
Repopulating Street Scenes

Yifan Wang1∗ Andrew Liu2 Richard Tucker2 Jiajun Wu3

Brian L. Curless1,2 Steven M. Seitz1,2 Noah Snavely2

1University of Washington 2Google Research 3Stanford University

Abstract

We present a framework for automatically reconfiguring

images of street scenes by populating, depopulating, or re-

populating them with objects such as pedestrians or vehicles.

Applications of this method include anonymizing images to

enhance privacy, generating data augmentations for percep-

tion tasks like autonomous driving, and composing scenes to

achieve a certain ambiance, such as empty streets in the early

morning. At a technical level, our work has three primary

contributions: (1) a method for clearing images of objects,

(2) a method for estimating sun direction from a single image,

and (3) a way to compose objects in scenes that respects

scene geometry and illumination. Each component is learned

from data with minimal ground truth annotations, by making

creative use of large-numbers of short image bursts of street

scenes. We demonstrate convincing results on a range of

street scenes and illustrate potential applications.

1. Introduction

Websites such as Google Street View enable users to

explore places around the world through street-level im-

agery. These sites can provide a rich sense of what different

locales—neighborhoods, parks, tourist sites, etc—are really

like. However, the imagery provided by such sites also has

key limitations. A given image might be full of cars and

pedestrians, making it difficult to observe the environment.

Alternatively, a user might want to see how a scene appears at

a certain time of day, e.g., lunchtime, but only have access to

a morning image. And, importantly, the fact that the imagery

records real people and vehicles may require anonymization

efforts to protect privacy, e.g., by blurring faces and license

plates [10, 1] or by removing pedestrians from images by

leveraging multiple views [9].

We propose learning-based tools that mitigate these limi-

tations by removing objects from a scene and then repopu-

lating that scene with, for instance, anonymized images and

vehicles. Our method could thus be used to enhance privacy

∗This work was done while Yifan was an intern at Google.

of imagery, while also increase flexibility to compose new

scenarios (e.g., an empty street or lunchtime scene). These

capabilities could also be useful in other applications, such as

automatic generation of novel scene configurations as a way

to augment data for training autonomous driving—especially

emergency scenarios that might be rare in real data. In order

for such reconfigured images to look realistic, they must re-

spect the illumination and geometry of the underlying scene.

Our learning-based method takes such factors into account.

As shown in Fig. 1, our framework takes as input a single

street image, and can realistically remove all objects and

generate repopulated images. To remove objects, we use

nearby patches to inpaint not only the objects themselves,

but also the shadows they cast onto the scene. To repopulate

with new objects, our framework can automatically select

objects that match the lighting of the scene, and compose

them into the scene with proper scale, occlusion, and cast

shadows consistent with the scene’s geometry and lighting.

Our method consists of four main components:

1. a removal network that removes all existing objects

(cars, pedestrians, and bicycles) – along with their shad-

ows – from a street image and realistically fills the re-

sulting holes, rendering an empty version of the scene;

2. a sun estimation network that takes a street image, and

estimates a dominant lighting (sun) direction;

3. a method to compose the inserted object into the scene

with proper scale, occlusion based on its placement in

the scene; and

4. an insertion network that takes a segmented object, e.g.,

drawn from an anonymized collection, and inserts it

into a scene, generating a realistic shadow.

Our method yields realistic results that improve upon prior

work. In particular, unlike standard methods such as image

inpainting [27, 38, 39, 37], our approach can realistically

remove and render object shadows. Instead of learning to

cast shadows into one specific scene captured with a long

video sequence [35], our approach learns from short image

bursts, then generalizes to any single image of a street scene.

Our three networks are learned in a novel way that in-

volves observing large numbers of street scenes, with no
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Figure 1. Our reconfiguration pipeline has four major components: (1) a removal network that learns to remove existing objects and their

shadows, (2) a sun estimation network that learns to predict sun position from an image, (3) a method to scale and insert newly inserted

objects with correct occlusion ordering, and (4) an insertion network that learns to cast shadows. Given a street image, our method first

removes selected objects, then selects new object that matches the lighting of the scene, composes them with correct scale and occlusion

order into the background image, and synthesizes shadows for inserted objects.

manual annotations required. In particular, we leverage large

numbers of short timelapse image sequences gathered from

Google Street View. In these timelapses, objects such as

pedestrians, bicyclists, and cars are generally in motion, en-

abling us to estimate a ground truth “clean plate” image

devoid of moving objects (and their shadows) by comput-

ing a median image. Pairs of input and clean plate frames

thus give us ground truth images with and without objects,

which we use as the basis for training. We show that this

data, along with metadata such as camera pose and time of

day, are sufficient supervision for our task.

