Load: 6 packet per hour per node
Load: 12 packet per hour per node
Load: 20 packet per hour per node

Fig. 10. (Trace) Control channel benefit: Average
delay performance improves as more metadata is
allowed to be exchanged

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80
 0

 0.2

 0.4

 0.6

 0.8

 1

P
e

rc
e

n
ta

g
e

D
e

liv
e

ry
 r

a
te

Number of packets generated in 1 hour per destination

Meta information/RAPID data
% channel utilization

Delivery rate

Fig. 11. (Trace) Channel utilization: As load
increases, delivery rate decreases to 65% but channel
utilization is only about 35%

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40

A
v
g

 d
e

la
y
 (

m
in

)

Number of packets generated in 1 hour per destination

In-band control channel
Instant global control channel

Fig. 12. (Trace) Global channel: Average delay of
RAPID decreases by up to 20 minutes using instant
global control channel

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

P
e

rc
e

n
ta

g
e

 p
a

c
k
e

ts
 d

e
liv

e
re

d

Number of packets generated in 1 hour per destination

In-band control channel
Instant global channel

Fig. 13. (Trace) Global channel: Delivery rate
increases by up to 12% using an instant global control
channel, for the average delay metric

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

%
 d

e
liv

e
re

d
 w

it
h

in
 d

e
a

d
lin

e

Number of packets generated in 1 hour per destination

In-band control channel
Instant global control channel

Fig. 14. (Trace) Global channel: Packets delivered
within deadline increases by about 15% using instant
global control channel

Figure 8 shows RAPID’s performance when the routing

metric is set to minimize maximum delay (Eq. 3) and similarly

Figure 9 shows results when the metric is set to maximize the

number of packets delivered within a deadline (Eq. 2).

We note that among MaxProp, Spray and Wait and Random,

MaxProp delivers the most number of packets, but Spray and

Wait has marginally lower average delay than MaxProp. RAPID

significantly outperforms the three protocol for all metrics

because of its intentional design.

Standard deviation and similar measures of variance are not

appropriate for comparing the mean delays as each bus takes a

different geographic route. So, we performed a paired t-test [9]

to compare the average delay of every source-destination pair

using RAPID to the average delay of the same source-destination

pair using MaxProp (the second best performing protocol). In

our tests, we found p-values always less than 0.0005, indicating

the differences between the means reported in these figures

are statistically significant.

In a separate experiment (not shown in figure), we find that

the number of replications per delivery made by RAPID is

5.2, for a load of 5 packets per hour per destination. For the

same load, the number of replications per delivery made by

Random is 3.5 and Spray and Wait is 4.2. We note that we

only consider the number of replications for packets that are

delivered, and RAPID is set to optimize the average delay metric.

Even though it seems that RAPID replicates more aggressively

to deliver more packets, RAPID only replicates when bandwidth

is available. For example, when the load is increased to 15

packets per hour per destination, the number of replications

per delivery made by RAPID reduced to 4.3.

2) Metadata exchange: We allow RAPID to use as much

bandwidth at the start of a transfer opportunity for exchanging

metadata as it requires. To see if this approach was wasteful

or beneficial, we performed experiments where we limited

the total metadata exchanged. Figure 10 shows the average

delay performance of RAPID when metadata is limited as a

12

percentage of the total bandwidth. The average delay metric

shown here includes the delay for undelivered packets. When

a packet is undelivered, it is assumed to be delivered at the

end of the day.

The results show that performance increases as the limit is

removed and that the best performance results when there

is no restriction on metadata at all. The performance of

RAPID with complete metadata exchange improves by 20%

compared to when no metadata is exchanged. The metadata

in this experiment is represented as a percentage of available

bandwidth.

In the next experiment, we analyze total metadata as a

percentage of data. In particular, we increase the load to

75 packets per destination per hour to analyze the trend in

terms of bandwidth utilization, delivery rate and metadata.

Figure 11 shows this trend as load increases. The bandwidth

utilization is about 35% for the load of 75 packets per hour

per destination, while delivery rate is only about 65%. This

suggests that the performance drops even though the network

is under-utilized, and it is because of the bottleneck links in the

network. The available bandwidth varies significantly across

transfer opportunities in our bus traces [7].

