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Abstract Structure of networks constructed from men-

tioning relationships between posts in online media may be

valuable for understanding how information and opinions

spread in these media. We crawled Twitter to collect tweets

and replies to construct a large number of so-called reply

trees, each of which was rooted at a tweet and joined by

replies. Consistent with the previous literature, we found

that the empirical trees were characterized by some long

path-like reply trees, large star-like trees, and long irregular

trees, although their frequencies were not high. We tested

several branching process models to explain the empirical

frequency of these types of reply trees as well as more

basic quantities such as the distributions of the size and

depth of the reply tree. Based on our modeling results, we

suggest that the in-degree of the tweet that initiates a reply

tree (i.e., the number of times that the tweet is directly

mentioned by other reply posts) may play an important role

in forming the global shape of the reply tree.

Keywords Reply tree � Twitter � Branching process �
Data analysis

1 Introduction

Information spreading plays a fundamental role in trig-

gering collective actions in human society on a large scale.

A classical example is diffusion of technological innova-

tion, in which individuals receiving information on a new

technology from other peers may decide to adopt the

technology (Rogers 2003; Easley and Kleinberg 2010).

Other examples include fads (Gladwell 2000), social

mobilization (Lotan et al. 2011; Banõs et al. 2013; Con-

over et al. 2013), marketing (Leskovec et al. 2007a; Easley

and Kleinberg 2010), voter turnout (Bond et al. 2012),

responses to natural disasters (Sano et al. 2013; Sasahara

et al. 2013), and circulation of new scientific publications

(Thelwall et al. 2013) to name but a few.

Network analysis has been a useful tool for understanding

information spreading both online and offline. In particular,

owing to increasing amounts of users’ activity and availability

of data, various online social media ranging from micro-

blogging services (e.g., Twitter), to social networking services

(e.g., Facebook) have been analyzed as networks. In networks

of users, a node represents a user, and a link represents a

relatively static dyadic relationship between two users such as
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followership in Twitter and mutual friendship in Facebook.

An alternative construct, which we focus on in the present

study, is networks of posts; a node represents a post by a user,

and a link represents a reference relationship from a post to a

previous post. Such a network is usually tree-like with pos-

sible branching and without confluence. The reference rela-

tionship implies that a post spreads information relayed froma

previous post. Therefore, a network of posts is considered to

be a direct derivative of information spreading. It should be

noted that, in contrast to the case of user networks, a user may

appear as different nodes in a network of posts. Networks of

posts have been studied in Twitter (Kumar et al. 2010; Kwak

et al. 2010; Bakshy et al. 2011; Cogan et al. 2012), Facebook

(Sun et al. 2009; Cheng et al. 2014), blogs (Leskovec et al.

2007b; McGlohon et al. 2007; Götz et al. 2009), Flickr (Cha

et al. 2009), discussion threads (Gómez et al. 2008; Kumar

et al. 2010; Gómez et al. 2011; Wang et al. 2012; Gómez

et al. 2013), and e-mail (Liben-Nowell and Kleinberg 2008;

Golub and Jackson 2010; Wang et al. 2011).

In a network of posts, an initial post located at the root

of the network may induce a cascade of responses of dif-

ferent magnitudes and spatiotemporal patterns. Structure of

such a network seems to inform us of the nature of the

cascade (Leskovec et al. 2007b; Iribarren and Moro 2009;

Liben-Nowell and Kleinberg 2008; Cha et al. 2010; Golub

and Jackson 2010; Kumar et al. 2010; Iribarren and Moro

2011; Wang et al. 2011; Wang et al. 2012). For example,

the size of the cascade defined by the number of nodes in

the network is a simple measure of the extent to which the

initial post has involved other users. In addition, networks

of the same size may have different shapes. An initial post

may diffuse by forming a long chain-like network to

eventually involve 100 other posts. A different initial post

may receive 100 direct replies, and then, the cascade may

terminate without further diffusion, resulting in a star

network. Although the size of the cascade is the same in the

two cases, the way information is communicated during the

cascade may be different. A long chain-like network may

be formed by alternately replying behavior between two

users with which the two users end up detailing the topic; a

star network does not allow this interpretation (Cogan et al.

2012). The structure of networks of posts may also tell us

the importance of individual users and posts involved in

information cascades (Cha et al. 2010; Kwak et al. 2010;

Weng et al. 2010; Bakshy et al. 2011; Wang et al. 2011;

Banõs et al. 2013). The previous studies used structural

information obtained from networks of posts for practical

applications. Examples include classification of topics

without text mining (McGlohon et al. 2007; Kumar et al.

2010; Gómez et al. 2011), quantification of how contro-

versial a post is in online discussion threads (Gómez et al.

2008), and predictions of the final size of an information

cascade (Cheng et al. 2014).

In the present study, we analyze a large data set of trees

formed by posts in Twitter, which we call reply trees. We

operationally distinguish three types of post in Twitter in

the present paper: tweet, reply, and retweet. By convention,

we do not include reply and retweet to the definition of

tweet. Then, we construct trees from the tweets and replies

that we have collected. In short, a reply tree is rooted at a

tweet and involves replies that refer to the tweet directly or

indirectly. We analyze structural properties of empirical

reply trees and propose branching process models for them.

