
Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

[J. Res. Natl. Inst. Stand. Technol. 106, 511–577 (2001)]

Report on the Development of the
Advanced Encryption Standard (AES)

Volume 106 Number 3 May–June 2001

James Nechvatal, Elaine Barker,
Lawrence Bassham, William
Burr, Morris Dworkin, James
Foti, and Edward Roback

National Institute of Standards and
Technology,
Gaithersburg, MD 20899-8930

james.nechvatal@nist.gov

elaine.barker@nist.gov

lawrence.bassham@nist.gov

william.burr@nist.gov

james.foti@nist.gov

edward.roback@nist.gov

In 1997, the National Institute of Standards
and Technology (NIST) initiated a pro-
cess to select a symmetric-key encryption
algorithm to be used to protect sensitive
(unclassified) Federal information in
furtherance of NIST’s statutory responsi-
bilities. In 1998, NIST announced the
acceptance of 15 candidate algorithms
and requested the assistance of the
cryptographic research community in
analyzing the candidates. This analysis
included an initial examination of the
security and efficiency characteristics for
each algorithm. NIST reviewed the
results of this preliminary research and
selected MARS, RC, Rijndael, Serpent
and Twofish as finalists. Having reviewed
further public analysis of the finalists,

NIST has decided to propose Rijndael as
the Advanced Encryption Standard
(AES). The research results and rationale
for this selection are documented in this
report.

Key words: Advanced Encryption
Standard (AES); cryptography; cryptanaly-
sis; cryptographic algorithms; encryption;
Rijndael.