Our work is motivated by goals such as improving visu-

alizations of scenes and enhance image privacy. We demon-

strated two potential applications using our framework: (1)

emptying the city by removing all objects within an image

and (2) repopulating the scenes with anonymized people.

These applications are designed to enhance the privacy of

a street image while preserving the realism. However, any

deployment of our methods in a real-world setting would

need careful attention to responsible design decisions. Such

considerations could include clearly watermarking any user-

facing image that has been recomposed, and matching the

distribution of anonymized people composed into a scene to

the underlying demographics of that location.

2. Related Work

Our work is related to prior work on object removal,

object insertion, and lighting estimation.

Object removal. Prior work on object removal falls mainly

into two groups: (1) image inpainting methods and (2) meth-

ods for detecting and removing object shadows.

Recently, deep learning and GAN-based approaches have

emerged as a leading paradigm for image inpainting. Liu et

al. [27] inpaint irregular holes with partial convolutions that

are masked and re-normalized to be conditioned on valid

pixels. Gated convolutions [39] generalize such partial con-

volutions by providing a learnable dynamic feature selection

mechanism for each channel and at each spatial location.

Contextual attention [38, 37] allows for long-range spatial

dependencies, allowing pixels to be borrowed from distant

locations to fill missing regions. Shadows have different

forms, e.g., hard shadows, soft shadows, partially occluded

shadows, etc. Hole-filling based methods have trouble deter-

mining what pixels to inpaint in different shadow scenarios.

Deep learning methods have also been applied to shadow

removal. Qu et al. [30] extract features from multiple views

and aggregate them to recover shadow-free images. Wang

et al. [34] and Hu et al. [16] use GANs for shadow removal,

while recently Le et al. [22] proposed a two-network model

to learn shadow model parameters and shadow mattes. How-

ever, these methods only inpaint shadow regions. Realistic

object removal involves removing both the object and its

shadow, as handled by our method.

Other work has sought to remove pedestrians from street

scenes by leveraging multiple views [9]. In our case, we oper-

ate on just a single view, and can also recompose new people

into scenes. Finally, face replacement [4] has been consid-

ered for realism-preserving privacy enhancement tool [3].

Our work considers whole people, and not just faces.

Object insertion. Early methods for object insertion include

Poisson blending [29], which can produce seamless object

boundaries, but can also result in illumination and color mis-

matches between the object and the target scene. Lalonde

et al. proposed Photo Clip Art, which inserts new objects

into existing photographs by first querying a large dataset of

cutouts for compatible objects [21]. Other methods match

the color, brightness, and styles of inserted objects to har-

moniously embed them into background images [24, 2, 40].

However, a realistic insertion should also consider an ob-

ject’s effect on the background (including shadows).

Some methods insert a 3D object by rendering it into in

an image. Karsch et al. demonstrate convincing object inser-
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tions via inverse rendering models derived from geometric

inference [18] or via single-image depth reconstruction [19].

Other work renders inserted objects with estimated HDR

environment lighting maps [15, 14]. Chuang et al. synthe-

size shadows for inserted objects via a shadow displacement

map [7]. However, these approaches essentially require a full

3D model of either the inserted object or the scene. Liu et

al. [26] focus on single light source scenes containing hard

shadows, whereas our method can handle scenes with soft

shadows and spatially varying lighting. Recently, Wang et al.

[35] proposed a data-driven method that takes a long video

of a scene and learns to synthesize shadows for inserted

2D cutout objects. Our method learns from short bursts of

images, and can synthesize shadows for 2D cutouts given a

single image of a new scene at test time.

