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Abstract In this article, we determine the thermodynami-

cal properties of the anharmonic canonical ensemble within

the cosmic-string framework. We use the ordinary statis-

tics and the q-deformed superstatistics for this study. The

q-deformed superstatistics is derived by modifying the prob-

ability density in the original superstatistics. The Schrödinger

equation is rewritten in the cosmic-string framework. Next,

the anharmonic oscillator is investigated in detail. The wave

function and the energy spectrum of the considered system

are derived using the bi-confluent Heun functions. In the

next step, we first determine the thermodynamical proper-

ties for the canonical ensemble of the anharmonic oscillator

in the cosmic-string framework using the ordinary statistics

approach. Also, these quantities have been obtained in the q-

deformed superstatistics. For vanishing deformation param-

eter, the ordinary results are obtained.

1 Introduction

Topological defects were first theorized by Kibble [1].

These defects are physical structures produced in symmetry-

breaking phase transitions in the early universe. Among all

the possible types of defects, the one-dimensional cosmic

strings are the focus of most of the studies in this area [2]. This

is because of the compatibility with the current cosmological

models and their association with several brane inflation sce-

narios [3,4] and super-symmetric grand unified theories [5].

These are constrained by the cosmic microwave background

[6–10] and gravitational wave facilities [11–15]. In recent

developments, cosmic strings have been considered to study

solutions of black holes [16], to investigate the average rate of

change of energy for a static atom immersed in a thermal bath

a e-mail: hadisobhani8637@gmail.com

of electromagnetic radiation [17], to study Hawking radia-

tion of massless and massive charged particles [18], to study

the non-Abelian Higgs model coupled with gravity [19], in

the quantum dynamics of scalar bosons [20], in hydrody-

namics [21], to study the non-relativistic motion of a quan-

tum particle subjected to magnetic field [22], to investigate

dynamical solutions in the context of super-critical tensions

[23], describing scattering states of the Dirac equation in the

presence of cosmic string for Coulomb interaction [24] and

to study the spin-zero Duffin–Kemmer–Petiau equation in a

cosmic-string space-time with the Cornell interaction [25].

The concept of superstatistics was initiated by Beck and

Cohen [26]. They considered non-equilibrium systems with

complex dynamics in stationary states with large fluctuations

of intensive quantities on large time scales. Depending on the

statistical properties of the fluctuations, they obtain different

effective statistical mechanical descriptions. To derive and

compute macroscopic quantities such as the Helmholtz free

energy, the entropy, and the mean energy, the Boltzmann fac-

tor eβE is the essential tool; here β = 1
kB T

with kB being the

Boltzmann constant and T denoting the temperature. But this

condition no longer will exist when the equilibrium condi-

tions are lost. As a result, therefore, we need to define an

effective Boltzmann factor B(E) as

B(E) =
∫ ∞

0

eβ ′ E f (β ′
0, β)dβ ′ (1.1)

where f (β ′, β) is a probability density and, according to the

definition (1.1), this is an average of the ordinary Boltzmann

factor. Referring to Ref. [26], the probability density must

obey the conditions:
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• The probability density should be non-negative and

∫ ∞

0

f (β ′
0, β)dβ ′ = 1. (1.2)

• The average of β ′
0 should be β = 1

kB T

〈

β ′
0

〉

=
∫ ∞

0

β ′
0 f (β ′

0, β)dβ ′
0 = β. (1.3)

• The superstatistics must be normalizable. For instance

the integral
∫ ∞

0 B(E)dE should exist and, in the general

case, the integral
∫ ∞

0 ρd(E)B(E)dE has to exist in which

ρd(E) is the density of states.

• The superstatistics, if there are no fluctuations of inten-

sive quantities, should reduce to the Boltzmann–Gibbs

statistic.

If the probability density function has been considered as

f (β ′
0, β) = δ(β ′

0 − β), (1.4)

causes to have the following effective Boltzmann factor:

B(E) = e−βE . (1.5)

In this paper, we first intend to modify the probabil-

ity density and discuss the thermodynamical proprieties of

the anharmonic oscillator ensemble within the cosmic-string

framework. Then, in Sect. 2, the probability density is mod-

ified and the new effective Boltzmann factor is derived. In

Sect. 3, the Schrödinger equation within the cosmic string is

derived. The anharmonic oscillator has been studied in detail

by deriving the wave function and its energy spectrum in

Sect. 4. After derivation of the wave function and the energy

spectrum, the thermodynamical properties of the anharmonic

oscillator ensemble are derived in two subsections. In the

first subsection of Sect. 5, considering the ordinary probabil-

ity density for f (β ′
0, β), thermodynamical properties of the

ensemble considered have been obtained. In the other subsec-

tion, considering the modified form of the probability density

we will obtain thermodynamical properties of the system.

