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Abstract. Long-term measurements of permafrost temperatures do not provide a complete picture of the Arctic subsurface

thermal regime. Regions with warmer permafrost often show little to no long-term change in ground temperature due to the

uptake and release of latent heat during freezing and thawing. Thus, regions where the least warming is observed may also be the

most vulnerable to permafrost degradation. Since direct measurements of ice and liquid water contents in the permafrost layer

are not widely available, thermal modeling of the subsurface plays a crucial role in understanding how permafrost responds to5

changes in the local energy balance. In this work, we first analyze trends in observed air and permafrost temperatures at four

sites within the continuous permafrost zone, where we find substantial variation in the apparent relationship between long-

term changes in permafrost temperatures (0.02 Kyr−1 to 0.16 Kyr−1) and air temperature (0.09 Kyr−1 to 0.11 Kyr−1). We

then apply recently developed Bayesian inversion methods to link observed changes in borehole temperatures to unobserved

changes in latent heat and thaw depth using a transient model of heat conduction with phase change. Our results suggest that the10

degree to which recent warming trends correlate with permafrost thaw and variations in latent heat is heavily dependent on both

local soil properties as well as historical climatology. At the warmest site, a nine meter borehole near Ny-Ålesund, Svalbard,

modeled annual maximum thaw depth increases by an average of (12±1) cmK−1 rise in mean annual ground temperature. In

stark contrast, modeled thaw rates for a borehole on Samoylov Island in the Lena River Delta (northeastern Siberia) appear far

less sensitive to temperature change, with an almost negligible increase of (1± 1) cmK−1. Although our study is limited to15

just four sites, the results urge caution in the interpretation and comparison of warming trends in Arctic boreholes, indicating

substantial uncertainty in their implications for the current and future thermal state of permafrost.

1 Introduction

It is well known that the climate is changing, and the impact of climate warming on polar regions is disproportionately severe

due to Arctic amplification (Serreze and Francis, 2006). Arctic regions are warming 2-3 times faster than the global average20
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(Hinzman et al., 2005; Isaksen et al., 2022) which in turn is causing accelerated degradation of permafrost (Jorgenson et al.,

2006). Degrading permafrost can have a substantial impact on local hydrology and ecological systems (Schuur and Mack,

2018) through the formation of thermokarst lakes, trough networks, and landscape deformation. In addition, rapid changes

in landscape can also pose a threat to human populations in Arctic regions by destabilizing existing infrastructure (Nelson

et al., 2002; Schneider von Deimling et al., 2021). Understanding the past, present, and future evolution of Arctic permafrost25

therefore plays a crucial role in assessing, predicting, and mitigating the impacts of climate change.

A significant challenge in monitoring permafrost thaw, however, is the general lack of high quality and accessible long-

term observational data in the Arctic. Over the past few decades, circumpolar borehole temperature measurement sites have

been established to monitor changes in permafrost environments. Many of these sites include borehole sensor arrays which

provide measurements of ground temperature as deep as 50 meters or more below the surface. Recent studies have attempted30

to leverage these borehole data from the Global Terrestrial Network of Permafrost (GTN-P1), a database of shallow and deep

ground temperature measurements taken from borehole sites across the Arctic (Burgess et al., 2000; Biskaborn et al., 2015),

to quantify changes in permafrost temperatures at a global scale (Romanovsky et al., 2007; Biskaborn et al., 2019; Chen et al.,

2021). These studies have consistently found that permafrost is warming globally (0.01 Kyr−1 to 0.06 Kyr−1 in the continuous

permafrost zone) in response to the rapidly changing Arctic climate.35

Temperature, however, describes only one part of the thermal state of permafrost (Smith et al., 2022). A considerable fraction

of energy can be consumed and released during thawing and freezing in the form of latent heat, thereby masking trends in the

temperature signal within the critical range where phase change occurs (Riseborough, 1990; Romanovsky and Osterkamp,

2000; Romanovsky et al., 2010). This partitioning of energy can be expressed mathematically as the sum of two constituent

energy contents:40

H =HS +HL (1)

where HS = TC(θ(T )) and HL = Lθ(T ) [Jm−3] are referred to as sensible and latent heat, respectively. Here T [K] is tem-

perature, θ(T ) [-] is (temperature dependent) volumetric liquid water content, C(θ) [JK−1 m−3] is volumetric heat capacity,

and L [Jm−3] is the latent heat of fusion of water. The relationship between sensible and latent heat, and thus consequently

the rate of permafrost thaw, depends heavily on the non-linear freezing characteristic θ(T ), often referred to as the soil freezing45

characteristic curve (SFCC) (Koopmans and Miller, 1966) for porous material. The SFCC governs the non-linear relationship

between liquid water content and temperature during phase change, which arises due to the capillary pressure difference be-

tween frozen and unfrozen water present in the pore space. The functional form of the SFCC is empirically determined from

soil properties, which typically requires measurements of soil moisture content over the critical temperature range. However,

such measurements are not available at most borehole sites. The resulting lack of information on the distribution of energy in50

the ground represents a significant source of uncertainty in understanding what temperature trends observed in many GTN-P

boreholes really tell us about the current thermal state of permafrost across regions. In order to understand how permafrost

is changing, it is therefore vital that we find ways to quantify this uncertainty and develop physically coherent models to ac-

1https://gtnp.arcticportal.org/
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curately link observed temperature trends to unobserved or sparsely observed quantities such as latent heat and active layer

thickness (ALT).55

The problem of linking unobserved components of the thermal state to observed quantities (e.g., temperature) is funda-

mentally a problem of inversion under uncertainty. In other words, we wish to recover the full thermal state of permafrost

(including latent heat) given observed borehole temperatures and some partial, a priori information about the local landscape

and meteorological conditions. Bayesian inversion methods solve this problem probabilistically by combining information

from observations with prior knowledge in order to obtain a distribution over the unobserved variables. These methods are60

particularly attractive for geoscientific applications where observational data often come from systems that are neither station-

ary nor well-controlled (e.g., the local environment or the broader Earth system), thereby making traditional, frequency-based

statistical inference difficult to apply and interpret correctly (Caers, 2018). As a result, Bayesian analyses have become increas-

ingly common in the geosciences (Franks and Beven, 1997; Berliner, 2003; Qu et al., 2008; Caers, 2018) and, more recently,

also in cryospheric research (Wainwright et al., 2017; Gopalan et al., 2018; Verjans et al., 2020; Gregory et al., 2021). Un-65

fortunately, full-fledged Bayesian inference using standard numerical sampling methods is generally infeasible for complex,

simulation-based models where forward evaluation of the model is computationally expensive, which is the case for most

transient models of dynamical processes (Cranmer et al., 2020). In this setting, theoretical and practical compromises must

generally be made in order to obtain computationally feasible approximate inferences (Reich and Cotter, 2015). This applies

also to transient thermal models of permafrost, which typically require solving a discretized partial differential equation for70

heat diffusion in the forward evaluation (Riseborough et al., 2008). Finding computationally feasible methods for performing

simulation-based inference is, therefore, a key methodological challenge in investigating the thermal state of permafrost with

numerical models.

The primary objectives of this study are (i) to analyze the relationship between near surface air and permafrost temperature

trends observed at several research stations in the Arctic continuous permafrost zone, and (ii) to relate observed borehole75

temperature trends to plausible changes in latent heat over the last two decades via ensemble inversion of a transient heat

conduction model with phase change. In both cases, we focus on the probabilistic quantification of uncertainty using Bayesian

methods. To overcome the aforementioned computational challenges in solving the inverse problem for heat conduction, we

apply a recently developed particle-based sampling method for approximate posterior inference (Garbuno-Inigo et al., 2020)

suitable for expensive numerical models. We apply our methods to four different sites (Fig. 1) located in different climate zones80

in northeastern Siberia, Svalbard, northern Alaska, and northwestern Canada, where long-term borehole temperature records

(>10 years) as well as stratigraphic information are available.

2 Study sites

In order to cover a broad range of environmental and climatic conditions, we apply our inverse modeling method to borehole

and meteorological data obtained from sites in four different regions within the continuous permafrost zone. Fig. 1 shows the85
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Figure 1. Map of the four study sites overlaid on the permafrost extent from Obu et al. (2019). Orange marks the tree line (Brown et al., 1997).

Photos are reprinted/adapted with permission from published documentation for each site; Barrow (Bar, 2021), Samoylov Island (Boike et al.,

2019), Bayelva (Boike et al., 2018a), and Parson’s Lake (Smith et al., 2018) (permission granted by Open Government License - Canada:

https://open.canada.ca/en/open-government-licence-canada).

geographical locations of each site along with photos of the local landscape. Table 1 provides a summary of available data on

the long-term climatology of each site for a given reference period.

2.1 Samoylov

The Samoylov research station (Boike et al., 2019) lies on Samoylov Island (E 126° 28’ 51.0” N 72° 22’ 11.76”) within the

Lena River Delta at the edge of the Laptev Sea in northeastern Siberia. The region is characterized by ice-wedge polygonal tun-90

dra, dense vegetation coverage, large water bodies, and sandy, ice-rich sediment. The site lies within the continuous permafrost

zone and has permafrost reaching depths of 400 m to 600 m below the surface (Grigoriev, 1960) with active layer thickness

ranging from 0.3 m to 0.7 m. Recent surface temperature reconstructions show that the permafrost has been subjected to sub-

stantial warming over the last century (Kneier et al., 2018). The station provides automated monitoring of surface and climate

conditions in addition to an instrumented 27 m borehole drilled in 2006 from which hourly ground temperature measurements95

are available up until September 2021.

4

https://doi.org/10.5194/egusphere-2022-630
Preprint. Discussion started: 25 July 2022
c© Author(s) 2022. CC BY 4.0 License.



Table 1. Summary of climatological conditions for each of the four study sites included in this work. Air temperatures (for January and July)

are monthly averages; rainfall refers to total annual unfrozen precipitation, and max snow depth refers to the maximum annual snow depth.

Data are averaged over the reference period. All quantities were computed directly from published data for the indicated time period unless

otherwise specified. Climatology data for Parson’s Lake are taken from the nearest available long-term observation station at Trail Valley

Creek which is about 37 km southeast of the borehole site.

