
Current Biology 18, 1241–1248, August 26, 2008 ª2008 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2008.07.049

Report
Correlation between Genetic
and Geographic Structure in Europe
Oscar Lao,1,22 Timothy T. Lu,2,22 Michael Nothnagel,2

Olaf Junge,2 Sandra Freitag-Wolf,2 Amke Caliebe,2

Miroslava Balascakova,3 Jaume Bertranpetit,4

Laurence A. Bindoff,5 David Comas,4 Gunilla Holmlund,6

Anastasia Kouvatsi,7 Milan Macek,3 Isabelle Mollet,8

Walther Parson,9 Jukka Palo,10 Rafal Ploski,11

Antti Sajantila,10 Adriano Tagliabracci,12 Ulrik Gether,13

Thomas Werge,14 Fernando Rivadeneira,15,16

Albert Hofman,16 André G. Uitterlinden,15,16
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Summary

Understanding the genetic structure of the European popu-
lation is important, not only from a historical perspective,

but also for the appropriate design and interpretation of ge-
netic epidemiological studies. Previous population genetic

analyses with autosomal markers in Europe either had
a wide geographic but narrow genomic coverage [1, 2], or

vice versa [3–6]. We therefore investigated Affymetrix Gene-
Chip 500K genotype data from 2,514 individuals belonging

to 23 different subpopulations, widely spread over Europe.
Although we found only a low level of genetic differentiation

between subpopulations, the existing differences were char-
acterized by a strong continent-wide correlation between

geographic and genetic distance. Furthermore, mean het-

erozygosity was larger, and mean linkage disequilibrium
smaller, in southern as compared to northern Europe. Both

parameters clearly showed a clinal distribution that provided
evidence for a spatial continuity of genetic diversity in Eu-

rope. Our comprehensive genetic data are thus compatible
with expectations based upon European population history,

including the hypotheses of a south-north expansion and/or
a larger effective population size in southern than in north-

ern Europe. By including the widely used CEPH from Utah
(CEU) samples into our analysis, we could show that these

individuals represent northern and western Europeans
reasonably well, thereby confirming their assumed regional

ancestry.

Results and Discussion

According to current theory, the autosomal gene pool of extant
human populations in Europe lacks sharp discontinuities [1, 2],
with the exception of known isolates such as the Finns [6, 7].
For classical genetic markers including, for example, erythro-
cyte antigens, changes in population genetic structure have
been observed to follow a predominantly southeast-northwest
gradient [1, 2], thereby apparently matching the Pleistocene
settlement of Europe, the Neolithic expansion from the Fertile
Crescent, and (at least in part) the postglacial resettlement of
Europe during the Mesolithic. Such gradient was also observed
with particular haplogroups derived from the nonrecombining
part of the Y chromosome (NRY), but other NRY data revealed
additional population structure in Europe that has been associ-
ated with various demographic events in prehistoric, historic,
and modern times [8–10]. In contrast, the European mitochon-
drial DNA pool has been found to be rather homogeneous [11].
Here, we investigated the genetic structure of the European
population by using 309,790 single-nucleotide polymorphisms
(SNPs) in 2,457 individuals, ascertained at 23 sampling sites
(henceforth referred to as ‘‘subpopulations’’) in 20 different Eu-
ropean countries. The data emerged from the genotyping of
2,514 European samples with the GeneChip Human Mapping
500K Array, followed by stringent quality control (see Table 1
and Experimental Procedures for details) and represent the
largest Europe-wide genetic study to date.

First, we quantified the amount of information that each SNP
could potentially provide about an individual’s subpopulation
affiliation by using the ancestry informativeness index In (Fig-
ure S1 available online) [12]. The maximum In value (0.09) was
observed for rs6730157 in the RAB3GAP1 gene located about
68 kb away from the Lactase (LCT) gene. Furthermore, nine of
the 20 (45%) most ancestry-informative SNPs, and 17 of the
top 100 (Table S1), were from the LCT region and previously
showed signatures of a selective sweep in CEU (Centre d’Etude
du Polymorphism Humain from Utah) samples [13]. The aver-
age In across markers was 0.0064 (standard deviation:
0.0032), which represents only 0.93% of the maximum possible
In of 0.69 in our study. (Note that this maximum would be at-
tained if a SNP was fixed for one allele in 12 subpopulations
and for the other allele in the remaining 11 subpopulations).

