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Abstract

Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high
frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of
respiration competence and increased loss of heterozygosity (LOH) in the nuclear genome. Here we used the recently
developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-
competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct
genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array). As diploid cells
passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes
progressively increased, resulting in mutational events that generated LOH at .300 contiguous open reading frames on the
right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork
block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide
evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including
loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA
recombination is a response to increasing DNA replication stress generated in aging cells.
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Introduction

One of the greatest risk factors associated with carcinogenesis is

age. Cancer risk increases exponentially toward the end of life in

humans and other mammalian species [1]. Somatic genetic

changes contribute significantly to the development of most

tumors. However, the rate at which spontaneous mutations arise

in normal adult cells has been hypothesized to be too low to

generate all the genetic changes necessary to produce tumors at

the observed rates [2–3]. Consequently, Loeb et al. developed the

mutator hypothesis, which postulates an increased mutation rate in

precancerous cells [3]. A variety of mechanisms could lead to such

an increase, but a favored model is that sporadic mutations in, or

epigenetic silencing of, genes responsible for maintaining genome

integrity lead to increased rates of mutation. Once acquired, this

mutator phenotype may serve as the driving force toward

carcinogenesis as individuals age.

When genomes of tumors are examined, loss of heterozygosity

(LOH) is observed as a common mechanism in which the sole

functional allele of a tumor suppressor gene is inactivated by somatic

mutation [4–5]. LOH can be generated by many different mutational

events, including point mutations, small deletions or inversions,

mitotic recombination or chromosome loss. Recent advances in high-

resolution single-nucleotide polymorphism arrays (SNP arrays) have

revealed that a surprising number of tumors contain long tracts of

homozygosity that are not accompanied by a change in gene copy

number. This type of LOH arises from somatic mitotic recombina-

tion events and is referred to as partial (or acquired) uniparental

disomy (UPD) [6]. Importantly, UPD can alter the genotype for

hundreds of genes following a single event, thereby amplifying its

potential to contribute to cancer development [7].

Within any genome, there are regions that exhibit higher rates

of mitotic recombination than the genomic average as the result of

their proximity to hotspots or common fragile sites [8]. These

regions typically represent slow-replicating sequences, and agents

that generate DNA replication stress often reveal their fragility.

These regions are also often associated with non-histone protein

complexes that inhibit DNA replication fork progression. This

generates DNA replication stress that may lead to an increased

frequency of DNA damage due to replication fork collapse [9–10].

While conservative repair of this DNA damage would have no

genetic consequence, the higher incidence of damage results in a

greater chance that an alternative repair pathway will be utilized

that does confer a genotypic change.

Previously, we found evidence for a mutator phenotype

associated with advancing replicative age in a common lab strain
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of the budding yeast, Saccharomyces cerevisiae. Pedigree analysis

revealed that old cells begin to produce offspring that have

dramatically higher incidences of genomic instability, which is

manifest as an apparent ,100-fold increase in LOH on at least

two different chromosomes [11]. Virtually all the LOH occurred

via mitotic recombination and gave rise to UPD genotypes.

Subsequent analysis revealed that these LOH events were a

consequence of loss of mitochondrial DNA in daughter cells,

which led to a transient ‘‘crisis’’ state characterized by cell cycle

arrest and high mortality [12]. Cells that survived this crisis

showed a high frequency of LOH events in their nuclear genome.

While yeast cells lacking mitochondrial DNA cannot perform

oxidative phosphorylation (respiration), they remain viable by relying

on aerobic glycolysis (fermentation). In contrast, most eukaryotic cells

retain, and even require, respiration. Thus we were interested in

determining whether S. cerevisiae cells that retain respiratory

competence throughout their replicative life span (RLS) also exhibit

a mutator phenotype. The frequency at which functional mitochon-

dria are successfully segregated during cell division varies widely

between strains of S. cerevisiae; alleles in over 100 genes can affect

mitochondrial DNA transmission frequency [13–15]. Therefore, in

this study we sought to use a strain in which respiration competence

was faithfully transmitted with increasing replicative age.

We recently developed the Mother Enrichment Program

(MEP), a genetic program to facilitate replicative aging studies in

yeast [16]. The MEP provides an efficient and inducible selection

against newborn daughter cells. When the MEP is active, mother

cells continue to divide and age normally, while the division of

newborn daughter cells is arrested. The MEP provides the

opportunity to follow a cohort of mother cells in liquid culture

throughout their entire RLS without any requirement for

removing progeny cells. Once cells have reached a desired age,

the MEP can be switched off and aged mothers will resume

production of viable daughters, allowing for colony-based

phenotypic analysis. Compared to pedigree analysis, which is

done by single-cell micromanipulation, the MEP can dramatically

improve the sensitivity of the LOH assay by increasing the sample

number of aged cells by over three orders of magnitude. Here we

report our finding that replicative age is accompanied by a

progressive decline in rDNA array stability, leading to higher

incidence of LOH affecting the right arm of chromosome XII.

Results

MEP strain mother cells produce respiration-competent
daughters throughout their replicative life span

In order to assess whether MEP strains could be useful for

analyzing LOH rates in aging yeast cells, we first examined

whether old mother cells produced daughters that retained

respiration competence. Specifically, we examined the inheritance

of respiration competence in daughter cells of a MEP strain

(UCC5185) using pedigree analysis. We found that ,65% of the

mother cells produced daughters with respiration competence

through their entire RLS (Median of 36 generations, Figure S1A).

This is in striking contrast to the strain we originally examined for

age-associated LOH (UCC809), where only ,5% of the mother

cells produced respiration-competent daughters throughout their

life span (Figure S1A and [11–12]). Furthermore, for those

UCC5185 mother cells that did produce respiration-incompetent

daughters, the median age at which this occurred was significantly

later in the mother’s life span (23 generations versus 10 generations

in UCC809) (Figure S1B). Together, these results demonstrate that

the majority of UCC5185 cells are capable of producing

respiration-competent daughters throughout their life span, thus

providing the basis for our analysis of LOH in such a population.

An age-associated increase in LOH on chromosome XII
but not chromosome IV

LOH events in diploid cells can be visualized using colony color

phenotypes and, when combined with half-sector analysis, the rate

of LOH can be determined [17–20]. We used two heterozygous

markers that alter colony color when lost: Loss of MET15

function, resulting in a black colony sector, or loss of ADE2

function, resulting in a red colony sector. LOH events that occur

within the first cell division after plating will generate sectors that

form one half of a colony and can be used as a direct measure of

mutation rate.

Replicative life span is measured in terms of the number of

mitotic divisions an individual cell completes before senescence.

