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Summary

Structural MRI allows unparalleled in vivo study of the

anatomy of the developing human brain. For more than two

decades [1], MRI research has revealed many new aspects

of this multifaceted maturation process, significantly aug-

menting scientific knowledge gathered from postmortem

studies. Postnatal brain development is notably protracted

and involves considerable changes in cerebral cortical

[2–4], subcortical [5], and cerebellar [6, 7] structures, as

well as significant architectural changes in white matter

fiber tracts [8–11] (see [12]). Although much work has de-

scribed isolated features of neuroanatomical development,

it remains a critical challenge to characterize the

multidimensional nature of brain anatomy, capturing

different phases of development among individuals. Capital-

izing on key advances in multisite, multimodal MRI, and

using cross-validated nonlinear modeling, we demonstrate

that developmental brain phase can be assessed with much

greater precision than has been possible using other bio-

logical measures, accounting for more than 92% of the vari-

ance in age. Further, our composite metric of morphology,

diffusivity, and signal intensity shows that the average

difference in phase among children of the same age is only

about 1 year, revealing for the first time a latent phenotype

in the human brain for which maturation timing is tightly

controlled.

Results

In order tomeasure andmodel individual differences in biolog-

ical brain maturity, we employed several new advances that

provide the ability to integrate data from across different

imaging modalities and from across different sites and scan-

ners. We used a standardized, multimodal structural MRI

protocol implemented at nine different institutions on 12

different scanners made by three different manufacturers.

Data were collected in a deliberately diverse sample of 885

typically developing individuals between 3 and 20 years old

(see Table S1 and Supplemental Information available online).

The human research protections programs and institutional

review boards at the universities participating in this study

approved all experimental and consenting procedures. Our

acquisition protocol included new techniques for crossmodal

nonlinear image registration [13], scanner-specific distortion

corrections [14], and adjustments for other site and scanner

effects through the application of multisite correction offsets.

Fully automated postprocessing algorithms, including atlas-

based white matter tractography [15], were then used to

produce a brain-wide set of anatomical biomarkers. Two

hundred thirty one structural brain features known or sus-

pected to change over the ages studied here were measured

in every individual. This collection of variables was derived

from T1-, T2-, and diffusion-weighted imaging and included

quantitative measures of brain morphology, signal intensity,

and water diffusivity within different tissue types, reflecting

anatomical structural organization. Specifically, we measured

cortical thickness and area, volumes of segmented subcortical

structures, normalized signal intensities, and measures of

diffusion magnitude and directionality within cerebral, cere-

bellar, and white matter fiber tract regions of interest (see

Supplemental Information for a complete list of measures).

Individual Brain Measures

Individual neuroanatomical measures varied greatly in the

degree to which they changed with age, in the ages at which

they matured, and in their individual differences variability,

showing increases, decreases, or nonmonotonic changes

(Figure 1). For example, mean cortical thickness decreased

almost linearly with age andmatured relatively late, continuing

to decline through age 20. In contrast, total cortical area

increased until the age of 12.3 years and then declined
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somewhat but showed comparatively high and constant vari-

ability by age. Hippocampal volume increased until the age

of 14.2 before slightly decreasing. Volume of the thalamus

showed smaller individual differences variability at younger

ages and, though peaking at age 17.8, essentially continued

in a plateau to age 20.

Cerebral, cerebellar, and white matter tract diffusivity and

signal intensity measures also varied greatly in their develop-

mental profiles (Figure 2). For example, apparent diffusion

coefficient (ADC), a measure of the overall magnitude of water

diffusion, decreased steadily to age 20 in right superior longi-

tudinal fasciculus (SLF). This fiber tract connects posterior

brain regions to anterior brain regions. ADC in corpus callosum

fibers, on the other hand, declined, reached a nadir at age 16.3,

and then slightly increased, showing a different developmental

trajectory for fibers connecting the two cerebral hemispheres.

T2-normalized signal intensity, associated with myelin content

and white matter integrity [16, 17], decreased in the left unci-

nate fasciculus and showed somewhat decreasing variability

with age. This tract connects portions of the limbic system to

the frontal lobes. Fractional anisotropy (FA), reflecting the

directionality of water movement within tissue, showed age-

related increases in the left caudate nucleus, where there

was a slight acceleration at about age 14.

Composite Developmental Phase Metric

Our standardized, fully integrated multimodal acquisition and

analysis approach allowed us to combine all of the individual

biomarkers into a brain-wide, multidimensional model of

human structural brain development. In order to capitalize on

eachmeasure’s idiosyncratic contribution to capturing biolog-

ical changes across age and to test the degree to which

a combination of these measures assesses the overall phase

of individual brain development, we employed a cross-vali-

dated multivariate fitting procedure. Using a multivariate

distance measure and leave-one-out cross-validation, we

determined the age that provides the best fit for each subject

by comparing measures for that subject to smooth, nonlinear

age trajectories (of the mean and covariance) derived from

all other individuals (see Supplemental Information for details).