Site name Soil mixture Period Air temp. (Year, Jan, Jul) Annual

rainfall

Max annual

snow depth

Reference

Samoylov Peat, Sand 2002-2021 −10.7 °C, −29.8 °C, 9.3 °C 88mm 37 cm Boike et al. (2019)

Bayelva Silt, Clay 1998-2021 −4.3 °C, −10.4 °C, 6.1 °C 197mm 98 cm Boike et al. (2018a)

Parson’s Lake Sand, Silt, Clay 1998-2019 −7.9 °C, −24.1 °C, 12.5 °C 145mm∗ 40 cm∗∗ ECCC (2011)

Utqiaġvik/Barrow Peat, Silt 2004-2021 −9.9 °C, −23.7 °C, 4.4 °C 168mm 50 cm∗∗∗ Theisen (2022)

∗ Computed using ECCC data from the later time period of 2015-2021.

∗∗ Estimated visually from Figure 5 of Burn and Kokelj (2009) for the earlier time period of 2000-2007.

∗∗∗ Estimated visually from Figure 6 of Shiklomanov et al. (2010) for the earlier time period of 1994-2010.

2.2 Bayelva

The Bayelva station (Boike et al., 2018a) is located on the Brøgger peninsula of the island of Spitsbergen, Svalbard, approx-

imately 3 km from the small research village of Ny-Ålesund (E 11° 50’ 3.156” N 78° 55’ 14.987”). The West Spitsbergen

Current helps to maintain comparatively mild seasonal temperatures in the area around Ny-Ålesund. The unglaciated coastal100

areas are known to have continuous permafrost extending to depths as deep as 100 m (Humlum, 2005) with active layer depths

of 1 m to 2 m. The site is situated on top of a hill, and the surrounding landscape is characterized by patterned permafrost

ground and sparse (50-60%) vegetation coverage. The soils on the hill range from silty loam to silty clay with some marine

deposits, while coarser grained silty-sands can be found in the surrounding area. The site includes an instrumented 9.0 m deep

borehole with hourly measurements of ground temperatures dating back to 2009.105

2.3 Parson’s Lake

The Parson’s Lake, “T5 Upland”, borehole site (Wolfe et al., 2010; Smith et al., 2018) is situated east of the Mackenzie Delta,

northeast of Inuvik in the Northwest Territories and within the continuous permafrost zone of northern Canada (W 133° 50’

17.159” N 68° 57’ 29.879”). The region is classified as dwarf birch tundra with dense vegetation coverage and large water

bodies (Burn and Kokelj, 2009). Soils in the area are mostly coarse-grained sand in the upper layers, with finer grained silty-110

clay soils in the deeper layers (> 1 m). Soil cores also show evidence of excess ground ice in moderate amounts (approximately

5-25% volumetric content) 1 m to 2 m below the surface. Permafrost extends down to 100 m or more in the outer delta area

(Allen et al., 1988) and active layer thickness typically ranges from 0.35 m to 0.65 m. The site features a roughly 10 m deep

borehole with average daily temperature measurements dating back to 2006.
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2.4 Barrow115

The Barrow North Meadow Lake 2 (NML2) borehole site (W 156° 38’ 57.587” N 71° 19’ 14.07”) is situated near the village of

Utqiaġvik (formerly known as Barrow) which lies at the northernmost point of Alaska along the Arctic coast. The surrounding

landscape is characterized by drained thaw lakes and upland tundra consisting of gravel and silty soils with highly variable

moisture and organic content in the active layer (Shiklomanov et al., 2010). The region lies within the continuous permafrost

zone and is known to have permafrost extending down to 300 m (Brewer, 1958) or more below the surface with highly variable120

active layer thickness ranging from 0.1 m to 1.0 m. The upper permafrost layer is fairly ice rich with ground ice content as

high as 50-75% by volume in some areas. In this work, we use data from a borehole at the North Meadow Lake 2 (NML2) site,

where instrumented daily average soil temperature measurements in the permafrost layer down to 15 m are sparsely available

for the time frame 2012-2017 and annual measurements down to 47 m are available from 2009-2021 (Romanovsky et al., 2002;

Nelson et al., 2008; Bar, 2021).125

3 Methods

3.1 Bayesian inference

The Bayesian approach to statistics provides a natural framework for inferring unobserved quantities of interest while simul-

taneously accounting for their associated uncertainties (Berliner, 2003). This is accomplished by applying Bayes rule to some

observed and unobserved variables, Y and X , respectively:130

p(X|Y ) =
p(Y |X)p(X)

p(Y )
with p(Y ) =

∫

x∈X

p(Y |X = x)p(X = x)dx, (2)

which can be seen a generic formula for obtaining the so-called posterior distribution of an unobserved quantityX a posteriori

given observations Y from some sampling distribution or likelihood p(Y |X). The prior distribution p(X) encodes information

about Y known a priori and plays a crucial role in the Bayesian inference workflow. Difficulties in the practical applications

of Bayesian methods have historically arisen from the intractability of the integral in the denominator of (2), often referred135

to as the marginal likelihood p(Y ). However, advances in numerical sampling methods over the last few decades (Duane and

Kogut, 1986; Bishop, 2006; Hoffman and Gelman, 2014) and the increase in available computing power have made Bayesian

methods significantly more accessible.

3.2 Trend analysis

As a preliminary step of our study, we analyze trends in mean annual air and permafrost temperatures for each study site. For140

Samoylov, Bayelva, and Barrow, we use daily averaged in situ air temperature data where available, and bias-corrected ERA5-

Land (Muñoz-Sabater et al., 2021) 2 m air temperature in all years in the study period (2000-2020) where in situ observations

are unavailable. The bias correction procedure for air temperature follows closely the empirical quantile mapping method of

Piani et al. (2010); we deviate slightly by only applying the correction to values within the observed (in situ) temperature range
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to avoid artificially clipping extreme temperatures in the reanalysis product. For the Parson’s Lake borehole site, we use air145

temperatures from ERA5-Land without any correction since we were not able to find long-term in situ measurements near

the station. We fit a two-stage, robust, Bayesian trend model to mean annual air and permafrost temperatures for all measured

depths at each site. More details on the trend model and data preparation procedures can be found in Appendix B1.

3.3 Transient heat conduction model

In order to simulate the diffusion of heat in permafrost soils, we use a transient heat conduction model based on the same150

numerical procedures and parameterizations of CryoGrid (Westermann et al., 2016, 2022) which solves the 1-dimensional

non-linear heat equation with phase change:

∂H(z, t)
∂t

=
∂

∂z

[
kT (z, t)

∂T (z, t)
∂z

]
, (3)

where H(z, t) [Jm−3] is the discrete enthalpy function over d finite volumes ∆i(z), i= 1, . . . ,d, defined on the depth domain

z ∈ Z with Z = [0m,1000m]⊂ R, and kT (z, t) [Wm−1 K−1] is the (temperature dependent) thermal conductivity. Note that155

Eq. (3) is in so-called mixed form, i.e., the diffused variable (temperature) differs from the integrated variable (enthalpy). We

can recover temperature from enthalpy via the following non-linear system:

T =
H −Lθ(T )
C(θ(T ))

, (4)

which can be solved using standard numerical methods, such as Newton iteration, or approximated using a pre-calculated

interpolant. Here θ(T ) represents the SFCC for a given soil type. In this work, we use the SFCC specified by equations (21)-160

(23) in Dall’Amico et al. (2011) (see Appendix B2.2 for details), which is derived from the widely used van Genuchten (1980)

soil-water retention equations.

Since no general solution exists for Eq. (3) with arbitrary boundary conditions, numerical approximation is necessary in

order to find a solution for T (z, t). We discretize the spatial domain according to a fixed, non-uniform grid with the smallest

grid cell spacing of 0.05 m from the surface down to a depth of approximately 4 m and a pseudo-exponentially increasing grid165

spacing thereafter.

We specify the soil stratigraphy for each site as stacked homogeneous layers, where the soil in each layer is parameterized

according to the four characteristic fractions: excess ground ice (ξxic), natural porosity (ξpor), saturation (ξsat), and organic

content (ξorg). From these independent fractions, the volumetric soil constituent fractions for excess ground ice (θx), pore

water/ice (θwi), air (θa), and mineral and organic soil fraction θm,θo can be computed via recursive partitioning of the volume,170

as shown in Fig. B1 and described in Appendix B2.2. Note that, while excess ground ice is represented through super-saturation

of the soil volume (effectively just increasing the porosity), soil and water displacement from ground ice melt and hydraulic

processes are neglected, and the total water/ice content θwi + θx is assumed to remain constant throughout the simulation.
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3.3.1 Initial and boundary conditions

Accurate simulation of the surface energy balance, snow dynamics, and surface hydrology is notoriously difficult and comes175

with many sources of uncertainty in landscapes with very heterogeneous surface characteristics (Langer et al., 2011a, b). An

empirical alternative to approximate the bulk thermal effect of these complex surface processes is to use n-factors (Lunar-

dini, 1978; Riseborough et al., 2008), which attempt to approximate the long-term deviation of surface temperature from air

temperature via lumped scaling factors:

nF =
FDDsoil

FDDair
, nT =

TDDsoil

TDDair
, FDD =

t2∫

t1

T−(t)dt, TDD =

t2∫

t1

T+(t)dt, (5)180

where T+(t) = max(T (t),0◦C) and T−(t) = min(T (t),0◦C). Note that FDD and TDD represent the commonly known freez-

ing and thawing degree days. The resulting dimensionless factors nF ,nT ∈ [0,1] can be used to approximate insulated surface

temperatures by scaling the instantaneous air temperature:

Tsurf(t) =




nF (t)Tair(t) Tair(t)≤ 0

nT (t)Tair(t) Tair(t)> 0.
(6)

We use Tsurf, with Tair derived from the same, bias-corrected ERA5-Land air temperature record described in Sect. 3.2, as the185

Dirichlet upper boundary condition for temperature in the transient heat conduction model. In order to account for possible

decadal scale changes in surface conditions, the seasonal n-factors nF and nT are reparameterized as time-dependent, piece-

wise linear functions with knots at five pre-defined time points: 2000, 2005, 2010, 2015, and 2020. The values at each knot,

e.g., n(0)
F , n(1)

F , n(2)
F , n(3)

F , n(4)
F (same for nT ), are varied as unknown parameters, thereby allowing Tsurf, which is not generally

known or measured reliably, to be adapted according to the observed borehole temperatures. The geothermal heat flux at the190

lower boundary (1 km below the surface) is set to 0.053 Wm−2, and can generally be assumed to have a negligible effect on

decadal time scales (Hermoso de Mendoza et al., 2020).