To measure LOH rates as mother cells divide and age,

logarithmically growing MEP cells were inoculated into rich

media containing estradiol and aged in liquid culture. Estradiol

activates the MEP, allowing mother cells to divide and age

normally while daughter cells are rendered incapable of cell

division. Throughout the 95-hour aging period, samples were

harvested and washed to remove estradiol, then plated to solid

medium for half-sector analysis. Once the MEP is inactivated by

removal of estradiol, surviving mother cells can produce viable

daughter cells and form colonies. Because aged mother cells

represent the only cells in the aging liquid culture capable of

forming colonies (Figure 1A and [16]), no fractionation of cell

populations was required to isolate aged mothers for the analysis.

The vast majority of colonies at each time point grew robustly and

were respiration-competent. Respiration-competent colonies were

easily distinguished from those incapable of respiration, which

show a severe growth defect on glucose media and thus could be

excluded from our analysis.

We determined the LOH rates in young cells at loci on

chromosome IV and chromosome XII simultaneously. By scoring

,20,000 colonies per time point, we measured an LOH rate of

6.6961024 events/cell division at MET15 on chromosome XII

and a rate of 1.2561024 events/cell division at an intergenic

region on chromosome IV (Figure 1A and 1B). The LOH rate at

MET15 was significantly higher than the chromosome IV locus

(p = 0.0059, Fisher’s exact test using contingency tables), suggesting

that MET15 LOH rate is affected by proximity to a ‘‘hotspot’’. As

Author Summary

There is a striking correlation between age and the onset
of many diseases, such as cancer, suggesting that the
aging process itself can contribute to their development.
Cancer is a genetic disease caused by the accumulation of
a series of deleterious somatic mutations leading to
unchecked proliferation. In humans, it is well established
that normal mutation rates are not sufficient to account for
the sharp increase in cancer rates in aging populations,
suggesting a change in mutation rate is a necessary
component of cancer development. Here, we find that the
aging process in the budding yeast Saccharomyces
cerevisiae leads to an increased rate of homologous
recombination within a repetitive DNA sequence element,
the ribosomal rDNA array. While these mutational events
are initiated primarily at this single locus, they are
propagated to the end of the chromosome and thus
affect hundreds of genes. These results suggest that the
aging process itself could contribute to increasing
mutation rates and perhaps to the onset of age-associated
disease.

Declining rDNA Stability in Aging Yeast
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mother cells were aged in liquid culture, a robust and significant

increase in LOH rates associated with increasing replicative age

was observed at the MET15 locus (Figure 1A). This increase was

significant at 45 hours (p,0.0001, Fisher’s exact test using

contingency tables), a time point where ,25% of the original

mother population retained viability, and continued to increase as

the viability of the population declined below 10%. Thus, the

increase in LOH rate at MET15 affects cells that have exceeded

the median life span potential of the population. In contrast, while

there was a trend towards increasing LOH rates with increasing

replicative age for the first 72 hours at the chromosome IV locus,

it did not reach the level of significance at any age (p.0.05,

Fisher’s exact test using contingency tables) (Figure 1B). These

results suggested that this age-associated increase in LOH was

locus-specific, affecting MET15 on chromosome XII.

LOH events at MET15 originate within the rDNA array
The MET15 locus lies ,250 kbp distal to the rDNA array, a

series of ,150–200 tandemly repeated copies of the genes

encoding the structural RNA components of the ribosome [21].

To determine if the rDNA array represented a ‘‘hotspot’’ that was

responsible for elevated LOH rates at MET15, we constructed a

diploid strain that carried heterozygous markers immediately

adjacent to each end of the rDNA array and at MET15

(Figure 1C). In aged populations, we isolated half-sectored colonies

based on LOH at MET15 and scored each sector for the presence

of the rDNA-linked markers on chromosome XII. We found that

90% of MET15 LOH events were linked to LOH events at the

TRP1 marker distal to the rDNA array, but not the KANMX

marker proximal to the array. This indicates that most MET15

LOH events originate within the rDNA array, with homozygosity

extending ,250 kbp from the rDNA array to the MET15 locus,

and presumably the remaining ,625 kbp to the telomere

(Figure 1D). This LOH pattern is indicative of mitotic recombi-

nation events between homologous chromosomes. The fraction of

mitotic recombination events originating within the rDNA array

was significantly higher than expected based on the sequence

distance represented by the rDNA array (based on a 95%

confidence interval, binomial distribution), consistent with previ-

ous examinations of LOH at MET15 [11,17]. Thus, MET15 LOH

events are primarily serving as a read out for an age-associated

increase in mitotic recombination that affects the rDNA array.

Aging populations maintain a constant ratio of reciprocal
to non-reciprocal LOH events on chromosome XII

LOH events in S. cerevisiae generating half sectors can be further

classified as either reciprocal (LOH occurs in both cells) or

nonreciprocal (one cell undergoes LOH while the other remains

heterozygous) (see Figure 2A and reviewed in [5]). This

classification has facilitated a better mechanistic understanding

of LOH events. For instance, in a previous examination of

mutations that increase LOH rates in young cells, we found that

the ratio of reciprocal to non-reciprocal LOH events reflected the

type of defect [17]: Mutations that affect specific DNA repair

pathways bias LOH events away from the wild type ratio. By

contrast, mutations that increase LOH rates but do not alter the

ratio were consistent with a general increase in DNA damage that

did not alter normal repair pathways. To examine reciprocal and

non-reciprocal events in aging cells, we used the diploid MEP

strain UCC5185 carrying ADE2 and MET15 in opposition at the

MET15 locus. By examining the color of both half sectors, it is

possible to distinguish reciprocal from non-reciprocal events

(Figure 2A).

Consistent with the first MEP strain examined above, we

observed a significant increase in total LOH events at MET15 in

populations of aging UCC5185 cells (Figure 2B). By 45 hours,

when populations have passed their median viability, median

LOH rates were increased 2-fold compared to the rate observed in

the young population (Figure 2B) (p,0.0001, Fisher’s exact test

based on contingency tables). Between 70 and 95 hours, when

population viability had fallen below ,10%, median LOH rates

were increased by four to eight-fold (p,0.0001, Fisher’s exact test

based on contingency tables). We found both reciprocal and non-

reciprocal events increased with similar kinetics in aging

populations (Figure 2C), indicating that cells maintain a stable

ratio of these events throughout the aging process. This result

suggests that aging cells may experience an increased frequency of

Figure 1. Age-associated LOH events are a result of recombi-
nation within the rDNA array. A) Right y-axis: LOH rates at MET15
(open boxes) reported as total LOH events per cell division. Error bars
indicate Standard Error of the Mean (SEM). Left y-axis: Percent viability
of mother cells in the aging culture (grey line). B) Right y-axis: LOH rates
at Chromosome IV (black line) reported as total LOH events per cell
division. Error bars indicate SEM. Left y-axis: Percent viability of mother
cells in the aging culture (closed circles). C) A schematic of marker
placement on Chromosome XII used to determine homologous
recombination break points. D) Table indicating the relative sizes of
intervals between markers and the proportion of LOH events that
originate within each interval.
doi:10.1371/journal.pgen.1002015.g001

Declining rDNA Stability in Aging Yeast
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DNA damage within the rDNA array, rather than an age-

associated defect in a particular repair pathway.