Second, we performed a principal-component analysis
(PCA) in which the first two PCs were found to account
for 31.6% and 17.3%, respectively, of the total variation, an
amount similar to that reported in previous studies [1, 5]. In
our study, the first two PCs revealed a SNP-based grouping
of European subpopulations that was strongly reminiscent of
the geographic map of Europe (Figure 1; Figure S2). The first
PC aligned subpopulations according to latitude, with the
two Italian subpopulations at one end and the Finnish subpop-
ulation at the other. The second PC tended to separate sub-
populations more according to longitude, with the Finnish
subpopulation showing the largest values and the Irish and
UK subpopulations showing the lowest values. The apparent
geographic footing of the two PCs received additional support
from an observed statistically significant positive correlation
(Pearson r2 = 0.632, two-tailed p < 10215) between the genetic
distance (Euclidian distance between the median first two
eigenvectors of the PCA) and the geographic (great-circle)
distance between the analyzed subpopulations.

Third, we searched for genetic barriers [14] in our dataset by
using the same genetic and geographic distance matrices.
This analysis identified two statistically significant barriers
for the 23 subpopulations. One barrier was observed between
the Finnish and all other subpopulations (first PC considering
FI against the rest: r2 = 0.074, two-tailed p < 10215; second
PC considering FI against the rest: r2 = 0.33, two-tailed p <
10215) and the other one between the two Italian and all other
subpopulations (first PC considering IT1 and IT2 against the

Table 1. European Subpopulation Summary Statistics

Subpopulation Code

Total No.

Samples

Final No.

Samples*

Sex Ratio

(M:F)

Norway (Førde) NO 52 52 1.74

Sweden (Uppsala) SE 50 46 all male

Finland (Helsinki) FI 47 47 0.74

Ireland IE 37 35 4.29

UK (London) UK 197 194 8.85

Denmark (Copenhagen) DK 60 59 1.22

Netherlands (Rotterdam) NL 292 280 all female

Germany I (Kiel) DE1 500 494 1.08

Germany II (Augsburg) DE2 500 489 1.02

Austria (Tyrol) AT 50 50 all male

Switzerland (Lausanne) CH 134 133 0.81

France (Lyon) FR 50 50 2.13

Portugal PT 16 16 0.78

Spain I ES1 83 81 1.02

Spain II (Barcelona) ES2 48 47 0.71

Italy I IT1 107 106 1.38

Italy II (Marches) IT2 50 49 all male

Former Yugoslavia YU 58 55 1.90

Northern Greece EL 51 51 1.43

Hungary HU 17 17 0.54

Romania RO 12 12 1.00

Poland (Warsaw) PO 50 49 all male

Czech Republic (Prague) CZ 53 45 0.96

Total 2,514 2,457

Total number of samples, final number of samples after data cleaning, and

the sex ratio (male:female) of the final sample data set for each subpopula-

tion. * is after stringent quality control.
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Figure 1. SNP-Based PCA of 2,457 European Individuals from 23 Subpopulations

(A) Kernel density plot of the first two dimensions of a SNP-based PCA using those 309,790 SNPs from the GeneChip Human Mapping 500K Array Set

(Affymetrix) that passed quality control.

(B) Geographic distribution of the 23 subpopulations; capitals were used as the respective landmark if location information was either unspecific or lacking

(see Table 1 for further sample details).
rest: r2 = 0.37, two-tailed p < 10215; second PC considering IT1
and IT2 against the rest: r2 = 0.014, two-tailed p = 2.31 3 1029).