The initial temperature profile at each site is parameterized as a piecewise linear function between five knots: (0m, T̂air(0)),

(zALT,T1), (zZAA,T2), (zbase,0°C), and (1000m,T3), where T̂air(0) is the average annual air temperature for the first simu-

lation year, and T1, T2, T3, and zbase (i.e. depth of the permafrost base) are varied as unknown parameters. zALT and zZAA195

nominally refer to the initial active layer thickness and depth of zero annual amplitude respectively; these values are set based

on rough estimates from the relevant literature for each site. Each simulation additionally includes a 20-year “spin-up” period

(1979-1999) excluded from analysis. The spin-up period allows the energy states of the upper subsurface layers to reach dy-

namic equilibrium with the forcing, while the parametric initial state broadly accounts for first-order uncertainty in the initial

temperature profile of the deeper layers.200
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Figure 2. ISO standard flowchart showing a simplified overview of the inversion workflow using Ensemble Kalman Sampling (EKS).

3.4 Inversion method

3.5 Theoretical framework

The inversion problem of recovering some unobserved sequence of states x1:N ∈XN from observations y1:N ∈ Y N over N

temporal samples is commonly expressed via Bayes rule (Evensen et al., 2022):

p(x1:N ,ϕ|y1:N ,S)∝ p(y1:N |x1:N ,ϕ,S)p(x1:N |ϕ,S)p(ϕ)p(S), (7)205

where ϕ ∈ Φ represents the parameters characterizing the underlying hydrothermal processes in a dynamical model of the state

variables, x, and S represents any set of relevant exogenous variables (e.g., meteorological forcings, energy sources/sinks,

etc), which define the boundary conditions of the system. We assume in Eq. (7) that the parameters, ϕ, are independent of

the exogenous variables, S, such that the joint prior density can be written as p(ϕ,S) = p(ϕ)p(S). Furthermore, we assume

the exogenous inputs, S, to be constant, thereby allowing us to drop p(S) from Eq. (7). The likelihood p(y1:N |x1:N ,ϕ,S)210

determines how likely the observational data are, given a sequence of modeled states, while the distribution p(x1:N |ϕ,S),

often referred to as the process model, relates a particular set of parameters ϕ to a sequence of states x1:N . In this work, we

focus on probabilistically modeling parametric uncertainty induced by the prior p(ϕ) =
∏m

i=1 pi(ϕi) overmmodel parameters

which encode a priori site-specific knowledge (e.g., soil characteristics and surface conditions) where available. The predictive

distribution over the model states can thus be expressed as:215

p(x1:N |y1:N ,S) =
∫

ϕ∈Φ

p(x1:N |ϕ,S)p(ϕ|y1:N ,S)dϕ (8)

9
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with the process model p(x1:N |ϕ,S) = δ
(
x1:N = f(ϕ,S)

)
, where f is the transient heat conduction model (described in Sect.

3.3) parameterized by ϕ, and δ is the Dirac delta distribution. This formulation of the problem departs somewhat from typical

data assimilation procedures which tend to focus more on probabilistic modeling of the state, x, with parametric uncertainty

in ϕ often neglected (Caers, 2018; Geer, 2021). In contrast, our approach amounts to a kind of “perfect model” assumption220

where the dynamics are assumed to be error-free (though this is of course not really the case). This allows us to avoid the need

to develop a stochastic description of p(x1:N |ϕ,S), while still being able to produce a distribution over plausible unobserved

states via the parametric uncertainty induced by the prior. Estimating the predictive distribution in Eq. (8) requires integration

over the parameter space Φ weighted by the posterior distribution p(ϕ|y1:N ,S) which is generally intractable. The integral

can, however, be efficiently approximated via ensemble/particle-based sampling methods.225

3.6 Approximate Inference via Ensemble Kalman Sampling

Due to the high computational cost of computing the likelihood, we employ a recently developed, probabilistic variant of

ensemble Kalman inversion (EKI) (Iglesias et al., 2013) called Ensemble Kalman Sampling (EKS) (Garbuno-Inigo et al., 2020)

to efficiently produce approximate samples from the posterior. The main advantage of EKS over more other commonly used

numerical sampling methods, such as Markov Chain Monte Carlo (MCMC), is that it is a parallelizable, “ensemble” or particle-230

based method which requires only a handful of iterations to converge. In contrast, most MCMC methods require hundreds or

even thousands of sequential (i.e., non-parallelizable) iterations. In contrast to EKI, which converges to a point estimate of the

most likely parameters (i.e., a posterior mode), the ensemble produced by EKS can be interpreted as asymptotically unbiased

samples from the stationary posterior distribution.

In order to apply EKS to our inversion problem, we assume that the observed borehole temperatures can be modeled as235

Tobs = (hT ◦ f)(ϕ) + η, (9)

where hT is the forward map from the model states produced by f to comparable temperature observations, and η ∼ N (0,ΣT )

is observation noise with zero mean and assumed covariance ΣT . Additional inputs to f , such as forcing data, are assumed to

be independent of ϕ and are here suppressed for brevity.

Since we aim to constrain the parameters ϕ of the heat conduction model f based on observed borehole temperatures,240

we choose hT to be a simple aggregation function which computes mean annual ground temperatures (MAGT) from the

daily temperature record produced by f . For each site, we compute the modeled MAGT at each depth where a borehole

sensor is present, linearly interpolating between grid cells where necessary. The resulting predicted temperatures form a matrix

Tpred = hT ◦ f(ϕ) ∈ RN×d̄, where N is the number of years and d̄ the number of borehole sensor depths at which data are

available. Note that, for the borehole data from Barrow, we were only able to make use of the annual measurements below245

the assumed depth of zero annual amplitude due to the sparse availability of instrumented measurements at depths closer to

the surface. Model outputs at all points in time and space where no data are present are thus not explicitly included in the

likelihood calculation, though it is important to note that they are still included implicitly through conditional dependence of

the evaluation points on the time dynamics of Eq. 3.
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The observed mean annual ground temperatures, Tobs, are used as the observation mean vector for the Ensemble Kalman250

Sampler described in Garbuno-Inigo et al. (2020). We set the observation covariance matrix ΣT to the posterior predictive

variances obtained from our trend analysis (see Sections 4.1 and B1) along the diagonal with a minimum variance of 0.01 K2

(to reflect an assumed baseline measurement uncertainty) and zero elsewhere, thereby assuming observation noise to be both

independent and uncorrelated across time and space.

The prior distribution over model parameters, p(ϕ), is of crucial importance to our method. Some parameters in the heat255

transfer model, such as soil composition, will cause the resulting optimization problem on ϕ to be under-constrained, since

there may be more than one possible combination of soil components which have similar thermal properties. Additionally,

incorporating prior knowledge about plausible parameter values allows us to reduce the amount of computational effort wasted

on physically implausible or incoherent model configurations that may arise from random sampling.

EKS assumes the m unconstrained parameters γ(ϕ) =ψ ∈Ψ⊆ Rm to follow a multivariate Gaussian distribution, ψ ∼260

N (µψ,Σψ), where γ : Φ→Ψ is a bijective function which maps the m-dimensional possibly constrained parameters ϕ ∈ Φ

to their unconstrained values on the real line. We define our priors in the constrained parameter space Φ in order to more

easily incorporate physically meaningful information about each site. We define suitable parameter priors for each site based

on published field measurements and soil core analyses; full details on choices of priors for each site are in Appendix B2.3.

We construct a diagonal, multivariate Gaussian approximation of our priors in the unconstrained parameter space via Laplace265

approximation of the density induced by γ(ψ). Note that this introduces some error into the EKS representation of the posterior

since the resulting Gaussian distribution is only an approximation of the transformed density.

We apply the implementation of EKS published by the authors (Constantinou et al., 2022) to our heat conduction model

using borehole data obtained from each of the four sites described in Sect. 2. We use an ensemble of sizeNens = 256 (balancing

between sample quality and computational cost), and we initialize the ensemble by sampling Nens parameter vectors ϕ from270

the prior. We iterate EKS until two units of ensemble/particle diffusion “time” are reached or for a maximum of 30 iterations.

We refer the reader to Garbuno-Inigo et al. (2020) for further details about the EKS algorithm and iteration procedure.

4 Results

4.1 Permafrost and air temperature trends

The results of the trend analysis over the 20-year time period (2000-2020) described in Sect. 3.2 are shown in Fig. 3. The left275

panel shows the observed air and permafrost temperatures over time alongside the trend lines sampled from the posterior. The

solid line represents the posterior mean while the shaded region shows the 95% central credible interval (CCI), which represents

the interval between the 2.5% and 97.5% percentiles of the posterior samples. The box-plots in the right panel show summaries

of the posterior distribution over slopes of the trend line, which can be more naturally interpreted as the average annual change

in temperature over the observed time period. The whiskers of the box-plot span the range [q1− 1.5R,q3 + 1.5R], where q1280

and q3 are the first and third quartiles respectively and R is the interquartile range. All probabilities given in this section refer
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Figure 3. Trend Analysis: Observed mean annual temperature trends in air vs soil at all sites. Permafrost temperatures are from borehole

measurements as close as possible to the depths of zero annual amplitude, 20.75 m (Samoylov), 20.0 m (Barrow), 9.0 m (Bayelva), 9.82 m

(Parson’s Lake). Dots represent observed mean annual temperatures at each location. For air temperature, the adjusted ERA-5 temperature

reanalysis record is used where observations are not available. Trend lines and their corresponding 95% central credible intervals are obtained

via numerical sampling from a robust trend model.

to posterior probabilities calculated from MCMC samples with Monte Carlo adjusted standard error (MCSE) strictly less than

2× 10−3 in all cases.

Our analysis shows very strong evidence of increasing air temperatures (i.e. Pr(µ1 > 0)> 0.99 for all sites) with the slope

of the trend line, µ1, ranging from 0.09 Kyr−1 (95% CCI 0.00 Kyr−1 to 0.18 Kyr−1) at Parson’s Lake to 0.11 Kyr−1 (95%285

CCI 0.04 Kyr−1 to 0.18 Kyr−1) at Samoylov Island. In comparison, mean annual permafrost temperatures near the depth of

zero annual amplitude show similarly strong evidence of warming in three of the four sites; temperatures rose by approximately

0.16 Kyr−1 (95% CCI 0.14 Kyr−1 to 0.18 Kyr−1) on Samoylov Island, 0.06 Kyr−1 (95% CCI 0.05 Kyr−1 to 0.06 Kyr−1) at

Barrow, and 0.06 Kyr−1 at Parson’s Lake (95% CCI 0.02 Kyr−1 to 0.11 Kyr−1). For Bayelva, the observed deep permafrost

temperatures show a far milder warming trend of approximately 0.02 Kyr−1 (95% CCI −0.02 Kyr−1 to 0.05 Kyr−1) and are290

considerably less conclusive (Pr(µ1 > 0)≈ 0.85).