Age-associated rDNA recombination events are
FOB1-dependent

In haploid cells, double stranded breaks (DSBs) within the

rDNA are often initiated by the DNA replication fork-blocking

(RFB) activity of Fob1 [22–23]. Replication forks traveling

opposite to the direction of transcription of the 35S rRNA are

blocked by the specific interaction of Fob1 with sequences within

the non-transcribed region 1 (NTS1) [24]. This source of DNA

replication stress can cause fork collapse to generate DSBs, which

can be repaired by homologous recombination to yield a variety of

products [25–26].

We tested whether Fob1 was required for age-associated LOH

at the MET15 locus. In young cells, fob1D led to a reduction in the

MET15 LOH rate of ,2-fold (Figure 3), but this rate was still

significantly higher than the LOH rate on chromosome IV,

suggesting that other mechanisms must contribute to the hotspot

activity affecting MET15. When we measured MET15 LOH in

aging fob1D cells we found the age-associated increase in rate of

LOH was completely suppressed (Figure 3). This result indicated

that Fob1 activity is required for this aging phenotype and suggests

that Fob1-mediated DSBs are a critical intermediate for these

LOH events.

A FOB1-independent aging process acts cooperatively
with Fob1 to generate LOH events in aged cells

We offer two simple models to explain the requirement for

FOB1 in the age-associated increase in LOH at MET15. Fob1

activity may be required to generate an aging factor or process that

leads to increased LOH. Alternatively, an aging process may occur

independent of Fob1, while Fob1 remains necessary for this

process to manifest as LOH events in old cells. To distinguish

between these modes of action, we generated a diploid MEP strain

in which FOB1 is expressed from a tetracycline-repressible

promoter [27]. When the TET-FOB1 strain is aged over a 70-

hour time course in the absence of repressor, cells exhibit a normal

Figure 2. LOH rates at MET15 in aging cells present a constant ratio of reciprocal/non-reciprocal events. A diagram of UCC5185 colony
color markers located on Chromosome XII, with expected results of reciprocal and non-reciprocal LOH events. Non-reciprocal events can also lead to
black/white half-sectored colonies. (Note: The normal chromosomal copies of ADE2 have been deleted.) B) LOH rates for UCC5185 at MET15 reported
as total LOH events per cell division. Error bars indicate SEM. The sample size at each time point ranges from 21 to 28. LOH rates are significantly
increased at 45, 70 and 95 hours, (unpaired t-test; P values are 0.0003, ,0.0001, and ,0.0001 respectively). C) LOH events from panel B segregated
into reciprocal and non-reciprocal LOH rates. Error bars indicate SEM.
doi:10.1371/journal.pgen.1002015.g002

Declining rDNA Stability in Aging Yeast
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increase in LOH (Figure 4; Fob1 ON). In contrast, when the TET-

FOB1 strain is aged over a 70-hour time course in the presence of

doxycycline (a tetracycline analog), it behaves as a fob1 null allele

and age-associated LOH is suppressed (Figure 4; Fob1 Off).

Critically, after the TET-FOB1 strain is aged over a 65-hour time

course in the presence of doxycycline, removal of the repressor

results in a rapid ,5-fold increase in LOH levels within 5 hours

(Figure 4; Fob1 Off R On). This result suggests that the process

responsible for increased LOH rates in aging cells occurs

independently of Fob1, but that Fob1 activity is required in old

cells for this aging process to generate LOH events.

We hypothesize that the aging process may involve attenuation

of an activity that normally keeps the rate of homologous

recombination relatively low within the rDNA array. By extension,

elimination (e.g. by gene mutation) of such an activity in young

cells should phenocopy the age-associated increase in LOH. Our

characterization of the age-associated LOH phenotype has

delineated two criteria such candidate activities must possess:

Deletion of a candidate activity must show a FOB1-dependent

increase in LOH at the MET15 locus, and the ratio of reciprocal-

to-nonreciprocal LOH events should be the same as in wild type

cells.

Disruption of cohesion increases LOH rates independent
of Fob1

One mechanism by which LOH could increase in old cells is

through an age-associated defect in sister chromatid cohesion,

which normally restricts template selection during DSB repair to

favor sister chromatids [28–31]. Such a defect would allow more

recombination to occur between homologs during repair of Fob1-

mediated DSBs, thus giving rise to increased LOH.

The effect of disrupting sister chromatid cohesion was examined

by deleting the genes encoding the cohibin complex proteins Csm1

and Lrs4. The cohibins physically interact with both Fob1 and

cohesins, anchoring cohesin rings within the rDNA array and

inhibiting both unequal sister chromatid exchange (USCE) in

haploid cells and homologous recombination in diploids [17,31].

Consistent with these reports, we found that csm1D or lrs4D alleles

resulted in high rates of MET15 LOH in young cells (Figure 5).

But importantly, when csm1D or lrs4D were combined with fob1D,

rDNA recombination rates in young cells remained high (Figure 5).

Thus, loss of cohesion leads to Fob1-independent rDNA

recombination, which strongly suggests that this is unlikely to be

the mechanism underlying the increased rDNA recombination

observed in aging cells.

A decline in Sir2 protein levels in aging cells does not
correlate with increased LOH rates

The protein deacetylase Sir2 has been implicated in the yeast

aging process and life span determination [32]. Furthermore, loss of

Sir2 function leads to high rates of USCE in haploid cells, resulting

in dramatic copy-number instability within the rDNA array [33–

35], and increased rates of homologous recombination between

rDNA arrays in diploid cells [11]. Therefore, we examined the

potential role of Sir2 in age-associated LOH in detail.

It was recently shown that Sir2 protein levels decline in aging

haploid cells [36]. To determine if Sir2 levels are reduced in aging

diploid cells, we purified aged mother cells from liquid MEP

cultures and prepared total protein extracts. When the MEP is

activated, the time a mother cell spends in culture corresponds to

her replicative lifetime [16]. Hence we can age-match different

strains by aging these MEP cultures for equivalent periods of time

(the strains analyzed here divide at the same approximate rate; data

not shown). To confirm age matching between strains, purified 26-

Figure 3. Age-associated LOH events depend on FOB1. Total LOH
rates at MET15 from individual aging cultures of UCC526 (fob1D). Error
bars indicate SEM.
doi:10.1371/journal.pgen.1002015.g003

Figure 4. An inducible allele of FOB1 reveals the accumulation
of aging factors in the absence of Fob1. Total MET15 LOH rates in
aging UCC8912 cells exposed to no doxycycline (FOB1 On; filled
squares) or 20 mg/mL doxycycline (FOB1 Off; open squares). At 65 hours,
a portion of the Fob1 Off culture was harvested and transferred to
media with no doxycycline (FOB1 Off R On; triangles).
doi:10.1371/journal.pgen.1002015.g004

Figure 5. Double mutant analysis of fob1 and cohibin mutants.
Scatter plots of total LOH rates at the MET15 locus in young cells with
genotypes as indicated.
doi:10.1371/journal.pgen.1002015.g005

Declining rDNA Stability in Aging Yeast
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hour populations were stained with calcofluor white to count bud

scars (see Figure 6 legend). Western blotting with an anti-Sir2

antibody confirmed that Sir2 protein levels were dramatically

reduced in aging diploid cells when normalized to total protein

(Figure 6A). Sir2 levels in aging populations had fallen 10-fold by 26

hours, and were further reduced by 50 hours. This same decline was

also observed with a polyclonal antiserum raised to a different

region of the Sir2 protein (data not show). However, this behavior

was not a universal feature of proteins in aging cells: Western

blotting against the vacuolar protein Vma2 (Figure 6A) and the

kinase Pkc1 (data not shown) both showed no decline in aging cells.