We use Twitter data because Twitter is suitable for study-

ing diffusion processes for several reasons (Kwak et al. 2010;

Bakshy et al. 2011; Bollen et al. 2011; Dodds et al. 2011;

Lotan et al. 2011; Bliss et al. 2012; Cogan et al. 2012; Banõs

et al. 2013; Conover et al. 2013; Sasahara et al. 2013). First,

Twitter is devoted to information diffusion. This situation

contrasts with that for other media such as Facebook in which

mutual endorsement is more emphasized. Second, Twitter

users communicate in standardized ways. Tweets are restric-

ted to 140 characters, and retweets and replies, which have to

follow a given standardized format, are the only modes

allowed with which users can directly respond to previous

posts. Third, Twitter data can be collectedon a large scalewith

the use of the application programming interface (API).

A majority of previous literature on networks of posts in

Twitter seems to have focused on networks of retweets (e.g.,

Kwak et al. 2010; Bakshy et al. 2011) rather than those of

replies (but see Kumar et al. 2010; Cogan et al. 2012).

However, we focus on replies in the present study for two

reasons. First, replies are considered to be more informative

about the relationships between users than retweets are (Sousa

et al. 2010; Gonçalves et al. 2011; Bliss et al. 2012). Second,

replies are suggested to convey emotional responses of users

(Dodds et al. 2011; Bliss et al. 2012), and collective emotions

and moods in Twitter often covary with the results of collec-

tive actions, presumably induced by information spreading,

such as dynamics of stock prices (Bollen et al. 2011).

2 Methods

2.1 Data

We collected mentioning relationships (i.e., one post

mentioning another post) between pairs of public posts in

Twitter from the December 1–9, 2011, using Twitter API

as follows. First, on March 15, 2011, we manually selected

26 Japanese celebrity users with many followers as seed

users. Second, we collected the posts, i.e., tweets (ex-

cluding replies and retweets by definition), replies, and

retweets, made by the seed users using the user timeline

API provided by Twitter. We collected all the posts made

by the seed users between March 15 and December 9,
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2011. Between the 11th and 15th March, we collected 3000

most recent posts for each user due to the limitation

imposed by Twitter on the user timeline API. Third, we

added about 1000 users who received the largest number of

responses within the data collected up to the previous step.

Here, a response to a user X is operationally defined as

either a retweet to an X’s post containing at least one

Japanese character or a reply containing a Japanese char-

acter to an X’s post. Fourth, we collected posts made by

each of the newly added users. We collected all the posts of

each newly added user between the time at which the

newly added user was detected for the first time and

December 9, 2011. We also collected the most recent 3000

posts of the newly added user before the time the user was

detected for the first time, under the condition that the posts

are dated March 11, 2011 or later. Fifth, we repeated the

third and fourth steps a large number of times to expand the

set of the users and posts.

We excluded the replies and retweets that did not

explicitly contain the IDs of the posts that these replies and

retweets referred to, because construction of directed links

was not straightforward for these replies and retweets. As a

result, restricted to the period between December 1–9,

2011, we obtained 505,557 users and 57,982,740 posts

including 24,280,912 replies and 5,478,846 retweets.

Before analyzing the data, we anonymized the user IDs and

discarded the contents of the posts while keeping the

information about the mentioning relationships between all

pairs of posts. We discarded retweets and defined tweets

and replies as nodes. A directed link is defined as dyadic

relationship from the mentioning post, which is a reply

(because we have discarded retweets), to the mentioned

post, which is either a tweet or reply.

2.2 Reply tree

A reply tree is defined as a directed tree composed of a

tweet, which is located at the root of the tree, and all replies

from which the tweet is reached along directed paths

(Fig. 1). By definition, a directed tree is a directed network

in which any node is connected to the root by a unique

directed path to the root. It is a tree if the direction of the

link is neglected. We refer to directed tree as tree. Other

studies also investigated reply trees in Twitter, although the

definition of node and link may be slightly different from

ours (Kumar et al. 2010; Cogan et al. 2012). The out-de-

gree is the number of mentioning that a node has made.

The out-degrees of a tweet (i.e., root node) and a reply (i.e.,

nonroot node) are equal to zero and one, respectively. The

in-degree of a node, denoted by k, is the number of replies

that the node has received.

Unless otherwise stated, we exclude isolated tweets, i.e.,

those never mentioned by any reply post within the

observation period, from the definition of the reply tree.

Therefore, the size of a reply tree in terms of the number of

nodes, denoted by S, is at least two. Owing to our data

collection method, we exhaustively collected all reply trees

containing at least one sampled user unless the tweet at the

root of the reply tree occurred before the observation per-

iod. We discarded reply trees whose root (i.e., tweet) was

dated before the observation period. Then, there are

2,170,021 reply trees, which are by definition as many as

the tweets that are posted in the observation period and

have been mentioned at least once. The number of replies

summed over all the reply trees is equal to 6,903,147.

We cannot exclude the possibility that a reply tree grows

after the observation period by receiving a new reply. If a

reply tree starts from a tweet located near the end of the

observation period, the tree is likely to grow even after the

observation period. We confirmed that statistics of reply

trees calculated from the entire data set did not consider-

ably differ from those calculated from the partial data set

composed of the reply trees whose roots were located in the

first half of the observation period (Appendix 1). We focus

on the entire data set in the following.