We next investigate the observed difference between soil and air temperature trends across sites. We find that soil temperature

trends are generally lower than air temperature trends in both Barrow (Pr(µ(soil)
1 < µ(air)

1 )≈ 0.90) and Bayelva (Pr(µ(soil)
1 <

µ(air)
1 )≈ 0.98). This relationship is less evident at the Parson’s Lake borehole site (Pr(µ(soil)

1 < µ(air)
1 )≈ 0.68) with ground
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Figure 4. (a) Modeled vs observed mean annual ground temperatures at sensors which are as close as possible to the depth of zero annual

amplitude; 20.75 m (Samoylov), 20.0 m (Barrow), 9.0 m (Bayelva), 9.82 m (Parson’s Lake). Dots indicate observed annual borehole temper-

atures, and lines represent the mean of the ensemble predictions. Shaded regions cover 95% of the ensemble predictions. (b-e) Minimum and

maximum annual temperature profiles at 2m and below for the year 2020 (Samoylov, Bayelva, Parson’s Lake) and 2019 (Barrow), observed

(dots) vs model ensemble.

temperatures warming at a comparable rate to air temperatures. In stark contrast to the other sites, borehole measurements at295

Samoylov show deep soil temperatures warming on average 0.05 Kyr−1 (35 %) faster than air temperatures with fairly high

confidence (Pr(µ(soil)
1 > µ(air)

1 )≈ 0.92).
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4.2 Ensemble inversion

Modeled vs observed annual ground temperatures over the 20 year simulation period are shown in Fig. 4. The predicted temper-

atures from each ensemble member represents a (approximate) sample from the posterior predictive distribution, p(T |Tobs,S).300

The solid line in panel (a) is the ensemble mean temperature prediction while the shaded regions show the 95% CCI over

all ensemble members, i.e. the interval into which 95% of the predicted values for each ensemble member fall. Panels (b-e)

show the observed vs ensemble minimum and maximum annual temperatures for the last year in the simulation period where

observations are available. We can see in Fig. 4 that, for both Samoylov and Parson’s Lake, the ensemble predicted tempera-

tures fit the observed borehole temperatures relatively well, although the 2020 annual min/max ground temperature curve for305

Samoylov (Fig. 4b) indicates a slight bias in the min/max temperature range for the upper part of the profile affected by sea-

sonal variation. The ensemble temperatures for Bayelva also appear reasonable, though there is a clear warm bias in the winter

apparent in the temperature profile. The corresponding min/max temperature curves (Fig. 4d) reveal a substantial amount of

ensemble variation in the annual minimum and maximum temperature despite fairly modest variation in the ensemble mean at

9 m. This is also apparent in the 2020 ensemble temperature profile for Parson’s Lake (Fig. 4e). There is much more variance310

in the deeper part of the soil profile (i.e. below 10 m) for both of these sites in comparison to Samoylov and Barrow (Fig. 4b-e),

likely due to the lack of deeper borehole measurements.

Fig. 5 shows the joint and marginal distributions of average annual change in modeled latent heat (a) and thaw depth (b)

with average integrated ground temperature, i.e, the weighted average of grid cell temperatures, for each of the four sites. Here

average annual change is defined as the slope of the least squares trend line fitted over the entire simulation period (2000-2020)315

for each ensemble member. We use integrated quantities in order to incorporate information from the entire upper 10 m of

the soil profile. The 10 m limit is somewhat arbitrary but is intended to balance the contributions of the active layer and the

permafrost layer to the aggregated quantities. Note that, since the model assumes constant hydrological conditions, changes

in latent heat can be directly attributed to phase change. The density plots on the top and right panels of Fig. 5 show the

ensemble marginal densities of temperature and latent heat change respectively. Each point in the plot represents the slope of320

the least squares trend line for one ensemble member after fitting with EKS. The lines in the plot show the linear relationship

between changes in temperature and latent heat across all ensemble members. Table 2 shows the correlation and regression

coefficients associated with each linear fit. Stronger positive correlations between temperature and latent heat trends imply

higher sensitivity of permafrost thaw to changes in sensible heat uptake.
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Figure 5. Joint densities of modeled mean annual change in latent heat (a) and thaw depth (b) vs mean annual change in ground temperature

for all sites. Each point represents a single member of the fitted ensemble. Energy content and temperature are integrated over all grid cells

in the upper 10m of the soil profile. The density plots on the top and right panels of each plot show the marginal densities.

Table 2. Summary statistics (Pearson correlation and slope of the least squares line) for the linear relationships shown in Fig. 5 for both latent

heat vs. temperature (a) and thaw depth vs. temperature (b). Means and standard errors are bootstrap estimates from 10,000 resamples of the

posterior/ensemble trend values.

Latent heat (a) Thaw depth (b)

Site Correlation Slope

(MJm−2 K−1)

Std. dev.

(MJm−2 yr−1)

Correlation Slope

(mK−1)

Std. dev.

(myr−1)

Samoylov 0.10± 0.05 2.0± 1.1 0.31± 0.03 0.06± 0.06 0.01± 0.01 (2.0±0.1)×10−3

Barrow 0.71± 0.05 30.2± 1.6 0.71± 0.05 0.27± 0.06 0.04± 0.01 (2.3±0.1)×10−3

Bayelva 0.73± 0.03 66.8± 3.9 2.71± 0.21 0.47± 0.05 0.12± 0.01 (7.4±0.5)×10−3

Parson’s Lake 0.86± 0.04 23.4± 1.1 1.38± 0.10 0.45± 0.06 0.07± 0.01 (8.3±0.5)×10−3

We can see in Fig. 5a that the all three sites with silty or clay-like soils (i.e. Barrow, Bayelva, and Parson’s Lake) exhibit325

a much stronger positive correlation between change in latent heat and temperature. Samoylov, in contrast, shows little to no

correlation despite the comparatively rapid increase in ground temperature. Fig. 5b shows a clear difference in how changes

in thaw depth correlate with changes in temperature between the two warmer sites, Parson’s Lake and Bayelva, versus the

two colder sites, Samoylov and Barrow. It is evident that the simulations for both Parson’s Lake and Bayelva show a stronger

positive correlation between increasing thaw depths and increasing temperature, whereas for the colder sites this correlation330

is weaker (Barrow) or virtually non-existent (Samoylov). Both warmer sites also show more overall variability across the

15

https://doi.org/10.5194/egusphere-2022-630
Preprint. Discussion started: 25 July 2022
c© Author(s) 2022. CC BY 4.0 License.



-100

0

100

200

Samoylov Barrow

2000 2005 2010 2015 2020

-100

0

100

200

Bayelva

2000 2005 2010 2015 2020

Parson's Lake

T
ot

al
 e

ne
rg

y 
ch

an
ge

 (
M

J 
m
⁻²

)

Latent heat (permafrost)
Latent heat (active layer)
Sensible heat

Figure 6. Total change in energy partitions (upper 10m of soil profile) since the beginning of simulation period. Energy is partitioned into

three categories: Latent heat in frozen grid cells (i.e. cells with maximum annual temperature Tmax < 0°C), latent heat in the active layer

(Tmax ≥ 0°C), and sensible heat. Solid lines show the median energy change while the shaded regions show the 95% CCI over the ensemble.

ensemble in both latent heat and thaw depth trends with standard deviations close to or sometimes more than double those of

the two colder sites.

Lastly, Fig. 6 shows the long-term change in the mean annual energy contents of the upper 10 m of the soil profile over the

full simulation period (2000-2020) for each site. The total energy is partitioned into three parts: latent heat stored in "frozen"335

grid cells, i.e., those that have a maximum annual temperature below 0 °C, latent heat in the active layer, and sensible heat. The

solid lines show the median energy change over all fitted ensemble members, and the shaded regions indicate the corresponding

95% CCI. Note that the categorization of a grid cell as “frozen” or “active” for the latent heat partitions is not constant; i.e., as

the active layer grows or shrinks over time, the categorization of each grid cell based on maximum annual temperature changes

as well. This means that the change in latent heat for each partition is attributable not only to the thawing and freezing of water340

but also to the migration of grid cells between the two partitions.

5 Discussion

5.1 Estimating trends in observed permafrost and air temperatures

Numerous recent studies have highlighted warming trends observed in borehole sites all across the Arctic (Romanovsky et al.,

2007; Biskaborn et al., 2019; Chen et al., 2021; Smith et al., 2022). The results of our trend analysis are broadly consistent with345
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Biskaborn et al. (2019) who reported average decadal changes in permafrost temperatures of (0.39± 0.15) Kdec−1 across the

continuous permafrost zone between 2007 and 2016, which translates into an average annual change of roughly 0.02 Kyr−1 to

0.05 Kyr−1. Observed warming trends at the Samoylov Island borehole site in the Lena River Delta (Siberia) over the longer

period of 2007-2020 are unusually extreme (also noted by Biskaborn et al. (2019) for the same borehole) with a mean annual

change of 0.16 Kyr−1, while observed changes at the Bayelva site near Ny-Ålesund (Svalbard) fall towards the lower end of350

the expected range with a mean annual change of 0.02 Kyr−1. For 2 m air temperature, Biskaborn et al. (2019) report average

changes of (0.86± 0.84) Kdec−1 (0.02 Kyr−1 to 0.17 Kyr−1) across the continuous permafrost zone from 2007-2016. This

is consistent with the results of our analysis which show mean air temperature trends ranging from 0.09 Kyr−1 at Parson’s

Lake to 0.11 Kyr−1 on Samoylov Island. The large difference in observed permafrost temperature trends between these two

sites, despite similar changes in air temperature, indicates considerable uncertainty in how permafrost is responding to the355

changing climate. Furthermore, the observation that deep permafrost on Samoylov Island is most likely warming faster than

air temperature suggests that changes in air temperature alone cannot always fully explain permafrost warming.