Lighting estimation. To capture illumination Debevec [8]

captures HDR environment maps via bracketed exposures of

a chrome ball. Subsequent methods [5, 11, 15, 20, 23, 33]

use machine learning to predict HDR environment maps

from single indoor or outdoor images. However, a single

environment map is insufficient for compositing cut-out ob-

jects into a large captured scene, because different lighting

effects will apply depending on, for instance, whether the

object is placed in a sunlit area or a shadowed one. In our

work, we do not explicitly estimate lighting for each scene,

but instead use a rendering network that implicitly learns to

generate shadows appropriate for the object location.

Outdoor illumination is primarily determined by the

sun position and the weather conditions. Recent works

[28, 15, 14, 25] use data-driven methods to estimate the

sun azimuth angle from a single outdoor image. Our work

follows this trend and estimates a full 2D sun angle. We find

that estimating the sun position aids in synthesizing plausible

shadows in different weather and lighting scenarios.

3. Approach

Given an image of a street scene, our goal is to recompose

the objects (e.g., cars and pedestrians) in the scene by first re-

moving the existing objects, and then optionally composing

one or more new objects into the scene. These stages must

respect the illumination in the scene—in particular, shadows

(both their removal and insertion) are critical elements that

are difficult to handle realistically in prior work.

Our automatic pipeline for addressing this problem has

four major components, as shown in Fig. 1: (1) a removal

network that learns to remove existing objects and their shad-

ows, (2) a lighting estimation network that learns to predict

sun position from an image, which helps identify compatible

objects for insertion and is used to create better insertion

composites, (3) a method to scale the inserted object properly

with correct occlusion order based on its placement in the

scene, and (4) an insertion network that learns to cast shad-

A short timelapse sequence of images Median image

Figure 2. Our dataset consists of short image bursts, i.e., short

timelapse sequences of images captured over several seconds. We

compute the median of each timelapse image stack to produce a

“clean plate” background image free of objects and shadows.

ows for newly inserted objects. Given a street image, we first

use Mask R-CNN [36] to segment existing people and cars,

then use that as a mask for the object removal stage. The

object removal network completely removes those objects

(and their shadows), yielding a background image. The sun

estimation network is used to select new objects that match

the scene’s lighting. Selected objects are then composed into

the background image with correct scale and occlusion order

to get a shadow-free composite. Finally, our insertion net-

work takes the shadow-free composite, synthesizes shadows,

and outputs the final composite.

3.1. Data

We train our networks in a novel way by using a dataset of

image bursts, i.e., short timelapse image sequences captured

over several seconds. As shown in Fig. 2, we compute the

median of each timelapse image stack to produce a “clean

plate” background image free of (moving) objects such as

people and their shadows. We also know location and time

of day for each timelapse, from which we derive the sun po-

sition. (We do not use weather data; the sun position is noted

regardless of cloud cover.) Images with and without moving

objects, and corresponding sun positions serve as ground

truth supervision for our object removal, sun prediction, and

object insertion networks. At test time, our pipeline takes

in a single street image and can remove and repopulate the

objects within. We now describe the four components of our

pipeline.

3.2. Removal Network

Object removal is a challenging task that involves gener-

ating new content in holes left by removed objects, such that

the new image is realistic and semantically correct. Given a

mask indicating the objects to be removed, standard inpaint-

ing methods [27, 38, 39, 37] only fill masked regions, leaving

behind shadows. Our goal is to remove both objects and their

shadows. We propose a deep network that, given an image

and an object mask, constructs a new mask that includes the

object and its shadow, then inpaints the region inside this

mask. Inspired by PatchMatch-based inpainting [12] and

appearance flow [32], our method predicts a flow map that

uses nearby patches’ features to inpaint the masked region.
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Figure 3. The generator of the removal network takes an input

image I and a class mask as input, and outputs an inpainting mask

Minp and an inpainting map Iinp. We synthesize the removal image

Iremove = Iinp ⊙Minp + I ⊙ (1−Minp).