Since we have performed a mathematical physics develop-

ment of the topic, we have obtained the general results such

that in all cases, when the modification parameter is removed,

ordinary results will be derived.

2 Modified of probability density

As regards superstatistics, the standard Boltzmann statistics

is related to the probability density (1.4), which results in

the Boltzmann factor (1.5). There are four conditions for the

effective Boltzmann factor. The average of β ′ is β with zero

variance indicating this point that there is no fluctuation for β ′

due to the zero variance. Now, we want to consider a general

case in which the fluctuations can be explained by the non-

vanishing variance. Let us consider the modified form of the

probability density [27],

f (β ′
0, β) = a1δ(β

′
0 − β) + b1β

′
0

∂

∂β ′
0

δ(β ′
0 − β)

+ c1β
′2
0

∂

∂β ′2
0

δ(β ′
0 − β), (2.1)

where a1, b1, c1 are real constants that shall be determined.

It is well known that the Dirac delta function obeys the fol-

lowing relations:

∫ ∞

0

δ(β ′
0 − β)dβ ′

0 = 1, (2.2)

∫ ∞

0

δ(β ′
0 − β)F(β ′

0)dβ ′
0 = F(β), (2.3)

∫ ∞

0

(

∂

∂β ′
0

δ(β ′
0 − β)

)

F(β ′
0)dβ ′

0 = −
∂

∂β
F(β), (2.4)

∫ ∞

0

(

∂2

∂β ′2
0

δ(β ′
0 − β)

)

F(β ′
0)dβ ′

0 =
∂2

∂2β
F(β). (2.5)

Using these properties, Eqs. (1.2), (1.3) and considering the

variance of such a distribution to be qβ2 with q > 0 we have

a1 − b1 + 2c1 = 1, (2.6)

a1 − 2b1 + 6c1 = 1, (2.7)

a1 − 3b1 + 12c1 = q + 1. (2.8)

By solving the above equations, we have the explicit form of

the modified probability density as

f (β ′
0, β) = (1 + q)δ(β ′

0 − β) + 2qβ ′
0

∂

∂β ′
0

δ(β ′
0 − β)

+
q

2
β ′2

0

∂

∂β ′2
0

δ(β ′
0 − β). (2.9)

Consequently, this distribution has β and qβ2 as mean and

variance, respectively. According to the definition of (1.1),

we have the effective Boltzmann factor as

B(E) =
∫ ∞

0

e−β ′
0 E f (β ′

0, βdβ ′
0) = eβE

(

1 +
q

2
β2 E2

)

.

(2.10)

It is seen that by removing the modification parameter,

q → 0, ordinary results will be recovered. Now, we can dis-

cuss the Schrödinger equation within cosmic-string frame-
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work considering the anharmonic oscillator to obtain ther-

modynamical properties.

3 Schrödinger equation within cosmic-string

framework

In the cosmic-string framework without internal structure,

the metric is [28]

ds2 = −(cdt + adφ)2 + dρ2 + α2ρ2dφ2 + dz2 (3.1)

in which the angular parameter is associated to cosmic string

space-time represented by α, that is, α ≤ 1, a = 4G J
c3

indicates the spinning parameter of the cosmic string and

J denotes the linear mass density of the cosmic string. The

time-dependent component of the metric can be neglected

if the coupling between angular momentum of the particle

and the angular momentum of the cosmic string is supposed

to be very weak [28]. The metric tensor of the considered

curvilinear frame can be determined as

gi j =

⎛

⎝

1 0 0

0 α2ρ2 − a2 0

0 0 1

⎞

⎠ . (3.2)

We use the general definition of the Laplacian,

∇2 =
1

√
g
∂i

(√
ggi j∂ j

)

, (3.3)

where g = det
(

gi j
)

= α2ρ2 − a2. According to the defini-

tion of Laplacian 2.3 and the tensor metric, we have

∇2 =
∂2

∂ρ2
+

α2ρ

α2ρ2 − a2

∂

∂ρ
+

(

α2ρ2 − a2
) ∂2

∂φ2
+

∂2

∂z2
.