These results motivate our inverse modeling study by demonstrating clear, localized differences and substantial uncertainty

in how the permafrost thermal regime responds to long-term changes in air temperature. The discrepancies in the apparent

relationship between long-term changes in air and permafrost temperatures suggest that other factors are at play, such as360

surface conditions (e.g. snow cover) and variability in soil thermal properties. These factors significantly affect energy uptake

in the subsurface, and ultimately, the current and future thermal state of permafrost in Arctic regions (Smith et al., 2022; Langer

et al., 2022). We believe that this can be at least partially attributed to the latent heat effect, in addition to soil thermal properties,

both of which are a major source of uncertainty in making inferences about the subsurface thermal regime (Riseborough, 1990;

Romanovsky and Osterkamp, 2000).365

5.2 Variability and biases in the ensemble modeled temperature record

There is substantial variability in modeled temperatures over the simulation period (2000-2020) even after using EKS to

calibrate the model ensemble to borehole measurements (Fig. 4). This variability reveals fundamental uncertainties about

what observed changes in permafrost temperatures actually tell us. We see, for example, significant differences in the overall

spread of predicted temperatures between sites. This can be partially explained by differences in the depths of the observed370

temperatures; e.g., the deepest sensors available at the Bayelva and Parson’s Lake sites are at 9 m and 9.82 m respectively,

whereas both Barrow and Samoylov have much deeper measurements available near the depth of zero annual amplitude where

there is little to no impact from seasonal variation. Important to note, however, is that the ensemble temperature spread in

Bayelva is less than that of Parson’s Lake, despite the sensor being roughly 82 cm closer to the surface, suggesting that depth

alone likely cannot explain these differences in variability. The wider spread in modeled temperatures at both Bayelva and375

Parson’s Lake, particularly in the deeper parts of the soil profile, seems to indicate that there is more uncertainty in modeling

the thermal dynamics of warmer permafrost. This may be due to higher sensitivity to soil properties, initial conditions, and

changes in surface conditions and soil water content. We suspect that this sensitivity is in large part attributable to the nonlinear
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effects of the freeze curve on the thermal dynamics, especially in deep permafrost (i.e. near the depth of zero annual amplitude)

where thermal gradients are smaller and heat diffuses more slowly.380

The general agreement between the modeled and observed mean annual temperatures in Fig. 4 suggests that the fitted model

ensemble can provide a plausible estimate of the permafrost’s thermal state at all four sites, subject to some uncertainties and

limitations which are discussed further in Sect. 5.6. There are, however, clear discrepancies between the model and obser-

vations, particularly in the temperature profiles for Samoylov and Bayelva, which should be considered. For Samoylov, the

ensemble median of the modeled annual temperature range of the permafrost layers is slightly too narrow, showing a warm385

bias in the winter and a cold bias in the summer for the last simulation year of 2020 (Fig. 4b). This may be due the thermal

conductivities of the upper layers being too low, thereby over-insulating the lower. It is worth noting that, while some soil

properties are varied in the ensemble, the stratigraphy itself is not, which may be responsible for such biases. For Bayelva, we

suspect that the wintertime warm bias may be due to the model’s assumption of static hydrology, which fails to capture the

effects of latent heat being lost due to drainage and evapotranspiration. We can see quite clearly from the volumetric water390

content measurements shown in Figure 3 of Boike et al. (2018a) that soil saturation levels in the active layer vary substantially

both within and between years. It has also been well established by previous studies that hydrological conditions have a sub-

stantial effect on the subsurface thermal regime on Svalbard (Roth and Boike, 2001; Westermann et al., 2011). Nevertheless,

we believe the results of our inversion procedure agree well enough with temperature observations to provide insight into how

the thermal state of permafrost at each site is evolving.395

5.3 What can temperature trends in deep boreholes tell us about the past?

It is worth noting that the spread in modeled temperatures across the ensemble is generally higher for earlier years (i.e. 2000-

2006), which is to be expected given the lack of observations to constrain the model. In many cases, the 95% CCI includes some

simulations where ground temperatures were actually warmer in the past, yet still produce temperature records comparable to

observations from the last two decades. This is particularly true for Samoylov, where nearly all of the ensemble members400

show relatively stable permafrost temperatures for the first five years of the simulation period (2000-2005), which is the first

change point for the fitted non-stationary n-factors, which mimic changes in insulation effects at the surface (see Sect. 3.3.1

for details). This suggests that recent warming trends can be plausibly explained by changes in surface conditions rather than

longer term warming. This hypothesis is further supported also by the posterior distributions of the wintertime n-factors shown

in Fig. A1, which demonstrate clear temporal changes in the simulations for both Samoylov and Bayelva. It is important to405

recognize, however, that conclusively verifying or falsifying this hypothesis would require the incorporation of snow depth

records, and ideally further historical borehole measurements (i.e., prior to 2005), into the inversion procedure, which we have

not attempted in this study. Previous studies of longer term borehole measurements dating back to the mid 20th century or

earlier (Romanovsky et al., 2007) as well as attempts to reconstruct historical surface temperatures in eastern Siberia (Kneier

et al., 2018) have shown that historical permafrost temperatures were substantially colder during the previous centuries. Our410

results should nevertheless serve as a reminder that longer term, historical temperature trends should not be extrapolated from
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recently observed temperature trends in deep boreholes without first considering other drivers of heat exchange at decadal and

sub-decadal scales, such as the insulating effects of snow cover and vegetation.

5.4 Linking temperature trends to latent heat and thaw depth

The clear differences between the joint distributions for each site in Fig. 5 have substantial implications for the interpretation415

of permafrost temperature trends. Firstly, it is evident that the freezing characteristics of the soil, here represented through

variation of the soil freezing characteristic curve parameters, have a substantial impact on the relationship between trends in

temperature and latent heat. This is made most apparent in Fig. 5a by the presence of a strong linear relationship between

latent heat change and temperature change in Barrow but not in Samoylov. Both sites are similar in many ways; they both have

historically very cold permafrost (below −8 °C near the depth of annual amplitude), an insulating organic layer at the surface,420

and similar annual snow cover. The main difference is that the area around the Barrow borehole has silty soil (Romanovsky

and Osterkamp, 2000) with freezing characteristics that allow for large amounts of unfrozen water at temperatures well below

zero. The result is that, as permafrost close to the active layer warms, a larger amount of energy is consumed as latent heat,

with less being diffused downward into the colder permafrost below. This is also reflected in Fig. 6, where the long-term latent

heat increase in the permafrost layer for the Barrow simulation clearly dwarfs that of Samoylov.425

The joint density of thaw depth trends with temperature trends in Fig. 5b tell a similar but slightly different story. As with

latent heat, simulations for the three sites with silty or clay-like soils in the permafrost layers show the strongest positive

correlation while those for Samoylov show little to none. However, the correlation and effect size for the Barrow simulations

are notably lower than those for the two warmer sites, Bayelva and Parson’s Lake. We suspect that this is likely a result of the

colder, deep permafrost at Barrow acting as a counter balance to thaw.430

We also note that the vast majority of ensemble members for both Samoylov and Barrow show clear warming trends whereas

the marginal distributions of temperature change for Bayelva and Parson’s lake are more diffuse and tend to be closer to zero.

This is broadly consistent with the hypothesis of Riseborough (1990), i.e. that regions with warmer permafrost may show less

detectable subsurface warming while actually being more at risk for thawing. The two warmer sites (particularly Bayelva) also

tend to show similar or larger changes in latent heat content and thaw depth even with relatively little change in temperature;435

this is likely due to a larger portion of energy being consumed as latent instead of sensible heat. This hypothesis is further

supported by Fig. 6, which shows sensible heat as the clear dominant component of long-term energy change in Samoylov and

Barrow. We discuss this further in Sect. 5.5.

A small number of ensemble members for both of these warmer sites lie in the upper left quadrants of Figs. 5a and 5b, i.e.,

where there is a positive trend in latent heat or thaw depth despite average ground temperatures actually declining over the440

simulated time period. Similarly, some ensemble members for these two sites fall into the lower two quadrants, indicating a

decrease in latent heat or thaw depth with some parameter settings. This is in contrast to the two colder sites, Samoylov and

Barrow, where nearly all ensemble members show positive trends in temperature, latent heat, and thaw depth. This underscores

two features of warmer permafrost: (i) that observed temperature trends (or lack thereof) should be interpreted with caution, as

there is substantial uncertainty inherent in associated changes in latent heat, and (ii) that the sensitivity of warmer permafrost445
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to climatic changes can also imply rapid refreezing and contraction of the active layer under cooling conditions. We can expect

the realistic impact of this effect, however, to be tempered by water drainage, which is not accounted for in our model.

5.5 Latent heat as a subsurface energy sink

While it is clear that Arctic permafrost is warming (Smith et al., 2010; Biskaborn et al., 2019; Chen et al., 2021; Smith et al.,

2022), the latent heat effect acts on a larger scale as both an energy source and sink (Nitzbon et al., 2022), which can have the450

effect of masking long-term temperature changes in the climate signal (Riseborough, 1990), thereby introducing considerable

uncertainty into the long-term implications of warming across the Arctic. Fig. 6 visualizes this uncertainty by comparing long-

term changes in the partitioned subsurface energy budget across sites. There is a clear contrast between the two colder sites,

Samoylov and Barrow, in the upper panels versus the two warmer sites, Bayelva and Paraon’s Lake, in the lower panels. For

the colder sites, sensible heat change plays a dominant role with both the median and full 95% CCI of the ensemble showing455

a positive trend for most of the simulation period. The decrease in sensible heat at Barrow in the last simulation year, 2020, is

likely due to the unusually large drop in air temperature which can be seen in Fig. 3.

Long-term change in latent heat uptake also differs between the colder and warmer sites. For both Samoylov and Barrow,

a vast majority of ensemble members show an increase in latent heat contents both in the “frozen” partition (i.e., grid cells

where maximum annual temperatures are below zero) as well as in the active layer. This points to both a deepening active layer460

(consistent with Fig. 5) as well as a warming permafrost layer which is transitioning into a more “mushy” state as temperatures

increase into the critical region of the freezing characteristic curve, where liquid water is present at temperatures below the

nominal melting point. In contrast, both Bayelva and Parson’s Lake show a much larger ensemble spread in latent heat changes

for both partitions. Notably, however, the 95% credible ensemble spread for both sites (especially Bayelva) indicates a higher

probability of decreasing latent heat content in the frozen partition which is likely attributable to expansion of the active layer.465

It is also worth considering that both warmer sites also consist of more silty and clay-like soils which are often characterized by

higher unfrozen water content at temperatures well below the melting point (Koopmans and Miller, 1966; Dall’Amico et al.,

2011). The highly non-linear behavior of permafrost temperature changes due to the impacts of latent heat on the thermal

dynamics thereby limits the usefulness of temperature records in evaluating the impact of climate warming on the thermal state

of permafrost.470

5.6 Limitations

While we are confident that the ensemble inversion method and results presented in this study provide valuable insight into the

relationship between air temperature trends, subsurface temperature trends, and permafrost thaw, there are several limitations

of our methodology which are important to address.