Fourth, we studied the geographic distribution of genetic di-
versity by computing mean heterozygosity and mean linkage
disequilibrium (LD) based upon HR2 [15] between markers
at a distance < 10 kb for each subpopulation. Results from
both analyses showed that the genetic diversity tended to be
larger, and the LD smaller, in southern Europe as compared
to northern Europe (Figure 2). Moreover, both analyses
supported a genetic gradient of south-north orientation (r2

adjusted for the number of data points between the mean ob-
served heterozygosity and latitude: 0.76, p = 3.80 3 1028; ad-
justed r2 between HR2 and latitude: 0.71, two-tailed p = 4.33 3
1027) but not of west-east orientation (adjusted r2 between
heterozygosity and longitude: 0.03, two-tailed p = 0.416;
adjusted r2 between HR2 and longitude: 0.099, two-tailed p =
0.078). Spatial autocorrelation analysis of both variables re-
vealed statistically significant (p < 0.05) patterns compatible
with a clinal distribution as indicated by the presence of posi-
tive and statistically significant autocorrelation values for small
pair-wise distances and negative and statistically significant
Moran’s I values for large distances (see Figure 2). Bearing
analysis [16] revealed for the heterozygosity measure the
maximal angular correlations (r = 0.69) at 87� and the minimal
(r = 20.153) at 165�, as well as for HR2 the maximal at 55�

(r = 0.67) and the minimal (r = 20.167) at 160�, thus also
suggesting a south-to-north spatial distribution of both vari-
able. These results are compatible with larger effective popu-
lation sizes in the south than in the north of Europe and/or a
population expansion from southern toward northern Europe.
Hierarchical analysis of molecular variance (AMOVA) [17]
revealed that clustering the individuals according to four geo-
graphic groups—north (NO, SE, FI), north-west/central (IE, UK,
DK, NL, DE1, DE2, AT, CH, FR), east (HU, RO, PO, CZ), and
south (PT, ES1, ES2, IT1, IT2, YU, EL)—explained an average
of 0.17% (95% coefficient interval: 0.0% to 0.91%) of the total
genetic variance, whereas individual subpopulation affiliation
explained 0.25% (95% coefficient interval: 0.0% to 1.25%).

Overall, our study showed that the autosomal gene pool in
Europe is comparatively homogeneous but at the same time
revealed that the small genetic differentiation that is present
between subpopulations is characterized by a significant
correlation between genetic and geographic distance. Further-
more, the qualitative nature of these results is in close agree-
ment with expectations based on human migration history in
Europe. The major prehistoric waves of human migration in
Europe followed south and southeastern to north and north-
western directions [1], including the first Paleolithic settlement
of the continent by anatomically modern humans [18], most of
the postglacial resettlement during the Mesolithic [19], and the
farming-related population expansion during the Neolithic [18,
20]. Thus, both the level and the change in neutral autosomal
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Figure 2. Geographic Distribution of Two Measures of Genetic Diversity across the European Population

(A and B) Isoline map (A) of Europe based on the mean observed heterozygosity in each of 23 European subpopulations with (B) corresponding spatial

autocorrelogram.

(C and D) Isoline map (C) of Europe based on the mean observed linkage disequilibrium based on HR2 in each of 23 European subpopulations with (D)

corresponding spatial autocorrelogram. Both spatial autocorrelograms showed statistically significant departures from randomness (p < 0.05). For each

distance class, the number of subpopulation pairs included and the statistical significance (*, p < 0.05; **, p < 0.01; ***, p < 0.001) are provided.
variation in Europe can be expected to roughly follow southern-
to-northern gradients as we observed, with the possible ex-
ception of population isolates as observed for the Finns. On
the other hand, migration events in more recent (i.e., historic)
times are presumed to have had a more homogenizing effect
upon the previously established genetic landscape, as a result
of their sporadic nature and haphazard geographic orientation
[2]. This implies that genetic differences between extant Euro-
pean subpopulations can be expected to be small indeed.
The genetic landscape described by the w300,000 autosomal
SNPs analyzed here closely resembles that previously ob-
tained with 128 alleles from 49 classical markers (see Table
1.3.1 in [1]). This similarity is highlighted by a significant corre-
lation (r = 0.516; two-tailed Mantel test p = 0.0042, performed
with 10,000 Monte Carlo permutations) between the pair-wise
FST values [21] computed for the 19 European subpopulations
that overlapped between the two datasets (Danish, Dutch,
Yugoslavian, Hungarian, Irish, Italian, Portuguese, Spanish,
Swiss, English, German, Austrian, Finnish, French, Greek, Nor-
wegian, Polish, Swedish, and Czechoslovakian). This notwith-
standing, a stronger correlation between FST and great-circle
geographic distances was observed for the subpopulations
when the SNPs from our study were used (r = 0.661; two-tailed
Mantel test p = 0.00010, performed with 10,000 Monte Carlo
permutations) as compared to the classical markers (r =
0.503, two-tailed Mantel test p = 0.00020, performed with
10,000 Monte Carlo permutations).