Therefore, Sir2 protein levels specifically decline in aging cells,

however this decline precedes any significant change in LOH rates

by 20 hours, or approximately 12 generations.

Modulation of Sir2 protein levels in aging cells does not
affect age-associated LOH

The observation that Sir2 protein levels decline precipitously

20 hours before rDNA recombination rates increase significantly

led us to further examine the relationship between Sir2 depletion

and age-associated LOH. We tested the effect of SIR2 gene copy

number on rDNA recombination using diploid strains homozygous

for a tandem repeat of SIR2 under control of its native promoter

(SIR2OE). Previous studies indicated that this modest level of over-

expression is sufficient to increase silencing of RNA Polymerase II-

dependent transcription within the rDNA array [34,37] and extend

RLS [32], while higher expression of Sir2 is toxic [38]. Sir2 over-

expression in young (log-phase) diploid cells was verified by Western

blot (Figure 6A). The decline in Sir2 protein levels was partially

suppressed in the SIR2OE strain: Sir2 levels in SIR2OE populations

were elevated at 26 hours compared to wild type, but declined

precipitously to wild type levels by 50 hours (Figure 6A).

Next, we examined LOH rates at MET15 in the SIR2OE strain

to determine if increased Sir2 levels suppressed the age-associated

change in LOH rates. Although MET15 LOH rates in young

SIR2OE cells were significantly lower than the wild type strain

(p,0.0001, Fisher’s exact test based on contingency tables), we

observed no difference in the timing or magnitude of the age-

associated increase in MET15 LOH rates in SIR2OE cells

compared to wild type (Figure 6B). This result offers further

support that Sir2 protein levels are not the determining factor

regulating rDNA recombination in aging cells.

To confirm this result, we attempted to stabilize Sir2 protein

levels by a second method. In a previous study, Dang, et al. found

that deletion of SAS2, the gene encoding the catalytic histone

acetyltransferase subunit of the SAS complex that acts antagonis-

tically to Sir2 for modification of histone H4 at lysine 16, stabilized

Sir2 levels in aging cells [36]. When we constructed a sas2 deletion

strain in the MEP background and examined Sir2 protein levels,

we saw no evidence of Sir2 stabilization in this mutant background

(Figure 6C). Finally, we asked whether deletion of fob1, which does

suppress age-associated rDNA recombination, might also stabilize

Sir2 protein levels in aging cells. Again, we observed no

stabilization of Sir2 protein levels (Figure 6C). Thus, we found

no evidence of a correlation between Sir2 protein levels and LOH

rates in aging populations.

Following the same logic behind our examination of cohesion, we

characterized the pattern of LOH events observed in young cells

when sir2 was deleted. We found that elevated MET15 LOH rates

in young sir2D cells were dependent on FOB1 (Figure 7A). In this

regard it shows similarity to the age-associated LOH phenotype.

However, the ratios of reciprocal to non-reciprocal events in sir2D
cells was significantly shifted to favor non-reciprocal events

(Figure 7B), indicating that loss of Sir2 function does not accurately

phenocopy the age-associated LOH phenotype.

Lastly, we examined LOH rates in aging sir2D cells to determine

if there is an age-associated increase in the absence of Sir2.

Consistent with our earlier results [11], there was a very high level

of LOH in young cells. Nevertheless, after 70 hours of replicative

aging, LOH rates at MET15 increased significantly (p = 0.0003,

Fisher’s exact test based on contingency tables; Figure 7C). It is

worth noting that sir2D cells have a short RLS [32]; thus at

70 hours only the longest-lived 1% of the total population are

represented. When taken together, these data - the lack of

correlation between Sir2 protein levels and rDNA recombination

rates in aging cells, the difference in reciprocal/non-reciprocal

LOH events between aging wild type and sir2D cells, and the Sir2-

independent increase in LOH in aging cells - indicate that

declining Sir2 levels are insufficient to explain the age-associated

rDNA recombination phenotype.

ERCs accumulate to high levels in fob1D cells
Intrachromosomal recombination between the rDNA repeats

can produce extrachromosomal rDNA circles (ERCs) that have

Figure 6. Declining Sir2 levels do not correlate with the onset
of age-associated LOH events. A) Western blotting against Sir2 and
Vma2 in total protein extracts prepared from cells aged for hours as
indicated at top. Sir2 levels were normalized to Vma2 and quantified by
densitometry, with wild type Sir2 levels in log cultures set to 1x Fold.
Mean bud scar counts at 26 hours: WT = 15.5, SIR2OE = 18.0. B) Total
LOH rates at MET15 of wild type UCC5185 (filled squares) compared to
the SIR2OE strain UCC8910 (open squares). Error bars indicate SEM. C)
Western blotting against Sir2 and Vma2 in total protein extracts
prepared from aged cells. Genotype and hours of aging indicated at
top. Mean bud scar counts at 26 hours: sas2D = 16.8, fob1D = 15.7.
doi:10.1371/journal.pgen.1002015.g006

Declining rDNA Stability in Aging Yeast
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been postulated to induce senescence in aging mothers by an

undefined mechanism [39]. Each repeat contains an origin of

DNA replication, allowing ERCs to replicate independently, but

lacks a centromeric sequence to ensure equal partitioning of ERCs

between mother and daughter cells during mitosis [39–40].

Consequently, ERCs preferentially accumulate within aging

mother cells. It has been suggested recently that ERCs can

influence rDNA array stability in haploid cells [41]. Given these

findings, we explored whether ERC levels play a role in age-

associated LOH in diploid cells.

In order to examine this issue, we found it necessary to further

develop methods employed to examine ERC levels with age.

Previous analyses of ERC levels have been technically limited to

the examination of relatively young cells (,10 generations) [42],

whereas we observe age-associated increases in LOH after the

median life span of our diploid strains (36 generations for

UCC5185) [16]. To better understand the kinetics of ERC

accumulation, we purified aged mother cells from MEP cultures

and quantified ERC levels by Southern blotting. To improve ERC

quantitation, we removed the linear rDNA array by digestion with

RecBCD exonuclease, a highly processive exonuclease that does

not degrade intact or nicked circular DNA [43] (Figure S2).

