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Abstract 

The document describes the benchmarks we have identified as test cases to be used during 
the COTEST project. Being the project focused both on the high-level generation of suitable 
test/validation vectors and on the high-level insertion of design for testability structures, we 
identified benchmarks of different characteristics and complexity. The document also outlines 
the experiments that we intend to perform during the project. 
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1. Introduction 

This report descibes a set of suitable test cases to be used for validating on meaningful 
examples the methodology developed during the process. 

Being the project focused on two complementary aspects of test at the high level (vector 
generation and DfT strucures insertion), we developed two different classes of benchmarks.  

The guidelines we followed during the benchmark selection process are outlined in the 
following sub-sections. Moreover, for each of the selected benchmarks, we also describe the 
experiments we intend to perform during the project, as well as the figures we intend to 
measure in order to quantify the effectiveness of the techniques developed during the project. 

1.1. High-level vector generation 

As far as the high-level test vectors generation is concerned, we selected two benchmarks, 
one representative for the class of data-dominated systems and one for that of control-
dominated systems. The common denominator of these systems is the relatively small size in 
terms of lines of code describing the models, but the high complexity both in terms of circuit 
architecture and sequential depth. On the one hand, the limited size of the benchmarks 
simplifies the task of analyzing their structure in order to extract meaningful information for 
vector generation. On the other hand, the architectural and sequential complexity make vector 
generation non-trivial, and thus provides a suitable test bench for the algorithms developed 
during the COTEST project. 

The two benchmarks we identified are described in section 2. 

1.2. High-level design for testability structure insertion 

As far as the high-level design for testability (DfT) structure insertion is concerned, we 
need to identify a benchmark whose high complexity justifies the adoption of design for 
testability structures. Moreover, the following criteria should be met: 

• The system should be heterogeneous, thus comprising a wide set of modules requiring 
different DfT solutions. Such a kind of system allows validating the effectiveness of 
different DfT solutions, as well as the possibility of validating the coexistence in the 
same system of heterogeneous DfT solutions. 

• The system should allow applying to each module several DfT solutions. By analyzing 
the effectiveness of each DfT solution on a single module and by relating their 
effectiveness with the overhead they introduce, the designer can gain a picture of the 
effectiveness of the DfT solutions developed during the project as well as a good 
understanding of the overhead their requires. Possible results of this analysis are trade-
off curves relating DfT effectiveness with resource overhead. 

• The system should allow the implementation of alternative system-wide DfT schemes, 
in order to reason about DfT effectiveness and resource overhead at the system level. 
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The benchmark we identified accordingly to the aforementioned guidelines is described in 
section 3. 

2. High-level vector generation 

The purpose of this section is to describe the selected benchmarks and the design flow that 
is used in our experiments. According to the previously described guidelines, we selected one 
benchmark for the class of data-dominated applications (which is described in sub-section 
2.1), and one for that of control-dominated applications (which is described in sub-section 
2.2). The limited size of the selected benchmarks in terms of number of lines of code is 
motivated by the fact that, during the assessment phase, most of the techniques developed 
during the project will be applied by hand.  

2.1. Control-dominated application 

As an example of control-dominated applications we adopted a behavioral description of 
the well-known Traffic Light Controller (TLC) benchmark coming from the HLSynth´91 
benchmark suite.  

The TLC benchmark, whose interface is described in Figure 1, is described as a Finite Sate 
Machine (FSM) composed of 5 states and 9 state transitions and amounts to about 80 lines of 
behavioral-level VHDL code. As our experience confirms, this model closely matches the 
building blocks of more complex systems, where several small FSMs communicate. It is 
indeed common in designing complex control machines to partition them in simpler sub-
machines, each one in charge of one atomic task, i.e., a task than cannot be further partitioned 
in simpler tasks.  
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Figure 1: The TLC benchmark interface 

Furthermore, the TLC benchmark is modeled according to a description style which 
closely resembles that used in describing the aforementioned atomic tasks: the FSM has an 
initialization state in charge of managing the set-up of the machine and then few additional 
states describes the FSM reactive behavior. The state transition graph of this kind of machine 
is usually loosely connected: few transitions are allowed among all the possible ones, and 
state transitions occur only upon the reception of external events. The state transition graph of 
the TLC benchmark is depicted in Figure 2; for the sake of simplicity, we do not report the 
input events producing transitions between states and the output values the FSM produces. 
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Figure 2: The TLC state transition graph 

The experiments we intend to perform on the TLC benchmark are the following: 

• Synthesis: alternative implementations of the benchmark will be designed, by tuning 
the following parameters: 

− FSM description style: Moore and Mealy implementations of the FSM will be 
considered. 

− FMS state encoding: several state encoding will be considered during the synthesis 
process, namely one-hot encoding, minimal encoding and Gray encoding. 

• Gate-level ATPG: alternative gate-level implementations will be analyzed in terms of 
testability by means of a gate-level ATPG. These experiments are intended in order to 
measure the fault coverage a traditional gate-level ATPG is able to attain as well as the 
test length in terms of number of vectors the gate-level ATPG computes, and CPU 
time for test vectors generation. 