Algorithm. Standard inpainting methods operate on an im-

age and a binary mask designating where to inpaint. In our

case, the network also automatically detects shadow regions

belonging to masked objects. Different objects have different

shadow shapes—for example, people can have long, thin,

complex shadows, while cars tend to have larger, simpler

shadows. Hence, rather than taking a binary mask, our net-

work receives an image and a class mask produced by Mask

R-CNN [36]. This class mask encodes the object category

of each pixel with distinct values normalized to [0, 1].
Fig. 3 shows the removal network architecture. We feed

the input image I and its class mask through four downsam-

pling layers followed by three different branches of residual

blocks. The first branch predicts a full inpainting mask Minp,

including the object and its shadow; the second predicts a

warping flow map Fwarp; and the third encodes the image as

a high-dimensional inpainting feature map Finp. The feature

map is then warped by the predicted flow map Fwarp and fed

into four upsampling layers to produce an inpainting image

Iinp. The final removal image is then computed as

Iremove = Iinp ⊙Minp + I ⊙ (1−Minp). (1)

The feature warping layer uses the high-dimensional fea-

tures of nearby patches to inpaint the missing area. We found

that street scenes often have highly repetitive structures—

building facades, fences, road markings, etc.—and the fea-

ture warping layer works well in these situations.

3.3. Sun Estimation Network

Lighting is key to realistic image composition. An object

lit from the left composed into a scene lit from the right will

likely look unrealistic. Many traditional lighting estimation

methods reconstruct an environment map [5, 11, 15, 20,

23, 33]. However, a single environment map is insufficient

for compositing objects into the scene, because different

lighting effects will apply depending on object placement,

e.g., whether the object is the shade or lit by the sun. In our

work, we do not explicitly estimate scene illumination, but

instead predict the sun position with a deep network and use

the result to help synthesize plausible shadows. Further, we

apply the same network to choose objects with similar sun

position to be inserted.

Algorithm. Rather than regressing an image to sun azimuth

and elevation, we treat this as a classification problem and

predict a distribution over discretized sun angles. We divide

the range of azimuth angles [0, 2π) into 32 bins and elevation

angles [0, π/2] into 16 bins. We use a network similar to

ResNet50 [13], replacing the last fully connected layer with

two, one for azimuth and one for elevation. We train this

network using ground truth sun positions as supervision via

a cross-entropy loss. In Fig. 1 and 4, we visualize estimated

sun position as a 2D distribution formed by the outer product

of azimuth and elevation distribution vectors.

3.4. Scene Geometry for Occlusion and Scale

When composed into a scene, a new object should be

scaled properly according to its 3D scene position, and

should have correct occlusion relationships with other scene

structures. To that end, we desire accurate depth estimates

for both the target scene and source object, and propose a

method to robustly estimate depth for the scene and object

jointly. Our method, unlike [43], also reasons about occlu-

sion ordering for inserted objects. Here we take people as

an example of inserted objects, but our method also works

on other objects, including cars, bikes, and buses. We make

three assumptions: (1) the sidewalk and road regions in the

image can be well-approximated by a single plane; (2) there

is at least one person present; and (3) people are roughly the

same height in 3D. If the second assumption is not met, the

user can manually adjust the height scale. The third assump-

tion, while not universally true, facilitates depth estimation

by treating individual height difference as Gaussian noise.

Algorithm. As described in [35] (Eq. 7), any object’s bottom

middle point (x, y) and height h follow a linear relationship:

a′x+ b′y + c′ = h (2)

Also under perspective projection, the object’s height h is up

to a scale factor k with its disparity 1/Z:

h = k ·
1

Z
(3)

Combining Eq. 2 and 3, we have a linear relation between

pixel coordinates and the disparity 1/Z:

a′x+ b′y + c′ =
1

Z
(4)

Given the input image, we first use DeepLab [6] to seg-

ment pixels belonging to sidewalk and road. We then use

MiDaS [31] to predict a depth map for the scene. MiDaS
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Figure 4. The generator of the insertion network takes as input a

shadow-free composite image Icomp, a class mask, an x-y grid

map, a depth map, and the predicted sun position distribution, and

outputs a scalar gain image G and color bias image B. Given the

shadow-free composite image Icomp, we synthesize the final image

Ifinal = G⊙ Icomp +B.

predicts the disparity map D̂ up to a global scale and shift.

Therefore, the linear relationship in Eq. 4 still holds. After

collecting all 2D road/sidewalk pixels (xi, yi) and their dis-

parities d̂i, we use least squares to solve for (a′, b′, c′) in

Eq. 4. Finally, we solve for the scale factor k in Eq. 3 using

existing objects and their observed 2D heights. If there is no

object in the scene, a user can manually set the scale factor.