We also observe that metadata increases to about 4% of

data for high loads. This is an order of magnitude higher

than the metadata observed as a fraction of bandwidth, again

because of the poor channel utilization. The average metadata

exchange per contact is proportional to the load and the channel

utilization.

RAPID uses more information to improve routing per-

formance. Although the result is intuitive, RAPID uses the

additional information to compute packet utilities accurately

and in-turn replicate packets intentionally. In contrast, Spray

and Wait or Random cannot use additional information even

if available, and MaxProp uses additional information only to

remove delivered packets [7]. Further, collecting the additional

information does not incur a huge overhead in RAPID. The

metadata overhead reduces even further with increasing packet

size. For example, moving from 1-KB to 10-KB packets reduces

RAPID’s metadata overhead by an order of magnitude.

There are several scenarios where metadata exchange needs

to be limited. For example, when transfer opportunities sizes

are much smaller than the number of packets, exchanging all

metadata during a transfer opportunity may affect performance.

Similarly, since RAPID is a link-state routing protocol, it scales

only as well as a link-state protocol. As the network size

increases, a node may need to limit the state information it

maintains as well as the amount of metadata exchanged. The

issue of limiting metadata exchange according to the network

scenario will be addressed as part of future work.

3) Hybrid DTN with thin continuous connectivity: In this

section, we compare the performance of RAPID using an instant

global control channel for exchanging metadata as opposed to

the default (delayed) in-band control channel.

Figure 12 shows the average delay of RAPID when using

an in-band control channel compared to a global channel. We

observe that the average delay of delivered packets decreases

by up to 20 minutes when using a global channel. For the same

experiments, the delivery rate when using an instant global

channel increases by up to 12% (shown in Figure 13). Similarly,

Figure 14 shows that the percentage packets delivered within

a deadline increases by an average of 20% using a global

channel. This observation suggests that RAPID’s performance

can benefit further by using more control information.

One interpretation of the global channel is the use of RAPID

as a hybrid DTN where all control traffic goes over a low-

bandwidth, long-range radio such as XTend [4]. Since XTend

radios support a data rate of about 1 KBps for a range of

1 mile, the radios cannot be used to deliver data packets

when the incoming rate is high or packet sizes are large.

A hybrid DTN will use a high-cost, low-bandwidth channel

for control whenever available and low-cost high-bandwidth

delayed channel for data. In our experiments, we assumed

that the global channel is instant. While this may not be

feasible in practice, the results give an upper bound on RAPID’s

performance when accurate channel information is available.

C. Results compared with Optimal

We compare RAPID to Optimal, which is an upper bound

on the performance. To obtain the optimal delay, we formulate

the DTN routing problem as an Integer Linear Program (ILP)

optimization problem when the meeting times between nodes

are precisely known (details in a Technical report [3]) and solve

the problem using a CPLEX solver [12]. Because the problem

grows in complexity with the number of packets, these results

are limited to only 6 packets per hour per destination. The ILP

objective function minimizes delay of all packets, where the

delay of undelivered packets is set to time the packet spent

in the system. Accordingly, we add the delay of undelivered

packets when presenting the results for RAPID and MaxProp.

Figure 15 presents the average delay performance of Optimal,

RAPID, and MaxProp. We observe that for small loads, the

performance of RAPID using the in-band control channel is

within 10% of the optimum performance, while using MaxProp

the delays are about 22% from the optimal. RAPID using a

global channel performs within 6% of optimal.

D. Results from synthetic mobility models

Next, we use an exponential and power law mobility model

to compare the performance of RAPID to MaxProp, Random,

and Spray and Wait. When mobility is modeled using power

law, two nodes meet with an exponential inter-meeting time,

but the mean of the exponential distribution is determined by

the popularity of the nodes. For the 20 nodes, we randomly

set a popularity value of 1 to 20, with 1 being most popular.

We set the mean meeting time for both mobility distribution

to 30 seconds. For the power law mobility model, the meeting

time is skewed from 30 seconds according to the node’s

popularity. All other parameters for exponential and power

law are identical.