Monomeric, dimeric, and multimeric ERC species were identified

based on their migration rates [44] (Figure 8A) and quantified by

densitometry (Figure 8B).

First, we compared ERC levels in wild type and fob1D cells. A

modest increase in all three species of ERCs was evident in wild

type cells after aging replicatively for 26 hours, a relatively young

age when the population maintains ,90% viability (Figure 1A

and [16]). As the population approaches its median RLS by

50 hours, ERC levels continued to increase dramatically. Similar

to previous reports, in relatively young cells, ERC levels in a

fob1D diploid were low compared to wild type cells (Figure 8B

and [42]), but their accumulation was not completely prevented.

After 26 hours of replicative aging, total ERC levels in the fob1D
strain had increased ,5-fold above young wild type levels, but

were still reduced ,50% compared to the age-matched wild type

population. Interestingly, as the fob1D population continued to

age, ERC accumulation continued: Total ERC levels in fob1D
cells were still ,50% lower than wild type cells after aging

replicatively for 50 hours, but by this age ERC levels in the

fob1D strain had increased ,17-fold above young wild type

levels. These results indicate that ERC accumulation is an aging

process that is not strictly dependent on Fob1 activity. The

delayed accumulation of ERCs could reflect a reduction in the

rate of formation of ERCs from the rDNA array in the fob1D
strain, while amplification of ERCs by replication is unaffected

[39].

Age-associated LOH is not suppressed by reduced ERC
accumulation

While the fob1D strain permitted us to determine the utility of

our ERC measurements with age, it was not useful for examining

the effect of ERC accumulation on LOH because, as shown

above, Fob1 is required for the age-associated LOH events. For

this, we examined a genetic background that could reduce ERC

accumulation independently of Fob1. Deletion of BUD6 has been

reported to disrupt the asymmetric segregation of ERCs, resulting

in extended life span and a prediction of reduced ERC

accumulation in mother cells [45]. Consistent with this prediction,

we found that deletion of bud6D reduced the level of ERCs

throughout the life span of a population. The bud6D cells showed a

50% reduction in ERCs after 50 hours of replicative aging: A level

that was achieved in wild type populations aged for only 26 hours

(Figure 8B). Remarkably, we saw no change in the age-associated

increase in LOH rate at MET15 in the bud6D strain (Figure 8C).

This indicated that in the presence of Fob1 activity, a 50%

reduction in ERC accumulation was not sufficient to suppress age-

associated LOH.

Figure 7. Characterization of LOH events in young sir2D cells. A)
Scatter plots of total LOH rates at the MET15 locus in young cells with
genotypes as indicated. B) Rates of total LOH events at MET15 in young
cells for wild type (UCC5185) and sir2D (UCC8836) strains. Rates of
reciprocal/non-reciprocal events were significantly different in the sir2D
strain but not in wild type (Fisher’s exact test by contingency tables, p
values indicated above columns). C) Rates of total LOH events at MET15
in replicatively aging sir2D cultures. Right y-axis: LOH rates at MET15
(open boxes) reported as total LOH events per cell division. Error bars
indicate SEM. Left y-axis: Percent viability of mother cells in the aging
culture (grey line).
doi:10.1371/journal.pgen.1002015.g007
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Discussion

Age-associated genomic instability in
respiration-competent cells

Previously we discovered an age-associated, genome-wide

increase in LOH in yeast that results from the loss of mtDNA

and respiratory function in the progeny of aging cells [11–12].

Here we used our recently developed MEP [16] to examine LOH

in cells that retain respiratory function throughout their life span.

Although the MEP strains are in the same S288C strain

background as strains used in previous studies, they display a

greater capacity to maintain mitochondrial function both in

logarithmically growing cultures and during aging [11,46]. This

greater stability of mitochondrial function in the MEP strain is

similar to that found for most natural isolates of S. cerevisiae [14].

The faithful maintenance of functional mitochondria depends on

over 100 genetic loci [15] and we have not determined the precise

genetic basis for the phenotypic differences we observe.

Using the MEP, we have discovered a distinct age-associated

LOH phenotype in cells that retain respiration competence. This

new LOH phenotype is distinguished by an apparent specificity for

the rDNA array and dependence on the replication fork-block

protein Fob1. As cells pass their median life span, they experience

a significant increase in homologous recombination within the

rDNA array which leads to LOH along a ,875 kbp span from the

rDNA to the telomere of the right arm of chromosome XII. These

genomic alterations are mechanistically equivalent to events that

generate partial uniparental disomy in mammalian cells, which

has recently been found to occur at high frequency in many

human cancers [6,47–48].

We observed a significant increase in both reciprocal and non-

reciprocal recombination events, which likely report two different

routes of DSB repair. Reciprocal LOH events likely result from

strand invasion leading to Holliday junction formation and

resolution with crossing over [49], while the non-reciprocal events

we observed are consistent with break-induced replication (BIR)

initiated within the rDNA and propagated to the telomere of

chromosome XII [17,49]. These recombination events also differ

from the age-associated genomic instability described in cells that

have lost respiration competence [11], where LOH events were

Figure 8. ERC accumulation in aging diploid cells. A) Southern blot of total genomic DNA isolated from aging populations and digested with
BamHI and RecBCD. Genotypes and replicative age in hours indicated at top. ERC species indicated at right: ERC Concatamers- Con.; Dimers- Di.;
Monomers- Mono. Mean bud scar counts at 26 hours: WT = 15.3 fob1D = 15.6, bud6D = 12.9. Lower panel: Southern blot of total genomic DNA
isolated from aging cell populations, digested with BamHI and probed for NPR2. B) ERC levels normalized to NPR2 (panel A). For individual ERC
species, wild type 5-hour lanes are set as 1x fold. Total ERCs were calculated as the sum of the integrated density of each ERC species, with the wild
type 5-hour lane set as 1x fold. C) Total LOH rates at MET15 in aging cultures of the bud6D strain UCC8904. Error bars indicate SEM.
doi:10.1371/journal.pgen.1002015.g008
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almost uniformly non-reciprocal. The phenotypic differences

between the earlier studies and those reported here support the

conclusion that a different mechanism leads to age-associated

LOH events in cells that maintain respiration competence.

Because most eukaryotic cells cannot tolerate the loss of mtDNA,

it is likely that the findings we report here about genomic

instability may be relevant to the aging process in other organisms.