Accepted: March 2, 2001

Available online: http://www.nist.gov/jres

Contents

1. Overview of the Development Process for the Advanced Encryption

Standard and Summary of Round 2 Evaluations . 515

1.1 Background . 515

1.2 Overview of the Finalists . 515

1.3 Evaluation Criteria . 516

1.4 Results from Round 2 . 517

1.5 The Selection Process. 518

1.6 Organization of this Report . 518

2. Selection Issues and Methodology . 518

2.1 Approach to Selection . 518

2.2 Quantitative vs Qualitative Review . 518

2.3 Number of AES Algorithms . 518

2.4 Backup Algorithm . 519

2.5 Modifying the Algorithms . 520

511

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

3. Technical Details of the Round 2 Analysis . 520

3.1 Notes on Section. 520

3.2 General Security . 520

3.2.1 Attacks on Reduced-Round Variants. 522

3.2.1.1 MARS . 522

3.2.1.2 RC6 . 523

3.2.1.3 Rijndael . 523

3.2.1.4 Serpent . 523

3.2.1.5 Twofish . 523

3.2.2 Security Margin . 524

3.2.3 Design Paradigms and Ancestry . 525

3.2.4 Simplicity . 526

3.2.5 Statistical Testing . 526

3.2.6 Other Security Observations . 526

3.2.7 Summary of Security Characteristics of the Finalists. 528

3.3 Software Implementations . 529

3.3.1 Machine Word Size . 529

3.3.2 Other Architectural Issues . 529

3.3.3 Software Implementation Languages. 529

3.3.4 Variation of Speed with Key Size . 530

3.3.5 Summary of Speed on General Software Platforms 530

3.3.6 Variation of Speed with Mode. 531

3.4 Restricted-Space Environments . 532

3.4.1 A Case Study . 532

3.4.1.1 Notes on the Finalists . 532

3.4.1.2 Comparison of the Finalists . 533

3.4.2 A Second Case Study. 534

3.4.2.1 Notes on the Finalists . 534

3.4.2.2 Comparison of the Finalists . 535

3.5 Hardware Implementations. 535

3.5.1 Architectural Options . 535

3.5.1.1 The Basic Architecture . 535

3.5.1.2 Internal Pipelinine . 536

3.5.1.3 Loop Unrolling . 536

3.5.1.4 External Pipelining . 536

3.5.1.5 Hybrid Pipelining . 536

3.5.2 Design Methodologies and Goals . 536

3.5.3 Field Programmable Gate Arrays . 536

3.5.3.1 Operations and Their Implementation 537

3.5.3.2 A Case Study. 537

3.5.3.2.1 Notes on the Four Finalists Implemented. . . 538

3.5.3.2.2 Comparison of the Four Implemented

Finalists . 539

3.5.3.3 A Second Case Study . 540

3.5.3.3.1 Notes on the Finalists 540

3.5.3.3.2 Comparison of the Finalists 541

3.5.3.4 A Third Case Study. 542

3.5.3.4.1 Notes on the Finalists 542

3.5.3.4.2 Comparison of the Finalists 543

3.5.3.5 A Fourth Case Study. 543

3.5.3.5.1 Notes on the Finalists 544

3.5.3.5.2 Comparison of the Finalists 544

3.5.3.6 Overall Summary of FPGA Implementations 544

512

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

3.5.4 Application Specific Integrated Circuits . 545

3.5.4.1 A Case Study. 545

3.5.4.1.1 Notes on the Finalists 545

3.5.4.1.2 Comparison of the Finalists 546

3.5.4.2 A Second Case Study . 546

3.5.4.2.1 Notes on the Finalists 547

3.5.4.2.2 Comparison of the Finalists 547

3.5.5 Comparison of All Hardware Results . 547

3.6 Attacks on Implementations. 548

3.6.1 Timing and Power Attacks. 549

3.6.2 The Role of Operations . 549

3.6.3 Implicit Key Schedule Weaknesses . 550

3.6.3.1 A Power Analysis Variant . 550

3.6.3.2 A Second Power Analysis Variant 550

3.6.4 Defenses Against Implementation-Dependent Attacks 550

3.6.4.1 A Case Study in Defense . 551

3.6.4.1.1 Notes on the Finalists 551

3.6.4.1.2 Comparison of the Finalists 552

3.7 Encryption vs Decryption. 552

3.8 Key Agility 553

3.9 Other Versatility and Flexibility . 554

3.9.1 Parameter Flexibility . 554

3.9.2 Implementation Flexibility . 554

3.10 Potential for Instruction-Level Parallelism . 555

4. Intellectual Property Issues . 556

5. Finalist Profiles . 557

5.1 MARS . 557

5.1.1 General Security . 557

5.1.2 Software Implementations . 557

5.1.3 Restricted-Space Environments . 557

5.1.4 Hardware Implementations. 557

5.1.5 Attacks on Implementations. 557

5.1.6 Encryption vs Decryption. 557

5.1.7 Key Agility . 557

5.1.8 Other Versatility and Flexibility . 557

5.1.9 Potential for Instruction-Level Parallelism 557

5.2 RC6 . 558

5.2.1 General Security . 558

5.2.2 Software Implementations . 558

5.2.3 Restricted-Space Environments . 558

5.2.4 Hardware Implementations. 558

5.2.5 Attacks on Implementations. 558

5.2.6 Encryption vs Decryption. 558

5.2.7 Key Agility . 558

5.2.8 Other Versatility and Flexibility . 558

5.2.9 Potential for Instruction-Level Parallelism 558

5.3 Rijndael . 558

5.3.1 General Security . 558

5.3.2 Software Implementations . 558

5.3.3 Restricted-Space Environments . 559

5.3.4 Hardware Implementations. 559

5.3.5 Attacks on Implementations. 559

513

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

5.3.6 Encryption vs Decryption. 559

5.3.7 Key Agility . 559

5.3.8 Other Versatility and Flexibility . 559

5.3.9 Potential for Instruction-Level Parallelism 559

5.4 Serpent . 559

5.4.1 General Security . 559

5.4.2 Software Implementations . 559

5.4.3 Restricted-Space Environments . 559

5.4.4 Hardware Implementations. 559

5.4.5 Attacks on Implementations. 560

5.4.6 Encryption vs Decryption. 560

5.4.7 Key Agility . 560

5.4.8 Other Versatility and Flexibility . 560

5.4.9 Potential for Instruction Level Parallelism 560

5.5 Twofish . 560

5.5.1 General Security . 560

5.5.2 Software Implementations . 560

5.5.3 Restricted-Space Environments . 560

5.5.4 Hardware Implementations. 560

5.5.5 Attacks on Implementations. 560

5.5.6 Encryption vs Decryption. 560

5.5.7 Key Agility . 560

5.5.8 Other Versatility and Flexibility . 561

5.5.9 Potential for Instruction Level Parallelism 561

6. Summary Assessments of the Finalists . 561

6.1 General Security . 561

6.2 Software Implementations . 561

6.3 Restricted-Space Environments . 561

6.4 Hardware Implementations. 562

6.5 Attacks on Implementations. 562

6.6 Encryption vs Decryption. 562

6.7 Key Agility . 562

6.8 Other Versatility and Flexibility . 562

6.9 Potential for Instruction-level Parallelism . 562

7. Conclusion . 563

8. Next Steps . 563

9. Appendix A. Software Speeds for Encryption, Decryption,

and Key Setup . 563

10. References . 573

List of Tables

1. Summary of reported attacks on reduced-round variants of the finalists 521

2. Encryption and decryption performance by platform . 531

3. Key scheduling performance by platform . 531

4. Overall performance . 531

5. A smart card study . 533

6. Performance study on the 6805 . 534

7. Operations used by the candidate algorithms. 537

8. An FPGA study of optimized speed for encryption . 539

9. An FPGA study of the basic architecture for encryption/decryption 541

514

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

“I’ll do the [S]quare thing.”

—G.B. McCutcheon (1917)

1. Overview of the Development Process
for the Advanced Encryption Standard
and Summary of Round 2 Evaluations

The National Institute of Standards and Technology

(NIST) has been working with the international crypto-

graphic community to develop an Advanced Encryption

Standard (AES). The overall goal is to develop a Federal

Information Processing Standard (FIPS) that specifies

an encryption algorithm capable of protecting sensitive

(unclassified) government information well into the

twenty-first century. NIST expects that the algorithm

will be used by the U.S. Government and, on a voluntary

basis, by the private sector.

The competition among the finalists was very intense,

and NIST selected Rijndael as the proposed AES al-

gorithm at the end of a very long and complex evaluation

process. This report describes that process and summa-

rizes many of the characteristics of the algorithms that

were identified during the public evaluation periods.

