

Politecnico di Torino
Dip. di Automatica e Informatica

C.so Duca degli Abruzzi 24

I-10129 Torino TO

Italy

 Politecnico di Torino - all rights reserved rev. 43 - 30/11/2001 15.01

COTEST/D1

Report on benchmark identification and
planning of experiments to be performed

Matteo Sonza Reorda, Massimo Violante Gert Jervan, Zebo Peng
Politecnico di Torino

Dipartimento di Automatica e Informatica
Torino, Italy

Linköpings Universitet
IDA/SaS/ESLAB

Linköping, Sweden

Contact person:

Matteo Sonza Reorda
Dipartimento di Automatica e Informatica
Politecnico di Torino
C.so Duca degli Abruzzi, 24
I-10129 Torino TO
Italy

Tel. +39 011 564 7055
Fax. +39 011 564 7099
E-mail: sonza@polito.it

Report on benchmark identification and planning of experiments to be performed Page i

COTEST/D1 Abstract

 Politecnico di Torino - all rights reserved rev. 43 - 30/11/2001 15.01

Abstract

The document describes the benchmarks we have identified as test cases to be used during
the COTEST project. Being the project focused both on the high-level generation of suitable
test/validation vectors and on the high-level insertion of design for testability structures, we
identified benchmarks of different characteristics and complexity. The document also outlines
the experiments that we intend to perform during the project.

Related documents

COTEST Technical Annex

Report on benchmark identification and planning of experiments to be performed Page ii

COTEST/D1 Table of Contents

 Politecnico di Torino - all rights reserved rev. 43 - 30/11/2001 15.01

Table of Contents

1. Introduction .. 1
1.1. High-level vector generation... 1
1.2.High-level design for testability structure insertion................................... 1

2. High-level vector generation.. 2
2.1. Control-dominated application.. 2
2.2. Data-dominated application .. 3
2.3. Reference design flow... 5

3.High-level design for testability insertion... 6
3.1. The F4/F5 model ... 7
3.2. Planned experiments ... 8

Report on benchmark identification and planning of experiments to be performed Page 1

COTEST/D1 Introduction

 Politecnico di Torino - all rights reserved rev. 43 - 30/11/2001 15.01

1. Introduction

This report descibes a set of suitable test cases to be used for validating on meaningful
examples the methodology developed during the process.

Being the project focused on two complementary aspects of test at the high level (vector
generation and DfT strucures insertion), we developed two different classes of benchmarks.

The guidelines we followed during the benchmark selection process are outlined in the
following sub-sections. Moreover, for each of the selected benchmarks, we also describe the
experiments we intend to perform during the project, as well as the figures we intend to
measure in order to quantify the effectiveness of the techniques developed during the project.

1.1. High-level vector generation

As far as the high-level test vectors generation is concerned, we selected two benchmarks,
one representative for the class of data-dominated systems and one for that of control-
dominated systems. The common denominator of these systems is the relatively small size in
terms of lines of code describing the models, but the high complexity both in terms of circuit
architecture and sequential depth. On the one hand, the limited size of the benchmarks
simplifies the task of analyzing their structure in order to extract meaningful information for
vector generation. On the other hand, the architectural and sequential complexity make vector
generation non-trivial, and thus provides a suitable test bench for the algorithms developed
during the COTEST project.

The two benchmarks we identified are described in section 2.

1.2. High-level design for testability structure insertion

As far as the high-level design for testability (DfT) structure insertion is concerned, we
need to identify a benchmark whose high complexity justifies the adoption of design for
testability structures. Moreover, the following criteria should be met:

• The system should be heterogeneous, thus comprising a wide set of modules requiring
different DfT solutions. Such a kind of system allows validating the effectiveness of
different DfT solutions, as well as the possibility of validating the coexistence in the
same system of heterogeneous DfT solutions.

• The system should allow applying to each module several DfT solutions. By analyzing
the effectiveness of each DfT solution on a single module and by relating their
effectiveness with the overhead they introduce, the designer can gain a picture of the
effectiveness of the DfT solutions developed during the project as well as a good
understanding of the overhead their requires. Possible results of this analysis are trade-
off curves relating DfT effectiveness with resource overhead.

• The system should allow the implementation of alternative system-wide DfT schemes,
in order to reason about DfT effectiveness and resource overhead at the system level.

Report on benchmark identification and planning of experiments to be performed Page 2

COTEST/D1 High-level vector generation

 Politecnico di Torino - all rights reserved rev. 43 - 30/11/2001 15.01

The benchmark we identified accordingly to the aforementioned guidelines is described in
section 3.

