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Figure 12.Time series of uncorrected-baseline-adjusted sensor, fully corrected sensor and reference method observations for NO2 at Oxford
St Ebbe’s (unseen data) for December 2020.

Table 5. RFR correction model performance in terms of the MAE relative to reference method observations (unseen data) for December
2020.

Mean absolute error (MAE) Change in the MAE arising from

Baseline Fully corrected full RFR correction
corrected (baselineC RFR

correction)

NO2 (ppb) 4.1 2.6 37 %
PM10 (µg m � 3) 75.5 4.4 94 %
PM2:5 (µg m � 3) 10.0 2.7 73 %

and August. Otherwise, the NO2 correction tracks that of the
reference observations well.

3.3.3 RF correction model performance characteristics
(unseen data)

Table 5 presents estimates of the correction model perfor-
mance based on 15 min mean unseen data from December
2020, i.e. data used previously for neither model training nor
validation. The data shown are, as expected, less favourable
compared with the validation set, returning higher values for
the MAE metric, but for the air quality context, these val-
ues are within 1.4 ppb (NO2) and 2.5 µg m� 3 (PM10) and
1.8 µg m� 3 (PM2:5) of the MAE returned by the model vali-
dation set (Tables 4 and 5).

In late November�December 2020 and latterly, continu-
ing through the �rst quarter of 2021 (not shown), the sen-
sor network observed episodes of high particle concentra-
tions which coincided with a drop in ambient temperature
(and dew point temperature) to the order of 10� C. Neither
reciprocal changes in relative humidity were observed, nor
was there an obvious change in sensor sample �ow rate. It
is noteworthy also that similar conditions were not common-
place throughout the model training dataset (June to Novem-
ber 2020). The episode conditions observed by the sensor

network were not replicated in the reference method dataset
and are likely the main driver for the increase in the MAE for
the particulate matter correction models shown in Table 5.
Figures 13�14 show examples of the episodes in December
2020 for PM10 and PM2:5 respectively, including the absence
of a reciprocal peak in the reference data and the performance
of the model correction.

Despite these issues, and as demonstrated in Figs. 13�
14, the RF models deliver substantial improvements on the
raw dataset (not shown in Table 5) and baseline-adjusted
data (shown). Improvements in the MAE attributable to the
RF model in the range of 37 %�94 % are shown; these are
equivalent to fully corrected observations within, on average,
approximately� 2:6 ppb of the reference method for NO2,
� 4:4 µg m � 3 for PM10 and� 2:7 µg m � 3 for PM2:5.

The decrease in model performance observed with the un-
seen dataset and the observations on ambient conditions and
sensor operation (above) illustrate the need for long time se-
ries for model training, covering all environmental conditions
to which the sensors will be exposed.
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Figure 13.Time series of uncorrected-baseline-adjusted sensor, fully corrected sensor and reference method observations for PM10 at Oxford
St Ebbe’s (unseen data) for December 2020. ugm-3: µg m� 3.

Table 6. Expanded-uncertainty estimates for fully corrected sensor observations using the RFR validation dataset (the target values are the
target expanded-uncertainty criteria recommended by European legislation).

Pollutant Expanded Fully and �nally corrected R2 Conformance with
uncertainty expanded uncertainty� value target expanded-

uncertainty objective

NO2 21 % 17 % 0.86 True,� 25 %
PM10 40 % 15 % 0.79 True,� 50 %
PM2:5 19 % 12 % 0.91 True,� 50 %

� Expanded-uncertainty estimates with allowance to correct for a non-zero intercept and non-unitary slope in the
linear regression relationship of the sensor to the reference method.

3.3.4 Corrected sensor performance vs. European air
quality data quality objectives

Tables 6 and 7 present expanded-uncertainty estimates for
fully corrected sensor observations. These estimates were
calculated using a spreadsheet tool (EC Working Group,
2020) to provide a further performance indicator on the ad-
equacy of these data for air quality assessment applications.
Table 6 presents expanded-uncertainty estimates associated
with fully corrected sensor data from the validation dataset
(data not used in the RFR model training) and shows that
these data for all pollutants perform well against the tar-
get expanded-uncertainty criteria recommended by European
legislation (expanded uncertainties of 21 %, 40 % and 19 %
respectively for NO2, PM10 and PM2:5). Guidance on the cal-
culation of expanded uncertainty (EC Working Group, 2010)
also allows for the correction of slope and intercept terms
in the relationship between the sensor and reference method.
The result of this further correction is presented in Table 6
as the �full and �nal correction�. Expanded-uncertainty es-
timates for the validation set with full and �nal corrections
applied were 17 %, 15 % and 12 % for NO2, PM10 and PM2:5
respectively. Highly respectable coef�cients of determination
between reference and fully and �nally corrected sensor ob-

servations were also found in all cases as already shown in
Figs. 6�8. However, because the validation set and model
training datasets are closely coupled � the validation set be-
ing taken at random from the same sample population as that
used for model training � expanded-uncertainty estimates
based solely on these data should be interpreted with caution
and may, depending on the application scenario of the cor-
rection model, present an overly optimistic estimate of real-
world measurement uncertainty.