Loss of cohesion or Sir2 protein does not appear to lead
to increased age-associated LOH rates

Taking advantage of the requirement for Fob1, we investigated

potential mechanisms leading to the age-associated LOH

phenotype. Disruption of cohesion, via the deletion of the cohibins

LRS4 and CSM1, was eliminated as a potential mechanism

because it leads to Fob1-independent LOH events. While SIR2

deletion generated Fob1-dependent LOH events in young cells,

the LOH events observed in this strain were significantly biased

towards a non-reciprocal pathway compared to the LOH events

generated in young or old wild type cells. Additionally, when sir2D
cells were aged they also displayed an age-associated increase in

LOH in the longest-lived fraction of the population. Both the

difference in repair bias and presence of an age-associated increase

in LOH independent of SIR2 suggests that loss of Sir2 function in

aging cells is likely not the driver of age-associated LOH.

Using the MEP for biochemical analysis of populations at
their median RLS

Aging is typically accompanied by an exponentially increasing

hazard rate of death – i.e. the probability that an individual within

a population will die within a given time interval. Previous

biochemical analyses of aging cells focused on cells aged for only

,10 generations due to technical limitations [50]. At this age, a

diploid cell population in the common laboratory S288C strain is

still relatively young: It retains .95% viability and has yet to

experience the dramatic increase in hazard rate of death that

affects cells near their median RLS [16,51]. Using the MEP, we

developed an effective purification method to isolate age-matched

populations near their median RLS which allowed us to make new

observations that change our understanding of age-associated

processes. Earlier reports concluded that fob1D effectively

suppressed the accumulation of ERCs [32,42]. By examining

populations at their median life span we found that ERC levels in

fob1D cells actually increase significantly as cells approach their

median RLS, although their accumulation was reduced/delayed

compared to wild type cells. The extension of our ability to observe

age-associated genetic and biochemical changes with the MEP

allows us to begin to develop an understanding of the order of

events that affect an aging population.

Declining Sir2 protein levels in aging cells
It was recently reported that Sir2 protein levels decline in aging

haploid cells after only 7-9 generations, a relatively early point in

their life span [36]. Our findings are consistent with this earlier

work: Sir2 protein levels in aging diploid cells show a precipitous

decline by 24 hours. However, this occurs at a time in which LOH

rates have not yet increased and ,95% of cells remain viable.

Furthermore, when Sir2 was over expressed, no suppression of

age-associated LOH rates was observed. Taking all these results

together, we interpret these data to indicate that declining Sir2

protein levels do not correlate with the increase in age-associated

LOH and offer further evidence that Sir2 is unlikely to be

responsible for the age-associated increase in LOH. One potential

caveat to our interpretation is that if there is significant cell-to-cell

heterogeneity in levels of Sir2 over-expression, then LOH may

occur in a subpopulation of cells with lower Sir2 levels.

Why might reduced Sir2 protein levels in aging cells fail to alter

rDNA recombination rates in a fashion similar to young cells? One

possible explanation is a phenotypic lag of the increased rDNA

recombination that lasts for .10 generations after the reduction of

Sir2 protein. For instance, if Sir2 is completely absent in most cells,

then one of it substrates (e.g. K16 of histone H4) may not

immediately become acetylated [52]. In fact, newly synthesized

histones start out in an unacetylated state, and how a heritable

switch between acetylated and unacetylated states of histones

occurs remains mysterious [53]. Another possibility is that a very

low level of Sir2 protein may be sufficient to suppress rDNA

recombination. Relevant to this idea, different regions of silent

chromatin can compete for recruitment of Sir2 [37,54]. If the

rDNA array is dominant in such a competition, the effect of

declining Sir2 levels could be masked.

Are ERCs responsible for age-associated LOH?
If ERC accumulation is the aging process that leads to age-

associated LOH, their influence on LOH must be Fob1-

dependent. Indeed, it has previously been shown that plasmids

containing the RFB sites from an rDNA repeat can integrate into

the chromosomal rDNA array in a Fob1-dependent manner [55].

Thus, ERCs may be capable of initiating recombination events in

a Fob1-dependent manner that somehow increases the frequency

of homologous recombination in diploid cells. Alternatively,

accumulating ERCs could simply titrate away factors that affect

the frequency or stability of stalled DNA replication forks and thus

increase their conversion to DSBs within the rDNA array [26].

In order to determine whether ERCs play a role in age-

associated LOH, it is necessary to eliminate ERC formation and/

or accumulation in aging cells. Using the bud6D strain we reduced

ERC levels at a median RLS by approximately 50%, down to a

level that was equivalent to a younger wild type population

(26 hours of replicative aging; Figure 8B). It is significant that at

this younger age, wild type cells show no increase in LOH rate at

the MET15 locus. Despite this reduction in ERC levels, the bud6D
strain showed no suppression of age-associated LOH with age.

While we interpret this as evidence that ERC accumulation does

not drive age-associated LOH at MET15, it remains formally

possible that this reduced level of ERCs is still above a threshold

required to increase LOH, or that a subpopulation of cells contain

higher ERC levels that drive age-associated LOH events. A clearer

understanding of the contribution of ERCs to age-associated LOH

will require more refined control of ERC initiation and

accumulation.

ERCs, LOH, and life span
Previously, life span extension by fob1D was interpreted as a

result of reduced ERC accumulation to a degree at which RLS

becomes limited by an alternative mechanism [32,42]. However,

we found that ERCs accumulate to high levels even in fob1D cells

(Figure 8). This result could be interpreted in two ways that

support opposing models for how life span is limited in fob1D cells.

First, the delayed accumulation of ERCs early in life could extend,

but still limit, RLS in fob1D cells. Alternatively, the life span-

limiting function of ERCs may be Fob1-dependent, suggesting

that RLS in fob1D cells is limited by an alternative mechanism.

Recently it has been argued that rDNA stability, rather than

ERC accumulation, limits life span [41]. However, because life

span potential is ‘re-set’ in daughter cells [56], we cannot conclude

that an LOH event (which would be heritable) directly limits RLS:
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Instead, a reversible aging process that impacts rDNA stability,

and can generate LOH events at some frequency, may limit RLS.

Curiously, we find that the highest rates of age-associated LOH

are observed at the latest time points, where the population

consists of the longest-lived survivors (,10% of the population

remains viable), and when the hazard rate of death has declined

from its peak near the median life span [16]. This lack of

correlation between LOH rate and hazard rate of death suggests

that rDNA recombination is not limiting for life span of most cells.

Nevertheless, the longest-lived individuals in the population no

longer experience the same hazard rate of death, and thus their life

span may be limited by a different mechanism (e.g. rDNA

recombination) than the average population.