3 Results of data analysis

The size of reply tree (Kumar et al. 2010; Wang et al. 2011,

2012; Gómez et al. 2013) (also called cardinality Cogan et al.

2012), denoted by S, is equal to the number of nodes in a reply

tree. For example, the reply tree shown in Fig. 1 has S ¼ 12.

The survivor function (also called complementary cumulative

distribution) of S defined by PsurvðSÞ �
P1

S0¼S PðS0Þ, where
P(S) represents the frequency of trees of sizeS, is shown by the

solid line in Fig. 2a.Hereafter, Psurv and P represent a survivor

function and frequency distribution, respectively. The tail part

of the survivor function is roughly approximated by a power

law PsurvðSÞ / S�3, which implies PðSÞ / S�4. Because the

power-law exponent for P(S) is larger than three, we conclude

that the distribution of S is not long-tailed. Consistent with this

claim, the coefficient of variation (CV), i.e., standard devia-

tion divided by themean, ofS is equal to 0.89. This value is not

considered to be large; the CV is equal to unity for the expo-

nential distribution and considerably larger than unity for a

long-tailed distribution. The short-tailed nature of P(S) quali-

tatively agrees with some previous results (Leskovec et al.

2006; Wang et al. 2011) and different from others (Leskovec

et al. 2007b; Götz et al. 2009; Kumar et al. 2010; Li et al.

2012).

The depth of reply tree, denoted by D, is defined as the

maximal distance from the root (Kumar et al. 2010; Wang

et al. 2011; Gómez et al. 2013). For example, the reply tree

shown in Fig. 1 has D ¼ 5. The survivor function of D is
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shown by the solid line in Fig. 2b. The distribution of D is

short-tailed with a CV value of 1.01, which is consistent

with previous results (Kumar et al. 2010).

The distributions of S and D are not independent. The

joint distribution, denoted by P(S, D), is shown in Fig. 3a

as a heat map and looks similar to that reported in a pre-

vious study (Cogan et al. 2012). As informally classified in

Cogan et al. (2012), there are at least three characteristic

types of reply tree. First, some reply trees are close to long

paths having S � Dþ 1 (note that Dþ 1 is the minimum

possible value of S) and large S (equivalently, large D). In

fact, some points are located near the diagonal for large

S in Fig. 3a. A long path-like reply tree has just one long

branch, which involves most of the nodes in the reply tree.

It is equivalent to a skinny tree referred to in Kumar et al.

(2010). Second, there exists a portion of large star-like

reply trees defined by D � 1 and large S. In typical large

star-like trees, the tweet directly receives many replies,

whereas these replies receive few other replies. Third, so-

called large irregular trees are defined by large S and

intermediate values of D.

It should be noted that the results shown in Fig. 3a are

not comparable with those in Gómez et al. (2013), which

has also investigated the relationship between S and

D. This is because D values averaged over discussion trees

possessing the same value of S are examined in Gómez

et al. (2013). In contrast, we are concerned with distribu-

tions of S and D for individual trees.

The survivor function of the in-degree (i.e., k) is shown

by the thin solid line in Fig. 4. In this figure, we included the

nodes with k ¼ 0 when calculating the survivor function.

By definition, PsurvðkÞ at k ¼ 1 is the fraction of nodes

having in-degree at least one. The remainder of the nodes

has k ¼ 0. In the figure, we also show the survivor function

of the in-degree of tweet (i.e., PsurvðktÞ, where kt is the in-
degree of tweet; t for tweet; shown by the dashed line) and

that of reply (i.e., PsurvðkrÞ, where kr is the in-degree of

reply; r for reply; shown by the dotted line). The fig-

ure indicates that the tails of PsurvðkÞ and PsurvðktÞ roughly
obey / k�2:3 (thick solid line). The fact that PsurvðkÞ,
PsurvðktÞ / k�2:3 is translated into P(k), PðktÞ / k�3:3

implies that the distributions are not long-tailed. The dis-

tribution of kr has a shorter tail. Consistent with these

results, the CV values for k, kt, and kr calculated exclusive

of the nodeswith degree zero are not large and equal to 0.94,

1.28, and 0.19, respectively. The CV values with the zero-

degree nodes included are equal to 3.18, 5.77, and 0.94 for

Fig. 1 Schematic of a reply

tree. Root node 1 is a tweet. The

other 11 nonroot nodes are

replies. This reply tree has size

S ¼ 12 and depth D ¼ 5. The

root has in-degree kt ¼ 2. For

segment 2; 5; 7; 9f g, node 2 is

the start node with in-degree

ks ¼ 2, node 9 is the end node

with in-degree ke ¼ 3, and the

length is equal to k ¼ 3
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Fig. 2 Distributions of the size, S, and depth, D, of reply trees.

a Survivor function of S (i.e., probability that the size is at least S)

with q ¼ 0. b Survivor function of D with q ¼ 0. c Survivor function

of S with q ¼ 0:7. d Survivor function of D with q ¼ 0:7
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k, kt, and kr, respectively. The CV values for k and kt in this

case are large because, in general, the CV is large when the

mean value is very small. In the present case, the mean

degrees are much smaller with the inclusion of zero-degree

nodes (i.e., hki ¼ 0:20, hkti ¼ 0:11, and hkri ¼ 0:57, where
h�i denotes the mean) than without them (i.e., hki ¼ 1:16,

hkti ¼ 1:38, and hkri ¼ 1:03). The observation that the in-

degree distribution for the roots (i.e., tweet) is longer-tailed

than that for the nonroots (i.e., replies) is consistent with the

results for conversation trees in USENET (Kumar et al.