(3.4)

Thus, the Hamiltonian can be written as (h̄ = c = 1)

H = −
[

∂2

∂ρ2
+

α2ρ

α2ρ2 − a2

∂

∂ρ

+
(

α2ρ2 − a2
) ∂2

∂φ2
+

∂2

∂z2

]

+ V (ρ, φ, z). (3.5)

where we have supposed m = 0.5. Now we can consider a

two-dimensional interaction term.

4 The anharmonic oscillator

The anharmonic oscillator is written as [29–31]

v(ρ) = avρ
2 + bvρ

4 + cvρ
6, (4.1)

where the coefficients are real constants. Such a potential

can be used in nuclear physics and the expressions of the

energy rates and quadrapole transitions. In Ref. [29], the

authors used the series expansion and tried to derive recur-

rence relation between the coefficients of the series or the

Gaussian approximation to obtain the result in Ref. [30]; the

authors used asymptotic iteration method to obtain the solu-

tions. However, we used some changes of variables to derive

the bi-confluent Huen differential equations [31]. Substitut-

ing (4.1) into (3.5) for ρ ≥ a
α

and considering the wave

function �(t, r) = exp [i(−εt + lφ + kz)] 
(ρ) we obtain

d2
(ρ)

dρ2
+

1

ρ

d
(ρ)

dρ
+

(

ε − k2 − (av + l2α2)ρ2

−bvρ
4 − cvρ

6
)


(ρ) = 0. (4.2)

To solve Eq. (4.2), first derivative terms should be removed

by considering 
(ρ) = R(ρ)√
ρ

. Then we obtain

d2 R(ρ)

dρ2
+

(

ε +
1

4ρ2
− k2 − (av + l2α2)ρ2

− bvρ
4 − cvρ

6

)

R(ρ) = 0. (4.3)

The next step is using the new variable y = ρ2. Rewriting

Eq. (4.3) in terms of the new variable, results in

d2 R(y)

dy2
+

1

2y

dR(y)

dy
+

(

1

16y
+

1
4
(ε − k2)

y
−

1

4
(av + l2α2)

−
bv

4
y −

cv

4
y2

)

R(y) = 0. (4.4)

Once again, we need to remove the first derivative term in

Eq. (4.4) to continue to get to the solutions. This time we

consider R(y) = f (y)
4
√

y
and obtain

d2 f (y)

dy2
+

(

1

4y
+

1
4
(ε − k2)

y
−

1

4
(av + l2α2)

−
bv

4
y −

cv

4
y2

)

f (y) = 0. (4.5)

Considering the solution in the form of

f (y) = y A
1 exp[y(B1 + D1 y)]F(y), (4.6)

where

A1 =
1

2
, (4.7)
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B1 = −
bv

8
, (4.8)

D1 = −
√

cv

2
, (4.9)

we have

d2 F(y)

dy2
+

(

1

y
−

bv

4
− 2y

)

dF(y)

dy

+

(

b2
v

64
−

1

4

(

a2
v + l2α2 + 4 +

− bv

8
+ 1

4
(ε − k2)

y

))

,

F(y) = 0, (4.10)

in which we were forced to set cv = 4 (see the appendix

for more details). Equation (4.10) is the bi-confluent Heun

differential equation. Consequently, we have

F(y) = Hb(0, β ′
b, γ

′
b, δ

′
b; y), (4.11)

β ′
b =

bv

4
, (4.12)

γ ′
b =

b2
v

4
−

1

4
(a2

v + l2α2 − 4), (4.13)

δ′
b =

1

2
(k2 − ε). (4.14)

To obtain the energy spectrum of the considered system,

we should use expansion of bi-confluent Heum functions.

Thus, considering F(y) =
∑∞

n=0 sn yn , we obtain the con-

straints

− β ′
b(n + 2) =

δ′
b + β ′

b

2
, (4.15)

4 + 2n = γ ′
b. (4.16)

Using these constraints and Eqs. (4.11), (4.12) and (4.13) we

have

ε =
bv

2
(2n + 5) + k2, (4.17)

bv = ±
√

12 + 8n + a2
v + l2α2. (4.18)

Therefore, the final form of radial wave function can be writ-

ten as

φ(ρ) = Nc exp

(

−ρ2

(

bv

8
+

ρ2

2

))

Hb(0, β ′
b, γ

′
b, δ

′
b; ρ2),

(4.19)

where Nc is the normalization constant. As was proved, we

have only one free parameter. Figure 1 depicts the behavior

of the potential. Figure 2 illustrates the square of the wave

function norm vs. various alpha values.