1. Neglected subsurface processes. The transient heat conduction model described in Sect. 3.3 is capable of accurately475

simulating heat conduction with phase change at a relatively high spatial resolution. However, it neglects several pro-

cesses such as water infiltration and percolation, excess ice melt and subsidence, as well as lateral exchange of heat and
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water in the subsurface. In particular, the assumption that soil water content remains constant over the simulation period

precludes factoring in the effects of long-term wetting or drying on the thermal properties (and therefore the thermal

regime) of the ground closer to the surface. However, the assumption allows us to more objectively compare changes in480

the partitioning of latent vs. sensible heat in the subsurface (Fig. 6). We further note that for some sites, such as Samoylov

which is typically waterlogged, no substantial wetting or drying has been reported during the simulation period (Boike

et al., 2019).

2. Simplified parameterization of surface processes. We use only n-factor scaled air temperatures as the upper boundary

condition for the heat equation. Our model does not explicitly represent surface processes such as radiative and turbulent485

heat fluxes, water bodies, vegetation and snow dynamics, but represents them in bulk via n-factors (Lunardini, 1978;

Riseborough et al., 2008). Thus, inter-annual variability in surface conditions is not effectively represented, and meteo-

rological forcings other than air temperature are not taken into account, thereby neglecting potentially valuable sources

of information that would serve as additional constraints on the inverse problem.

3. Under-constrained tuning of n-factors. The parametric approach used for the n-factor scheme in our model (see Sect.490

3.3.1), while powerful and flexible from a model calibration point of view, has the additional disadvantage of potentially

creating non-physical or unrealistic surface conditions which are not supported or constrained by observational data. The

optimization or sampling algorithm (in this work, EKS) has the freedom to adjust the half-decadal n-factors at the upper

boundary in order to produce annual ground temperatures that better match the borehole observations, with the only

constraint being the prior distributions. Since the focus of this work is not to generate realistic surface conditions but495

rather to understand the relationship between changes in sensible and latent heat changes at various sites, we consider

this limitation to be acceptable. However, this is a problem that should be addressed in order to use our methodology to

make inferences about likely causal drivers behind warming or long-term hydrothermal changes in the active layer.

4. Selection and calibration of prior distributions. Prior distributions provide a flexible tool for encoding domain-

knowledge into inverse problems and, most importantly, can act as smooth regularizers in otherwise ill-posed or non-500

convex optimization problems. The model parameter priors employed in this work are loosely derived from both auxil-

iary data sources as well as field work and published values in the literature (see Appendix B2.3 for further discussion).

However, the general lack of precise error and uncertainty estimates for some model parameters (in particular, soil prop-

erties) makes the selection of appropriate prior distributions difficult. We nevertheless emphasize that even imperfect

(but plausible) prior distributions still do a better job of accounting for uncertainty than arbitrary point estimates of pa-505

rameter values. Ideally, we would perform a sensitivity analysis to assess the impact of the priors on the results, but the

large number of model parameters and computational cost of the dynamical model makes such comprehensive analyses

prohibitively difficult.

5. Other statistical considerations. While EKS provides a computationally efficient alternative to MCMC for drawing

samples from the posterior, it is nevertheless an approximation which provides a theoretical guarantee of convergence510
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to the posterior measure only over an infinite “time” horizon (i.e., iterations of the algorithm) (Garbuno-Inigo et al.,

2020). Furthermore, the empirical results presented by the authors of EKS indicate that the method underestimates

posterior variance (and thus uncertainty) on a finite time horizon unless the ensemble is very large. More recent work

by Cleary et al. (2021) has attempted to circumvent this problem by performing exact posterior inference on emulated

model outputs. Additionally, EKS requires specification of the observation noise covariance ΣT , which is not, in general,515

known. Ideally, a fully Bayesian treatment of the inversion problem would include ΣT as parameters to be inferred, which

would have the benefit of producing an ensemble with a predictive distribution that is well calibrated on the training data.

This is, however, not possible using EKS, and thus, we leave the problem of estimating noise parameters to future work.

These limitations provide a wide range of directions for future work; e.g. (1-3) could be addressed simply by incorporating

additional physical processes into the model, such as those described in Westermann et al. (2022). However, this typically520

comes at a heavy computational cost, limiting the feasibility of running large ensembles over longer time periods spanning

decades, centuries, or millenia. We are optimistic that recent advancements in simulation-based inference (Cranmer et al.,

2020) and machine-learned based emulators may be able to address this challenge, as well as those described by (4) and (5).

We also see a lot of potential in applying the inversion method outlined in this work at a larger, cirum-Arctic scale, perhaps by

leveraging more efficient formulations of the heat conduction model such as those proposed by Tubini et al. (2020) or Langer525

et al. (2022). The greatest challenge here is the limited availability of high quality borehole data at a global scale, despite the

ongoing efforts of collaborative data collection and publication projects such as GTN-P (Biskaborn et al., 2015).

6 Conclusions

In this work, we analyzed trends in annual air and permafrost temperatures at four different sites in the Arctic continuous

permafrost zone. We found that long-term trends in permafrost temperatures over the study period (2000-2020) varied between530

the four sites (0.02 Kyr−1 to 0.16 Kyr−1) more than trends in air temperatures (0.09 Kyr−1 to 0.11 Kyr−1). In order to

investigate what permafrost temperatures can tell us about the thermal state of permafrost, we then applied a recently developed

method for ensemble inverse modeling, Ensemble Kalman Sampling (Garbuno-Inigo et al., 2020), to constrain a transient heat

conduction model using long-term borehole temperature measurements from each site. We demonstrated that the response of

the subsurface thermal regime to warming at the surface varies substantially between sites based on their historical climatology535

(i.e., colder versus warmer conditions) as well as the thermal properties of the soil. We found that the degree to which trends

in permafrost temperatures correlate with changes in latent heat or thaw depth depend heavily on both historical climatology

and the soil type. In particular, the sensitivity of modeled maximum annual thaw depths to changes in temperature trends

were higher for the two sites with warmer permafrost, Parson’s Lake in northwestern Canada (0.07 mK−1) and Bayelva in

Svalbard (0.12 mK−1), versus the two colder sites, Barrow in northern Alaska (0.04 mK−1) and Samoylov in northeastern540

Siberia (0.01 mK−1). Furthermore, we showed that there is substantial uncertainty inherent in relating ground temperature

trends to permafrost thaw in areas with warmer permafrost or silty/clay-like soils where the non-linear effects of latent heat

play a much larger role. Our results suggest that currently observed trends at these sites can be plausibly mapped to a wide
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range of different thermal states. This is largely due to the lack of information in the temperature signal of permafrost within the

critical temperature range where phase change of water occurs. The findings highlight the importance of considering regional545

differences in soil characteristics and climatology when comparing permafrost temperature trends between sites. Our study also

highlights the importance of deep borehole measurements (i.e. deeper than 10 m) in constraining permafrost thermal models

and providing insights into the past and present thermal state of permafrost in the Arctic. Future work will focus on the broader

application of probabilistic inversion methods, like those that used in this work, both to more sophisticated permafrost models

and at larger spatio-temporal scales.550

Code and data availability. Preprocessed/collated data files (excluding those from Parson’s Lake) in addition to the code for this study

are accessible online, at https://doi.org/10.5281/zenodo.6821348. Code for the transient heat conduction model is also available online, at

https://doi.org/10.5281/zenodo.6801740 (Groenke et al., 2022). Borehole data from the Parson’s Lake borehole can be requested directly

from the Geological Survey of Canada/Natural Resources Canada (Smith et al., 2018). Original borehole data from the Samoylov Island and

Bayelva sites can be retrieved from the open-access Pangaea data store (Boike et al., 2017, 2018b). Orginal borehole data from the Barrow555

site can be retrieved from the University of Alaska Fairbanks Permafrost Laboratory website (Bar, 2021).

Appendix A: Additional results

A1 Posterior distributions of wintertime n-factors indicate possible changes in snow cover

The posterior distributions of the wintertime n-factors are shown in Fig. A1. Each group of box-plots represents the fitted value

of the n-factor knot at that year. As described in Sect 3.3.1, the actual n-factor values are interpolated linearly between knots,560

forming a piecewise-linear function over the simulation period. Values for the year 2000 are also applied for all years in the

spin-up period (1979–1999). The inter-annual differences between the knots indicate that, in addition to the long-term trend in

air temperature, changes in surface conditions are necessary in order to accurately reproduce temperature trends in the borehole

data.

Decreasing wintertime n-factors for Samoylov between 2005–2020 can be physically interpreted as an increase in surface565

insulation, typically explained by an increase in snowfall or changes in the timing of the snow covered season. The extent

to which long-term snow depth measurements published in Boike et al. (2019) support this hypothesis is unclear, and further

validating this hypothesis will likely require further investigation with models that take into account snow dynamics. We briefly

discuss the unusually rapid warming observed on Samoylov Island in the following section (Sect. A3).

We observe the opposite effect for Bayelva, with the fitted wintertime n-factors clearly increasing from around 0.4 in 2000 to570

roughly 0.6 in 2015. This can be interpreted as a reduction in surface insulation, suggesting decreasing snow cover or possibly

a longer snow-free season. Long-term snow observations presented by Boike et al. (2018a) verify this hypothesis. The fact that

fitted n-factor distributions recover this pattern suggests that changes in snow cover are necessary in order to reconcile observed

borehole temperatures with warming air temperatures. The higher posterior variance of the Bayelva n-factors vs. Samoylov
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Figure A1. Box-plots showing posterior distributions of winter-time n-factors (i.e., applied when Tair(t)≤ 0) after fitting with EKS.

also indicates more uncertainty in the strength of the effect. The n-factor distributions for Barrow and Parson’s Lake show less575

of a clear temporal pattern, indicating that the observed borehole temperatures can be plausibly explained without changing

insulating conditions at the surface.