2010) and trees composed of email correspondences (Wang

et al. 2011). Also see Wang et al. (2011) and Gómez et al.

(2013) for a model incorporating this factor.

Next, we look at so-called segments, which are defined

as maximal chains without branching (called path subgraph
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in Lovejoy and Loch 2003). The length of the segment,

denoted by k, is equal to the number of links in the seg-

ment. By definition, a segment of length k is composed of a

linearly connected kþ 1 nodes such that the k� 1 nodes in

the middle, which are necessarily replies, have in-degree

one. We refer to the node that occurs the earliest in time in

a segment as the start node of the segment. A start node is

either a reply at which branching occurs (i.e., k� 2) or a

tweet (i.e., k� 1). The node occurring the latest in time in a

segment is referred to as the end node of the segment. The

in-degree of an end node is either zero or at least two. In

the former case, the end node is a leaf of the reply tree. In

the latter case, the end node is the start node of other

segments. In the reply tree shown in Fig. 1, the two seg-

ments starting from node 2 have lengths k ¼ 1 and k ¼ 3.

They end at nodes 4 and 9, respectively.

The survivor function of the length of segment, PsurvðkÞ, is
shown by the solid line in Fig. 5. The mean of k is equal

to 2.15. The distribution is roughly approximated by a log-

normal distribution PðkÞ ¼ exp � lnðk� 1Þ � l½ �2=2r2
n o

=
ffiffiffiffiffiffi

2p
p

rðk� 1Þ
� �

with l ¼ 0 and r ¼ 1 (dashed line showing

the survivor function of the fitted log-normal distribution).

The empirical distribution PðkÞ is not long-tailed, with a CV
value of 0.97. Although there are segments whose k is much

larger than themean, there frequency is too small toqualify the

distribution to be long-tailed.

4 Modeling with branching processes

In this section, we investigate models of reply trees. The

goal of the modeling is to approximate properties of the

empirical data shown in Sect. 3 to illuminate generative

mechanisms of reply trees. It should be noted that our aim

is not to generate synthetic reply trees for certain tasks, but

to understand the mechanisms governing the growth of

empirical reply trees.

The models introduced in the following are variants of

branching processes (Harris 1963; Kimmel and Axelrod

2002). Branching processes were employed in previous

literature for modeling information spreading online (For-

tunato and Castellano 2007; Vazquez et al. 2007; Liben-

Nowell and Kleinberg 2008; Iribarren and Moro 2009;

Golub and Jackson 2010; Kumar et al. 2010; Wang et al.

2011; Iribarren and Moro 2011; Li et al. 2012; Gómez

et al. 2013; Jo et al. 2014; Gleeson et al. 2014). We build

the models by combining empirical distributions related to

k and k in different ways. The assumptions underlying each

model, i.e., unconditional and conditional probability dis-

tributions used in the model, are summarized in Table 1. In

words, we consider a simple Galton–Watson process in

Sect. 4.2.1 and its extension with degree–degree correlation

in Sect. 4.2.2 to find that they do not produce the structural

properties of the empirical reply trees. Then, to improve

fitting of the model to the empirical data, we incorporate

into the model the distribution of segment length k in Sect.

4.3.1 and the correlation between k and the in-degree of the

tweet of the tree, i.e., kt in Sect. 4.3.2. Finally, we take into

account the correlation between kt and the in-degree of the

end node of segments, i.e., ke in Sect. 4.3.3.

It is worth noting at this point how reply trees in Twitter

were previously modeled. In Kumar et al. (2010), three

models were considered. In the first model, a new reply

chooses which tweet or reply to attach to with the proba-

bility proportional to a linear combination of its in-degree

and age. The second model extends the first model by

considering the authorship of each reply. The third model

is a branching process model with multiple types of replies

each of which is associated with a separate in-degree dis-

tribution. The type of each reply is estimated by the

expectation–maximization algorithm. It is difficult to con-

clude which of the three models fits to Twitter reply trees,

because the main focus of Kumar et al. (2010) was on data

different from those obtained from Twitter and the

10
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Fig. 5 Survivor function of the length of segment (solid line). The

log-normal distribution with l ¼ 0 and r ¼ 1 is shown by the dashed

line as a guide to the eyes. The geometrical distribution whose

parameter p is estimated from the empirical data is shown by the

dotted line

Table 1 Empirical distributions used in each model. For models 3, 4,

and 5, copula variants were also examined in Sect. 4.4.

Model Distributions used

Galton–Watson (model 1) P(k)

Correlated Galton–Watson (model 2) PðktÞ, PðkjkprevÞ
Model 3 PðktÞ, PðkÞ, PðkeÞ
Model 4 PðktÞ, PðkjktÞ, PðkeÞ
Model 5 PðktÞ, PðkjktÞ, PðkejktÞ

k: in-degree, kt, in-degree of a tweet; kprev, in-degree of the previous

node; k, length of a segment; ke, in-degree of the end node of a

segment
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comparison between the model results and the Twitter data

was not provided in quantitative terms.