When inserting a new object into the scene at 2D position

(x, y), we apply Eq. 4 and Eq. 3 to estimate its disparity

d and height h, and resize the inserted object accordingly.

We then resolve occlusion order by comparing the object’s

disparity d and the scene’s disparity D̂ from MiDaS. Pixels

with larger disparity than d are foreground and will occlude

the object, and pixels with smaller disparity than d will be

occluded by the object.

3.5. Insertion Network

Shadows are one of the most interesting and complex

ways in which objects interact with a scene. As with the

removal network, predicting shadows for inserted objects

is challenging, as their shapes and locations depend on sun

position, weather, and the shape of both the object casting

the shadow and the scene receiving it. Furthermore, unlike

other lighting effects, shadows are not always additive, as

a surface already in shadow does not darken further when

a second shadow is cast on it with respect to the same light

source. We propose to use observations of objects in the

scene along with the scene’s predicted geometry and lighting

to recover these shadowing effects, using a deep network to

learn how objects cast shadows depending on their shape

and scene placement. Unlike the work of Wang et al., which

is trained on a long video of a scene and can only insert

objects within that same scene [35], our method learns from

a database of short image bursts, and can then be applied to

a single, unseen image at test time.

Algorithm. Our insertion network takes as input a shadow-

free composite image Icomp (where the desired object is

simply copy-pasted into the scene). As with the removal

network, we consider that shadow effects vary significantly

across object categories, and we also provide the class mask

introduced in Sec. 3.2 as input. In addition, because shadows

depend on scene geometry and illumination, we use Mi-

DaS [31] to predict a depth map for the shadow-free image,

and feed this to the insertion network, along with the sun po-

sition distribution from the sun estimation network. Finally,

following [35], we feed a x-y grid map to the network to

help stabilize training. As shown in Fig. 4, Icomp, the class

mask, x-y grid map, and depth map are concatenated and

passed through four downsampling layers then five residual

blocks. The sun azimuth and elevation vectors are concate-

nated, passed through four MLP layers and fused into five

residual blocks via AdaIN [17]. Finally, following [35], two

different upsampling layers generate a scalar gain image G
and color bias image B. The final image is computed as

Ifinal = G⊙ Icomp +B. (5)

4. Evaluation

In this section, we introduce our collected datasets, then

evaluate our entire pipeline and its individual components.

4.1. Data

We collected short image bursts of street scenes from

Google Street View. These bursts are captured in major US

cities, and encompass a range of outdoor urban scenes includ-

ing streets, parks, and parking lots, under lighting conditions

ranging from clear to cloudy. In total, we collected 142, 778
image/background pairs for training and 16, 034 as a test

set. The test images are drawn from cities near the training

ones to ensure no overlap between training and test sets. We

center-crop all images to 512 × 512 with a field of view

of 75◦. To better evaluate performance, we also randomly

picked a small subset (∼150) of sunny images where objects

cast hard shadows, and a subset (∼180) of cloudy images

where objects cast subtle soft shadows from the test set.

4.2. Sun Estimation Network

We train our sun estimation network (Sec. 3.3) on the

training set with ground truth supervision. Ground truth sun

azimuth and elevation angles are calculated from each im-

age’s location, orientation, and timestamp using solar equa-

tions. Our network takes a street image and outputs two

vectors describing distributions of azimuth and elevation an-

gles. To compute a single pair of angles, we find the highest

probability bin from each vector, and use the bin center as

the estimated angle. We compare our sun estimation network

with [28, 14], adding a fully connected layer to their method

to predict the elevation angle. On average over the test set,

our azimuth prediction has an angular error of 35.71◦ vs.
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Figure 5. Object removal results on the test set. The traditional

inpainting method [37] only inpaints the area within the mask and

has leftover shadows. Our method removes objects completely

along with shadows. In addition, the inpainting method fails to

inpaint for large object (car in the second example).

50.17◦ [14] vs. 52.59◦ [28], and our elevation prediction has

an angular error of 9.79◦ vs. 13.02◦ [14] vs. 13.82◦ [28].

