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Reply to “Comments on ‘Theory and Application
of Covariance Matrix Tapers for Robust Adaptive

Beamforming’”

Joseph R. Guerci

It comes as no surprise that one of the original inventors of the co-
variance matrix taper (CMT) concept, and its use in adaptive pattern
“robustification,” continues to deepen our knowledge of CMT’s in re-
lation to alternative methods. The comments and observations in [1] go
a long way toward highlighting and contrasting the fundamental differ-
ences (and similarities) between CMT’s and derivative constraints.

It is important, however, to emphasize some key differences. 1) The
CMT approach does not require knowledge of the interference steering
vectors (thereby eliminating an entire estimation step). Although this
requirement can be relaxed in the derivative constraints method for the
finite sample, high JNR case [1], in practice, a method whose perfor-
mance does not hinge on these conditions is clearly desirable. 2) The
CMT approach provides more control over the notch widening process
as it depends on a continuous notch width parameter [1], [2]. This is
in contrast to the derivative constraints method that depends on the
number of constraints included (discontinuous).

Finally, the CMT framework has recently given rise to an entirely
new class of structured covariance estimation techniques applicable to
a broad range of subspace leakage problems [3], [4].

We would also like to point out an errata for [2]. A matrix inverse sign
is missing on the covariance matrices appearing in the denominators of
(3), (4), and (14). In addition, in the third paragraph of Section II-D,
“Theorem 2” should read “Theorem 1.”
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On Periodic Autoregressive Processes Estimation

Sophie Lambert-Lacroix

Abstract—We consider the autoregressive estimation for periodically
correlated processes, using the parameterization given by the partial
autocorrelation function. We propose an estimation of these parameters by
extending the sample partial autocorrelation method to this situation. The
comparison with other methods is made. Relationships with the stationary
multivariate case are discussed.

Index Terms—Autoregressive estimation, periodically correlated pro-
cesses, sample partial autocorrelation, stationary multivariate processes.

I. INTRODUCTION

It is well known that partial autocorrelation coefficients are the basis
of most methods for autoregressive (AR) estimation. For scalar sta-
tionary processes, these coefficients are central in Burg's technique [2]
and the technique of the residual energy ratio (RER) [7]. They are also
used in maximum likelihood methods [11], [16] and can be directly
estimated in a natural way [4]. The class of periodically correlated
processes, which were introduced by Gladysev [10], is quite useful in
many signal processing problems, e.g., [9] and references therein. They
are not only of interest in their own right but because of their connec-
tion with multivariate covariance stationary processes. They also pro-
vide much insight into these processes and facilitate their modeling.
Three methods are of major interest for estimating the second-order
properties of periodic autoregressive (PAR) processes: on the one hand
an extension of the Yule-Walker's method [15] and on the other hand
two different extensions of Burg's technique [1], [18].

In this correspondence, we are mainly concerned with extension to
the periodic situation of the method of the sample partial autocorrela-
tion (SPAC) in [4] and that of RER [7]. The methods are compared,
based on both conceptual and numerical view points. Furthermore, we
consider the relationships between theses latter approaches and those
associated with stationary multivariate processes.

II. PERIODIC AUTOREGRESSIVEMODELS

A random processX(�) indexed onZZ with EX(t) = 0; t 2 ZZ ,
is called periodically correlated [10] if there exists a smallestT > 0
such that

R(t; s) = E(X(t)X(s)) = hX(t);X(s)i = R(t+ T; s+ T )

for every(t; s) 2 ZZ2. We consider, in the above formula, the Hermi-
tian producth�; �i defined by the expectation because it is convenient
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here to use a geometrical approach. The processX(�) is said to be a
periodic autoregressive process of periodT and order(p1; . . . ; pT )
(PAR(p1; . . . ; pT )) if there exist some constantsat(k); k = 1; . . . ; pt
such that

p

k=0

at(k)X(t� k) = "(t); at(0) = 1; at(pt) 6= 0 (1)

where"(�) is the innovation process, andat+T (k) = at(k); k =
1; . . . ; pt. The PAR model parameters are given byT filters ak(�) and
T residual variances�2k(�

2
k+T = �2k). Otherwise, these models can be

parameterized by the first autocovariance coefficientsR(t; t�k); k =
0; . . . ; pt; t = 1; . . . ; T , using the analog of the Yule-Walker equa-
tions. In [6] (see also [12]), it is shown that these first coefficients
are not always those of a PAR model. This occurs when there ex-
ists i 2 [1; . . . T ] such thatpi+1 > pi + 1, wherepT+1 = p1. In
such a case, a procedure based on using partial autocorrelation func-
tion (PACF)�(�; �) allows us to check the existence of a PAR model.
This motivates our choice of this parameterization. Let us recall the
definition of this function. The(t� s)th-order forward partial innova-
tions are denoted by"f(t; s)with variance�f2(t; s). Setting"f(t; t) =
X(t), the associated normalized innovations are defined, fors � t, by
�f(t; s) = "f(t; s)=�f(t; s) with the convention0�1 = 0. The back-
ward innovations, which are obtained by reversing the time index, are
indexed withb. We set�(t; t) = R(t; t) and, fors < t; �(t; s) is
given by