4.1 Measurements

For each model, we generate the joint distribution of the

size and depth of reply tree, P(S, D), using the same

number of samples as that for the empirical data (i.e.,

N ¼ 2; 170; 021), and compare it with the empirical dis-

tribution shown in Fig. 3a.

For quantitative comparisons, we also generate N ¼
5� 107 synthetic reply trees from each model and carry

out the following analysis. First, we measure marginalized

survivor functions of the size and depth of reply trees, i.e.,

PsurvðSÞ and PsurvðDÞ. Second, we measure the fraction of

long path-like reply trees, large star-like reply trees, and

large irregular reply trees as follows. We define the long

path-like tree as a reply tree satisfying S� d1 	D	 S� 1

and S� 50, where d1 is a threshold value and presumably

much smaller than D. Only exact paths are counted if

d1 ¼ 1. Similarly, the large star-like tree is defined by

1	D	 d2 and S� 50, where d2 is a presumably small

threshold. The large irregular tree is defined by

d3 	D	 S� d4 and S� 50, where d3 and d4 are thresh-

olds. We measure the fraction of long path-like trees, that

of large star-like trees, and that of large irregular trees,

relative to all generated reply trees for various threshold

values.

4.2 Galton–Watson process and its correlated

variant

4.2.1 Galton–Watson process (model 1)

Given the moderately heterogeneous in-degree distribution

of the reply trees, the simplest model is probably the

Galton–Watson branching process, in which we draw the

in-degree of each node from the empirical degree distri-

bution P(k) (Harris 1963; Kimmel and Axelrod 2002). The

Galton–Watson process defines model 1 (Table 1).

Because it always holds that S� 2 according to our con-

vention, we discard samples that have yielded an isolated

root node, which would result in S ¼ 1.

The distributions of S and D produced by model 1 are

compared with the empirical distribution in Fig. 2a, b,

respectively. The model overestimates the probability at

large S and underestimates the probability at large D.

The joint distribution of S and D obtained from model 1

is shown in Fig. 3b. We observe that the model does not

generate long path-like reply trees (i.e., near the diagonal

for large S and D), which contrasts with the empirical data

(Fig. 3a). This result is consistent with Fig. 2b, which

indicates the lack of trees with large D for model 1. More

quantitatively, the fraction of long path-like trees as

defined in Sect. 4.1 is almost equal to zero for the range of

d1 shown in Fig. 6a. Long path-like trees are absent

because the length of segment, k, for model 1 (i.e., Galton–

Watson process) obeys the geometric distribution
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Fig. 6 Fraction of three types of reply trees. The results for the five

models with q ¼ 0 are shown in (a–d). The results for models 3, 4,

and 5 with copula with q ¼ 0:7 are shown in (e–h). a Fraction of long

path-like trees with q ¼ 0. b Fraction of large star-like trees with

q ¼ 0. c Fraction of large irregular trees with q ¼ 0 and d4 ¼ 10. d

Fraction of large irregular trees with q ¼ 0 and d3 ¼ 10. e Fraction of

long path-like trees with q ¼ 0:7. f Fraction of large star-like trees

with q ¼ 0:7. g Fraction of large irregular trees with q ¼ 0:7 and

d4 ¼ 10. h Fraction of large irregular trees with q ¼ 0:7 and d3 ¼ 10.

The insets show the results for large fraction values
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PðkÞ ¼ ð1� pÞpk�1, where p ¼ Pðk ¼ 1Þ. The geometric

distribution with the value of p estimated from the empir-

ical data is shown by the dotted line in Fig. 5, confirming

that model 1 does not produce long path-like trees as

observed in the empirical data. The CV for k obtained from

model 1 is equal to 0.77, which is considerably smaller

than that for the empirical data, i.e., 0.97 (Sect. 3). Model 1

does not produce a realistic fraction of large star-like reply

trees, either (see Fig. 6b where d2 is small). Finally, model

1 overestimates the frequency of large irregular trees rel-

ative to the empirical data (insets of Fig. 6c, d). In sum-

mary, the standard Galton–Watson process does not

reproduce chief statistical characteristics of reply trees

observed in the empirical data.

4.2.2 Correlated Galton–Watson process (model 2)

In an attempt to improve fitting of the model to the

empirical data, we consider the so-called correlated Gal-

ton–Watson process (model 2). In this model, the in-degree

of replies is drawn from conditional distribution PðkjkprevÞ,
where kprev is the degree of the previous node (defined as

the node that the focal reply node mentions). By conven-

tion, P(X|Y) here and in the following indicates the distri-

bution of X conditioned by the value of Y. The correlated

Galton–Watson process is a special case of the so-called

macro process model (Olofsson 1996). In fact, Fig. 7a

indicates that the in-degree of a node considerably

decreases on an average as the in-degree of the previous

node increases, which is consistent with the assumption of

model 2. To initiate a reply tree, we draw the in-degree of

tweet, ktð� 1Þ, from the empirical distribution of the in-

degree constructed from all tweets with kt � 1, i.e., PðktÞ,
because a tweet does not have a previous node.