DNA replication stress and age-associated LOH
If pathways that have been previously identified to modulate

rDNA recombination do not adequately account for the age-

associated increase in LOH rates, can this phenotype be a

response to a change in a more general biological process that is

most readily manifested at the rDNA? Since DSBs within the

rDNA array normally arise through the interaction between DNA

replication forks and Fob1 [57], we speculate that DSB rates in the

rDNA are modulated by DNA replication stress. This model is

supported by several lines of evidence: A hypomorphic allele of the

essential DNA replication helicase encoded by DNA2 results in an

increased frequency of DSBs within the rDNA, which can be

suppressed by deletion of FOB1 [57–58]. Similarly, mutations in

DNA polymerase a and d subunits can also lead to increased DSBs

within the rDNA array [26,59]. Deletion of RRM3, a helicase that

functions to remove non-histone protein barriers from DNA, also

affects rDNA recombination [60–61]. Further evidence comes

from a screen for deletion mutants that increase LOH in young

cells [17], which classified mutations based on locus specificity,

magnitude and ratio of reciprocal/non-reciprocal events. The

group of deletion mutants that showed a bias toward increasing

LOH at MET15 on chromosome XII (and presumably originate

in the rDNA) included five genes implicated in the regulation of

nucleotide pools, which can be a source of DNA replication stress

[62].

While the effects of DNA replication stress on the rDNA may be

dependent on Fob1, the mode of action may not necessarily be

specific to the rDNA. Ivessa, et al. identified genomic regions prone

to DNA replication fork pausing in an rrm3D mutant which

included centromeric regions, tRNAs and sub-telomeric sequences

in addition to the rDNA array [9]. Similarly, RRM3 was originally

identified in a genetic screen for mutations that induce gene

duplication at the tandemly repeated CUP1 locus [60], which

suggests that other regions of the genome that combine replication

fork blocks with repetitive sequence elements could also generate

age-associated LOH events. While repetitive elements are

uncommon in the S. cerevisiae genome, the ubiquitous nature of

these features in mammalian genomes suggests great potential for

age-associated genomic instability generated by a similar mech-

anism.

Materials and Methods

Subcloning and strain construction
Genotypes of all yeast strains used in this study are provided in

Table S1, oligonucleotide sequences are provided in Table S2, and

plasmids are listed in Table S3.

The two-chromosome LOH reporter strain UCC8918 was

generated by mating UCC8917 x UCC5181. UCC8917 was

derived from UCC5179 by one-step integration of a PCR

fragment carrying ADE2 into an intergenic region of chromosome

IV (coordinates 1,515,634–1,515,738), which was generated using

oligos MarthaN/H2L and MarthaN/H2R with pRS402 [63] as a

template.

The diploid strain with multiple heterozygous markers on

chromosome XII (UCC8915) was generated by mating UCC8914

x UCC5179. UCC8914 was derived from UCC8913 by one-step

integration of a PCR fragment carrying TRP1 into an intergenic

region distal to the right end of the rDNA array (coordinates

486062-486189), which was generated using oligos RDNRF and

RDNRR with pRS304 [64] as a template. Integration was verified

by PCR from genomic DNA using oligos RDNRconF and

RDNRconR. UCC8913 was derived from UCC5181 by one-step

integration of a PCR fragment carrying KANMX into an intergenic

region proximal to the left end of the rDNA array (coordinates

450191-450372), which was generated using oligos RDNLF and

RDNLR with pRS400 [63] as a template. Integration was verified

by PCR from genomic DNA using oligos RDNLconF and

RDNLconR.

MEP deletion strains for bud6D, csm1D, lrs4D, sir2D and sas2D
were generated by one-step gene disruption and verified by PCR

using the following oligonucleotides and DNA templates: BUD6:

deletion- Bud6delF/bud6delR, template- pRS306, confirmation-

Bud6delcheck/Bud6delchkDN. CSM1: deletion- CSM1A/

CSM1D, template- UCC7629-1 genomic DNA, confirmation-

CSM1A/CSM1B. LRS4: deletion- LRS4A/LRS4D, template-

UCC7598-1 genomic DNA, confirmation- LRS4A/LRS4B. SIR2:

deletion- SIR2KO1/SIR2KO2, template- pRS400 [63], confir-

mation- 59SIR2/39SIR2. SAS2: deletion- SAS2KOF/SAS2KOR,

template- pRS400 [63], confirmation- SAS2conF/SAS2conR.

The sir2D fob1D double mutant was constructed by transforming

UCC8832 with plasmid pRS314-SIR2 [65] to complement the

mating defect of sir2D, followed by mating to UCC524 and

sporulation. Because both deletions are marked with KANMX,

PCR was used to identify double mutant spore products to

generate UCC8839 and UCC8840. These haploids were mated to

generate UCC8844, which was subsequently cured of the

pRS314-SIR2 plasmid. Standard mating and sporulation, fol-

lowed by PCR to identify double mutant spore products, was used

to generate csm1D fob1D and lrs4D fob1D double mutant strains.

To generate SIR2OE strains, a genomic clone of SIR2 along

with ,500 bp of upstream sequence and ,250 bp of downstream

sequence was subcloned by PCR amplification with SIR2ecoriF

and SIR2ecoriR primers, digested with EcoRI, and ligated into

pRS306 cut with EcoRI to create the integration plasmid pRS306-

SIR2. The plasmid was cut with BglII and transformed into

UCC5179 and UCC5181 to generate strains UCC8908 and

UCC8909. Correct integration was confirmed by PCR. These

haploids were mated together to generate the diploid strain

UCC8910. The SIR2hemi diploid was generated by transforming

UCC8832 with pRS314-SIR2, mating to UCC5179, and

subsequently curing the diploid of the plasmid.

TET-FOB1 construction
The TET-OP2 promoter was inserted upstream of the

endogenous FOB1 locus by one-step integration of a PCR

fragment generated using primers FOB1tetF and FOB1tetR with

pKAN-TETO2 as a template. The TETR’-SSN6 cassette was

inserted by one-step integration into the met15D0 locus by

digesting plasmid pLMI-tetR’S with PacI. The LEU2 marker was

subsequently exchanged for ADE2 or MET15 using the primers

LEU2swapF and LEU2swapR with the appropriate plasmid

templates (pRS402 and pRS401, respectively [63]). The VP16

activation domain from the tTA activator was replaced with
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activation domain A of GCN4 by generating a GCN4A PCR

product using GCN4salAF and GCN4ascAR primers with

plasmid pGCN4 (a gift from S. Hahn) as a template. The PCR

product was digested with SalI and AscI and subcloned into pUI-

tTA-ADH1term-URA3 digested with the same enzymes to create

pUI-tTA-GCN4A-ADH1term-URA3. The tTA-GCN4A-AD-

H1term-URA3 cassette was integrated into a neutral site on

Chromosome I (coordinates 17030-17205) by one-step integration

of a PCR product using the primers URA3-tTA-intCHRIF and

URA3-tTA-intCHRIR. Subsequent strain construction to gener-

ate haploid and diploid MEP strains with the appropriate

genotypes was performed by standard methods.

Pedigree analysis
Pedigree analysis was performed as previously described [11].

Briefly, daughter cells born to individual mothers were microma-

nipulated to new positions on a YEPD plate and allowed to form

colonies. Colonies were scored for mitochondrial function by

replica plating to YEP+glycerol.