• Behavioral-level ATPG: the algorithms devised during the project will be applied in 
order to compute test vectors by reasoning on the benchmark behavior, only. The test 
vectors obtained during each experiment will then be evaluated by measuring the fault 
coverage they attain when applied to the aforementioned alternative implementations 
of the benchmark.  

2.2. Data-dominated application 

As an example of data-dominated application we adopted a biquadratic filter (BIQUAD) 
with programmable parameters and input synchronization. 

The behavioral description of the BIQUAD benchmark amounts to about 100 lines of 
behavioral level VHDL code and exploits 5 fixed-point multiplication operators and 4 fixed-
point sum operators, plus a number of assignment and shift operators. 

The block diagram of the benchmark, as well as its interface, is depicted in Figure 3. 
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Figure 3: Block diagram of the BIQUAD benchmark 

Two aspects of the BIQUAD benchmark are worth of being highlighted: 

• Input samples and parameter values are to be provided to the model according to a 
given synchronization scheme. Any functional vector generation algorithm should 
thus be able to match this synchronization scheme in order to gain full control over the 
module behavior. By exploiting information gathered during the analysis of the high-
level model of the benchmark behavior we can simplify the task of understanding the 
synchronization mechanism. We can thus save processing time that is likely to be lost 
in case this analysis is performed while at the gate level. 

• Due to the high number of operators the model exploits and to its synchronization 
mechanism, several synthesis options are available. By tuning the level of resource 
sharing allowed by the synthesis algorithm, different implementations of the given 
behavior are possible. Moreover, the adoption of different sized pipelines increases the 
range of possible implementation strategies. These alternatives pose a challenging 
question about the effectiveness of the vectors generated while at the high-level, where 
only the behavior is known, and few details on the model implementation are 
available. 

The experiments we intend to perform on the BIQUAD benchmark are the following: 

• Synthesis: alternative implementations of the benchmark will be designed, by tuning 
the following parameters: 

− Resource sharing: the behavioral-level synthesis tool will be constrained in adopting 
different levels of resource sharing, thus obtaining different implementations which 
trade off circuit area with number of control states. 

− Pipelining: different levels of pipelining will be considered, ranging from no 
pipelining to N-stage pipelining. The value of N will depend on the adopted level of 
resource sharing and number of control states. 
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• Gate-level ATPG: as in the previous case, the alternative gate-level implementations 
will be analyzed by means of a gate-level ATPG. The attained fault coverage, the test 
length and CPU time for test vectors generation will be measured. 

• Behavioral-level ATPG: the algorithms devised during the project will be exploited in 
order to compute test vectors by reasoning on the benchmark behavior, only. The test 
vectors obtained during this experiment will then be evaluated by measuring the fault 
coverage they attain when applied to the aforementioned alternative implementations 
of the benchmark.  

2.3. Experimental flow 

The flow to be adopted during the experiments is shown in Figure 4. 
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Figure 4: The experimental flow 

On the left-hand of Figure 4, the traditional approach to test vector generation is reported. 
Starting from a behavioral description of the circuit, the Behavioral Compiler tool by 
Synopsys will be used to generate a netlist implementing the desired behavior. Then, the 
Synopsys gate-level ATPG (testgen) will be used to compute a set of test vectors. Finally, the 
Synopsys fault simulator (faultsim) will be used to evaluate the attained fault coverage.  

On the right-hand of Figure 4, the behavioral-level test generation process analyzed by the 
COTEST project is reported. The process is based on two modules: 

• High-level analyzer: it analyzes the behavioral description of the circuit and derives 
useful information that will be exploited by the high-level ATPG. Examples of the 
information it provides are the state transition diagram of the behavioral circuit 
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description, and the latency of the input/output stages of the model. Additional 
information provided by the user can be exploited, e.g., the latency of the model in 
terms of number of stages composing the pipeline that the designer intends to use in 
the gate-level circuit implementation. 

• High-level ATPG: it generates test vectors starting from the behavioral-level model of 
the circuit and the information the high-level analyzer provides. In order to 
successfully develop an effective test generation tool two key issues have to be 
addressed: 

− High-level fault model: it is the one adopted by the test vector generation algorithm 
and it has to be both suitable for application on the behavioral-level model of the 
circuit and representative of actual faults affecting the gate-level circuit 
implementation. 

− Test generation algorithm: it is the algorithm used for derive test vectors. In order 
to prove the feasibility of high-level test generation is has to provide test vectors 
attaining the highest fault coverage as far as the high-level fault model is 
considered. 

At the bottom of Figure 4 the approach we intend to adopt for assessing the effectiveness 
of the high-level test generation approach is reported. The test vectors coming from the two 
ATPGs, the gate-level and the high-level ones, are fault simulated by means of the same tool. 
The two obtained fault coverage figures are comparable, since generated by the same tool 
working on the same circuit and by using the same fault list. Therefore, by using the fault 
coverage attained by the gate-level tool as a reference, we can evaluate the effectiveness of 
the high-level generated vectors. 