Figure 2a indicates that model 2 produces a distribution

of S similar to the empirical one despite some noticeable

deviation in a middle range of S. Figure 2b indicates that

model 2 underestimates the probability of D at large values

of D relative to the empirical data. Figure 6a, together with

the joint distribution P(S, D) shown in Fig. 3c, indicates

that model 2 does not produce long path-like reply trees,

similarly to model 1. The CV value for k obtained from

model 2 is equal to 0.79, which is close to the value for

model 1 and smaller than that for the empirical data. This

result is consistent with the fact that model 2 produces the

geometrical distribution of k, i.e., PðkÞ ¼ ð1� pÞpk�1,

where p ¼ Pðk ¼ 1jkprev ¼ 1Þ. Model 2 produces a realistic

frequency of large star-like reply trees across a range of

threshold d2 (Fig. 6b). However, model 2 by far underes-

timates the frequency of large irregular trees in an entire

range of d3 and d4 (Fig. 6c, d).

4.3 Models that explicitly use the empirical

distribution of the segment length

At best, the Galton–Watson processes (models 1 and 2)

produce a realistic fraction of large star-like reply trees but

not long path-like trees or large irregular trees. The models

do not produce realistic distributions of S and D, either.

Therefore, we explore models that go beyond the family of

conventional branching process. In the models considered

in this and the following sections, we draw k from

empirically determined distributions. In fact, segments are

generated by users’ microscopic behavior. We have deci-

ded not to model this factor, and the limitation of the

present approach will be discussed in Sect. 5.

4.3.1 Model 3

We extend the Galton–Watson process to define model 3 as

follows. First, we draw the in-degree of the tweet, kt, from

the empirical distribution PðktÞ, as is done in model 2.

Second, we draw the length of each of the kt segments

starting from the root independently from the empirical
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Fig. 7 Further statistical properties of empirical reply trees. a Mean

in-degree of the node plotted against the in-degree of the previous

node, kprev. b Mean length of segment plotted against the in-degree of

the tweet at the root of the reply tree. c Mean in-degree of the end

node of a segment plotted against the in-degree of the tweet at the root

of the reply tree. d Standard deviation of hkis plotted against ks (solid

line). The standard deviation of k divided by
ffiffiffiffi

ks
p

is shown by the

dotted line for comparison. In each panel, we smoothed the plots to

reduce fluctuations due to the shortage of samples with a large in-

degree. To be precise, we generated the data points at large in-degree

values by partitioning the horizontal axis into windows and pooling

instances within each window
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distribution, PðkÞ. Third, for each segment, the in-degree of

the end node, denoted by ke, is drawn from PðkeÞ, which is

constructed from all end nodes of segments in all empirical

reply trees. The use of different in-degree distributions for

tweets and replies is motivated by a clear difference

between PðktÞ and PðkrÞ in the empirical data shown in

Fig. 4. It should be noted that Pðke ¼ k0Þ / Pðkr ¼ k0Þ for
k0 � 2. It should be also noted that, because the end node of

a segment is either a leaf or a branching node,

Pðke ¼ 1Þ ¼ 0. Fourth, if the end node of a segment attains

ke � 2, the lengths of ke segments starting from this node

are independently drawn from PðkÞ. We repeat the proce-

dure until all branches terminate.

The joint distribution of S and D obtained from model 3

is shown in Fig. 3d. The model produces some long path-

like reply trees (i.e., S � D and large S). In addition, the

distribution of D is similar between the model and data

(Fig. 2b). However, model 3 is yet unsatisfactory for the

following reasons. First, model 3 overestimates the prob-

ability of S at large S (Fig. 2a). Second, as shown in

Fig. 6a, long path-like trees are much fewer in model 3

than in the empirical data for the entire range of d1
examined in the figure. Third, the model does not produce

sufficiently many large star-like trees (at small d2 in

Fig. 6b). Fourth, the model overestimates the fraction of

large irregular trees (Fig. 6c, d).

4.3.2 Model 4

Empirically, Fig. 7b indicates that k decreases on an

average with the in-degree of the root tweet (i.e., kt).

Therefore, we extend model 3 by assuming that the dis-

tribution of k depends on the in-degree of the tweet at the

root of the reply tree. In the extended model, which we

refer to as model 4, we draw the length of each segment

from PðkjktÞ. Then, the in-degree of the end node of each

segment is drawn from PðkeÞ constructed from the empir-

ical data, which is the same as in model 3 (Table 1).

The distributions of both S (Fig. 2a) and D (Fig. 2b) are

close between model 4 and the empirical data. The joint

distribution of S and D obtained from the model is shown

in Fig. 3e. The fraction of long path-like trees for small d1
is similar between the model and data (Fig. 6a). However,

large star-like trees (see Fig. 6b where d2 is small), and

large irregular trees (Fig. 6c, d) are considerably fewer for

the model than the empirical data.

4.3.3 Model 5

We consider a further extension of the model in which ke
for each end node of a segment is drawn from the empir-

ically constructed conditional distribution PðkejktÞ instead

of the unconditional distribution PðkeÞ employed in models

3 and 4. It should be noted that the end node does not have

to be that for the segment emanating from the root. We

refer to the extended model as model 5. This extension of

the model is empirically supported; the in-degree of the end

node of a segment considerably depends on the in-degree

of the tweet that initiates the reply tree (Fig. 7c).

Similarly to model 4, model 5 produces the distributions

of S (Fig. 2a) and D (Fig. 2b) that are close to the empirical

data. The joint distribution P(S, D) for model 5 is shown in

Fig. 3f. The fraction of long path-like trees with small d1
(Fig. 6a) and that of large star-like trees for a range of d2
(Fig. 6b) are not far from those for the empirical data.