The following sections provide an overview of the AES

development followed by a discussion of specific analy-

sis details.

1.1 Background

On January 2, 1997, NIST announced the initiation of

an effort to develop the AES [31] and made a formal call

for algorithms on September 12, 1997 [32]. The call

indicated NIST’s goal that the AES would specify an

unclassified, publicly disclosed encryption algorithm,

available royalty-free, worldwide. At a minimum, the

algorithm would have to implement symmetric key

cryptography as a block cipher and support a block size

of 128 bits and key sizes of 128, 192, and 256 bits.

On August 20, 1998, NIST announced 15 AES

candidate algorithms at the First AES Candidate

Conference (AES1) and solicited public comments on

the candidates [33]. Industry and academia submitters

from twelve countries proposed the fifteen algorithms.

10. An FPGA study of the basic architecture for encryption/key scheduling. . . . 543

11. An FPGA study of key scheduling. 544

12. An ASIC study . 546

13. An ASIC study of optimized speed . 547

14. A smart card study of power analysis defense. 551

15. Critical path and instruction-level parallelism . 556

A Second AES Candidate Conference (AES2) was held

in March 1999 to discuss the results of the analysis that

was conducted by the international cryptographic com-

munity on the candidate algorithms. In August 1999,

NIST announced its selection of five finalist algorithms

from the fifteen candidates. The selected algorithms

were MARS, RC6, Rijndael, Serpent and Twofish.

1.2 Overview of the Finalists

The five finalists are iterated block ciphers: they

specify a transformation that is iterated a number of

times on the data block to be encrypted or decrypted.

Each iteration is called a round, and the transformation

is called the round function. The data block to be en-

crypted is called the plaintext; the encrypted plaintext is

called the ciphertext. For decryption, the ciphertext is

the data block to be processed. Each finalist also speci-

fies a method for generating a series of keys from the

original user key; the method is called the key schedule,

and the generated keys are called subkeys. The round

functions take distinct subkeys as input along with the

data block.

For each finalist, the very first and last cryptographic

operations are some form of mixing of subkeys with the

data block. Such mixing of secret subkeys prevents an

adversary who does not know the keys from even begin-

ning to encrypt the plaintext or decrypt the ciphertext.

Whenever this subkey mixing does not naturally occur

as the initial step of the first round or the final step of the

last round, the finalists specify the subkey mixing as an

extra step called pre- or post-whitening.

There are other common technical features of the

finalists. Four of the finalists specify substitution tables,

called S-boxes: an A�B bit S-box replaces A bit inputs

with B bit outputs. Three of the finalists specify varia-

tions on a structure for the round function, called the

Feistel structure. In the classic Feistel structure, half of

the data block is used to modify the other half of the data

block, and then the halves are swapped. The two finalists

that do not use a Feistel structure process the entire data

block in parallel during each round using substitutions

and linear transformations; thus, these two finalists

are examples of substitution-linear transformation

networks.

515

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Below is a summary of each of the finalist candidates in

alphabetical order; profiles and Round 2 assessments

are provided in subsequent sections of this report.

MARS [15] has several layers: key addition1 as

pre-whitening, eight rounds of unkeyed forward

mixing, eight rounds of keyed forward transforma-

tion, eight rounds of keyed backwards transforma-

tion, eight rounds of unkeyed backwards mixing, and

key subtraction as post-whitening. The 16 keyed

transformations are called the cryptographic core.

The unkeyed rounds use two 8�32 bit S-boxes,

addition, and the XOR operation. In addition to

those elements, the keyed rounds use 32 bit key

multiplication, data-dependent rotations, and key

addition. Both the mixing and the core rounds are

modified Feistel rounds in which one fourth of the

data block is used to alter the other three fourths

of the data block. MARS was submitted by the

International Business Machines Corporation

(IBM).

RC6 [75] is a parameterized family of encryption

ciphers that essentially use the Feistel structure; 20

rounds were specified for the AES submission. The

round function of RC6 uses variable rotations that

are regulated by a quadratic function of the data.

Each round also includes 32 bit modular multipli-

cation, addition, XOR (i.e., exclusive-or), and key

addition. Key addition is also used for pre- and post-

whitening. RC6 was submitted to the AES develop-

ment effort by RSA Laboratories.

Rijndael [22] is a substitution-linear transformation

network with 10, 12, or 14 rounds, depending on

the key size. A data block to be processed using

Rijndael is partitioned into an array of bytes, and

each of the cipher operations is byte-oriented.

Rijndael’s round function consists of four layers. In

the first layer, an 8�8 S-box is applied to each byte.

The second and third layers are linear mixing layers,

in which the rows of the array are shifted, and the

columns are mixed. In the fourth layer, subkey bytes

are XORed into each byte of the array. In the

last round, the column mixing is omitted. Rijndael

was submitted by Joan Daemen (Proton World

International) and Vincent Rijmen (Katholieke

Universiteit Leuven).

1 The operation of 32 bit addition is referred to simply as addition; the

operation of 32 bit subtraction is referred to simply as subtraction in

this report.