3. High-level design for testability insertion 

The purpose of this section is to describe the selected benchmark and the experiments we 
intend to perform on it. As it was described in Section 1, the benchmark design should be 
heterogeneous and relatively complex to justify the adoption of DfT structures and to 
evaluate the effectiveness of different DfT solutions. 
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3.1. The F4/F5 model 

In order to provide a benchmark to be used during the high-level DfT insertion and 
evaluation, we developed a model of the F4/F5 block of the ATM protocol, covering the 
block functionality as specified by standard references. The model consists of several 
processes, each implementing a relatively independent part of the block functionality. The 
model handles multiple Virtual Paths (VPs) and Virtual Channel (VC) connections passing 
through the block. The management of ATM cells depends on the current “status” of the 
virtual path or virtual channels, and thus local tables are used for recording the global state of 
the block.  

One of the basic ideas with ATM is that all signaling will be sent on the same physical 
carriers as the user data. To handle this there is a need for special units, which introduce and 
extract this information in the nodes of the network. The F4/F5 block covers the Operation 
and Maintenance (OAM) functionality of the ATM switches. 

The name of the F4/F5 block refers to the levels of OAM functionality that the block 
covers. The F4 level handles the OAM functionality concerning virtual paths and the F5 level 
handles the OAM functionality concerning virtual channels. The levels F1 to F3 handle OAM 
functionality at the physical layer of the protocol. The structure of the F4/F5 model is 
depicted in Figure 5. 

InputHandler:
Detection and analy-
sis of OAM cells.

Internal table

FMCellGenerator:
Generation of new 
FM OAM cells.

Internal table

Timer

Signal from 
Management
System

Signal to 
Management
System

Signal from
Physical
Layer

Input1 Input2

ATM cell flow

Signal

Output1 Output2

Process handling
 output cells

Signal for
Reporting

Process handling
 output cells

 
Figure 5: The structure of the F4/F5 model 

The F4/F5 block has the following main functionalities: 
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• Fault management: when the appearance of a fault is reported to the F4/F5 block, 
special OAM cells will be generated and sent on all affected connections; if the fault 
persists, the management system should be notified. 

• Performance monitoring: normal functioning of the network is monitored by 
continuous or periodic checking of the transmission of cells. 

• Fault localization: when a fault occurs it might be necessary to localize it further. For 
this purpose special loop-back OAM cells are used. 

• Activation/deactivation: a special protocol for activation and deactivation of OAM 
functions that require active participation of several F4/F5 blocks, e.g., performance 
monitoring, has to be implemented. 

An F4/F5 block is present on each physical link connected to the ATM switch. Since all 
connections are bi-directional, the F4/F5 block has two inputs and two outputs. 

The ATM benchmark is composed of 4 synchronized finite state machines whose behavior 
is described in VHDL language. Communication among the modules composing the system 
is implemented by resorting to two alternative solutions: by using signals or by using send 
and receive primitives. The former approach is open to a simpler implementation of the 
benchmark, while the second one allows easily evaluating different communication solutions. 
The model amounts to about 1,300 lines of code. 

Although the model is complex, it is composed of relatively independent parts. Such a 
model allows us to extract smaller parts of the system for initial analysis without falling into 
the complexity trap. At the latter stage of the project we will possibly be able to analyse the 
applicability of our methods to more complex systems by using the complete design. 

3.2. Planned experiments 

The experimental work we intend to perform will focus on modifications of system 
descriptions to support design for testability techniques at the system level. The first and the 
most important task is to find a suitable way to describe DfT structures at the system level. 
To perform this task we intend to isolate one or several modules in the benchmark design and 
to identify hard to test parts in them by using high-level vector generation approach. During 
the next stage we will apply DfT modifications to the initial specification and evaluate the 
effectiveness of the final solution (in terms of required area, time and fault coverage 
improvement).  For evaluation purposes we eventually have to synthesise the design to the 
gate-level and to apply classical gate-level ATPG/DfT tools to demonstrate the improvement 
in the gate-level fault coverage or reduction in the ATPG/DfT tool CPU time.  

As it is described in chapter 2.3 for the high-level vector generation, the reference design 
flow for WP 3 also contains two parts (see Figure 6). On the left side there is a traditional 
design flow consisting of high-level and logic synthesis tools and DfT modifications at the 
gate-level. The right side of the design flow is similar, but different in case of high-level DfT 
insertions. It starts from DfT modifications at the high-level. After appropriate synthesis steps 
the DfT modifications on a gate-level can be applied again.  The objective of the project is to 
evaluate whether that the new design flow, where the DfT modifications were introduced at 
the high-level is able to reduce the gate-level DfT effort and hardware overhead as well as 
test time (and/or size of test patterns). 
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Figure 6: The experimental flow 

 