Now the wave function and energy spectrum relation are

determined. Thus we are ready to investigate some thermo-

dynamical properties from a statistical mechanics point of

view.

5 Thermodynamical properties within cosmic-string

framework

In this section, the thermodynamical properties of the con-

sidered system are investigated in two manners. In the first

subsection of this section, we want to study thermodynamical

properties such as the entropy, the Helmholtz free energy, the

mean energy and the entropy. In the other subsection, these

properties are investigated in the q-deformed superstatistics

manner.

5.1 Thermodynamical properties; ordinary statistics

approach

To derive thermodynamical quantities from a statistical

mechanical point of view, we should construct the parti-

tion function. To construct the partition function we have

(h̄ = 1, m = 0.5)

Z(εn) =
∞
∑

n=0

e−βεn ,

=
∞
∑

n=0

e
−β

(

(bvn+ 5bv
2 )+k2

)

,

= e
−β

(

5bv
2 +k2

) ∞
∑

n=0

e−βbvn

Z(εn) =
e
−β

(

5bv
2 +k2

)

1 − e−βbv
, (5.1)

where β = 1
kB T

, kB is the Boltzmann constant and the tem-

perature is denoted T . In Fig. 3, we have plotted the partition

function in terms of α. It is seen that by increasing the value

of α, the partition function decreases.

As the first quantity, the Helmholtz free energy can be

obtained using Eq. (5.1) as

A =
−1

β
ln Z(εn),

A =
−1

β
ln

⎛

⎝

e−β 3bv+2k2

2

eβbv − 1

⎞

⎠ . (5.2)

In Fig. 4, we have plotted Helmholtz free energy as a function

of α. Effect of the α parameter can be seen that by increasing

in the α parameter, the Helmholtz free energy increases too.
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Fig. 1 Treatments of the anharmonic potential. The first plot is for the minus sign of b and the second plots is for the positive sign of b

We can obtain from the Helmholtz free energy the entropy.

According to its definition, we have

S = −
∂ A

∂T
,

S =
1

2T

(

2k2 + b

(

5 +
2

eβbν − 1

))

+ kB ln

⎛

⎝

e−β
3bν+2k2

2

eβbν − 1

⎞

⎠ .

(5.3)

It is instructive to investigate the entropy behavior as a func-

tion of α . In Fig. 2, we showed that by increasing α, the

density probability of the wave function will be concen-

trated. Thus we expect such a treatment for the entropy. As is

shown in Fig. 5, by increasing α, the entropy will decrease.

It means that we are facing with a system that is becoming

more ordered than before by increasing α.

The mean energy is the next quantity that we want to

derive. Using the connection between the mean energy and

the partition function we can write

U = A − T

(

∂ A

∂T

)

,

U = k2 + b

(

5

2
+

1

eβbν − 1

)

. (5.4)

Unlike the entropy, the mean energy increases with increas-

ing α. Figure 6, shows such a treatments.

As the last quantity which we want to know as regards

treatment in the cosmic-string framework, we have the spe-

cific heat capacity at constant volume. This quantity can be

connected to the mean energy by

CV =
(

∂U

∂T

)

,

CV =
b2

4kB T 2
Csch (2βbν) . (5.5)

As expected from the form of the entropy, we have an ensem-

ble with low entropy, consequently the specific heat capacity
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Fig. 2 Effects of α on |�(ρ)|2 considering n = 3, l = 1, α = 0.2, a =
1; and k = 1
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Fig. 3 Partition function vs. α considering n = 1, l = 1, k = 1, kB =
1, a = 1 and T = 100

at constant volume must have a lower value than an ensemble

which has higher entropy. Figure 7 shows that, by increasing

α, the specific heat capacity at constant volume decreases.
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Fig. 4 Helmholtz free energy vs. α considering n = 1, l = 1, k =
1, kB = 1, a = 1 and T = 100
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Fig. 5 Entropy vs. α considering n = 1, l = 1, k = 1, kB = 1, a = 1

and T = 100
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Fig. 6 Mean energy vs. α considering n = 3, l = 1, k = 1, kB =
1, a = 1 and T = 100