Serpent [4] is a substitution-linear transformation

network consisting of 32 rounds. Serpent also

specifies non-cryptographic initial and final

permutations that facilitate an alternative mode of

implementation called the bitslice mode. The

round function consists of three layers: the key XOR

operation, 32 parallel applications of one of the eight

specified 4�4 S-boxes, and a linear transformation.

In the last round, a second layer of key XOR replaces

the linear transformation. Serpent was submitted

by Ross Anderson (University of Cambridge), Eli

Biham (Technion), and Lars Knudsen (University of

California San Diego).

Twofish [83] is a Feistel network with 16 rounds.

The Feistel structure is slightly modified using 1 bit

rotations. The round function acts on 32 bit words

with four key-dependent 8�8 S-boxes, followed by

a fixed 4�4 maximum distance separable matrix

over GF(28), a pseudo-Hadamard transform, and

key addition. Twofish was submitted by Bruce

Schneier, John Kelsey, and Niels Ferguson (Counter-

pane Internet Security, Inc.), Doug Whiting (Hi/fn,

Inc.), David Wagner (University of California

Berkeley), and Chris Hall (Princeton University).

In announcing the finalists, NIST again solicited pub-

lic review and comment on the algorithms [34]. These

algorithms received further analysis during a second,

more in-depth review period, and the Third AES Candi-

date Conference (AES3) was held in April 2000 to

present and discuss much of that analysis. The public

comment period for reviewing the finalist algorithms

closed on May 15, 2000. At that time, NIST’s AES team

conducted a thorough review of all of the public com-

ments and analyses of the finalists.

1.3 Evaluation Criteria

In the September 1997 call for candidate algorithms

[32], NIST specified the overall evaluation criteria that

would be used to compare the candidate algorithms.

These criteria were developed from public comments to

Ref. [31] and from the discussions at a public AES

workshop held on April 15, 1997 at NIST.

The evaluation criteria were divided into three major

categories: 1) Security, 2) Cost, and 3) Algorithm and

Implementation Characteristics. Security was the most

important factor in the evaluation and encompassed fea-

tures such as resistance of the algorithm to cryptanaly-

sis, soundness of its mathematical basis, randomness of

the algorithm output, and relative security as compared

to other candidates.

516

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Cost was a second important area of evaluation that

encompassed licensing requirements, computational

efficiency (speed) on various platforms, and memory

requirements. Since one of NIST’s goals was that the

final AES algorithm be available worldwide on a

royalty-free basis, public comments were specifically

sought on intellectual property claims and any potential

conflicts. The speed of the algorithm on a variety of

platforms needed to be considered. During Round 1, the

focus was primarily on the speed associated with 128 bit

keys. During Round 2, hardware implementations and

the speeds associated with the 192 bit and 256 bit

key sizes were addressed. Memory requirements

and software implementation constraints for software

implementations of the candidates were also important

considerations.

The third area of evaluation was algorithm and

implementation characteristics such as flexibility, hard

ware and software suitability, and algorithm simplicity.

Flexibility includes the ability of an algorithm:

• To handle key and block sizes beyond the minimum

that must be supported,

• To be implemented securely and efficiently in many

different types of environments, and

• To be implemented as a stream cipher, hashing

algorithm, and to provide additional cryptographic

services.

It must be feasible to implement an algorithm in both

hardware and software, and efficient firmware

implementations were considered advantageous. The

relative simplicity of an algorithm’s design was also an

evaluation factor.

During Rounds 1 and 2, it became evident that the

various issues being analyzed and discussed often

crossed into more than one of the three main criteria

headings. Therefore, the criteria of cost and algorithm

characteristics were considered together as secondary

criteria, after security. This report addresses the criteria

listed above, as follows:

Security: Sects. 3.2 and 3.6.

Cost: Sects. 3.3, 3.4, 3.5, 3.7,

3.8, 3.10, and 4.

Algorithm Characteristics: Sects. 3.3, 3.4, 3.5, 3.6,

3.8, 3.9, and 3.10.

1.4 Results from Round 2

The Round 2 public review extended from the

official announcement of the five AES finalists on

August 20, 1999 until the official close of the comment

period on May 15, 2000. During Round 2, many

members of the global cryptographic community

supported the AES development effort by analyzing and

testing the five AES finalists.

NIST facilitated and focused the analysis of the

finalists by providing an electronic discussion forum

and home page. The public and NIST used the electronic

forum [1] to discuss the finalists and relevant AES

issues, inform the public of new analysis results, etc.

The AES home page [2] served as a tool to disseminate

information such as algorithm specifications and

source code, AES3 papers, and other Round 2 public

comments.

Thirty-seven papers were submitted to NIST for

consideration for AES3. Twenty-four of those papers

were presented at AES3 as part of the formal program,

and one of the remaining papers was presented during

an informal session at AES3. All of the submitted

papers were posted on the AES home page [2] several

weeks prior to AES3 in order to promote informed

discussions at the conference.

AES3 gave members of the international crypto-

graphic community an opportunity to present and

discuss Round 2 analysis and other important topics

relevant to the AES development effort. A summary of

AES3 presentations and discussions will be available in

Ref. [29]. In addition to the AES3 papers, NIST received

136 sets of public comments on the finalists during

Round 2 in the form of submitted papers, email

comments and letters. All of these comments were made

publicly available on the AES home page [2] on April

19, 2000.