A2 Posterior distributions of all parameters

Kernel densities for each parameter over the fitted ensembles for each site are presented in Figs. A2 to A5. Parameter names

follow the pattern LAYER.NAME[.PARA] where NAME refers to the model parameter being determined and PARA refers to580

the “sub-parameter” where applicable. The piecewise linear parameterization of the n-factors where INITIALVALUE refers to

the knot at the year 2000, VALUE[1] to the knot at year 2005, VALUE[2] to the knot at year 2010, etc. Parameters named

INIT.VALUE and INIT.DEPTH refer to the temperature and depth knots in the piecewise-linear initial temperature profile. Note

that set of parameters varied differs slightly between sites due to differences in the stratigraphies; e.g. the excess ground ice

parameter is not considered in sites which are assumed (correctly or not) to have no excess ice within the soil column.585
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Figure A2. Fitted ensemble/posterior parameter distributions – Samoylov Island
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Figure A3. Fitted ensemble/posterior parameter distributions – Barrow
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Figure A4. Fitted ensemble/posterior parameter distributions – Bayelva
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Figure A5. Fitted ensemble/posterior parameter distributions – Parson’s Lake
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A3 Rapid warming of deep permafrost temperatures on Samoylov Island

The rate at which deep ground temperatures (e.g. 20 m in Fig. 3) appear to be warming at the Samoylov Island site is remark-

able, vastly exceeding trends observed at not only the three other borehole sites investigated in this study but also those reported

by Biskaborn et al. (2019). As noted in Boike et al. (2019), a new research station was constructed within the immediate vicin-

ity of the borehole site in 2013. The station includes a water delivery system which may act as a wind shield, thereby affecting590

seasonal snow cover patterns of the area around the borehole. Visual inspection in April of 2016 indicated that snow cover did

indeed appear higher since construction of the water supply system (Boike et al., 2019).

Appendix B: Method details

B1 Trend analysis

The annual temperature trend model is specified as:595

Tt ∼ T (µ1t+µ0,σ,ν)

µ1 ∼N (0,1)

µ0 ∼N (0,10)

σ ∼ HalfCauchy(0,1)

ν ∼ Exponential(10)600

where T (µ,σ,ν) is the scaled and shifted Student’s t-distribution with ν degrees of freedom, and t is the zero-centered year.

We choose the Student’s t-distribution as the likelihood due to the relatively small sample size (fewer than 20 years at all sites)

and due to its longer tails allowing for more tolerance of unusually cold or warm years without severely affecting the overall

trend (Lange et al., 1989). We use common, weakly-informative prior distributions for each parameter, with the exception

of the slope µ1 which follows a mildly informative unit Gaussian. This is justified by the fact that annual average change605

in temperature near and below the surface can be reasonably expected to fall well below 1 °C per annum. Samples from the

posterior distribution p(µ1,µ0,σ,ν|Tobs, t) are obtained via the widely used “No U-turn” numerical sampler (NUTS) (Hoffman

and Gelman, 2014). We combine 500 independent samples from eight different chains with 2500 discarded burn-in/adaptation

samples to get a total of n= 4000 samples for each trend model.

B2 Transient heat conduction model610

B2.1 Numerical scheme

The spatial gradients in Eq. (3) are approximated using the method of lines:

∇t ·Hi(z, t) =
1

∆i

[ki(Ti+1−Ti)
δi

− ki−1(Ti−Ti−1)
δi−1

]
, (B1)
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Figure B1. Simplified graphical representation of a four-layer stratigraphy configuration of the transient heat conduction model. The model

uses stacked, homogeneous sediment layers, where each layer is represented as a partitioning of excess ice, pore space, and solid material.

Tsurf and Qgeo represent respectively the surface temperature and geothermal heat flux boundary conditions.

where ∆i is the length of the i’th inner grid cell and δi is the distance between the midpoints of cells i and i+ 1.

For time integration, we use an implementation of the second-order, explicit, strong-stability-preserving time-stepping615

scheme of Shu and Osher (1988) provided by the Julia package, OrdinaryDiffEq.jl (Rackauckas and Nie, 2017). The time

step size is set according to a suitable Courant-Fredrichs-Lewy (CFL) condition (Courant et al., 1967) for the nonlinear heat

equation:

dtmax = C ·min
i

[
∂H

∂T

]

i

k−1
i ∆2

i , (B2)

where ∂H
∂T i

[JK−1 m−3] is the apparent heat capacity at grid cell i, ki [Wm−1 K−1] is the thermal conductivity, ∆i [m] is the620

vertical length of the grid cell, and C = 1
2 is the dimensionless Courant number which scales the step size to maintain stability.

B2.2 Soil parameterization

The soil constituent fractions by volume are parameterized using the four characteristic fractions: excess ice (ξxic), natural

porosity (ξpor), saturation (ξsat), and organic solid fraction (ξorg). The volumetric soil constituent fractions for excess ice (θx),

pore water/ice (θw), air (θa), and mineral and organic content θm,θo can be computed according to the following linear system:625

θx = ξxic,

θw = (1− ξxic)ξporξsat,

θa = (1− ξxic)ξpor(1− ξsat),

θo = (1− ξxic)(1− ξpor)ξorg,

θm = (1− ξxic)(1− ξpor)(1− ξorg),630
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Table B1. Stratigraphy configuration for Samoylov Island borehole simulations.

Layer Depth (m) Ground ice Porosity Saturation Organic

topsoil 0.0 0.0 0.80 1.0 0.50

sediment1 0.1 0.0 0.80 1.0 0.25

sediment2 0.4 0.3 0.55 1.0 0.25

sediment3 3.0 0.0 0.50 1.0 0.0

sediment4 10.0 0.0 0.30 1.0 0.0

Table B2. Stratigraphy configuration for Bayelva borehole simulations.

Layer Depth (m) Ground ice Porosity Saturation Organic

topsoil 0.0 0.0 0.45 0.8 0.05

sediment1 0.1 0.0 0.50 0.8 0.02

sediment2 0.5 0.0 0.50 0.8 0.02

sediment3 1.0 0.0 0.40 0.8 0.02

sediment4 10.0 0.0 0.30 1.0 0.0

where θx + θw + θa + θo + θm = 1. Mean stratigraphy configurations (i.e. expected value of the prior) used for each site are

given in Tables B1 to B4. Note that, in some cases, adjacent layers have identical mean values but are varied independently in

the ensemble. Both Bayelva and Parson’s Lake also have different freeze curve priors for some layers based on soil type; this

is discussed further in Appendix B2.3.

We use the soil freezing characteristic of Dall’Amico et al. (2011), which is based on the soil water retention equation of635

van Genuchten (1980). The temperature dependent liquid water matric potential is expressed as:

ψ(T ) =




ψ0 + Lf

gT∗ (T −T ∗) T < T ∗

ψ0 T ≥ T ∗,
(B3)

where ψ0 is the matric potential due to saturation, Lf = 3.4× 105 Jkg−1 is the specific latent heat of fusion of water, and

g = 9.80665ms−2 is downward acceleration due to gravity. The critical temperature T ∗ is expressed as a function of the

melting temperature Tm and the matric potential:640

T ∗ = Tm +
gTm

Lf
ψ0. (B4)

The volumetric liquid water content then follows from the well known van Genuchten equation (van Genuchten, 1980):

θw = θr + (θs− θr)(1 + (−αψ(T ))n)−m, (B5)

where α ∈ (0,∞) [m−1], n ∈ [1,∞), andm= 1− 1
n are empirical fitting parameters of the van Genuchten curve which depend

on soil type, and θr and θs are the residual and saturated water contents respectively. We use the log-transform of the strictly645
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Table B3. Stratigraphy configuration for Barrow borehole simulations.

Layer Depth (m) Ground ice Porosity Saturation Organic

topsoil 0.0 0.0 0.65 1.0 0.50

sediment1 0.2 0.0 0.55 1.0 0.0

sediment2 0.3 0.0 0.55 1.0 0.0

sediment3 1.0 0.0 0.55 1.0 0.0

Table B4. Stratigraphy configuration for Parson’s Lake borehole simulations.

Layer Depth (m) Ground ice Porosity Saturation Organic

topsoil 0.0 0.0 0.5 0.8 0.50

sediment1 0.5 0.0 0.5 0.8 0.0

sediment2 1.05 0.05 0.3 0.8 0.0

sediment3 1.40 0.25 0.40 0.8 0.0

sediment4 1.75 0.0 0.30 1.0 0.0

positive van Genuchten parameters in the inversion procedure to (i) allow for the use of Gaussian priors in unconstrained space

and (ii) to improve the numerical properties of the likelihood which, as should be apparent from Eq. (B5), exhibits strong

non-linearities in the derivatives with respect to α and n.

B2.3 Selection of prior distributions

There are broadly three categories of parameters which are considered in our analysis; soil parameters (see Appendix B2.2),650

n-factor parameters, and initial condition parameters. Separate soil parameters are defined for each stratigraphy layer. Soil

freeze curve parameters (melting temperature Tm and van Genuchten parameters logα, logn) as well as porosity are varied in

all layers, while organic content is only varied in the uppermost soil layer and is generally assumed to be zero or negligible in

all other layers. Ground ice content is also varied only in layers where it is suspected to be present. Saturation of pore-space

water/ice is varied as a single, global parameter used by each layer, excluding the bottom-most layer, which is held constant;655

since saturation is temporally constant throughout the simulation, this can be seen as effectively a bulk or average saturation

level for the soil column.

We based the stratigraphy priors for Samoylov, Bayelva, and Barrow on previous modeling studies, Nitzbon et al. (2020),

Zweigel et al. (2021), and Romanovsky and Osterkamp (2000) respectively. For Parson’s Lake, we designed the stratigraphy

based on the soil core analysis for the borehole site presented by Smith et al. (2018). We chose the priors for the van Genuchten660

parameters by fitting empirical freeze curves to temperature and volumetric water content measurements available for both

the Samoylov Island and Bayelva sites (Boike et al., 2018a, 2019). The mean and standard deviation of the log-transformed
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parameters are set according to the fitted posterior statistics, with the variance increased by a factor of 100 to roughly account

for uncertainty in extrapolation. We omit the details of this fitting procedure here for brevity, but the relevant code and results

are included in the supplementary material. For Barrow, we used the same van Genuchten parameter priors derived from the665

38 cm water content sensor at the Bayelva since the freeze curve visually agreed with the one presented in Romanovsky and

Osterkamp (2000), and both sites are known to have silty soil in the upper half meter (Boike et al., 2018a). We set these priors

for Parson’s Lake based on the reported soil types in each layer (Smith et al., 2018), using the Samoylov priors in the upper

sandy layers, and the Bayelva clay/silt priors for the deeper layers. We stress that, in all cases, there is no methodical procedure

used to derive the prior distributions, and the lack of stratigraphy information for the deeper layers is a source of uncertainty in670

our analysis. While the variability induced by sampling from the prior distributions accounts for some of this uncertainty, there

is a lot of room for improvement in the development of more rigorous and principled methods for deriving prior distributions

over soil stratigraphy parameters.

Tables B5 to B8 detail the prior distributions used for each parameter varied in the inversion procedure. We emphasize that

these stratigraphy values are generally designed to be rough, subjective estimates based on previous studies and characteristics675

of the landscape; uncertainty in the exact values is accounted for through the corresponding prior distributions, which allow

for a modest amount of deviation (generally 10–20%) from the mean. Parameter names follow the same convention described

in Appendix A2.