5.2 Thermodynamical properties; q-deformed

superstatistics approach

The first step is the derivation of the partition function, which

takes the form
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Fig. 8 Partition functions vs. α in the q-deformed superstatistics case

considering n = 1, l = 1, k = 1, kB = 1, a = 1 and T = 100 for

different values of the deformation parameter

Z(ε) =
e
− 3bv+2k2

2T kB

(

qΘ(T ) + 8T 2k2
B

(

e
bv

T kB − 1

)2
)

8T 2k2
B

(

e
bv

T kB − 1

)3
,

(5.6)

where

Θ(T ) = −2
(

13b2
v + 16bvk2 + 4k4

)

e
bv

T kB

+
(

5bv + 2k2
)2

e
2bv
T kB +

(

3bv + 2k2
)2

. (5.7)

After determination of the partition function, we can obtain

the Helmholtz free energy, entropy, mean energy, and specific

heat at constant volume. The behaviors of these quantities

are depicted in Figs. 8, 9,10, 11 and 12. We studied the pres-

ence (q 	= 0) and absence (q = 0) of the modification. As

we stated in Sect. 2, q is a positive constant. Consequently,

we can see that effects of the deformation parameter on the

quantities is increasing in their values. The important effect

of the deformation parameter is that in the absence of the
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Fig. 9 Helmholtz free energy vs. α in the q-deformed superstatistics

case considering n = 1, l = 1, k = 1, kB = 1, a = 1 and T = 100 for

different values of the deformation parameter
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Fig. 10 Entropy free energy vs. α in the q-deformed superstatistics

case considering n = 1, l = 1, k = 1, kB = 1, a = 1 and T = 100 for

different values of the deformation parameter
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Fig. 11 Mean energy free energy vs. α in the q-deformed superstatis-

tics case considering n = 1, l = 1, k = 1, kB = 1, a = 1 and T = 100

for different values of the deformation parameter

deformation parameter, the specific heat at constant volume

decreases for increasing α while in the presence of deforma-

tion is increasing. It is seen easily that, for vanishing of the

modification, the treatments are repeated exactly as we faced

in the previous subsection.
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Fig. 12 Specific heat at constant volume vs. α in modified Dirac delta

distribution case considering n = 3, l = 1, k = 1, kB = 1, a = 1 and

T = 100 for different values of the deformation parameter

6 Conclusions

In this article, we have studied the thermodynamical proper-

ties of the anharmonic oscillator within cosmic-string frame-

work using ordinary and the q-deformed superstatistics.

After an introduction of the superstatistics, we presented

a new probability density using the Dirac delta function

and its derivatives and then the effective Boltzmann factor

was derived according to the new probability density. Next,

we derived the Schrödinger equation within the cosmic-

string framework. The wave function of the system con-

sidered was derived using the bi-confluent Heun function

and the series form of the bi-confluent Heun functions. Hav-

ing determined the spectrum, using the ordinary statistics

approach, some of the thermodynamical properties for the

ensemble of the considered system were derived. In the next

step, we obtained once again these quantities according to

the effective Boltzmann factor derived by the q-deformed

superstatistics. Treatments of these quantities were illus-

trated graphically. It was shown that, for the q-deformed

superstatistics case, by removing the modification param-

eter, the results of the ordinary statistics approach were

derived.
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Appendix

The differential equation of the bi-confluent Huen equation

is [32]

y′′(x) +
(

1 + α′

x
+ β ′ − 2x

)

y′(x)

+
(

γ ′ − α′ − 2 −
δ′ + (1 + α′)β ′

2x

)

y(x) = 0. (A1)

It should be noted that the notations used here are not related

to the ones used within the text. Substituting Eq. (4.6) into

Eq. (4.5), and after determination of the coefficients A1, B1

and D1, we obtain

F ′′(y) +
(

2A1

y
+ 2B1 + 4D1

)

F ′(y) +

(

2A1 B1 + ε−k2

4

y

+2D1(2A1 + 1) + B2
1 −

a + l2α2

4

)

F(y) = 0. (A2)

Comparing Eqs. (A1) and (A2) shows that D1 should be

equal to −1/2 to produce the term −2x in the coefficient of

the first derivative in Eq. (A1). Thus we have

−
1

2
= −

√
cν

4
→ cν = 4. (A3)
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