However, the model produces much less irregular trees

than the empirical data (Fig. 6c, d).

4.4 Models with correlated segment lengths

4.4.1 Empirical evidence of correlated segment lengths

The models introduced so far are incapable of producing a

realistic frequency of large irregular trees. Although large

irregular trees are rare even in the empirical data (Fig. 6c,

d), they are suggestive of mechanisms that generate an

entire reply tree. If the k values for the ks segments starting

from the same node are positively correlated, large irreg-

ular trees are expected to occur relatively easily. This is

because a large k value in one branch implies a relatively

high probability of large k values in other branches in the

same reply tree. For example, if the root has in-degree 2,

both of the two segments have k ¼ 100, and no further

branching occurs, we obtain a large irregular tree with S ¼
201 and D ¼ 100.

Denote by hkis the average of k over the ks segments

starting from the same node. If the k values for the ks
segments are positively correlated, hkis statistically fluc-

tuates more than realizations of hkis calculated on the basis

of independent k values as we assumed in models 3, 4, and

5. In the independent case, hkis has standard deviation

equal to rðkÞ=
ffiffiffiffi

ks
p

, where rðkÞ is the standard deviation of

k calculated from PðkÞ. It should be noted that the mean of

hkis is the same between the empirical and the independent

cases, because we use the empirical PðkÞ to independently

draw k values for the ks segments in models 3, 4, and 5.

The standard deviation of hkis calculated from the

empirical data and that calculated from PðkÞ under the

independence assumption are plotted against ks in Fig. 7d.

The figure suggests that the fluctuation of hkis is larger for
the empirical data than under the independence assumption

unless ks is large. The amount of fluctuation is the same

between the two cases when ks is large. Therefore, k

observed in the empirical data may be positively correlated

across segments sharing a start node.
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4.4.2 Models 3, 4, 5 with copula

Motivated by the results shown in Sect. 4.4.1, we extend

models 3, 4, and 5 (Sect. 4.3) to allow k to be correlated

among segments emanating from the same starting node as

follows. For each start node, we use a ks-dimensional

multivariate normal distribution to generate ks correlated

variables denoted by ðx1; . . .; xksÞ. We assume that each xi
(1	 i	 ks) is distributed according to the standard normal

distribution (i.e., mean zero and standard deviation one)

when marginalized. Then, we transform each xi to ki, the

value of k for the ith segment, such that the marginal

distribution of ki coincides with the empirical PðkÞ.
To realize this goal, we generate ðx1; . . .; xksÞ using the

multivariate standard normal distribution with mean

ð0 . . . 0Þ and the covariance matrix given by

R ¼

1 q � � � q

q .
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where q is the covariance of the random variables corre-

sponding to xi and xj, which is common for all pairs of

i and jð6¼ iÞ. Because R is a positive semi-definite matrix

and the eigenvalues of R are given by 1-q, which is

(ks � 1)-fold, and 1þ ðks � 1Þq, which is nondegenerate,

we obtain �1=ðks � 1Þ	 q	 1. It should be emphasized

that, regardless of the value of q, xi (1	 i	 ks) obeys the

standard normal distribution when marginalized. The

numerical method with which we generate samples from

the correlated multivariate normal distribution (Rachev

2003) is explained in Appendix 1.

Then, we map xi onto [0, 1] by the error function using

yi ¼
Z xi

�1

1
ffiffiffiffiffiffi

2p
p exp � x2

2

� �

dx: ð2Þ

Each yi is uniformly distributed on [0, 1], and different yi’s

are correlated with each other when q 6¼ 0. This method for

generating a correlated random ensemble on a hypercube is

called a Gaussian copula (Rachev 2003; Franke et al.

2008). Then, we transform yi to ki by finding the unique

value of ki that satisfies

X

ki�1

k¼1

PðkÞ	 yi 	
X

ki

k¼1

PðkÞ: ð3Þ

Each ki obeys PðkÞ when marginalized, and the strength of

the correlation between different ki’s is controlled by q.

When q ¼ 0, we reproduce the models considered in

Sect. 4.3.

We numerically examine the copula variants of models

3, 4, and 5, which by definition employ distributions of k.

We set q ¼ 0:7, which we found to produce results rela-

tively close to the empirical data. Figure 2c indicates that

model 3 with copular overestimates the probability of S at

large S, whereas models 4 and 5 with copula produce

distributions of S close to the empirical one. All three

models with copular produce distributions of D close to the

empirical one (Fig. 2d). The joint distributions P(S, D) for

the three copula models are shown in Fig. 3g–i. The frac-

tion of long path-like reply trees, that of large star-like

reply trees, and that of irregular reply trees are shown in

Fig. 6e–h. Similar to the distribution of S (Fig. 2c), the

figures indicate that introduction of the copula improves

models 4 and 5, but not model 3. Figure 6e indicates that

the fraction of long path-like trees is similar among models

4 with copula, model 5 with copula, and the empirical data

when d1 is small, although significant discrepancies remain

for large d1. Figure 6f indicates that the fraction of large

star-like trees is close between model 5 with copula and the

empirical data over the entire range of d2. It should be

noted that model 4 with q ¼ 0 and q ¼ 0:7 produces much

less star-like trees than the empirical data when d2 is small.

