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In his recent discussion on the taphonomy of ichthyosaurs,
van Loon (2013) supported—at least partially—the view of
Reisdorf et al. (2012) and emphasized that explosion of ver-
tebrate carcasses on the sea floor should not be considered as a
taphonomically reasonable scenario. Carcass explosion is thus
not a process that can be used to explain both the disarticula-
tion of certain ichthyosaur skeletons and the displacement of
their bones in the geological record. Van Loon (2013),

however, did suggest that, as an alternative hypothesis, im-
plosion could have led to the displacement of bones on the sea
floor.
Van Loon (2013) focussed his explanation of the implosion
hypothesis on the example of a maternal ichthyosaur having
embryonic ichthyosaurs around and within its body cavity
(Staatliches Museum für Naturkunde Stuttgart, specimen
number SMNS 50 007). Reisdorf et al. (2012) outlined that
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this maternal specimen is just one example of many similar
cases. In fact, Reisdorf et al. (2012) challenged the hypothesis
of carcass explosion based on numerous ichthyosaur finds,
which are preserved in the Lower Jurassic (Toarcian)
Posidonienschiefer Formation in SW Germany; however,
most of these are specimens without embryos. The generalised
taphonomic model suggested by Reisdorf et al. (2012) can
also be applied to other vertebrates if their anatomical pecu-
liarities are taken into account (Reisdorf and Wuttke 2013).
Therefore, in the following assessment and discussion, the
focus is not on this specific specimen SMNS 50 007 but on
the question of whether vertebrate carcasses can implode after
having settled to the sea floor as well as on the related physical
and physiological aspects.

The hypothesis of van Loon (2013) is based on three main
assumptions: (1) bodies of ichthyosaur should have had a
lower density than seawater in vivo (van Loon 2013: p.
105); (2) putrefaction gases could have filled some
(connected) cavities within the carcass even at hydrostatic
pressures of 5–15 bar (= water depth 50–150 m; van Loon
2013: p. 107); (3) on the sea floor at a water depth of 50–
150 m, an underpressure has developed/maintained within the
ichthyosaur carcass (van Loon 2013: 107); van Loon invoked
a submarine as analogue (van Loon 2013: 107). These three
assumptions are discussed in detail in the following text.

(1) Van Loon (2013) provides no explanation as to how a
vertebrate carcass having a lower density than the ambi-
ent fluid may have settled to the sea floor, in particular as
putrefaction gases may accumulate in some body cavities
during the time when the carcass floated at the sea
surface. The latter process lowers the mean density of
the carcass. A low body density would have resulted in a
prolonged floating interval of the carcass at the sea
surface. During that time, the carcass is subjected to
biogenic and physical destruction, with all its taphonom-
ic consequences (i.e. loss of soft tissue and possibly even
bones due to decomposition processes, scavenging and
wave action). In contrast, a large number of the Early
Toarcian ichthyosaurs of SW Germany are preserved as
more or less complete skeletons (e.g. Hofmann 1958;
Heller 1966; Keller 1992; Martill 1993) and thus, they
must have sunk in toto to the sea floor immediately after
death (Reisdorf et al. 2012). Settling of an ichthyosaur
carcass to the sea floor would have required a body
density higher than that of seawater as explained by
Reisdorf et al. (2012: pp 72, 75 and references therein).

(2) Putrefaction gases forming in subaquatic settings mainly
consist of CO2, H2 and N2, (Mallach and Schmidt 1980;
Kelly 1990; Bernaldo de Quirós et al. 2013), which have
a considerable solubility in water under hydrostatic pres-
sures of >5 bar (Weiss 1970, 1974; Wiesenburg and
Guinasso 1979; Reisdorf et al. 2012). Accordingly, these