This method was chosen in order to empirically calculate the

degree of multicollinearity among the predictor variables, to

remove redundant variance through rotation, orthogonaliza-

tion, and normalization, and to guard stringently against over-

fitting. Including 231 variables derived from multiple imaging

modalities, the resulting neuroanatomical model accounted

for over 92%of the individual differences variability in develop-

mental brain phase as defined by chronological age (Rho =

0.961, R-squared = 0.923; Figure 3). This model had a mean

prediction error across all ages of just 1.03 years and was

most accurate in predicting brain maturity at the youngest

ages we studied, where annualized neuroanatomical changes

are greatest in most measures.

In order to compare the separate contributions of the

different imaging modalities—and thus types of biological

change—to brain maturity, we then divided the multimodal

Figure 1. Individual Measures Derived from the T1-Weighted Imaging

Protocol

Example measures derived from the segmentation of the T1-weighted

volume are plotted for 885 subjects as a function of age: total cortical

area in square millimeters by thousands, mean cortical thickness in millime-

ters, volume of the left hippocampus in cubic millimeters by thousands, and

volume of the right thalamus in cubic millimeters by thousands. Colors

correspond to different sites and scanners. Symbol size represents subject

sex (larger = female, smaller = male). A spline-fit curve (solid line) with 5%

and 95% prediction intervals (dashed lines) are also shown.

Figure 2. Individual Measures Derived from the T2- and Diffusion-Weighted

Imaging Protocols

Example measures derived from the T2- and diffusion-weighted protocols

are plotted for 885 subjects as a function of age: T2-normalized (T2N) signal

intensity of left uncinate fibers; apparent diffusion coefficient (ADC) of the

corpus callosum; ADC of the right superior longitudinal fasciculus (SLF);

and fractional anisotropy (FA) of the left caudate nucleus. Colors corre-

spond to different sites and scanners. Symbol size represents subject sex

(larger = female, smaller = male). A spline-fit curve (solid line) with 5% and

95% prediction intervals (dashed lines) are also shown.
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model into three mutually exclusive subsets of measures

derived from either the T1-, diffusion-, or T2-weighted scans.

The T1 subset model, comprised of 45 measures of cortical

area and thickness and subcortical structure volumes, ac-

counted for 83% of the individual differences variability in

age (Rho = 0.910, R-squared = 0.828) and showed an average

prediction error of 1.71 years across all ages we studied. The

diffusion model, made up of the 124 measures of diffusivity

(FA, ADC) in subcortical structures and white matter tracts,

captured 81% of the variance in age (Rho = 0.898, R-squared =

0.806) and also had a mean prediction error of 1.71 years. The

T2 model, comprised of 62 signal intensity measures within

subcortical regions of interest (ROIs) and white matter tracts,

accounted for 83% of the variance across the full age range

(Rho = 0.910, R-squared = 0.828, mean error = 1.60 years;

see figures in Supplemental Information).

Despite similar predictive power for the full age range, the

age-varying contributions of different imaging modalities to

the composite model varied widely across measure type and

within different neuroanatomical structures (Figure 4). At the

youngest ages, from about 3 to 11 years old, measures of T2

signal intensity within subcortical ROIs were by far the

strongest predictors of developmental phase, declining in

importance through the early teens. Diffusion measures within

white matter fiber tracts, in comparison, were consistently

strong predictors across the age range, becoming the highest

contributor during the middle ages of about 12 to 15.

T1-derived morphological measures varied, with cortical

thickness and subcortical volumes contributing more than

cortical area, which was consistently the weakest predictor

over age. Interestingly, diffusivity measures within subcortical

ROIs increased sharply at about age 14 andwere the strongest

maturational predictors at the oldest ages, from about 17 to 20

years old.

Discussion

In developing a composite neuroanatomical metric of bio-

logical maturity, we sought to address several fundamental

questions about the multidimensional nature of human brain

development—questions that could not easily be answered

using conventional methods looking at individual brain char-

acteristics in isolation. First, can a combination of noninvasive

brain biomarkers accurately assess the dynamically changing

phases of brain development from early childhood into young

adulthood, and to what degree of precision? Inherently, devel-

opmentalists have been interested in the timing aspects of

unfolding biological changes, so chronological age has been

a key anchor by which many have sought to characterize

biological maturity. Conventional medical approaches for as-

sessing biological maturity in childhood and adolescence

have focused on the study of somatic growth (e.g., height,

weight, body build) [18], dental age [19], skeletal age [20],

and hormonal and secondary sexual characteristics [21].