Previous studies based on genome-wide SNP diversity
reported differences between individuals of southern and
northern/central European ancestry [3, 5, 6] and, to a lesser ex-
tent, between those of eastern and western European ancestry
[3], which were not confirmed in our study. They mostly relied
on the analysis of European Americans whose geographic as-
signment was determined from self-reported family records.
Although genetic studies using European Americans can re-
veal important information about the genetic structure of the
European ancestry of European Americans, caution must be
exercised when drawing conclusions about the current ge-
netic structure of Europe from European Americans because
(1) European migrants may not have been representative of
their country of origin, (2) the temporal difference introduced
by sampling second- or third-generation descendants means
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that allele-frequency estimates inevitably ignored recent
population movements (i.e., WWII-related migrations), and (3)
self-reported geographic origin is error prone [22]. Our study
avoided these potential pitfalls by using large samples of indi-
viduals of genuinely European origin, as evidenced by the doc-
umentation of their respective place of birth or residence being
in one of the named subpopulations, and with comprehensive
continent-wide coverage.

It is of general interest to place the CEU samples, widely
used in genetic epidemiological and population genetic stud-
ies as representing the European population, into the context
of our findings. The CEPH-CEU panel comprises U.S. Ameri-
cans who were collected in Utah in 1980 and who are assumed
to have descended from migrants originating from northern
and western parts of Europe [23]. The samples were also
included in the International HapMap Project and formed the
basis of selecting tagging SNPs used in current genome-
wide association studies with Illumina SNP arrays. Whereas
a previous study [3] confirmed the grouping of the CEPH-
CEU samples with other northern and western European sub-
populations, our study was capable of providing their most
precise positioning on the European genetic map (Figure 3).
It turned out that, while the CEPH-CEU panel was indeed
largely representative of northwestern and central Europeans,
parts of Scandinavia as well as southern and eastern Europe
were not well represented by these samples (Figure 3).
Estimated inflated false-positive rates for all subpopulations
were largest in the Finns, followed by the two Italian subpopu-
lations (see Table S2). This implies that researchers conduct-
ing genetic-association studies in at least these regions, using
the CEPH-CEU samples as controls, may be at increased risk
of false-positive associations. Our confirmation of the regional
European origin of the CEPH-CEU samples also indicates that
inferring the geographic origin of an unknown person from au-
tosomal DNA markers, which is highly relevant in the forensic

Figure 3. Position of CEPH-CEU Samples in a SNP-

Based PCA Kernel-Density Plot of 23 European

Subpopulations

CEU individuals (U.S. Americans of European

descent from Utah) are plotted as open circles. For

details, see Figure 1 and Table 1.

context, might now be feasible down to
the level of European subregions, at least
when a large number of genetic markers
and a reference database, such as are
applied here, are used.

Conclusions

Our comprehensive SNP genotype data
from 23 European subpopulations, provid-
ing a dense coverage at both the geo-
graphic and genomic level and represent-
ing the largest Europe-wide genetic study
to date, allowed us to describe the genetic
structure of the European population with
the highest resolution. Although the amount
of differentiation within the European auto-
somal gene pool was found to be small, the
existing genetic differences nevertheless
correlated well with geographic distances.
Furthermore, mean heterozygosity was

larger, and mean linkage disequilibrium smaller, in southern
than in northern European subpopulations, and both parame-
ters exhibited a continuous clinal distribution across Europe.
Overall, our results were compatible with expectations based
on European population history, mainly the prehistoric popula-
tion expansion from southern to northern Europe and/or a
larger effective population size in the south as compared to
the north of Europe. Our dataset also allowed placement of
the widely used CEPH-CEU samples onto the European ge-
netic landscape, essentially confirming their genetic ancestry
in northern and western Europe.