gases are soluble within the carcass bodily fluids, and
soft tissues that become increasingly fluidized during
autolytical processes and putrefaction (e.g. Teather
1994). Therefore, the volume of undissolved putrefac-
tion gases is low in carcasses located at water depths of
50–150 m (compare Figs. 1 and 2; see explanation and
references in Reisdorf et al. 2012: p. 72; Reisdorf and
Wuttke 2012: p. 155). During residence on the sea floor,
fluidization of soft tissues leads to an increasingly plastic
consistency of the carcass which, in combination with
the necessarily small volumes of putrefaction gas within
the carcass, if ever present, rules out the implosion sce-
nario invoked by van Loon (2013). Nevertheless, a sim-
ple gravitational collapse of the body due to soft-tissue
fluidization and the loss of connectivity of the skeletal
elements is highly likely (e.g. Hofmann 1958; Kauffman
1981; Keller 1992; Martill 1993), but this process does
not represent an ‘implosion’. It is physiologically and
physically impossible to generate or to maintain an
underpressured cavity within a vertebrate carcass on the
sea floor at water pressures ranging from 5 to 15 bar.
Unfortunately, van Loon (2013) provides neither a phys-
ical explanation nor experimental evidence as to how
such an underpressure might have developed or have
been maintained within a vertebrate carcass on the sea
floor. His comparison of a submerged carcass with a
submarine is not valid because a submarine has a rigid
outer shell (e.g. Polmar 2004; in terms of palaeontology
this corresponds to a rigid exoskeleton, which is the case
for certain cephalopods; e.g. Hewitt and Westermann
1987; Kanie and Hattori 1983). In contrast, ichthyosaurs
have an endoskeleton covered by flexible skin and mul-
tiple openings that allow for the exchange of gases and
fluids with the ambient seawater and also for a certain
degree of deformation of the rib cage (Taylor 1987,
2000; Hänggi and Reisdorf 2007: p. 13). Therefore,

Fig. 1 Bloated pig carcass in shallow waters (water depth 7–15 m) in
Howe Sound, British Columbia. Bloat lasted 3–10 days (G.S. Anderson;
see also Anderson 2010; Kelly 1990). (Photograph by J. Haywood)
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van Loon’s (2013) implosion hypothesis has no physical
basis. At the most, a carcass may gravitationally collapse
on the sea floor.

(3) Referring to the example of the above-mentioned gravid
female, van Loon (2013) proposes that its implosion led
to the dissemination of embryo bones. The power of an
implosion, of course, depends on the total connected
volume being underpressured, the underpressure relative
to the ambient setting and the speed of pressure equili-
bration. Is it possible that a large gas-filled, but suffi-
ciently underpressured cavity to implode could develop
at the sea floor? At the hydrostatic pressure present at a
considerable water depth, putrefaction gases become
dissolved in the surrounding liquids and tissues, forming
numerous, small-sized bubbles (= ‘gas crepitation’; e.g.
Dumser and Türkay 2008), or they are maintained in
small pockets of the decaying body (e.g. Anderson
2010). They do not accumulate to form a large balloon-
like volume (compare Figs. 1 and 2; e.g. Anderson
2010). Therefore, putrefaction gases are unlikely to be
available for an implosion. Furthermore, there is current-
ly no experimental observation or theory that explains
how to develop an underpressure in a newly formed or
persisting gas- or liquid-filled cavity within a vertebrate
carcass at the sea floor. Van Loon (2013) did neither
provide an explanation that is physically and physiolog-
ically sound nor did he obtain experimental evidence or
provide an explanation about how, where and why the
‘implosion centre’ developed. To our knowledge, it is
highly unlikely that a reasonably large, underpressured
gas-filled volume develops in a carcass on the sea floor
without a sufficiently rigid frame to physically explain an