2. High-level vector generation

The purpose of this section is to describe the selected benchmarks and the design flow that
is used in our experiments. According to the previously described guidelines, we selected one
benchmark for the class of data-dominated applications (which is described in sub-section
2.1), and one for that of control-dominated applications (which is described in sub-section
2.2). The limited size of the selected benchmarks in terms of number of lines of code is
motivated by the fact that, during the assessment phase, most of the techniques developed
during the project will be applied by hand.

2.1. Control-dominated application

As an example of control-dominated applications we adopted a behavioral description of
the well-known Traffic Light Controller (TLC) benchmark coming from the HLSynth´91
benchmark suite.

The TLC benchmark, whose interface is described in Figure 1, is described as a Finite Sate
Machine (FSM) composed of 5 states and 9 state transitions and amounts to about 80 lines of
behavioral-level VHDL code. As our experience confirms, this model closely matches the
building blocks of more complex systems, where several small FSMs communicate. It is
indeed common in designing complex control machines to partition them in simpler sub-
machines, each one in charge of one atomic task, i.e., a task than cannot be further partitioned
in simpler tasks.

TimeOutL

TimeOutS

Cars

Reset

1

1

1

1

HighWay

FarmRoad 3

3

Figure 1: The TLC benchmark interface

Furthermore, the TLC benchmark is modeled according to a description style which
closely resembles that used in describing the aforementioned atomic tasks: the FSM has an
initialization state in charge of managing the set-up of the machine and then few additional
states describes the FSM reactive behavior. The state transition graph of this kind of machine
is usually loosely connected: few transitions are allowed among all the possible ones, and
state transitions occur only upon the reception of external events. The state transition graph of
the TLC benchmark is depicted in Figure 2; for the sake of simplicity, we do not report the
input events producing transitions between states and the output values the FSM produces.

Report on benchmark identification and planning of experiments to be performed Page 3

COTEST/D1 High-level vector generation

 Politecnico di Torino - all rights reserved rev. 43 - 30/11/2001 15.01

A
B

C

DE

Figure 2: The TLC state transition graph

The experiments we intend to perform on the TLC benchmark are the following:

• Synthesis: alternative implementations of the benchmark will be designed, by tuning
the following parameters:

− FSM description style: Moore and Mealy implementations of the FSM will be
considered.

− FMS state encoding: several state encoding will be considered during the synthesis
process, namely one-hot encoding, minimal encoding and Gray encoding.

• Gate-level ATPG: alternative gate-level implementations will be analyzed in terms of
testability by means of a gate-level ATPG. These experiments are intended in order to
measure the fault coverage a traditional gate-level ATPG is able to attain as well as the
test length in terms of number of vectors the gate-level ATPG computes, and CPU
time for test vectors generation.

• Behavioral-level ATPG: the algorithms devised during the project will be applied in
order to compute test vectors by reasoning on the benchmark behavior, only. The test
vectors obtained during each experiment will then be evaluated by measuring the fault
coverage they attain when applied to the aforementioned alternative implementations
of the benchmark.

2.2. Data-dominated application

As an example of data-dominated application we adopted a biquadratic filter (BIQUAD)
with programmable parameters and input synchronization.

The behavioral description of the BIQUAD benchmark amounts to about 100 lines of
behavioral level VHDL code and exploits 5 fixed-point multiplication operators and 4 fixed-
point sum operators, plus a number of assignment and shift operators.

The block diagram of the benchmark, as well as its interface, is depicted in Figure 3.

Report on benchmark identification and planning of experiments to be performed Page 4

COTEST/D1 High-level vector generation

 Politecnico di Torino - all rights reserved rev. 43 - 30/11/2001 15.01

Input sampling
stage

Data manipulation
stage

Output
stage

8

16 1

Data in

Data out Data ready

Start 1 1 Reset

Figure 3: Block diagram of the BIQUAD benchmark

Two aspects of the BIQUAD benchmark are worth of being highlighted:

• Input samples and parameter values are to be provided to the model according to a
given synchronization scheme. Any functional vector generation algorithm should
thus be able to match this synchronization scheme in order to gain full control over the
module behavior. By exploiting information gathered during the analysis of the high-
level model of the benchmark behavior we can simplify the task of understanding the
synchronization mechanism. We can thus save processing time that is likely to be lost
in case this analysis is performed while at the gate level.

• Due to the high number of operators the model exploits and to its synchronization
mechanism, several synthesis options are available. By tuning the level of resource
sharing allowed by the synthesis algorithm, different implementations of the given
behavior are possible. Moreover, the adoption of different sized pipelines increases the
range of possible implementation strategies. These alternatives pose a challenging
question about the effectiveness of the vectors generated while at the high-level, where
only the behavior is known, and few details on the model implementation are
available.