�(s; t) = �(t; s) = h�f(t; s+ 1); �b(s; t� 1)i: (2)

This function characterizes the second-order properties of nonsta-
tionary processes [6], [12] but is easily identifiable in comparison
with R(�; �), which must be non-negative definite. Precisely, for
t 6= s, the magnitude of�(t; s) generally is strictly less than 1,
the equality to 1 corresponding to linear relationships, namely, for
s < t; j�(t; s)j = 1 if and only if s is the largest integer such that
X(t) belongs to the setLfX(s); . . . ; X(t � 1)g and our convention
leads to�(t; s � k) = �(t + k; s) = 0 for k � 1. Such a process is
said to belocally deterministic.

Finally, X(�) is periodically correlated of periodT if and only if
its PACF satisfies�(t + T; s + T ) = �(t; s) for all (t; s) 2 ZZ2.
Therefore, the PAR model (1) is characterized by�t(n) = �(t; t �
n); t = 1; . . . ; T , with�t(n) = 0 for n > pt [6], [12]. The one-to-one
correspondence betweenR(�; �) and�(�; �) is realized with the periodic
Levinson-Durbin (PLD) algorithm (cf. for instance [17] and [18]).

III. SAMPLE PARTIAL AUTOCORRELATIONMETHOD

Let X(1); . . . ; X(m) be a sequence coming from a
PAR(p1; . . . ; pT ) model with order and period supposed to be known.
As in the stationary case [4], the PACF method is based on a natural
geometrical analysis of the sample data. In the periodic case, the
sequences of lengtht � s + 1; leads us to introduce the vector
subspace ofCm +1; mt = [(m � t)=T ] ([x] is the integer part
of x) generated by the vectors

Xm (u) = [X(u);X(u+ T ); . . . ; X(u+mtT )]T

u = s; . . . ; t:

Using the usual Hermitian product

~Xm +1(u); ~Xm +1(v)
e
=

m

j=0
X(u+ jT )X(v + jT )

mt + 1

we obtain

E ~Xm +1(u); ~Xm +1(v)
e

= hX(u);X(v)i = R(u; v):

In words, the sequencef ~Xm +1(s); . . . ; ~Xm +1(t)g presents, in
the mean, the same structure as the sequencefX(s); . . . ; X(t)g.
Then, the sample partial autocorrelation coefficient, which is denoted
by �̂spac(t; s), is the “partial correlation” between~Xm +1(s) and
~Xm +1(t) in the setf ~Xm +1(s); . . . ; ~Xm +1(t)g, according to this
analogy. We set̂�acpe(s; s) = kXm (s)k2e; s = 1; . . . ; T , and for
0 < t � s � pt � mt; �̂spac(t; s) is given by (2), replacingh�; �i by
h�; �ie and the partial innovations by the prediction errors obtained by
the least squares criterion. When the process is stationary(T = 1),
the PACF coefficients, so estimated, correspond to those of the not
symmetrized version of [4]. In the periodic situation, a Cholesky
factorization is required for each coefficient̂�spac(t; s), namely,

T

i=1
pi. However, whenm = NT , an algorithm [17] more efficient

than the Cholesky factorization permits us to compute the quantities
�̂spac(t; s).

In order to extend the RER method to the periodic situa-
tion, we introduce the integersti; i = 1; . . . ; T in such a way
that ti = kT + i; k 2 IN , and 0 < ti � pi � T . Then,
�̂rer(ti; ti) = k ~Xm +1(ti)k

2
e, and for0 < ti � s � pi � mt ,

�̂rer(ti; s) is the “partial correlation” between~Xm +1(ti) and
~Xm +1(s) in the setf ~Xm +1(s); . . . ; ~Xm +1(ti)g. Notice that
this method needs at mostT Cholesky factorizations since depending
on the PAR model order, some coefficients can be determined from
the same factorization.

IV. COMPARISONS WITHOTHER APPROACHES

The Yule-Walker method investigated in [15] keeps the
PAR(p1; . . . ; pT ) model associated with the usual biased auto-
covariance estimates. Contrary to the stationary case, this model
is not always defined unlesspi+1 � pi + 1; i = 1; . . . ; T (see
Section II) and the procedure in [6] (see also [12]) for checking the
existence of the model allows us to obtain the estimates of the partial
autocorrelation coefficients and those of the model parameters.