We further convert the sun angles to directions on the unit

sphere and compute the angle between predicted and ground

truth vectors, yielding an average error of 27.00◦. These

error rates are reasonably low, and of suitable accuracy for

applications like lighting matching and shadow prediction.

4.3. Removal Network

We trained our removal network (Sec. 3.2) on the training

set with median images as supervision for the object removed

images. And the supervision for inpainting masks is com-

puted by thresholding the color difference between median

images and original images. Fig. 5 shows example object

removal results on our test set using (1) the state-of-the-

art inpainting method CRA [37] (trained on Places2 [42]),

which only inpaints the mask area and (2) our method, which

also predicts an enlarged inpainting mask. Both networks

realistically inpaint the object region; however, CRA fails

to remove object shadows since they are not included in

the mask. Our network yields a complete object removal,

which overall is more realistic. We show quantitative results

using the LPIPS [41] error metric in Tab. 1. Both methods

achieve a lower error compared to the input image. Ours has

much lower LPIPS error than CRA on sunny days (where our

method benefits from removing hard shadows), and slightly

Method All Sunny Cloudy

Input 0.113 0.099 0.096

CRA [37] 0.107 0.090 0.083

Ours 0.104 0.079 0.080

Table 1. Object removal results on all test images, the sunny subset,

and the cloudy subset, measured in LPIPS [41]. Lower is better.

Method All Sunny Cloudy

Shadow-free composite 0.073 0.060 0.058

Shadow network 0.069 0.054 0.056

Ours (w/o x-y grid) 0.079 0.065 0.069

Ours (w/o sun position) 0.068 0.054 0.056

Ours (w/o depth map) 0.078 0.060 0.062

Ours 0.068 0.053 0.056

Table 2. Object insertion results on all test images, the sunny subset,

and the cloudy subset, measured in LPIPS [41]. Lower is better.

lower on cloudy days (where the shadows are more subtle).

As shown in Fig. 5, our method removes objects completely

and performs better in the task of object removal. We further

tried running CRA [37] using our thresholded inpainting

mask. This method gave an LPIPS score of 0.162 on the test

set (vs. ours at 0.104). CRA is not trained with our inpaint-

ing mask, thus cannot adapt errors in our mask estimation,

leading to artifacts in the final output.

4.4. Insertion Network

Our insertion network (Sec. 3.5) is trained to take shadow-

free composite images and render object shadows, using

original images as ground truth supervision. Fig. 6 shows ex-

ample results using (1) a baseline pix2pix-style method [35]

that takes a shadow-free image and an x-y grid; (2) an ab-

lative method that takes a shadow-free image, x-y grid and

depth map; (3) an ablative method that takes a shadow-free

image, x-y grid, and predicted sun position; and (4) our

method. All methods are trained on our training set. The pre-

dicted sun position helps the network produce shadows in the

right direction. The depth map and x-y grid stabilize train-

ing, preventing the network from overfitting and producing

broken or detached shadows. Quantitative results shown in

Tab. 2 suggest that our method has an advantage over other

models. On sunny days, our full model benefits from the

depth map, sun position and x-y grid, and outputs realistic,

detailed shadows. On cloudy days, our model synthesizes

subtle soft shadows, still performing the best overall.

5. Applications

In this section, we discuss potential applications of our

method to recomposing or repopulating single street images.

These applications are enabled by one or more of the compo-

nents of our pipeline. We also discuss ethical considerations

involved in such applications in Sec. 6.
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Figure 6. Object insertion results on the test set. Our method generates the most realistic shadows with details. The sun position input helps

the network to determine the shape of the shadow. The depth map prevents the network from synthesizing broken or detached shadows.

Object lighting matching. When repopulating scenes, se-

lecting objects with similar lighting as the scene is crucial

for realistic composition. Hence, we wish to compute the

sun position for both the source object and target scene.

Hence, we train two sun estimation networks (Sec. 3.3), one

for scenes and one for objects. The scene sun estimation

network takes the image I and predicts sun azimuth and

elevation vectors ascene, escene, while the object sun estima-

tion network pre-computes sun angle vectors aobj,i, eobj,i for

each object oi in the collection. The object oi that maximizes

ascene · aobj,i + escene · eobj,i is then selected as the object

that best matches the scene’s lighting.