implosion. In contrast, the most common and plausible
scenario for a carcass on the sea floor would appear to be
a gradual gravitational collapse of the skeleton due to
decaying soft-tissues and the loss of connectivity of the
skeletal elements.
From the physical point of view, there has to be a spatial
relation between the location of the underpressured cavity,
the area of skin damage through which pressure equili-
bration took place and the dissemination of bones.
However, van Loon (2013) did not provide any evidence
or other arguments in support of the implosion hypothesis;
for instance, he did not state where such underpressured
volumes might have been located within the carcass and
how the implosion of the carcass would have been
expressed taphonomically. The anatomy of (extant)
viviparous reptiles does not show any peculiarity that
would lead to the implosion of a carcass under natural
conditions at a considerable water depth (e.g. Gans and
Parsons 1977; cf. Böttcher 1990; Blackburn et al. 2003;
Maxwell and Caldwell 2003; Kear and Zammit 2014;
Motani et al. 2014). In fact, to date, there has been no
published report about the implosion of a vertebrate
carcass on the sea floor. In contrast, the physiology of
extant lung-breathing vertebrates clearly illustrates that
the body with its endoskeleton and lungs passively re-
sponds to an increase in hydrostatic pressure (e.g. Hui
1975; Ridgway et al. 1969; Kooyman 1989). For exam-
ple, the body is compressed within the anatomically
possible range if external pressure increases during
(deep) diving (see conclusions and references in
Reisdorf et al. 2012: p. 76). The same is true for extant
dolphins, which have been suggested to represent a
modern analogue to ichthyosaurs with respect to adapta-
tion to the marine habitat (e.g. Ridgway et al. 1969; Hui
1975; McGhee 2011; Zammit et al. 2014). Ichthyosaur
thoraxes were adapted to dive to reasonably great depths
similar to those of extant Cetaceans (e.g. Taylor 1987,
2000). In addition, even the fairly rigid thorax of terres-
trial mammals (including humans) has some flexibility
and becomes compressed at water depths of >10 m (e.g.
Kelly 1990). In other words, if dead lung-breathing
vertebrates sink to the sea floor, their density increases
due to the compression of the gas-filled spaces in the
body as well as compression and dissolution of the gas
inside the respiratory tract (see Reisdorf et al. 2012, and
references therein). In such cases, no underpressure can
develop. Modern observations support this view: Smith
and Baco (2003) demonstrated that cetacean carcasses
bloated by putrefaction gases settled to the sea floor as
deep as 1,900 m (substantial amounts of ballast, up to
2.7 t, were used to sink them), but they did not implode,
even if they were attacked by scavengers at this depth.
These examples illustrate again that submarines do not

Fig. 2 Pig carcass at a water depth of 99 m, 5 days after placement in
Saanich Inlet, British Columbia (water temperature 9.2 °C). No evidence
of bloat (for detailed information as well as faunal colonization, see
Anderson 2010; Anderson and Bell 2010). [Photograph by VENUS
Project (Victoria Experimental Network Under the Sea), G.S. Anderson
and L.S. Bell]
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represent suitable analogues for ichthyosaurs, neither for
living or for dead ones. To conclude, van Loon’s (2013)
scenario of a carcass implosion has neither a physical nor a
physiological base. Therefore, we disagree with van
Loon’s hypothesis of carcass implosion.

Additionally, carcass implosion does not provide an expla-
nation for the dissemination of (ichthyosaur) bones on the sea
floor [in, for example, a stagnant basin sensu Seilacher (1982),
like that of the Early Toarcian epicontinental sea]. In contrast,
the fluidization of the soft tissues during decomposition and
the effects of bottom currents on the carcass may lead to the
translocation of anatomic units and thus disarticulation as well
as dislocation of bones. Fluidization may have allowed an
effluence of a viscous mass carrying disarticulated bones
when the skin becomes locally damaged (e.g. by scavengers)
or partly degraded (Wuttke and Reisdorf, in preparation).

In fact, there are many indicators of bottom-current activity
in the epicontinental sea covering Central Europe during the
Toarcian, although this was doubted by van Loon (2013). The
Mesozoic Central European Epicontinental Sea (Wetzel et al.
2013) was partly surrounded by landmasses and shallow
seaways to the open oceans, to the Arctic Sea to the north
and to the Tethys to the SW, while in the SE between the
Alemannic Island a shallow shoal existed (e.g. Ziegler 1990;
Cope et al. 1992; Röhl and Schmid-Röhl 2005; Suan et al.
2013).While located roughly around 35° N in a warm climate,
terrigenous clastics form the major proportion of the sediment
of the Posidonienschiefer Formation, implying a considerable
influx of river water, mainly from Scandinavia and the
Bohemian Massif (e.g. Prauss et al. 1991; Cope et al. 1992;
Bour et al. 2007; cf. Harazim et al. 2013). The high amount of
organic matter and the fine-lamination and dark colour of the
sediment are seen as evidence for temporary anaerobic condi-
tions at the sea floor and a stratified water body (e.g. Röhl
et al. 2001; Bour et al. 2007).