Burg-type generalization methods are based on the following result.
For s < t; �(t; s) is the� value for which

k�f � ��bk2 + k�b � ���fk2

is minimum, where�f = �f(t; s+1), and�b = �b(s; t�1). From the
sample data, this criterion is applied in a recursive model order fashion.
The quantitieŝ�f and�̂b are then defined from the estimates obtained
at the previous stages. The difference between the two methods follows
from a different choice for the residual variances estimates in the defi-
nition of the errorŝ�f and�̂b.

Precisely, these methods and the SPAC one can be recast in the fol-
lowing general framework. We set̂�(t; t) = k ~Xm +1(t)k

2
e for t =

1; . . . ; T and, fors 2 [1; . . . ; T ]; 0 < t� s � pt, the estimatê�(t; s)
is obtained by a two-stage procedure.

i) Choose the coefficients~aft (t� s� 1; �) and~abt�1(t� s� 1; �)
of the filters giving the(t� s� 1)th-order prediction errors

~"fm +1(t; s+ 1) =

t�s�1

j=0

~aft (t� s� 1; j) ~Xm +1(t� j)

~"bm +1(s; t� 1) =

t�s�1

j=0

~abt�1(t� s� 1; j) ~Xm +1(s+ j)
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and compute the corresponding sample elements

~�f2m +1(t; s+ 1) = ~"fm +1(t; s+ 1)
2

e

~�b2m +1(s; t� 1) = ~"bm +1(s; t� 1)
2

e
;

~�m +1(t; s) = ~"fm +1(t; s+ 1); ~"bm +1(s; t� 1)
e
:

ii) Choose the estimators~�f2(t; s + 1) and ~�b2(s; t � 1) of the
residual variances.

Then,�̂(t; s) is given by

2~�m +1(t; s)
~� (s;t�1)

~� (t;s+1)
~�f2m +1(t; s+ 1) + ~� (t;s+1)

~� (s;t�1)
~�b2m +1(s; t� 1)

:

The generalizations of Burg's technique take, in the first stage i), the
filters associated with the preceding estimated values by the PLD algo-
rithm equations. Boshnakov's method uses, in stage ii), the estimators
�̂f2(t; s+ 1) and�̂b2(s; t� 1) defined by these coefficients, whereas
the Sakai's method selects the empirical elements introduced in i). The
SPAC method chooses the filters given by the least squares criterion in
i) and the empirical residual variances for ii).

For Burg-type methods, we can point out that the constraints in the
recursive construction of the prediction error filters constitute a draw-
back with respect to SPAC or RER methods. On the other hand, when
the data result from a locally deterministic process, the values of mag-
nitude 1 are almost surely estimated by SPAC or RER methods since
the filters are those given by the least squares criterion. Nevertheless,
the filters that establish the relation between the components of the
processX(�) are not generally defined bŷ�(�; �) and must be estimated
differently. The three other methods introduced in the not locally de-
terministic case only remain valid but without guaranteeing that the
estimated structure be the one of a locally deterministic process. In the
stationary situation, except for the RER method, all procedures operate
in a recursive model order fashion. Surprisingly, in the periodic situa-
tion, the SPAC method is the only one that still satisfies this property in
all cases. For the Burg technique generalizations, this property is not al-
ways satisfied, depending on the considered model order and the way
it is increased. Indeed (see the PLD Algorithm), the�(t; s) estimate
depends, through the prediction errors filters, on all values of�̂(u; v);
v � u with (u; v) 2 [s; . . . ; t]2 n (t; s). The same result holds for the
Yule-Walker method.

V. MULTIVARIATE APPROACHES

Recall that starting from a periodically correlated processX(�)
of periodT , theT -multivariate processYj(t) = X(j + T (t � 1));
j = 1; . . . ; T is stationary and vice versa [10]. Furthermore,X(�) is
PAR(p1; . . . ; pT ) if and only if [15] Y (�) is stationary autoregressive
(AR) of order p = maxj [(pj � j)=T ] + 1. Whenm = NT ,
the sequenceX(1); . . . ; X(m) providesY (1); . . . ; Y (N), and the
multivariate autoregressive estimate methods lead to scalar ones and
vice versa. The fundamental difference between both approaches is
that the periodic structure corresponding to the multivariate method
is the one of a PAR model withpi = pT + i � 1. The multivariate
methods estimate only a subclass of models among the whole sta-
tionary AR(p) processes, and we consider such models to compare
both approaches. Dégerine [5] gives a general framework fitting
most estimation methods that use partial autocorrelation matrices.
We restrict the study to the case of matrices of “triangular” type [3],
[17] that appear naturally in the correspondence with the periodically
correlated processes. Therefore, the framework of [5] reduces to the
analog of the one proposed for the scalar approaches. It consists
of the choice of prediction errors filters and that of the residual
covariance matrices estimators. According to the analogy between
multivariate and scalar frameworks, the generalization of Burg's