NIST performed an analysis of mathematically

optimized ANSI C and Java implementations2 of the

candidate algorithms that were provided by the submit-

ters prior to the beginning of Round 1. NIST’s testing of

ANSI C implementations focused on the speed of the

candidates on various desktop systems, using different

combinations of processors, operating systems, and

compilers. The submitters’ Java code was tested for

speed and memory usage on a desktop system. NIST’s

testing results for the ANSI C and Java code are pre-

sented in Refs. [7] and [28], respectively. Additionally,

extensive statistical testing was performed by NIST on

the candidates, and results are presented in Ref. [88].

2 Certain commercial equipment, instruments, or materials are identi-

fied in this paper to foster understanding. Such identification does not

imply recommendation or endorsement by the National Institute of

Standards and Technology, nor does it imply that the materials or

equipment identified are necessarily the best available for the purpose.

517

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

1.5 The Selection Process

A team of NIST security personnel convened a series

of meetings in order to establish the strategy for

AES algorithm selection (see Sec. 2). The team then

proceeded to evaluate the papers and comments received

during the AES development process, compare the

results of the numerous studies made of the finalists and

finally make the selection of the proposed AES

algorithm. There is a consensus by the team that the

selected algorithm will provide good security for the

foreseeable future, is reasonably efficient and suitable

for various platforms and environments, and provides

sufficient flexibility to accommodate future require-

ments.

1.6 Organization of this Report

This report is organized as follows. Section 2 provides

details on NIST’s approach to making its selection, and

discusses some of the more critical issues that were

considered prior to evaluating the algorithms. Section 3

presents the various factors and analysis results that were

taken into consideration during the algorithms’ evalua-

tion by NIST; this section presents a number of specific

case studies. Section 4 summarizes the intellectual

property issue. In Section 5, candidate algorithm

profiles summarize the salient information that

NIST accrued for each finalist, based on the results

summarized in Section 3. Section 6 takes the informa-

tion from the algorithm profiles and draws comparisons

and contrasts, in terms of the advantages and dis-

advantages identified for each algorithm. Finally, Sec. 7

presents NIST’s conclusion for its selection of Rijndael.

Section 8 indicates some of the next steps that will occur

in the AES development effort.

2. Selection Issues and Methodology

2.1 Approach to Selection

As the public comment period neared its closing date

of May 15, 2000, NIST reconstituted its AES selection

team (hereafter called the “team”) that was used for

the Round 1 selection of the finalists. This team was

comprised of cross-disciplinary NIST security staff.

The team reviewed the public comments, drafted this

selection report and selected the algorithms to propose

as the AES.

A few fundamental decisions confronted the team at

the beginning of the selection process. Specifically, the

team considered whether to:

• Take a quantitative or qualitative approach to

selection;

• Select one or multiple algorithms;

• Select a backup algorithm(s); and

• Consider public proposals to modify the algorithms.

The following sections briefly address these issues.

2.2 Quantitative vs Qualitative Review

At one of its first meetings to plan for the post

Round 2 activities, the team reviewed the possibility of

conducting a quantitative approach as proposed in

Ref. [87]. Using this process, each algorithm and

combination of algorithms would receive a score based

on the evaluation criteria [32]. If such a quantitative

approach were feasible, it could provide an explicit

assignment of values and allow a comparison of the

algorithms. The quantitative approach would also

provide explicit weighting of each AES selection factor.

However, the consensus of the team was that the degree

of subjectivity of many of the criteria would result in

numeric figures that would be debatable. Moreover,

the issue of quantitative review had been raised by the

public at various times during the AES development

effort (most recently at AES3), and there seemed to be

little agreement regarding how different factors should

be weighted and scored. Team members also expressed

concern that determining a quantitative scoring system

without significant public discussion would give the

impression that the system was unfair. For those

reasons, the team concluded that a quantitative approach

to selection was not workable, and decided to proceed as

they did after Round 1. Namely, the team decided

to review the algorithms’ security, performance,

implementation, and other characteristics, and to make

a decision based upon an overall assessment of each

algorithm—keeping in mind that security consider-

ations were of foremost concern.

2.3 Number of AES Algorithms

During the course of the Round 1 and 2 public

evaluation periods, several arguments were made

regarding the number of algorithms that should be

selected for inclusion in the AES. In addition, the issue

was raised about the selection of a “backup” algorithm

in the case that a single AES algorithm were selected

and later deemed to be unsuitable. This could occur, for

example, because of a practical attack on the algorithm

or an intellectual property dispute. The team decided

that it was necessary to address this issue as early as

possible, in part to narrow its scope of options under

consideration during the rest of the selection process.

518

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Several arguments made in favor of multiple

algorithms (and/or against a single algorithm) included:

• In terms of resiliency, if one AES algorithm were

broken, there would be at least one more AES

algorithm available and implemented in products.

Some commenters expressed the concern that

extensive use of a single algorithm would place

critical data at risk if that algorithm were shown to

be insecure [42] [51] [52].