1) Powerlaw mobility model, increasing load: Figure 16

shows the average delay for packets to be delivered (i.e., RAPID

is set to use Eq. 1 as a metric). The average delay of packets

quickly increase to 20 seconds as load increases in the case

of MaxProp, Spray and Wait and Random. In comparison,

13

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80

A
v
e

ra
g

e
 D

e
la

y
 (

s
e

c
)

Number of packets generated in 50 sec per destination

Rapid
MaxProp

Spray and Wait
Random

Fig. 16. (Powerlaw) Avg Delay: RAPID reduces
delay by about 20% compared to MaxProp, and 23%
than Spray and Wait and 25% than Random

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

M
a

x
 D

e
la

y
 (

s
e

c
)

Number of packets generated in 50 sec per destination

Rapid
MaxProp

Spray and Wait
Random

Fig. 17. (Powerlaw) Max delay: RAPID’s max delay
is about 30% lower than MaxProp, 35% lower than
Spray and Wait and 45% lower than Random

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

%
 d

e
liv

e
re

d
 w

it
h

in
 d

e
a

d
lin

e

Number of packets generated in 50 sec per destination

Rapid
MaxProp

Spray and Wait
Random

Fig. 18. (Powerlaw) Delivery Deadline: RAPID de-
livers about 20% more packets within deadline when
buffer size is constrained, compared to MaxProp, and
45% more packets compared to Spray and Wait and
Random

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

A
v
e

ra
g

e
 D

e
la

y
 (

s
)

Available storage (KB)

Rapid
MaxProp

Spray and Wait
Random

Fig. 19. (Powerlaw) Avg Delay with constrained
buffer: RAPID reduces average delay by about
23%when buffer size is constrained compared to
MaxProp, Spray and Wait and Random

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

M
a

x
 D

e
la

y
 (

s
)

Available storage (KB)

Rapid
MaxProp

Spray and Wait
Random

Fig. 20. (Powerlaw) Max delay with constrained
buffer: RAPID’s max delay is about 22% lower than
MaxProp, 35% lower than Spray and Wait and 38%
lower than Random when buffer is constrained

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

%
 d

e
liv

e
re

d
 w

it
h

in
 d

e
a

d
lin

e

Available storage (KB)

Rapid
MaxProp

Spray and Wait
Random

Fig. 21. (Powerlaw) Delivery Deadline with con-
strained buffer: RAPID delivers about 20% more
packets within deadline when buffer size is con-
strained compared to MaxProp, and 45% more than
Spray and Wait and Random

RAPID’s delay does not increase rapidly with increasing load,

and is on an average 20% lower than all the three protocols.

Figure 17 shows the performance with respect to minimizing

the maximum delay of packets (using Eq. 3 as a metric). RAPID

reduces maximum delay by an average of 30% compared

to the other protocols. For both the traces and the synthetic

mobility, the performance of RAPID is significantly higher than

MaxProp, Spray and Wait, and Random for the maximum

delay metric. The reason is MaxProp prioritizes new packets;

older, undelivered packets will not see service as load increases.

Similarly, Spray and Wait does not give preference to older

packets. However, RAPID specifically prioritizes older packets

to reduce maximum delay.

We observe similar trends in Figure. 18, that shows the

performance of the different routing protocols with respect to

maximizing the number of packet delivered within an average

deadline of 20 sec (RAPID uses Eq. 2).

2) Powerlaw mobility model: decreasing storage constraint:

In this set of experiments, we varied available storage from

10 KB to 280 KB and compared the performance of the

four routing protocols. We fixed the load to 20 packets per

destination and generated packets with a inter-arrival time of

50 seconds.

Figure 19 shows how the average delay of all four protocols

vary with increase storage availability. RAPID is able to maintain

low delays even when only 10 KB space is available at each

node. In comparison, MaxProp, Spray and Wait and Random

have an average 23% higher delay.

Figure 20 shows a similar performance trend in terms of

minimizing maximum delay. Similar to other experiments, the

difference in performance between RAPID and the other three

protocols is more marked for the maximum delay metric.

Figure 21 shows how constrained buffers affect the delivery

deadline metric. When storage is restricted, MaxProp deletes

packets that are replicated most number of times, while Spray

and Wait and Random deletes packets randomly. RAPID, when

set to maximizing number of packets delivered within a

deadline, deletes packets that are most likely to miss the

deadline. RAPID is able to best manage limited buffers to deliver

packets within a deadline and improves delivery performance

by 12% compared to the second-best performing protocol.

These experiments suggest that RAPID’s utility-driven approach

adapts well to storage restrictions as well. We observed similar

trends for increasing storage restrictions when using exponential

mobility model (not shown in figure).