The experiments we intend to perform on the BIQUAD benchmark are the following:

• Synthesis: alternative implementations of the benchmark will be designed, by tuning
the following parameters:

− Resource sharing: the behavioral-level synthesis tool will be constrained in adopting
different levels of resource sharing, thus obtaining different implementations which
trade off circuit area with number of control states.

− Pipelining: different levels of pipelining will be considered, ranging from no
pipelining to N-stage pipelining. The value of N will depend on the adopted level of
resource sharing and number of control states.

Report on benchmark identification and planning of experiments to be performed Page 5

COTEST/D1 High-level vector generation

 Politecnico di Torino - all rights reserved rev. 43 - 30/11/2001 15.01

• Gate-level ATPG: as in the previous case, the alternative gate-level implementations
will be analyzed by means of a gate-level ATPG. The attained fault coverage, the test
length and CPU time for test vectors generation will be measured.

• Behavioral-level ATPG: the algorithms devised during the project will be exploited in
order to compute test vectors by reasoning on the benchmark behavior, only. The test
vectors obtained during this experiment will then be evaluated by measuring the fault
coverage they attain when applied to the aforementioned alternative implementations
of the benchmark.

2.3. Experimental flow

The flow to be adopted during the experiments is shown in Figure 4.

Behavioral
description

Behavioral
Compiler

Circuit
netlist

testgen

Test
vectors

faultsim

Fault
Coverage

High-level
ATPG

High-level
analyzer

Behavioral
information

Test
vectors

Fault
Coverage

Figure 4: The experimental flow

On the left-hand of Figure 4, the traditional approach to test vector generation is reported.
Starting from a behavioral description of the circuit, the Behavioral Compiler tool by
Synopsys will be used to generate a netlist implementing the desired behavior. Then, the
Synopsys gate-level ATPG (testgen) will be used to compute a set of test vectors. Finally, the
Synopsys fault simulator (faultsim) will be used to evaluate the attained fault coverage.

On the right-hand of Figure 4, the behavioral-level test generation process analyzed by the
COTEST project is reported. The process is based on two modules:

• High-level analyzer: it analyzes the behavioral description of the circuit and derives
useful information that will be exploited by the high-level ATPG. Examples of the
information it provides are the state transition diagram of the behavioral circuit

Report on benchmark identification and planning of experiments to be performed Page 6

COTEST/D1 High-level design for testability insertion

 Politecnico di Torino - all rights reserved rev. 43 - 30/11/2001 15.01

description, and the latency of the input/output stages of the model. Additional
information provided by the user can be exploited, e.g., the latency of the model in
terms of number of stages composing the pipeline that the designer intends to use in
the gate-level circuit implementation.

• High-level ATPG: it generates test vectors starting from the behavioral-level model of
the circuit and the information the high-level analyzer provides. In order to
successfully develop an effective test generation tool two key issues have to be
addressed:

− High-level fault model: it is the one adopted by the test vector generation algorithm
and it has to be both suitable for application on the behavioral-level model of the
circuit and representative of actual faults affecting the gate-level circuit
implementation.

− Test generation algorithm: it is the algorithm used for derive test vectors. In order
to prove the feasibility of high-level test generation is has to provide test vectors
attaining the highest fault coverage as far as the high-level fault model is
considered.

At the bottom of Figure 4 the approach we intend to adopt for assessing the effectiveness
of the high-level test generation approach is reported. The test vectors coming from the two
ATPGs, the gate-level and the high-level ones, are fault simulated by means of the same tool.
The two obtained fault coverage figures are comparable, since generated by the same tool
working on the same circuit and by using the same fault list. Therefore, by using the fault
coverage attained by the gate-level tool as a reference, we can evaluate the effectiveness of
the high-level generated vectors.

3. High-level design for testability insertion

The purpose of this section is to describe the selected benchmark and the experiments we
intend to perform on it. As it was described in Section 1, the benchmark design should be
heterogeneous and relatively complex to justify the adoption of DfT structures and to
evaluate the effectiveness of different DfT solutions.

Report on benchmark identification and planning of experiments to be performed Page 7

COTEST/D1 High-level design for testability insertion

 Politecnico di Torino - all rights reserved rev. 43 - 30/11/2001 15.01

3.1. The F4/F5 model

In order to provide a benchmark to be used during the high-level DfT insertion and
evaluation, we developed a model of the F4/F5 block of the ATM protocol, covering the
block functionality as specified by standard references. The model consists of several
processes, each implementing a relatively independent part of the block functionality. The
model handles multiple Virtual Paths (VPs) and Virtual Channel (VC) connections passing
through the block. The management of ATM cells depends on the current “status” of the
virtual path or virtual channels, and thus local tables are used for recording the global state of
the block.