Emptying the city. Mask R-CNN [36] can segment out

certain set of objects (people, cars, bikes, etc). Our removal

network then takes this mask, and synthesizes an image

without those objects along with their shadows. This enables

applications such as removing all people and cars in NYC or

LA. As demonstrated in Fig. 7, we use our removal network

to remove all the objects—people and cars—in the image,

giving users a different visualization of a city. Hence, it

can also enhance the privacy of the imagery. Our method

successfully removes all objects along with their shadows

from the given street image.

Privacy enhancement. While removing all the people in

the image enhances privacy, it decreases the liveliness of the

street scene as well. To that end, we built a collection of peo-

ple viewed from the back (or nearly the back) from licensed

imagery on Shutterstock. Our pipeline can populate scenes

with such people, thus enhancing privacy while retaining a

sense of liveliness within the scene.

As above, our method can remove whole categories of

objects to yield a background frame Iback. Then, we can

use our object lighting matching method to find a set of

best matching objects, then randomly place each object oi
on sidewalk and road regions in Iback via the segmentation

map in Sec. 3.4. Objects will be automatically resized and

occluded using the methods described in Sec. 3.4 to get the

shadow-free composition Icomp. Finally Icomp is passed to

the insertion network to synthesize the final composition

Ifinal. Fig. 8 shows results for repopulating street scenes. We

substitute the people in the scene with anonymized people,

thus enhancing privacy while preserving the realism of street

scenes. Note that our work focuses on lighting, and does not

attempt to match the camera viewpoint for inserted objects
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Input image OursClass mask

Figure 7. Qualitative results for removing all people and cars in a

street image. From left to right: the input image, the class mask for

objects to be removed, and the removal results generated by the

removal network. Our method removes objects completely.

as in [21] or compensate for differences in camera exposure,

white balance, etc. These are left as future work.

Other applications. We have also developed an interactive

scene reconfigurator that leverages the elements of our frame-

work. With this tool, a user can take a street image and

remove selected existing objects, or conversely, place new

objects in the scene. This tool can synthesize street images

that are rare in real life, e.g., people walking in the mid-

dle of a busy road, or cars driving on the sidewalk. These

synthesized scenes could be used for data augmentation for

autonomous driving to simulate dangerous situations.

6. Discussion and Ethical Considerations

In this paper, we introduced a fully automatic pipeline for

populating, depopulating, or repopulating street scenes. Our

pipeline consists of four major components: (1) a removal

network that can remove selected objects along with their

shadows; (2) a sun estimation network that predicts the sun

position from an image; (3) a method to scale and occlude

inserted objects properly; and (4) an insertion network that

synthesizes shadows for inserted objects. These components

are trained on short image bursts of street scenes, and can

run on a single street image at test time. Further, we show

multiple applications of our pipeline for depopulating and

repopulating street scenes.

While our work is motivated by goals like improving

visualizations of scenes and enhance image privacy, it is

Input image Repopulation resultsRemoval results

Figure 8. Qualitative results for repopulating street scenes. From

left to right: the input image, the background image after removing

all people, and repopulation results. Our pipeline selects people

matching the scene’s lighting, places them randomly on sidewalks

and roads, and synthesizes realistic shadows.

important to consider the broader impacts and ethical as-

pects of computer vision research, particular work related to

synthetic imagery. Potential harmful outcomes relating to re-

composing street scenes include (1) misuse in creating a false

narrative, such as a crowd or protest in a certain location, and

(2) misrepresenting a neighborhood by changing the demo-

graphics of people therein. In our case, some issues related to

synthetic media are mitigated by inherent limitations of our

method—for instance, our method can compose separated

people into scenes, and synthesize their shadows cast on the

ground, but would have trouble generating a dense crowd of

people where people would be shadowing each other. That

said, any deployment of our methods in a real-world setting

would need careful attention to responsible design decisions.

Such considerations could include clearly watermarking any

user-facing image that has been recomposed, and matching

the distribution of anonymized people composed into a scene

to the underlying demographics of that location. At the same

time, our work may lead to knowledge useful to counter-

abuse teams working on manipulated imagery and synthetic

media data methods.
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