• Intellectual property (IP) concerns could surface

later, calling into question the royalty-free avail-

ability of a particular algorithm. An alternative

algorithm might provide an immediately available

alternative that would not be affected by the

envisioned IP concern [52].

• A set of AES algorithms could cover a wider range

of desirable traits than a single algorithm. In partic-

ular, it might be possible to offer both high security

and high efficiency to an extent not possible with a

single algorithm [47] [52].

The public also submitted arguments in favor of

a single AES algorithm (and/or against multiple

algorithms). Some of those arguments suggested that:

• Multiple AES algorithms would increase interoper-

ability complexity and raise costs when multiple

algorithms were implemented in products [17] [91].

• Multiple algorithms could be seen as multiplying the

number of potential “intellectual property attacks”

against implementers [17] [47] [48].

• The specification of multiple algorithms might

cause the public to question NIST’s confidence in

the security of any of the algorithms [6] [91].

• Hardware implementers could make better use of

available resources by improving the performance

of a single algorithm than by including multiple

algorithms [92].

The team discussed these and other issues raised

during Round 2 regarding single or multiple AES

algorithms. The team recognized the likelihood,

as evidenced by commercial products today, that

future products will continue to implement multiple

algorithms, as dictated by customer demand, require-

ments for interoperability with legacy/proprietary

systems, and so forth. The Triple data Encryption

Standard (Triple DES), which NIST anticipates will

remain a FIPS-approved algorithm for the foreseeable

future, is expected to be available in many commercial

products for some time, as are other FIPS and non-

FIPS algorithms. In some regard, therefore, the

presence of these multiple algorithms in current

products provides a degree of systemic resiliency—as

does having multiple AES key sizes. In the event of an

attack, NIST would likely assess options at that time,

including whether other AES finalists were resistant to

such an attack, or whether entirely new approaches were

necessary.

With respect to intellectual property issues, vendors

noted that if multiple AES algorithms were selected,

market forces would likely result in a need to implement

all AES algorithms, thus exposing the vendors to

additional intellectual property risks.

At the AES3 conference, there was significant

discussion regarding the number of algorithms that

should be included in the AES. The vast majority of

attendees expressed their support—both verbally and

with a show of hands—for selecting only a single

algorithm. There was some support for selecting a

backup algorithm, but there was no agreement as to how

that should be accomplished. The above sentiments were

reflected in written comments provided to NIST by

many of the attendees after the conference.

The team considered all of the comments and factors

above before making the decision to propose only a

single algorithm for the AES. The team felt that other

FIPS-approved algorithms will provide a degree of

systemic resiliency, and that a single AES algorithm will

promote interoperability and address vendor concerns

about intellectual property and implementation costs.

2.4 Backup Algorithm

As noted earlier, intertwined in the discussion of

multiple AES algorithms was the issue of whether to

select a backup algorithm, particularly in the case of a

single AES algorithm. A backup could take a number of

forms, ranging from an algorithm that would not be

required to be implemented in AES validated products

(“cold backup”), to requiring the backup algorithm in

AES products as a “hot backup.” It was argued by some

commenters that, in many respects, a backup algorithm

was nearly equivalent to a two-algorithm AES, since

many users would reasonably demand that even a “cold

backup” be implemented in products.

Given 1) the vendors’ concerns that a backup

algorithm would be a de facto requirement in products

(for immediate availability in the future), 2) the

complete uncertainty of knowing the potential appli-

cability of future breakthroughs in cryptanalysis,

3) NIST’s interest in promoting interoperability, and 4)

the availability of other algorithms (FIPS and non-FIPS)

in commercial products, the team decided not to select

a backup algorithm.

519

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

As with its other cryptographic algorithm standards,

NIST will continue to follow developments in the

cryptanalysis of the AES algorithm, and the standard

will be formally reevaluated every five years. Mainte-

nance activities for the AES standard will be performed

at the appropriate time, in full consideration of the

situation’s particular circumstances. If an issue arises

that requires more immediate attention, NIST will act

expeditiously and consider all available alternatives at

that time.

2.5 Modifying the Algorithms

During Rounds 1 and 2, NIST received a number of

comments that expressed an interest in increasing the

number of rounds (or repetitions) of certain steps of

the algorithms. Although some comments offered

explicit rationale for an increase in the number of rounds

(e.g., choosing an algorithm with twice the number of

rounds that the currently best known reduced-round

analysis requires), many did not. NIST noted that the

submitters of the two algorithms that received the most

comments regarding an increase in rounds, RC6 and

Rijndael, did not choose to increase the number of

rounds at the end of Round 1 (when “tweak” proposals

were being considered). Additionally, the Rijndael

submitters even stated “the number of rounds of

Rijndael provides a sufficient margin of security with

respect to cryptanalytic attack.” [23]

The following issues and concerns were expressed

during the team’s discussions:

• For some algorithms, it is not clear how the

algorithm would be fully defined (e.g., the key

schedule) with a different number of rounds, or how

such a change would impact the security analysis.