One of the basic ideas with ATM is that all signaling will be sent on the same physical
carriers as the user data. To handle this there is a need for special units, which introduce and
extract this information in the nodes of the network. The F4/F5 block covers the Operation
and Maintenance (OAM) functionality of the ATM switches.

The name of the F4/F5 block refers to the levels of OAM functionality that the block
covers. The F4 level handles the OAM functionality concerning virtual paths and the F5 level
handles the OAM functionality concerning virtual channels. The levels F1 to F3 handle OAM
functionality at the physical layer of the protocol. The structure of the F4/F5 model is
depicted in Figure 5.

InputHandler:
Detection and analy-
sis of OAM cells.

Internal table

FMCellGenerator:
Generation of new
FM OAM cells.

Internal table

Timer

Signal from
Management
System

Signal to
Management
System

Signal from
Physical
Layer

Input1 Input2

ATM cell flow

Signal

Output1 Output2

Process handling
 output cells

Signal for
Reporting

Process handling
 output cells

Figure 5: The structure of the F4/F5 model

The F4/F5 block has the following main functionalities:

Report on benchmark identification and planning of experiments to be performed Page 8

COTEST/D1 High-level design for testability insertion

 Politecnico di Torino - all rights reserved rev. 43 - 30/11/2001 15.01

• Fault management: when the appearance of a fault is reported to the F4/F5 block,
special OAM cells will be generated and sent on all affected connections; if the fault
persists, the management system should be notified.

• Performance monitoring: normal functioning of the network is monitored by
continuous or periodic checking of the transmission of cells.

• Fault localization: when a fault occurs it might be necessary to localize it further. For
this purpose special loop-back OAM cells are used.

• Activation/deactivation: a special protocol for activation and deactivation of OAM
functions that require active participation of several F4/F5 blocks, e.g., performance
monitoring, has to be implemented.

An F4/F5 block is present on each physical link connected to the ATM switch. Since all
connections are bi-directional, the F4/F5 block has two inputs and two outputs.

The ATM benchmark is composed of 4 synchronized finite state machines whose behavior
is described in VHDL language. Communication among the modules composing the system
is implemented by resorting to two alternative solutions: by using signals or by using send
and receive primitives. The former approach is open to a simpler implementation of the
benchmark, while the second one allows easily evaluating different communication solutions.
The model amounts to about 1,300 lines of code.

Although the model is complex, it is composed of relatively independent parts. Such a
model allows us to extract smaller parts of the system for initial analysis without falling into
the complexity trap. At the latter stage of the project we will possibly be able to analyse the
applicability of our methods to more complex systems by using the complete design.

3.2. Planned experiments

The experimental work we intend to perform will focus on modifications of system
descriptions to support design for testability techniques at the system level. The first and the
most important task is to find a suitable way to describe DfT structures at the system level.
To perform this task we intend to isolate one or several modules in the benchmark design and
to identify hard to test parts in them by using high-level vector generation approach. During
the next stage we will apply DfT modifications to the initial specification and evaluate the
effectiveness of the final solution (in terms of required area, time and fault coverage
improvement). For evaluation purposes we eventually have to synthesise the design to the
gate-level and to apply classical gate-level ATPG/DfT tools to demonstrate the improvement
in the gate-level fault coverage or reduction in the ATPG/DfT tool CPU time.

As it is described in chapter 2.3 for the high-level vector generation, the reference design
flow for WP 3 also contains two parts (see Figure 6). On the left side there is a traditional
design flow consisting of high-level and logic synthesis tools and DfT modifications at the
gate-level. The right side of the design flow is similar, but different in case of high-level DfT
insertions. It starts from DfT modifications at the high-level. After appropriate synthesis steps
the DfT modifications on a gate-level can be applied again. The objective of the project is to
evaluate whether that the new design flow, where the DfT modifications were introduced at
the high-level is able to reduce the gate-level DfT effort and hardware overhead as well as
test time (and/or size of test patterns).

Report on benchmark identification and planning of experiments to be performed Page 9

COTEST/D1 High-level design for testability insertion

 Politecnico di Torino - all rights reserved rev. 43 - 30/11/2001 15.01

Behavioral
description

Behavioral
Compiler

Circuit
netlist

DfT Insertion

Test
vectors

faultsim

Fault
Coverage

High-level
DfT Insertion

High-level
analyzer

Behavioral
information

Test
vectors

Fault
Coverage

Figure 6: The experimental flow