Liquid aging and LOH assay
Diploid cells were grown to saturation overnight in YC media

lacking adenine and methionine. Cells were used to inoculate

YEPD cultures, which were grown to log phase by incubation with

shaking, 30uC for 3 hours. Cells were counted and used to

inoculate 25 ml YEPD +1 mM estradiol cultures at 26104 cells/ml

and incubated with shaking, 30uC for 95 hours. At indicated

times, samples were harvested, washed, and plated to lead nitrate

media. Sample volumes were adjusted appropriately to maintain a

colony density of ,500–1000 colonies/150 mm plate. Plates were

incubated at 30uC for 3 days and colonies were counted using a

Geldoc XR+ imaging system (Biorad). Plates were further

incubated at room temperature for 2–3 days for color develop-

ment before scoring for half sectors. Reciprocal and non-

reciprocal colonies were counted separately, and rates of total

half sectors were calculated as (2*reciprocal + non-reciprocal/total

colonies) [17].

Western blot analysis
Lysates were prepared using NaOH lysis followed by TCA

precipitation [66]. TCA pellets were resuspended in SUME buffer

(1% SDS, 8 M Urea, 10 mM MOPS, pH 6.8, 10 mM EDTA)

and total protein concentration was determined using the BCA

protein assay (Thermo Scientific). 10 mg total protein per lane was

run on 10% tris-glycine polyacrylamide gels (PAGEr gold, Lonza)

and transferred to Immobilon P membrane (Millipore) using a

semi-dry transfer apparatus. Western blot analysis was performed

by standard methods and developed with Supersignal West Pico

(Thermo Scientific). Antibodies: Goat a-Sir2 (yN-19; Santa Cruz

Biotechnology), mouse a-Sir2 (sc-25753; Santa Cruz Biotechnol-

ogy) mouse a-Vma2 (Invitrogen), mouse a-Pkc1 (Invitrogen), and

HRP-conjugated secondary antibodies (Jackson Immunoresearch

Laboratories). Quantitation of Western blots was performed by

densitometry using ImageJ comparing exposures that fell within a

linear range of detection.

Purification of aged populations
Log phase cultures of cells were harvested and labeled with

NHC-Biotin as previously described [16]. Labeled populations

were transferred to YEPD and incubated for 30uC, 2 hours to

ensure that most labeled cells were mothers (have completed at

least one cell division). Cells were counted and used to inoculate

1.5 liter cultures of YEPD +1 mM estradiol +100 mg/ml ampicillin

at a density of 26104 cells/ml. Cultures were incubated at 30uC,

shaking at 100 rpm for the indicated times before purification.

Cells were harvested by centrifugation, resuspended at 66108

cells/ml in RNAlater (Ambion) and fixed at room temperature, 45

minutes. Cells were harvested by centrifugation and resuspended

at 26108 cells/ml in PBS +2 mM EDTA and incubated with 1/20

volume streptavidin beads (Miltenyi Biotec), 4uC, 30 minutes.

Cells were harvested by centrifugation and resuspended in 4 ml

40 mM Tris HCl pH 7.4 and layered onto Percoll Plus gradients

(GE Healthcare). Gradients were spun at 4uC, 20 minutes at 2000

RPM in a GS-6R tabletop centrifuge (Beckman). A brown,

flocculent layer of cell debris was removed from the top of the

gradients with a pipette, and the remainder of the gradient was

pooled with 40 ml PBS +2 mM EDTA. Cells were harvested by

centrifugation, resuspended in 45 mL PBS +2 mM EDTA and

purified on an Automacs Pro separator system (Miltenyi Biotek).

ERC Southern blot analysis
Genomic DNA was isolated from purified aged populations by

standard methods. 1 mg of genomic DNA was digested overnight

with BamHI + RecBCD (a gift from G. Smith, FHCRC) and

separated by gel electrophoresis (0.8% agarose, 2 V/cm for

36 hours). DNA was visualized by staining with ethidium bromide

and transferred to nitrocellulose membranes by standard methods.

Membranes were hybridized with a 32P labeled double-stranded

probe specific to the rDNA generated with oligos RDN5S-2 and

RDN25S-2 using plasmid pDL05 as a template, visualized on a

Typhoon phosphorimager (GE Health Sciences), and quantified

using ImageJ. For normalization of DNA samples, 1 mg of

genomic DNA was digested with BamHI, separated by gel

electrophoresis (0.8% agarose, 10 V/cm, 3 hours), transferred

and hybridized with a probe specific to NPR2 generated with

oligos 5_NPR2 and 3_NPR2.

TET-fob1 time courses
Because over expression of Fob1 also increases rDNA

recombination rates [67], we generated a weaker version of the

tet-activator by replacing the VP16 activation domain with

activation domain A of Gcn4 [27,68]. By carefully titrating Fob1

expression levels using a single copy of both TETOP2-Fob1 and

the tTA-GCN4A activator in diploid cells, we could express FOB1

at normal levels in the absence of doxycycline, while effectively

suppressing expression in the presence of 20 mg/ml doxycycline

(Figure 5A).

Diploid cells were grown to saturation overnight in YC media

lacking adenine and methionine. Cells were used to inoculate

YEPD +/- 20 mg/ml doxycycline cultures, which were incubated

with shaking, 30uC for 5 hours. Cells were counted and used to

inoculate 40 ml YEPD +1 mM estradiol +/- 20 mg/ml doxycycline

cultures at 26104 cells/ml and incubated with shaking, 30uC for

95 hours. Samples were harvested and plated as described above

for the LOH assay. To shift FOB1 expression from repression to

activation, 15 ml of the + doxycycline culture was harvested at the

65 hour time point, washed, and resuspended in 15 ml fresh

YEPD +1 mM estradiol.

Supporting Information

Figure S1 Loss of respiratory function is less frequent in MEP

strains. A) Examples of inheritance of respiratory function during

pedigree analysis of UCC5185. 68% of mothers generate

pedigrees with all daughters maintaining respiratory function

(upper panel). 32% of mothers lose the ability to produce

daughters with respiratory function (small colonies; lower panel).
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Respiration competence of daughter cells could be inferred from

their growth rate and was confirmed by replica plating to media

containing a non-fermentable carbon source (data not shown).

The upper panel was photographed 2 days after placement of last

daughter, while the lower panel was photographed 10 days after

placement of last daughter. B) A comparison of the age of onset for

the subpopulation of mother cells that lose the ability to produce

daughters with respiratory function.

(TIF)

Figure S2 Preparation and normalization of ERC southern

blotting. ERC Southern blot of total genomic DNA isolated from

wild type cells and digested with BamHI and with or without

RecBCD. Arrow indicates the linear rDNA array.

(EPS)

Table S1 Yeast strains used in this study.

(DOC)

Table S2 Oligonucleotides used in this study.

(DOC)

Table S3 Plasmids used in this study.

(DOC)
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