• Changing the number of rounds would impact the

large amount of performance analysis from Rounds

1 and 2. All performance data for the modified

algorithm would need to be either estimated or

performed again. In some cases, especially in hard-

ware and in memory-restricted environments,

estimating algorithm performance for the new

number of rounds would not be a straightforward

process.

• There was a lack of agreement in the public

comments regarding the number of rounds to be

added, and which algorithms should be altered.

• The submitters had confidence in the algorithms as

submitted, and there were no post-Round 1

“tweaked” proposals for an increased numbers of

rounds.

After much discussion, and given the factors listed

above, the team decided that it would be most appropri-

ate to make its recommendation for the AES based on

the algorithms as submitted (i.e., without changing the

number of rounds).

3. Technical Details of the Round 2
Analysis

3.1 Notes on Sec. 3

The analyses presented in this paper were performed

using the original specifications submitted for the final-

ists prior to the beginning of Round 2. Most of the

analysis of MARS considered the Round 2 version [15],

in which modifications had been made to the original

submitted specifications [100]. Some of the studies—

including the NIST software performance analyses [7]

[28]—used algorithm source code that was provided by

the submitters themselves.

While NIST does not vouch for any particular data

items that were submitted, all data was taken into

account. In some cases, the data from one study may not

be consistent with that of other studies. This may be due,

for example, to different assumptions made for the

various studies. NIST considered these differences into

account and attempted to determine the general trend of

the information provided. For the various case studies

presented in Sec. 3, this report summarizes some of

these analyses and results, but the reader should consult

the appropriate references for more complete details.

3.2 General Security

Security was the foremost concern in evaluating the

finalists. As stated in the original call for candidates

[32], NIST relied on the public security analysis

conducted by the cryptographic community. No attacks

have been reported against any of the finalists, and

no other properties have been reported that would

disqualify any of them.

The only attacks that have been reported to data are

against simplified variants of the algorithms: the

number of rounds is reduced or simplified in other ways.

A summary of these attacks against reduced-round

variants, and the resources of processing, memory, and

information that they require, is discussed in Sec. 3.2.1

and presented in Table 1.

It is difficult to assess the significance of the attacks

on reduced-round variants of the finalists. On the one

hand, reduced-round variants are, in fact, different

algorithms, so attacks on them do not necessarily imply

anything about the security of the original algorithms.

An algorithm could be secure with n rounds even if it

were vulnerable with n–1 rounds. On the other hand,

520

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

it is standard practice in modern cryptanalysis to try to

build upon attacks on reduced-round variants, and, as

observed in Ref. [56], attacks get better over time. From

this point of view, it would seem to be prudent to try to

estimate a “security margin” of the candidates, based on

the attacks on reduced-round variants.

One possible measure of the security margin, based

on the proposal in Ref. [10], is the degree to which the

full number of rounds of an algorithm exceeds the

largest number of rounds that have been attacked. This

idea and its limitations are discussed in Sec. 3.2.2. There

are a number of reasons not to rely heavily on any single

figure of merit for the strength of an algorithm;

however, this particular measure of the security margin

may provide some utility.

Table 1. Summary of reported attacks on reduced-round variants of the finalists

Algorithm, Reference Rounds Type of Attack Texts Mem. Ops.

Rounds (Key size) Bytes

MARS [57] 11C Amp. Boomerang 265 270 2229

16 Core(C) [58] 16 M, 5 C Meet-in-Middle 8 2236 2232

16 Mixing 16 M, 5 C Diff. M-i-M 250 2197 2247

(M) 6 M, 6 C Amp. Boomerang 269 273 2197

RC6 [39] 14 Stat. Disting. 2118 2112 2122

20 [60] 12 Stat. Disting. 294 242 2119

14(192,256) Stat. Disting. 2110 242 2135

14(192,256) Stat. Disting. 2108 274 2160

15(256) Stat. Disting. 2119 2138 2215

Rijndael [22] 4 Truncated. Diff. 29 small 29

10 (128) 5 Truncated. Diff. 211 small 240

12 (192) 6 Truncated. Diff. 232 7*232 272

14 (256) [37] 6 Truncated. Diff. 6*232 7*232 244

7 (192) Truncated. Diff. 19*232 7*232 2155

7 (256) Truncated. Diff. 21*232 7*232 2172

7 Truncated. Diff. 2128–2119 261 2120

8 (256) Truncated. Diff. 2128–2119 2101 2204

9 (256) Related Key 277 NA 2224

[63] 7 (192) Truncated. Diff. 232 7*232 2184

7 (256) Truncated. Diff. 232 7*232 2200

[40] 7 (192,256) Truncated. Diff. 232 7*232 2140

Serpent [57] 8 (192,256) Amp. Boomerang 2113 2119 2179

32 [62] 6 (256) Meet-in-Middle 512 2246 2247

6 Differential 283 240 290

6 Differential 271 275 2103

6 (192,256) Differential 241 245 2163

7 (256) Differential 2122 2126 2248

8 (192,256) Boomerang 2128 2133 2163

8 (192,256) Amp. Boomerang 2110 2115 2175

9 (256) Amp. Boomerang 2110 2212 2252

Twofish [35] 6 (256) Impossible Diff. NA NA 2256

16 [36] 6 Related Key NA NA NA

NA = Information not readily available.