Figure 6g, h indicate that the fraction of large irregular

trees is also similar among model 4 with copula, model 5

with copula, and the empirical data for the entire parameter

range explored by our numerical simulations. We conclude

that model 5 with q ¼ 0:7 captures main statistical prop-

erties of reply trees observed empirically, despite a

notable discrepancy in the frequency of long path-like trees

when d1 is not small (Fig. 6e).

5 Conclusions

We analyzed structure of reply trees observed in Twitter.

We examined a suite of branching process models to

capture properties of empirical data in terms of the fre-

quency of long path-like reply trees, large star-like reply

trees, and large irregular reply trees, which are typologies

proposed in Cogan et al. (2012), as well as the distributions

of the size and depth of reply tree. The Galton–Watson

process and its correlated variant did not produce realistic

statistics of reply tree. Our final model (i.e., model 5 with

copula) assumed that the segment length (i.e., k) and the

degree of end nodes of segments depended on the in-degree

of the tweet located at the root of the reply tree. These

assumptions imply that the tweet at the root, whose first-

order properties may be encoded in its in-degree, seems to

be a strong determinant of the shape of the reply tree

(Wang et al. 2011; Li et al. 2012; Gómez et al. 2013). The

final model also assumed that k was positively correlated

among segments starting from the same node. This

assumption is also in line with the idea that the in-degree of

the tweet affects the entire topology of the reply tree for the
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following reason. Owing to their contents, some tweets

may tend to induce long segments in the reply trees rooted

at them. Other tweets may tend to induce short segments. If

this is the case, different segments in a reply tree would be

positively correlated. For simplicity, in our models, we

introduced positive correlation only to segments sharing

the start node.

Copulas have been used for generating correlated net-

works (Gleeson 2008; Raschke et al. 2014). In these

studies, two-dimensional copulas were used for defining

the joint degree distribution of an adjacent pair of nodes. In

contrast, the present study employed a Gaussian copula of a

general dimension to produce correlated segments sharing

a start node.

A serious limitation of the present development is that

we have plugged the empirical distribution of the length of

segments, e.g., PðkÞ, directly into models 3, 4, and 5. Then,

we focused on other structural properties of reply trees

such as correlation between segments sharing the start

node. However, the mechanisms governing such correla-

tions are not clear. In addition, users seem not to care about

the length of segments when deciding whether or not to

reply to other posts. Branching process models have also

been criticized of not being able to explain other aspects of

networks of posts (Kumar et al. 2010; Wang et al. 2011).

An alternative, agent-based approach is growing network

models, in which a node with out-degree one joins an

existing tree according to a certain attachment rule. This

approach, which has been used for modeling networks of

posts (Götz et al. 2009; Kumar et al. 2010; Li et al. 2012;

Wang et al. 2012; Gómez et al. 2013; Gleeson et al. 2014),

may be also useful for understanding the current data set.
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Appendix 1: Analysis of the first half of the data

To examine the robustness of the results shown in the main

text, we analyzed the reply trees whose tweet located at the

root of the tree was posted in the first half of the obser-

vation period, i.e., between December 1, 2011 and the noon
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Fig. 8 Comparison between the results obtained from all reply trees

(solid lines) and those obtained from the reply trees starting in the first

half of the observation period (dashed lines). The solid lines are

identical to those shown in the previous figures. a Survivor function

of the size of the reply tree. b Survivor function of the depth of the

reply tree. c Survivor functions of the in-degree for all nodes (i.e., k),

that restricted to tweets (i.e., kt), and that restricted to replies (i.e., kr).

d Survivor function of the length of segment. e Fraction of long path-

like trees. f Fraction of large star-like trees. g Fraction of large

irregular trees when d4 ¼ 10. h Fraction of large irregular trees when

d3 ¼ 10
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of December 5, 2011. The data contained 4,375,861 nodes,

of which there were 1,042,721 tweets and 3,333,140

replies. In Fig. 8, the dashed lines represent the results for

the first half of the data, and the solid lines represent those

for the entire data. The latter results are equivalent to those

shown in Figs. 2, 4, 5, and 6 by the same types of line. The

results are similar between the reduced and full data sets.

Appendix 2: Sampling from the correlated

multivariate normal distribution

We generated random variables obeying the multivariate

normal distribution with mean zero and the covariance

matrix given by Eq. (1) as follows. It holds that

R ¼ AA>; ð4Þ

where

A ¼

a1 a2 � � � a2

a2
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a1 ¼
ðks � 1Þ ffiffiffiffiffiffiffiffiffiffiffi

1� q
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðks � 1Þqþ 1
p
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; ð6Þ

a2 ¼
� ffiffiffiffiffiffiffiffiffiffiffi

1� q
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðks � 1Þqþ 1
p

ks
; ð7Þ

and > denotes the transposition. Therefore, by setting

x1

.

.

.

xks

0

B

B

@

1

C

C

A

¼ A

z1

.

.

.

zks

0

B

B

@

1

C

C

A

; ð8Þ

where zi (1	 i	 ks) is drawn from the standard normal

distribution independent for different i, we obtain the

desired ðx1 . . . xksÞ.
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Gómez V, Kappen HJ, Kaltenbrunner A (2011) Modeling the

structure and evolution of discussion cascades. In: Proceedings

of the 22nd ACM conference on Hypertext and hypermedia (HT

’11). ACM Press, New York, pp 181–190
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