VIII. CONCLUSIONS

Previous work in DTN routing protocols has seen only

incidental performance improvement from various routing

mechanisms and protocol design choices. In contrast, we

have proposed a routing protocol for DTNs that intentionally

optimizes a specific routing metric by treating DTN routing

as a resource allocation problem. Although our approach is

heuristic-based, we have proven that an online DTN routing

protocol without future knowledge can perform arbitrarily far

from optimal. We have also proven that optimally solving the

DTN routing problem even with complete knowledge is NP-

hard. Our deployment of RAPID in a DTN testbed illustrates that

14

our approach is realistic and effective. We have shown through

trace-driven simulations using 65 days of testbed measurements

that RAPID yields significant performance gains over previous

work.

ACKNOWLEDGMENTS

We thank Mark Corner, John Burgess, and Brian Lynn for

helping build and maintain DieselNet, Ramgopal Mettu for

helping develop the NP-hardness proof, and Erik Learned-

Miller and Jérémie Leguay for feedback on earlier drafts. We

thank Karthik Thyagarajan for his help in formulating the

Integer Linear Program. This research was supported in part

by National Science Foundation awards NSF-0133055 and

CNS-0519881, CNS-0721779, CNS-0845855.

REFERENCES

[1] One laptop per child. http://www.laptop.org.

[2] TIER Project, UC Berkeley. http://tier.cs.berkeley.edu/.

[3] A. Balasubramanian, B. N. Levine, and A. Venkataramani. Replication
Routing in DTNs: A Resource Allocation Approach. Technical Report
09-51, UMass Amherst, 2009.

[4] N. Banerjee, M. D. Corner, and B. N. Levine. An Energy-Efficient
Architecture for DTN Throwboxes. In Proc. IEEE Infocom, May 2007.

[5] C. Boldrini, M. Conti, and A. Passarella. Modelling data dissemination
in opportunistic networks. In CHANTS ’08: Proceedings of the third

ACM workshop on Challenged networks, pages 89–96, New York, NY,
USA, 2008. ACM.

[6] J. Burgess, G. Bissias, M. D. Corner, and B. N. Levine. Surviving
Attacks on Disruption-Tolerant Networks without Authentication. In
Proc. ACM Mobihoc, September 2007.

[7] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine. MaxProp: Routing
for Vehicle-Based Disruption- Tolerant Networks. In Proc. IEEE Infocom,
April 2006.

[8] B. Burns, O. Brock, and B. N. Levine. MV Routing and Capacity
Building in Disruption Tolerant Networks. In Proc. IEEE Infocom, pages
398–408, March 2005.

[9] G. Casella and R. L. Berger. Statistical Inference. Second Edition.
Duxbury, 2002.

[10] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott.
Impact of Human Mobility on the Design of Opportunistic Forwarding
Algorithms. In Proc. IEEE Infocom, May 2006.

[11] C. Chekuri, S. Khanna, and F. B. Shepherd. An O(
p

(n)) Approximation
and Integrality Gap for Disjoint Paths and Unsplittable Flow. Theory of

Computing, 2(7):137–146, 2006.

[12] CPLEX. http://www.ilog.com.

[13] J. Davis, A. Fagg, and B. N. Levine. Wearable Computers and Packet
Transport Mechanisms in Highly Partitioned Ad hoc Networks. In Proc.

IEEE ISWC, pages 141–148, October 2001.

[14] N. Garg, S. Sobti, J. Lai, F. Zheng, K. Li, A. Krishnamurthy, and R. Wang.
Bridging the Digital Divide. ACM Trans. on Storage, 1(2):246–275, May
2005.

[15] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yan-
nakakis. Near-Optimal Hardness Results and Approximation Algorithms
for Edge-Disjoint Paths and Related Problems. In Proc. ACM STOC,
pages 19–28, 1999.

[16] B. Hull et al. CarTel: A Distributed Mobile Sensor Computing System.
In Proc. ACM SenSys, pages 125–138, Oct. 2006.

[17] S. Jain, M. Demmer, R. Patra, and K. Fall. Using Redundancy to Cope
with Failures in a Delay Tolerant Network. In Proc. ACM Sigcomm,
pages 109–120, August 2005.