Table B5: Parameter prior distributions for Samoylov Island simulations

parameter prior mean stdev units

top.nf.initialvalue Beta(α=13.00, β=7.00) 0.65 0.10 -

top.nf.value[1] Beta(α=13.00, β=7.00) 0.65 0.10 -

top.nf.value[2] Beta(α=13.00, β=7.00) 0.65 0.10 -

top.nf.value[3] Beta(α=13.00, β=7.00) 0.65 0.10 -

top.nf.value[4] Beta(α=13.00, β=7.00) 0.65 0.10 -

top.nt.initialvalue Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[1] Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[2] Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[3] Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[4] Beta(α=18.00, β=2.00) 0.90 0.07 -

topsoil.por Beta(α=40.00, β=10.00) 0.80 0.06 -

topsoil.org Beta(α=25.00, β=25.00) 0.50 0.07 -

topsoil.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

topsoil.α.logα Normal(µ=-2.88, σ=0.17) -2.88 0.17 -

topsoil.n.logn Normal(µ=0.64, σ=0.18) 0.64 0.18 -
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parameter prior mean stdev units

sediment1.por Beta(α=27.50, β=22.50) 0.55 0.07 -

sediment1.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment1.α.logα Normal(µ=-2.88, σ=0.17) -2.88 0.17 -

sediment1.n.logn Normal(µ=0.64, σ=0.18) 0.64 0.18 -

sediment2.por Beta(α=25.00, β=25.00) 0.50 0.07 -

sediment2.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment2.α.logα Normal(µ=-2.88, σ=0.17) -2.88 0.17 -

sediment2.n.logn Normal(µ=0.64, σ=0.18) 0.64 0.18 -

sediment3.por Beta(α=15.00, β=35.00) 0.30 0.06 -

sediment3.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment3.α.logα Normal(µ=-2.88, σ=0.17) -2.88 0.17 -

sediment3.n.logn Normal(µ=0.64, σ=0.18) 0.64 0.18 -

init.depth Truncated(Normal(µ=500.00, σ=100.00); lower=100.00, upper=900.00) 500.00 99.95 m

init.value[1] Normal(µ=-5.00, σ=1.00) -5.00 1.00 °C

init.value[2] Normal(µ=-12.00, σ=3.00) -12.00 3.00 °C

init.value[3] Normal(µ=-12.00, σ=5.00) -12.00 5.00 °C

Table B6: Parameter prior distributions for Bayelva simulations

parameter prior mean stdev units

top.nf.initialvalue Beta(α=8.00, β=12.00) 0.40 0.11 -

top.nf.value[1] Beta(α=8.00, β=12.00) 0.40 0.11 -

top.nf.value[2] Beta(α=8.00, β=12.00) 0.40 0.11 -

top.nf.value[3] Beta(α=8.00, β=12.00) 0.40 0.11 -

top.nf.value[4] Beta(α=8.00, β=12.00) 0.40 0.11 -

top.nt.initialvalue Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[1] Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[2] Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[3] Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[4] Beta(α=18.00, β=2.00) 0.90 0.07 -

topsoil.por Beta(α=22.50, β=27.50) 0.45 0.07 -
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parameter prior mean stdev units

topsoil.org Beta(α=2.50, β=47.50) 0.05 0.03 -

topsoil.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

topsoil.α.logα Normal(µ=-1.24, σ=0.23) -1.24 0.23 -

topsoil.n.logn Normal(µ=-1.01, σ=0.08) -1.01 0.08 -

sediment1.por Beta(α=25.00, β=25.00) 0.50 0.07 -

sediment1.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment1.α.logα Normal(µ=-1.76, σ=0.19) -1.76 0.19 -

sediment1.n.logn Normal(µ=-1.22, σ=0.04) -1.22 0.04 -

sediment2.por Beta(α=25.00, β=25.00) 0.50 0.07 -

sediment2.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment2.α.logα Normal(µ=-2.23, σ=0.06) -2.23 0.06 -

sediment2.n.logn Normal(µ=-1.10, σ=0.02) -1.10 0.02 -

sediment3.por Beta(α=20.00, β=30.00) 0.40 0.07 -

sediment3.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment3.α.logα Normal(µ=-1.24, σ=0.23) -1.24 0.23 -

sediment3.n.logn Normal(µ=-1.01, σ=0.08) -1.01 0.08 -

sediment4.por Beta(α=15.00, β=35.00) 0.30 0.06 -

sediment4.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment4.α.logα Normal(µ=-1.24, σ=0.23) -1.24 0.23 -

sediment4.n.logn Normal(µ=-1.01, σ=0.08) -1.01 0.08 -

init.depth Truncated(Normal(µ=500.00, σ=100.00); lower=100.00, upper=900.00) 500.00 99.95 m

init.value[1] Normal(µ=-3.00, σ=1.00) -3.00 1.00 °C

init.value[2] Normal(µ=-5.00, σ=2.00) -5.00 2.00 °C

init.value[3] Normal(µ=10.20, σ=5.00) 10.20 5.00 °C

Table B7: Parameter prior distributions for Barrow simulations

parameter prior mean stdev units

top.nf.initialvalue Beta(α=13.00, β=7.00) 0.65 0.10 -

top.nf.value[1] Beta(α=13.00, β=7.00) 0.65 0.10 -

top.nf.value[2] Beta(α=13.00, β=7.00) 0.65 0.10 -
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parameter prior mean stdev units

top.nf.value[3] Beta(α=13.00, β=7.00) 0.65 0.10 -

top.nf.value[4] Beta(α=13.00, β=7.00) 0.65 0.10 -

top.nt.initialvalue Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[1] Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[2] Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[3] Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[4] Beta(α=18.00, β=2.00) 0.90 0.07 -

topsoil.por Beta(α=32.50, β=17.50) 0.65 0.07 -

topsoil.org Beta(α=25.00, β=25.00) 0.50 0.07 -

topsoil.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

topsoil.α.logα Normal(µ=-1.76, σ=0.19) -1.76 0.19 -

topsoil.n.logn Normal(µ=-1.22, σ=0.04) -1.22 0.04 -

sediment1.xic Beta(α=1.00, β=50.00) 0.02 0.02 -

sediment1.por Beta(α=27.50, β=22.50) 0.55 0.07 -

sediment1.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment1.α.logα Normal(µ=-1.76, σ=0.19) -1.76 0.19 -

sediment1.n.logn Normal(µ=-1.22, σ=0.04) -1.22 0.04 -

sediment2.por Beta(α=27.50, β=22.50) 0.55 0.07 -

sediment2.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment2.α.logα Normal(µ=-1.76, σ=0.19) -1.76 0.19 -

sediment2.n.logn Normal(µ=-1.22, σ=0.04) -1.22 0.04 -

sediment3.por Beta(α=27.50, β=22.50) 0.55 0.07 -

sediment3.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment3.α.logα Normal(µ=-1.76, σ=0.19) -1.76 0.19 -

sediment3.n.logn Normal(µ=-1.22, σ=0.04) -1.22 0.04 -

init.depth Truncated(Normal(µ=500.00, σ=100.00); lower=100.00, upper=900.00) 500.00 99.95 m

init.value[1] Normal(µ=-5.00, σ=1.00) -5.00 1.00 °C

init.value[2] Normal(µ=-9.10, σ=3.00) -9.10 3.00 °C

init.value[3] Normal(µ=10.20, σ=5.00) 10.20 5.00 °C
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Table B8: Parameter prior distributions for Parson’s Lake simulations

parameter prior mean stdev units

top.nf.initialvalue Beta(α=10.00, β=10.00) 0.50 0.11 -

top.nf.value[1] Beta(α=10.00, β=10.00) 0.50 0.11 -

top.nf.value[2] Beta(α=10.00, β=10.00) 0.50 0.11 -

top.nf.value[3] Beta(α=10.00, β=10.00) 0.50 0.11 -

top.nf.value[4] Beta(α=10.00, β=10.00) 0.50 0.11 -

top.nt.initialvalue Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[1] Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[2] Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[3] Beta(α=18.00, β=2.00) 0.90 0.07 -

top.nt.value[4] Beta(α=18.00, β=2.00) 0.90 0.07 -

topsoil.por Beta(α=25.00, β=25.00) 0.50 0.07 -

topsoil.org Beta(α=5.00, β=45.00) 0.10 0.04 -

topsoil.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

topsoil.α.logα Normal(µ=-2.23, σ=0.06) -2.23 0.06 -

topsoil.n.logn Normal(µ=-1.10, σ=0.02) -1.10 0.02 -

sediment1.por Beta(α=25.00, β=25.00) 0.50 0.07 -

sediment1.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment1.α.logα Normal(µ=-2.23, σ=0.06) -2.23 0.06 -

sediment1.n.logn Normal(µ=-1.10, σ=0.02) -1.10 0.02 -

sediment2.xic Beta(α=2.50, β=47.50) 0.05 0.03 -

sediment2.por Beta(α=15.00, β=35.00) 0.30 0.06 -

sediment2.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment2.α.logα Normal(µ=-2.23, σ=0.06) -2.23 0.06 -

sediment2.n.logn Normal(µ=-1.10, σ=0.02) -1.10 0.02 -

sediment3.xic Beta(α=12.50, β=37.50) 0.25 0.06 -

sediment3.por Beta(α=20.00, β=30.00) 0.40 0.07 -

sediment3.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C

sediment3.α.logα Normal(µ=-2.23, σ=0.06) -2.23 0.06 -

sediment3.n.logn Normal(µ=-1.10, σ=0.02) -1.10 0.02 -

sediment4.por Beta(α=15.00, β=35.00) 0.30 0.06 -

sediment4.Tm Truncated(Normal(µ=0.00, σ=0.50); lower=-10.00, upper=0.00) -0.40 0.30 °C
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parameter prior mean stdev units

sediment4.α.logα Normal(µ=-1.76, σ=0.19) -1.76 0.19 -

sediment4.n.logn Normal(µ=-1.22, σ=0.04) -1.22 0.04 -

init.depth Truncated(Normal(µ=500.00, σ=100.00); lower=100.00, upper=900.00) 500.00 99.95 m

init.value[1] Normal(µ=-7.00, σ=1.00) -7.00 1.00 °C

init.value[2] Normal(µ=-5.10, σ=2.00) -5.10 2.00 °C

init.value[3] Normal(µ=10.20, σ=5.00) 10.20 5.00 °C
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