Experimental Procedures

Samples and Genotyping

The GeneChip Human Mapping 500K Array Set (Affymetrix) was used to ge-

notype 500,568 SNPs in 2,514 individuals from 23 different sampling sites

(henceforth termed ‘‘subpopulations’’) located in one of 20 different Euro-

pean countries. Genotyping according to the instructions provided by

the manufacturer was carried out at one of seven specialized centers: the

Cologne Center for Genomics at the University of Cologne (Germany) for

DE1, NO, SE, FI, AT, FR, ES2, IT2, EL, PO, and CZ; the Helmholtz Zentrum

München - German Research Center for Environmental Health for DE2;

the genetics laboratory of the Department of Internal Medicine, Erasmus

MC (Netherlands) for NL; and the RH Microarray Centre Rigshospitalet, Co-

penhagen University Hospital (Denmark) for DK (see Table 1 for abbreviation

explanations). Samples from the GlaxoSmithKline-sponsored POPRES pro-

ject (IE, UK, CH, PT, ES1, IT1, YU, HU, and RO) were genotyped at Expres-

sion Analysis (Durham, NC, USA) and at Gene Logic (Gaithersburg, MD,

USA) (see Table 1 for abbreviation explanations). Some samples belonged

to existing control population studies, with detailed descriptions available

elsewhere: KORA [24] for DE2, PopGen [25] for DE1, the Rotterdam Study

[26–28] for NL, and POPRES (drawn from the LOLIPOP and CoLaus studies)

for IE, UK, CH, PT, ES1, IT1, YU, HU, and RO [29–31]. Samples were drawn

randomly from these pools or, in the case of POPRES, were ascertained on

the basis of sample-size requirements. European migrants from non-Euro-

pean regions were not included in the initial analysis. For 11 of the subpop-

ulations (NO, SE, FI, AT, FR, ES2, IT2, EL, PO, CZ, and DK), samples were
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obtained from healthy unrelated volunteers: Norwegian samples (NO) from

blood donors of the Førde region, Swedish samples (SE) from the Uppsala

region [32], Finnish samples (FI) from the Helsinki area with parents and

grandparents originating from various regions in Finland, Austrian samples

(AT) from the Tyrol region with parents originating from Tyrol, French sam-

ples (FR) from blood donors of Lyon with parents originating from the Rhône

Alpes area, Spanish samples (ES2) from Catalonia of blood donors from

rural areas who speak Catalan as their mother tongue and who had regional

Catalan ancestry for at least two generations [33], Italian samples (IT2) from

blood donors of the upland of the Marches region [34], Greek samples (EL)

from the north of the country [35], Polish samples (PO) from the Warsaw re-

gion of central Poland [36], Czech samples (CZ) from the central Bohemian

region in and around Prague, and Danish samples (DK) from the Danish

Blood Donor Corps in the Copenhagen area. In addition, GeneChip Human

Mapping 500K Array data from CEPH-CEU samples were retrieved from the

Affymetrix website (http://www.affymetrix.com).

Quality Assessment and Control Procedure

Array-based SNP genotypes were subjected to stringent quality control:

First, each individual was required to have a genotype call rate R 93%,

with the dynamic model (DM) algorithm with a confidence score of 0.26,

and a per-individual call rate R 95% for all individuals genotyped by the

same facility, with the Bayesian robust linear model with Mahalanobis dis-

tance classifier (BRLMM) algorithm with a confidence score of 0.5. The

call rate was defined here as the proportion of unambiguous genotypes

among either all SNPs (per-individual call rate) or all individuals (per-marker

call rate), respectively. Markers that were monomorphic (1.4% of the total),

that were located on the X chromosome (2.1%), or that had a per-marker call

rate % 90% in at least one genotyping facility (5.7%) were excluded, as were

those showing a significant (p % 0.05) deviation from Hardy-Weinberg equi-

librium (HWE) in at least one subpopulation (31.3%). HWE was tested by

means of a c2 test, or by Fisher’s exact test when the observed or expected

number of a given genotype was less than 5. This method was preferred

over others that have been shown to be more powerful [37] because the

computational requirements of these methods increase exponentially with

sample size and were thus too resource intensive for our study. The average

proportion of heterozygous genotypes at X chromosomal markers was

estimated per individual in order to detect false gender assignments. Male

subjects can be expected to show X chromosomal heterozygosity propor-

tions % 1%, reflecting the overall genotyping error rate, and female subjects

should show proportions near the average heterozygosity (26%) of the

analyzed X chromosomal SNPs. Average identity-by-state (IBS) distances

were calculated for a given set of markers as the average genetic dissimilar-

ity between pairs of individuals. Analysis of IBS values within subpopula-

tions allowed us to detect two types of outliers: (1) cognate relatives, i.e.,

individuals that were genetically more similar than expected to another

member of the same subpopulation, and (2) ‘‘aliens,’’ i.e., individuals that

were far less genetically similar than expected to the rest of the subpopula-

tion. Formally, cognate relatives were defined as pairs of individuals having

a pair-wise IBS value larger than the so-called ‘‘Tukey outlier criterion’’ when

compared with the rest of pairs of individuals of the same subpopulation,

i.e., the median IBS plus three times the interquartile range (IQR) in that sub-

population. In this case, the partner with the lower call rate was excluded.

Aliens were defined as individuals with at least 60% of their pair-wise IBS

values below the median minus three times the IQR. These two criteria led

to the exclusion of 56 individuals from further analysis (Table 1). One individ-

ual identified as female had an average proportion of heterozygous X chro-

mosomal markers of only 0.6% and was thus excluded from further analysis.

In total, quality control left 2,457 individuals (97.6%) and 309,790 markers

(62.4%) for inclusion in subsequent analysis. AMOVA [17] was performed

to ascertain the magnitude of variation attributable to the respective geno-

typing center or subpopulation. The mean amount of genetic variance

explained among genotyping centers was 0.095% (95% confidence interval:

0% to 0.71%), whereas subpopulation affiliation explained 0.63% of the

variance (95% confidence interval: 0% to 2.86%). As expected, the largest

amount of genetic variation was explained by differences between individ-

uals (99.72%; 95% confidence interval: 98.61% to 100.00%). Data are

available on request from the authors according to the regulations of the

participating studies and sample cohorts.

Statistical Data Analyses

The ancestry-informativeness index In was estimated for each marker as

described eslewhere [12]. Principal-component analysis was performed

with the Eigensoft program with the default settings [38]. Population-wise
kernel densities were computed from the first two PCs with the adehabitat

R package [39] and subjected to least-squares crossvalidation [40] that

used 80% of individuals per subpopulation for training. Pearson correlation

coefficients were computed for the genetic distance between the subpop-

ulations (represented by the respective median over all individuals in that

subpopulation of the first two eigenvectors) and the great-circle geographic

distance. The statistical significance of these correlation coefficients was

assessed by means of a Mantel test [41]. Barrier analysis was performed

on the basis of the Monmonier’s algorithm [14]. Locus-wise AMOVA [17]

was conducted after clustering the European subpopulations by genotyp-

ing center as well as by the use of four geographic groups. Negative per-

centages of explained variation were settled to 0. Both mean heterozygosity

and mean linkage disequilibrium computed by means of HR2 [15] were com-

puted with a subsample of ten individuals per population in order to adjust

for possible influence of sample size [42]. Spatial autocorrelation and Bear-

ing analyses were performed with the software PASSAGE 1.1 [43]. Isoline

maps were performed with the Golden Surfer 8 software [44], with the in-

verse-distance method used for interpolation points. Isoline levels were

defined to include the value of at least one of the 23 populations with inter-

vals of 0.001 in the case of heterozygosity and 0.002 in the case of HR2. For

evaluation of the extent to which the CEPH-CEU samples are representative

of the subpopulations used in the present study, marker-wise tests of asso-

ciation (Fisher’s exact test) were performed each time with the CEPH-CEU

samples as ‘‘controls’’ and a given subpopulation as ‘‘cases.’’ The false-

positive rate was defined as the percentage of markers yielding a p value

< 0.05. If the CEPH-CEU samples were representative of a subpopulation,

the false-positive rate would be around 0.05, whereas higher false-positive

rates indicate that the CEPH-CEU samples may not be representative of the

respective subpopulation.

Supplemental Data

Supplemental Data include two tables and two figures and can be found

with this article online at http://www.current-biology.com/cgi/content/full/

18/16/1241/DC1/.
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