[18] S. Jain, K. Fall, and R. Patra. Routing in a Delay Tolerant Network. In
Proc. ACM Sigcomm, pages 145–158, Aug. 2004.

[19] E. Jones, L. Li, and P. Ward. Practical Routing in Delay-Tolerant
Networks. In Proc. ACM Chants Workshop, pages 237–243, Aug. 2005.

[20] J. Leguay, T. Friedman, and V. Conan. DTN Routing in a Mobility
Pattern Space. In Proc. ACM Chants Workshop, pages 276–283, Aug.
2005.

[21] A. Lindgren, A. Doria, and O. Schelén. Probabilistic Routing in
Intermittently Connected Networks. In Proc. SAPIR Workshop, pages
239–254, Aug. 2004.

[22] A. Maffei, K. Fall, and D. Chayes. Ocean Instrument Internet. In Proc.

AGU Ocean Sciences Conf., Feb 2006.
[23] W. Mitchener and A. Vadhat. Epidemic Routing for Partially Connected

Ad hoc Networks. Technical Report CS-2000-06, Duke Univ., 2000.
[24] J. Ott and D. Kutscher. A Disconnection-Tolerant Transport for Drive-

thru Internet Environments. In Proc. IEEE INFOCOM, pages 1849–1862,
Mar. 2005.

[25] C. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[26] J. Partan, J. Kurose, and B. N. Levine. A Survey of Practical Issues

in Underwater Networks. In Proc. ACM WUWNet, pages 17–24, Sept.
2006.

[27] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: Modeling
a Three-tier Architecture for Sparse Sensor Networks. In Proc. IEEE

SNPA, pages 30–41, May 2003.
[28] T. Small and Z. Haas. Resource and Performance Tradeoffs in Delay-

Tolerant Wireless Networks. In Proc. ACM WDTN, pages 260–267, Aug.
2005.

[29] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray and Wait: An
Efficient Routing Scheme for Intermittently Connected Mobile Networks.
In Proc. ACM WDTN, pages 252–259, Aug. 2005.

[30] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Performance analysis
of mobility-assisted routing. In ACM MobiHoc, pages 49–60, May 2006.

[31] T. Spyropoulos and K. Psounis and C. Raghavendra. Single-copy Routing
in Intermittently Connected Mobile Networks. In IEEE SECON, October
2004.

[32] J. Widmer and J.-Y. Le Boudec. Network Coding for Efficient
Communication in Extreme Networks. In Proc. ACM WDTN, pages
284–291, Aug. 2005.

[33] Y.-C. Tseng and S.-Y. Ni and Y.-S. Chen and J.-P. Sheu. The Broadcast
Storm Problem in a Mobile Ad hoc Network. Springer Wireless Networks,
8(2/3):153–167, 2002.

[34] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi. Hardware Design
Experiences in ZebraNet. In Proc. ACM SenSys, pages 227–238, Nov.
2004.

[35] X. Zhang, G. Neglia, J. Kurose, and D. Towsley. Performance Modeling
of Epidemic Routing. In Proc. IFIP Networking, May 2006.

Aruna Balasubramanian is a PhD student in the
UMass Computer Science department since August
2005. Her research interests span Mobile wireless
networks, Disruption Tolerant Networks and Energy
consumption of mobile communication. Her research
is partially supported by a Microsoft Research Fel-
lowship.

Brian Levine joined the UMass Computer Science
faculty in fall 1999 and is currently an Associate Pro-
fessor. He received a PhD in Computer Engineering
from the University of California, Santa Cruz in 1999.
His research focuses on mobile networks, privacy
and forensics, and the Internet, and he has published
more than 60 papers on these topics. He received
a CAREER award in 2002 for work in peer-to-peer
networking. He has served as an associate editor of
IEEE/ACM Transactions on Networking since 2005.

Arun Venkataramani has been an Assistant Pro-
fessor in the Department of Computer Science at
UMass Amherst since 2005. He received his PhD
from the University of Texas at Austin in 2004 and
was a Visiting Faculty at University of Washington
before joining UMass. His interests are in networked
and distributed systems and his current research
focuses on mobile and wireless systems, peer-to-peer
systems, Internet architecture, network security, and
virtualization. He is a recipient of the NSF CAREER
award and best paper awards at USENIX NSDI 2007

and 2008.