Results from reciprocal calculations based on unseen data
offer a more rigorous/precautionary test of expanded uncer-
tainty, indicative of real-world applications. Table 7 presents
these data for fully corrected sensor observations from De-
cember 2020. Table 7 shows the expanded-uncertainty esti-
mates for fully corrected unseen sensor data of 29 %, 21 %
and 27 % respectively for NO2, PM10 and PM2:5. Further cor-
rections, for slope and intercept terms, had negligible change
on these estimates (30 %, 25 % and 28 % expanded uncer-
tainty respectively for NO2, PM10 and PM2:5). As expected,
these data are more uncertain than the validation set; even
so, performance is good relative to the target data quality
objectives (DQOs). The fully and �nally corrected datasets
for PM10 and PM2:5 meet the expanded-uncertainty crite-
ria recommended by European legislation. The expanded-
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Table 7.Expanded-uncertainty estimates for fully corrected sensor observations from an unseen dataset for December 2020 (the target values
are the target expanded-uncertainty criteria recommended by European legislation).

Pollutant Expanded Fully and �nally corrected R2 Conformance with
uncertainty expanded uncertainty� value target expanded-

uncertainty objective

NO2 29 % 30 % 0.72 False,� 25 %
PM10 21 % 25 % 0.30 True,� 50 %
PM2:5 27 % 28 % 0.47 True,� 50 %

� Expanded-uncertainty estimates with allowance to correct for a non-zero intercept and non-unitary slope in the
linear regression relationship of the sensor to the reference method.

uncertainty estimate for NO2 was within 5 % of the accep-
tance criteria.

4 Conclusions

This study has presented and demonstrated a simple and
effective method for attenuating the confounding effects
of sensor baseline variability and interferences from ambi-
ent environmental parameters upon low-cost electrochemical
and optical particle counter sensor signals.

The methods presented in this paper have been tested at
a high temporal resolution against high-quality, co-located
reference method observations sourced from the UK’s reg-
ulatory monitoring network (AURN). Using the MAE as an
indicator of sensor error (relative to reference observations),
the methods developed can reduce the error in NO2, PM10
and PM2:5 observations from the low-cost sensors tested
by up to 88 %�95 % (based on model validation data not
used in RF training). In the case of the low-cost NO2 sen-
sor, corrections reduced the MAE of sensor observations
to within � 1:2 ppb of the reference observation. Similarly,
for PM10 and PM2:5, MAE estimates were within� 1:9 and
� 0:9 µg m � 3 respectively. TheR2 value achieved for fully
corrected NO2, PM10 and PM2:5 sensor observations were
0.86, 0.79 and 0.91 respectively.

Tests on how the methods generalised to unseen condi-
tions have shown that the RFR correction models trained
on data from June to November 2020 are tolerant of a
wide range of competing environmental interferences. Tests
based on data from December 2020, unseen by the RF
model in training, delivered MAE estimates for fully cor-
rected low-cost NO2, PM10 and PM2:5 sensors of 2.6 ppb, 4.4
and 2.7 µg m� 3 respectively. Despite this observed (and ex-
pected) drop in performance, the MAE values in corrections
to unseen datasets were within 1.4 ppb (NO2) and 2.5 µg m� 3

(PM10) and 1.8 µg m� 3 (PM2:5) of those returned by the
model validation set.

Given these indicators for the level of improved uncer-
tainty that can be achievable with the methods presented, we
propose that data from reputable, high-quality sensors may
now have a meaningful role in the air quality assessment

toolkit. Indeed, using the methods presented, sensor data may
deliver data quality of at least comparable levels to that dis-
played by passive sampler methods (for NO2), with the ben-
e�t of higher temporal resolution.

To substantiate potential future applications, this paper
has presented data demonstrating that the RF-based meth-
ods are capable of delivering fully corrected low-cost sensor
data that meet the general requirements for �indicative mea-
surements� as set out by the European Ambient Air Qual-
ity Directive. In doing so, we have used methods prescribed
by the European Commission Working Group on Guidance
for the Demonstration of Equivalence to calculate expanded-
uncertainty estimates for fully corrected sensor observations.
For tests based on validation and unseen datasets, the ex-
panded uncertainty of fully corrected sensor data was within
the requirements set by the European Ambient Air Quality
Directive for indicative monitoring (within� 25 % of the ref-
erence observation for NO2, � 50 % for particles) for PM10
and PM2:5. Estimates for NO2 were outside of the acceptance
criteria by� 5 %. Fully corrected expanded-uncertainty esti-
mates for PM10 and PM2:5 were within or proximal to the
equivalence thresholds (� 25 %) established by the European
Commission Working Group on Guidance for the Demon-
stration of Equivalence. In tests using unseen data, the most
stringent test available to the study, the expanded-uncertainty
estimates for RFR-model-corrected observations for NO2,
PM10 and PM2:5 were 30 %, 25 % and 28 % respectively.

Demonstrating conformance with these regulatory thresh-
olds in a traceable way is a signi�cant milestone, not only
for the potential to unlock applications as �supplementary
assessment� methods for compliance assessments but also
within the context of the stringency of the acceptance cri-
teria and the rigour of the expanded-uncertainty calculation
method set out by the working group.

We anticipate application of the model in other local con-
texts will require re-training and validation of the RF model
for local conditions, an important focus for future research.
As such, the techniques developed are presented as a work-
ing method to be adapted for other applications rather than
a de�nitive model for wider generalisations. We also note
that scaling of the method to applications across a sensor net-
work is likely to be limited by the diversity of the RF training
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Figure 14. Time series of uncorrected-baseline-adjusted sensor, fully corrected sensor and reference method observations for PM2:5 at
Oxford St Ebbe’s (unseen data) for December 2020. ugm-3: µg m� 3.

datasets and the quality of the city scale background (both
spatial and scalar representativeness). However, this work
has demonstrated capabilities for applications to monitoring
across a small city, with clear potential bene�ts for support-
ing air quality management.
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