Since this epicontinental basin was connected to the world
ocean at different sides by fairly wide gateways, storms and
similar events probably introduced dense ocean water into the
Posidonienschiefer basin (cf. Bour et al. 2007; Harazim et al.
2013). Depending on the sea floor topography and the power
of the (storm-) events current-reworked layers extend more or
less far into the basin. The influx of dense ocean water was
often followed by short-term oxygenation at the sea floor (e.g.
Bour et al. 2007). Less intense events might have resulted in
sediment reworking only. It is also possible that a continuous
flow of dense oceanic water existed for short periods of time
that share some similarities with contour current deposits
outlined by van Loon (2013: p. 106); we fully agree with this
statement. During times of enhanced precipitation it is
most likely that an estuarine circulation was established
within the basin, whereas during periods of prevailing
evaporation, dense saline downwelling water would

have initiated an anti-estuarine circulation (e.g. Röhl
1998; Röhl et al. 2001).

It is not the purpose of this commentary to explain how the
bottom currents within the Posidonienschiefer basin would
have been initiated; rather, our aim is to provide evidence for
their existence and effects. Many studies describe the effects
of such bottom currents; for example, current-related sedimen-
tary structures and alignment of fossil hard parts have been
documented by Bour et al. (2007), Kauffman (1979, 1981),
Martill (1993), Röhl (1998), Seilacher (1982, and references
therein) and Schieber et al. (2007). For ichthyosaurs, Brenner

Fig. 3 Current reworking of sediment by the bottom current that in-
creased in flow velocity as indicated by the inverse grading. Prior to the
main episode (m), weaker reworking (w) occurred; the onset of the latter
is marked by the absence of lamination (l). During the main event the sea
floor was oxygenated, as indicated by the burrows (b). (Temporary
exposure at Pädagogische Hochschule Reutlingen/Germany, lower com-
mune subzone, above the limestone bed ‘Inoceramenbank’; Photograph
by A. Wetzel)

Fig. 4 Mass movement within the Posidonia-Shale; base marked by
broken line. Note folding. (Temporary exposure at Pädagogische
Hochschule Reutlingen/Germany, lower commune subzone, above the
limestone bed ‘Inoceramenbank’; Photograph by A. Wetzel)
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(1976a, b), Brenner and Seilacher (1979), Hofmann (1958)
and Osborn (1905) have provided examples supporting the
hypothesis of bottom currents that affected the sea floor of the
Posidonienschiefer basin.

A variety of primary sedimentary structures and bioturba-
tion structures occur in the Toarcian Posidonienschiefer

Formation of SW Germany. They include centimetres-thick,
partly bioturbated layers consisting of reworked sediment
(Fig. 3), mass flow deposits (Fig. 4), reworked sediment layers
characterised by oriented sediment components (Fig. 5) and
thin layers indicating moderate to weak currents (Fig. 6). Such
layers are more frequent than has been commonly assumed,
although only very few such examples have been published
(Figs. 3, 4 and 5) or they are somewhat hidden in the literature
(Riegraf et al. 1984; Riegraf 1985;Wetzel and Uchman 1998).
Nonetheless, careful observations led Kauffman (1979, 1981)
to question the stagnant basin model. It is not the purpose of
this commentary to continue this debate on Seilacher’s (1982)
model; rather, we wish to draw the reader’s attention to the
frequent occurrence of current indicators.

Given the vertical extent of a dead adult ichthyosaur sink-
ing to the sea floor, it is highly likely that due to the low
average net sedimentation rate [4mm/kyr (compacted), equiv-
alent to 40 mm/kyr in a decompacted state at approx. 90 %
porosity; see Einsele and Mosebach 1955 as well as Hofmann
1958, for an estimate) the elevated parts of the carcass are
exposed to currents for a considerably long time span. This
rate is as low as today in the deep-sea (20–60 mm/kyr; e.g.
Scholle et al. 1983). As long as a carcass is not completely
embedded within the sediment it can be affected by currents.
Theoretically, it would take 20 kyr to fully cover a ichthyosaur
carcass of a diameter of 80 cm with sediment at the given
sedimentation rates and under conditions of the absence of
carcass collapse (see also Martill 1993), but it is an extremely

Fig. 5 Thin section of an interval with fluctuating bottom current activity
as evidenced by subtle inverse grading and enrichment of fossil debris
and layerwise enrichment of mud (m). Inversely graded interval with
upward increasing content of coarse material is marked by a white
arrowhead. (Temporary exposure at Pädagogische Hochschule Reutling-
en/Germany, lower commune subzone, above the limestone bed
‘Inoceramenbank’; Photograph by A. Wetzel)