Although clinically informative for placing individuals with

regard to age-referenced norms, the high interindividual vari-

ability and subjectivity of thesemeasuresmake themof limited

use in predicting age or of conveying much about a child’s

complex biological development. Other recent biological

approaches to age prediction have used DNA methylation

[22], which explained 73% of the variability in age from 18 to

70 years old, and resting state fMRI data [23], which accounted

for 55%of the variance between the ages of 7 and 30. Because

functional and structural imaging methods would be expected

to capture different types of individual differences variability,

it might be useful to combine neuroanatomical biomarkers

with dynamic physiological measures, such as from functional

Figure 3. Multimodal Quantitative Anatomical Prediction of Age

For 885 individuals, estimated brain age is plotted as a function of actual

chronological age. Colors correspond to different sites and scanners.

Symbol size represents subject sex (larger = female, smaller = male). A

spline-fit curve (solid line) with 5% and 95% prediction intervals (dashed

lines) is also shown.

Figure 4. Age-Varying Contributions of Different Imaging Measures to the

Prediction of Age

The relative contributions of separate morphological, diffusivity, and signal

intensity measures within different brain structures are plotted as a function

of age. Colors correspond to measure and structure type (dark blue, T1

cortical area; green, T1 cortical thickness; red, T1 subcortical volumes; light

blue, diffusion (FA/ADC) within white matter tracts; dark pink, diffusion (FA/

ADC) within subcortical ROIs; gold, T2 signal intensity within white matter

tracts; black, T2 signal intensity within subcortical ROIs). Contributions

are computed as units of the proportion of total explained variance.
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MRI, electroencephalography (EEG), or magnetoencephalog-

raphy (MEG). The degree to which these imaging and

recording techniques can be combined to model brain devel-

opment, or to predict cognitive and behavioral functioning,

remain open empirical questions.

Second, which types of neuroanatomical measures are

most powerful for capturing developmental changes across

these ages? Separate models of morphology, diffusivity,

and signal intensity accounted for similarly high amounts of

variance across the full age range at 83%, 81%, and 83%

respectively. It is notable that even without any information

about the size (i.e., area, thickness, volume) of growing brain

structures, maturational phase across a relatively broad

developmental span is still captured about equally well using

only knowledge about the changing tissue properties.

Currently, there is widespread interest in the development

of brain connectivity and the belief that protracted white

matter changes underpin some of the latest-maturing human

cognitive abilities [24, 25]. Our results show that composite

diffusivity and signal intensity measures provide a useful

index of maturation derived directly from measures of the

brain’s connections themselves (i.e., white matter fiber

tracts). Future studies will need to determine whether and

how these measures relate specifically to the brain’s changing

profile of connectedness.

On a related note, do the relative contributions of these

different biological measures to explaining individual differ-

ences change with age and, if so, how? A direct comparison

of the age-varying contributions of the measures, broken

down further by different types of neuroanatomical structures,

shows a complex, dynamic cascade of changes with different

features dominating at different points along the develop-

mental trajectory. It is interesting that measures of T2 signal

intensity within subcortical ROIs, not within major cerebral

white matter tracts, have the highest phase prediction power

up until the age of about 11. Inspection of the individual

biomarkers reveals that signal intensity specifically within

bilateral pallidum accounts for a large proportion of this overall

effect, consistent with a known developmental iron accumula-

tion phenomenon within the basal ganglia [26]. In comparison,

diffusion magnitude and directionality within fiber tracts were

strong predictors more consistently across the entire age

range. Although these measures are commonly collected in

child imaging studies and would likely be expected to be

useful in predicting maturity, it is informative to see their

collective contribution compared directly with other measures

and modalities across this age span. As with any biomarker,

we surmised that a T1-derived morphological measure that

has small individual differences dispersion relative to its annu-

alized change, such as mean cortical thickness, would be

better at distinguishing developmental phase than a measure

with relatively large variability and little relative change, such

as total cortical area. Comparing the individual scatterplot

for area with its age-varying contribution, one can see that

the measure’s usefulness to prediction becomes zero at

exactly the age it asymptotes. Although researchers

commonly look at FA and ADC (or mean diffusivity) within

major fiber tracts, fewer have published diffusion data within

subcortical cerebral and cerebellar gray and white matter.

For this reason, it is particularly interesting that the predictive

strength of diffusivity measures within subcortical ROIs

increased sharply at about age 14 and was the strongest

developmental predictor from about 17 to 20 years old. The

specific contributions of individual measures within this set

of variables should be further characterized because of their

apparently important role in development specifically at older

ages.