TABLE I
COMPARISON BETWEEN YULE-WALKER'S AND SPAC METHODS;

m = 50; n = 2000.

technique proposed by Nuttall [14] (see also [19]) corresponds to the
Boshnakov technique [1], and that of Morfet al. [13] is related to
the Sakai method [18]. However, these methods are not equivalent
because the resulting estimated periodic structures differ. Our method
is equivalent to the one defined by the multivariate SPAC one [5], [17]
resulting from the same kind of choices in both stages. This also is
true for the Yule-Walker method and the RER extension, which do not
fit the scalar general framework.

VI. SIMULATION RESULTS

Without loss of generality, we consider the real case withm = NT .
In the simulations results below, the former model is a regular
PAR(4; 4): j�(t; s)j � 0:85. The latter is a PAR(6; 6; 6) model
nearly locally deterministic: Some values of�(�; �) are close to
�1 in order to emphasize the differences between the methods.
Comparison is made through estimation of the parameters�t(n);
�t(n) = R(t; t � n)= R(t; t)R(t� n; t� n); R(t; t); at(n),
and �2t ; t = 1; . . . ; T; n = 1; . . . ; pt. All the characteristics of
the simulations are recalled in each table, wherenr is the replicate
index. The bias and the square root of the mean square error (MSE)
of estimators are summarized as follows: For a parameter vector�(�)
of dimensiond (d = T

t=1 pt for �
�

(�); �
�

(�); a
�

(�), andd = T for
R(�; �); �2

�

), we give

1

d

d

i=1

[bias[�̂i(k)]]
2 ;

1

d

d

i=1

MSE[�̂i(k)] :

The SPAC method is compared with the Yule-Walker one for short
data records(m = 50) from the PAR(4; 4) model. As in the stationary
case, we observe the shortcoming due to the bias introduced in the
Yule-Walker method, especially for short data records. Table I shows
that the two methods are very close in estimating�(�; �). Otherwise,
the Yule-Walker method leads to very bad results, especially for the
model parameters. In this case, the other methods give results similar
to those of the SPAC method. On the other hand, we have noticed that
this difference between both methods increases with a nearly locally
deterministic model, even for long data records. Notice that if we con-
sider the PAR(4; 0) model whose PACF coefficients not equal to ze-
roare given by that of the PAR(4; 4) process, the Yule-Walker method
did not provide a solution in 26,7 percentage of time for data records
of length 50 and for 2000 repetitions.

The SPAC method is compared with RER and the extension of Burg's
technique. The closeness of the model to the locally deterministic case,
the data record length, and the kind of parameters under study play
an essential role in the difference between these methods. Burg's tech-
nique’s generalizations behave similarly, whereas the RER method is



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2000 1803

TABLE II
COMPARISONBETWEEN BURG'S, RERAND SPAC METHODS; m = 105;

n = 2000.

a very good approximation of the SPAC one. Table II indicates that
the four methods are equivalent in�(�; �) estimation. Otherwise, the
Burg-type extensions give very bad results for the other parameters.
This seems to be a consequence of the presence of constraints in the re-
cursive filters construction. This clearly appears in the�

2

�

case, where
the bias corresponds to overestimation of residual variances of each pe-
riod. It can be expected that this failure has an increased effect when
the model order is large.

VII. CONCLUSION

The SPAC and RER methods are extended to the periodically corre-
lated processes case. They are compared with the Yule-Walker method
and two extensions of Burg's method. Simulation results show that they
eliminate some shortcomings of the other methods. On the other hand,
we also consider the relationship between these different approaches
and those related to the stationary multivariate process. The advantage
of scalar approaches is to avoid use of matrices and to allow estimation
of autoregressive models of any order.
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Nonuniform -Band Wavepackets for Transient Signal
Detection

Seema Kulkarni, V. M. Gadre, and Sudhindra V. Bellary

Abstract—In this paper, we present a scheme to detect significantly over-
lapping transients buried in white Gaussian noise. A nonuniform -band
wavepacket decomposition algorithm using -band, translation-invariant
wavelet transform (NMTI) is developed, and its application to transient
signal detection is discussed. The robustness of the NMTI-based detector
is illustrated.

Index Terms— -band, receiver operating characteristics, transient,
wavepackets.

I. INTRODUCTION

The transient signal detection problem has been studied using var-
ious techniques with different assumptions regardinga priori infor-
mation about the signal like time of arrival, duration, time-bandwidth
product and relative bandwidth, signal model, etc. [1]–[3]. In case of no
prior knowledge, wavepackets and their variations have shown better
performance due to their property to capture the transient signal in a
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