Fig. 6 Thin sections of layers
indicating bottom current activity.
a Layers exhibit a sharp base
(white arrowhead) that is
enriched in fossil debris due to
condensation and winnowing
(‘Schlacken’); note the
considerable proportion of fish
scales and other phosphatic debris
(brownish in colour). b Several
thin layers (s, w) with condensed
debris and bivalve shells indicate
benthic colonization events
according to Röhl et al. (2001),
some of them with a sharp base
(white arrowhead) laminated
mud (lm) in between meets the
criteria given by Schieber et al.
(2007) for deposition by currents.
(Temporary exposure at
Pädagogische Hochschule
Reutlingen/Germany, lower
commune subzone, above the
limestone bed ‘Inoceramenbank’;
Photographs by A. Wetzel)
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dubious assumption that a carcass prevails over thousands
of years without being effected by decay. As van Loon
(2013) outlined, degradation of a carcass, however, might
have affected the soft parts within a relatively short time.
Even then, the articulated bones still form elevations on
the sea floor for some time and could have been affected
more easily by currents than the adjacent sea floor accord-
ing to Bernoulli’s principle (e.g. Vogel 1994). Furthermore,
ichthyosaur bones consist mostly of spongiosa, and hence
they have a relatively low density (and thus a small
hydraulically equivalent diameter) that facilitates their dis-
placement by currents (see explanation by Reisdorf et al.
2012 and references therein).

Van Loon doubts that some ichthyosaur carcasses sunk—at
least partly—into the sea floor sediment, which most likely
had a soupy consistency (Hofmann 1958; Martill 1993;
Schmid-Röhl and Röhl 2003) that would have allowed their
articulated preservation (some of them even with a preserved
body outline = so-called ‘soft tissue preservation’; e.g. Heller
1966; Hauff and Hauff 1981; Martill 1993; Lindgren et al.
2014). Unfortunately, van Loon (2013) did not provide an
alternative embedding mechanism for such ichthyosaurs. Van
Loon (2013) argued that, for example, empty extant shells
with a considerably higher density do not sink into soupy
mud. However, some ichthyosaurs carcasses did sink into
the sediment of the Posidonienschiefer Formation, as evi-
denced by their mode of preservation; normally the lower
surface of the specimens is prepared and exposed in museums
because the upper side is preserved at a considerable lower
quality, as described in detail by Heller (1966), Hofmann
(1958) and Martill (1993). In this context it has to be taken
into account that the density of ichthyosaurs became higher
during the sinking process to the sea bottom due to compres-
sion of the thorax and, therefore, the carcasses achieved a
certain acceleration as they sank through the water
column to the sea bottom (Reisdorf 2007; Reisdorf
et al. 2012; in contrast to the benthonic fauna, e.g.
shells). As shown by Fröbisch et al. (2006), Hänggi
and Reisdorf (2007), Hofmann (1958), Martill (1993),
Reisdorf (2007), Wahl 2009 as well as Wetzel and
Reisdorf (2007), this high settling speed is corroborated
by many excellent ichthyosaurs specimens all over the
world, which landed head-first on the sea floor with the
snout penetrating several decimetres into the uncompacted
sediment.

Some stratigraphic intervals contain almost only isolated
bones of ichthyosaurs, whereas others contain more or less
completely preserved, but disarticulated ichthyosaur skeletons
in relatively high abundance. The latter horizons correspond
to episodes of rising or high sea-level, whereas isolated bones
occur more frequently in deposits that formed during falling or
low sea-level [based on the sea-level charts of Haq et al.
(1988) and Hallam (1988, 2001)]. Reisdorf et al. (2012)

explained this coincidence by their taphonomic hypothesis.
Van Loon criticised this explanation without comprehensive
reasoning or alternative hypotheses. In the absence of alterna-
tive hypotheses and a convincing falsification, we still favour
our hypothesis of the relationship between sea-level fluctua-
tions and preservation of ichthyosaurs.

In any case, the discussion of van Loon is most welcome
because each critical examination of existing sedimentologi-
cal and palaeontological models and hypotheses represents a
further step towards our better understanding of the processes
involved.
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