A critical developmental question and a point of great spec-

ulation among scientists, educators, and parents is this: To

what extent do children of the same age differ among each

other in their degree of biological maturity? This issue is of

fundamental importance to our understanding of human

development and is especially relevant to the development

of the brain because it underpins all of cognition and behavior.

In explaining more than 92% of the variance in age, the multi-

modal neuroanatomical approach shows an as yet unrivaled

ability to capture different phases of biological maturity and,

as a result, reveals for the first time a latent brain phenotype

for which the maturational timing is tightly controlled. Across

the first two decades of postnatal development, there is on

average only about 1 year (1.03 years) of difference in this

composite metric of neuroanatomical maturity among individ-

uals of the same age, and this difference gradually increases

from preschool age into young adulthood. Among 3-year-old

children, there is only about 8 months (0.66 years) difference

on average in this developmental phase metric. At age 12,

this difference is just under 1 year (0.95 years), and at age 20

it is only about 1 year and 5months (1.42 years). It is interesting

and somewhat surprising that the multimodal metric captures

somuch of the individual differences variance and across such

a wide developmental range. This demonstrates that, despite

marked variability among children across a wide variety of iso-

lated brain measures, there are aspects of brain development

for which the multidimensional biological phase is remarkably

controlled, and its timing is more closely tied to chronological

age than was previously known. It should be made clear that

these results do not refute the fact that same-aged children

exhibit great variability in their psychological functioning,

such as in their cognitive, behavioral, social, and academic

abilities. Brain scans, though informative about anatomical

and physiological states, cannot be used to make inferences

about an individual’s psychological maturity. Rather, these

results speak only to the degree to which typically developing

children differ among each other in their fundamental struc-

tural brain properties. Nevertheless, this finding is compelling

because it addresses a longstanding scientific question by

establishing the existence of a highly homochronous neuroan-

atomical phenotype.

Looking further at the developmental metric, although the

composite differences are generally small at a given age, there

are some individuals for whom maturational brain phase is

notably over- or underpredicted for their chronological age.

For example, the multimodal scatter plot shows a 15-and-a-

half year-old girl with a predicted brain age of 10, as well as

a 7-year-old boy with a maturity metric of about 11.3 years.

Are these children developmentally delayed or precocious in

any other way that we can identify? Because we recruited an

intentionally diverse group of subjects (see Supplemental

Information), our sample likely includes a relatively wide range

of individual differences in brain structure, with many intrinsic

and extrinsic contributing factors. In exploring and developing

this approach further, we will carefully examine all of the indi-

viduals who are atypical according to this developmental

phase metric, looking for systematic cognitive, behavioral,

medical history, and genetic differences. MRI research to

date has begun to reveal the structural brain correlates of

many common neurodevelopmental disorders, including

autism [27], attention disorders [28, 29], and language [30]
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and reading [31] disorders. Perhaps further development of

techniques to quantify the complex multidimensional nature

of typical brain maturation can also help to improve the early

identification of individuals with abnormal developmental

trajectories. Our findings suggest that a multimodal neuroana-

tomical imaging assessment may hold promise for making an

objective, quantitative contribution to our clinical evaluations

of brain development.

One limitation of the multidimensional approach is that the

models can be difficult to understand in terms of the original

measures if they become too complex. For example, an

unwieldy number of predictor variables or the use of data

reduction techniques such as factor analysismaymake results

less easily interpretable. For this reason, we used regulariza-

tion without any abstracted factor transformation such as

independent components analysis or machine learning. It

can also be helpful to test the separate elements of the model

in several ways, as we have done, so as to clarify the relative

contributions of different types of measures to the overall bio-

logical maturity metric.

In conclusion, our study shows that noninvasive, imaging-

based biomarkers can be used to assess different phases of

human brain maturity, producing a highly precise biological

metric of an individual’s age. Measures of brain morphology,

diffusivity, and signal intensity show varying contributions

to the prediction of developmental phase at different ages,

reflecting a dynamic cascade of biological changes within

different tissue types. Perhaps most interestingly, our findings

precisely quantify themultidimensional variability that exists in

human neuroanatomical growth, revealing for the first time

a latent brain phenotype that is tightly linked to chronological

age. According to this composite measure, over the first two

decades of postnatal development, individuals of the same

age show an average phase difference of only about 1 year.

This collection of multimodal, multisite imaging advances

now makes it possible for researchers across institutions to

establish large-scale, shared databases that can be explored

with unprecedented power in order to address critical scien-

tific and clinical questions about human brain health and

disease.

Supplemental Information

Supplemental Information includes four figures, two tables, and Supple-

mental Experimental Procedures and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2012.07.002.
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