NIST considered other, less quantifiable character-

istics of the finalists that might conceivably impact upon

their security. Confidence in the security analysis

conducted during the specified timeframe of the AES

development process is affected by the ancestry of

the algorithms and their design paradigms as well as the

difficulty of analyzing particular combinations of

operations using the current framework of techniques.

These issues are discussed in Secs. 3.2.3 and 3.2.4. The

statistical testing that NIST conducted on the candidates

is discussed in Sec. 3.2.5. Various public comments

about the security properties of the finalists are

discussed in Sec. 3.2.6. NIST’s overall assessment

of the security of the finalists is summarized in

Sec. 3.2.7.

521

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

3.2.1 Attacks on Reduced-Round Variants

Table 1 summarizes the attacks against reduced-round

variants of the finalists. For each attack, the table gives

a reference to the original paper in which the attack was

described, the number of rounds of the variant under

attack, the key size, the type of attack, and the resources

that are required. The three resource categories that may

be required for the attack are information, memory, and

processing.

The “Texts” column indicates the information

required to effect the attack, specifically, the number of

plaintext blocks and corresponding ciphertext blocks

encrypted under the secret key. For most of the attacks,

it does not suffice for the adversary to intercept

arbitrary texts; the plaintexts must take a particular form

of the adversary’s choosing. Such plaintexts are called

chosen plaintexts. In the discussions of the attacks in

Secs. 3.2.1.1–3.2.1.5, it is noted when an attack can use

any known plaintext, as opposed to chosen plaintext.

The “Mem. Bytes” column indicates the largest

number of memory bytes that would be used at any

point in the course of executing the attack; this is not

necessarily equivalent to storing all of the required

information.

The “Ops.” column indicates the expected number of

operations that are necessary to perform the attack. It is

difficult to translate such a number into a time estimate,

because the time will depend on the computing power

available, as well as the extent to which the procedure

can be conducted in parallel. The nature of the

operations will also be a factor; they will typically be

full encryption operations, but the operations may also

be partial encryptions or some other operation. Even

full encryptions will vary in the required processing

time across algorithms. Therefore, the number of

operations required for an attack should be regarded

only as an approximate basis for comparison among

different attacks. The references should be consulted for

full details.

A useful benchmark for the processing that is re-

quired for the attacks on reduced-round variants is

the processing that is required for an attack by key

exhaustion, that is, by trying every key. Any block

cipher, in principle, can be attacked in this way. For the

three AES key sizes, key exhaustion would require

2127, 2191, or 2255 operations, on average. Even the

smallest of these is large enough that any attacks by key

exhaustion are impractical today and likely to remain so

for at least several decades.

Exhaustive key search requires little memory and

information and can be readily conducted in parallel

using multiple processors. Thus, any attack that

required more operations than are required for the

exhaustive key search probably would be more difficult

to execute than exhaustive key search. For this reason,

many of the attacks on reduced-round variants are only

relevant to the larger AES key sizes, although the

processing requirements are nevertheless impractical

today. Similarly, the memory requirements of many of

the reported attacks against reduced-round variants are

significant.

Practical considerations are also relevant to the

information requirements of the reported attacks

against reduced-round variants. Almost all of these

attacks require more than 230 encryptions of chosen

plaintexts; in other words, more than a billion encryp-

tions, and in some cases far more are required.

Even if a single key were used this many times, it might

be impractical for an adversary to collect so much

information. For instance, there are linear and differen-

tial attacks in Ref. [12] and Ref. [64] on DES

that require 243 known plaintexts and 247 encryptions of

chosen plaintexts. However, NIST knows of no circum-

stance in which those attacks were carried out against

DES.

One model for collecting such large amounts of

information would require physical access for an adver-

sary to one or more encryption devices that use the same

secret key. In that case, another useful benchmark would

be the memory that would be required to store the entire

“codebook,” in other words, a table containing the

ciphertext blocks corresponding to every possible plain-

text block. Such a table would require 2132 bytes of

memory for storage.

The following are comments on the attacks presented

in Table 1.

3.2.1.1 MARS

There are many ways to simplify MARS for the

purpose of analysis because of the heterogeneous

structure consisting of four different types of rounds.

The 16 keyed rounds of the cryptographic core are

“wrapped” in 16 unkeyed mixing rounds and pre- and

post-whitening.

Four attacks on three simplified variants of MARS

were presented in Refs. [57] and [58]. The first variant

includes 11 core rounds, without any mixing rounds or

whitening. The authors attack this variant with a new

type of truncated differential attack, called the

boomerang-amplifier, extending the methods in Ref.

[90]. The second variant includes both the whitening

and the full 16 mixing rounds, while reducing the core

rounds from 16 to 5. Two different meet-in-the-middle

attacks are proposed on this variant; the adversary does

not need to choose the plaintexts for these attacks. The

third variant includes the whitening, while reducing

both the number of mixing rounds and the number of

core rounds from 16 to 6.

522

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Another paper reports an impossible differential for

8 of the 16 rounds of the MARS core [11]. The authors

imply that the existence of an impossible differential

typically leads to an attack that recovers the secret key

from a variant that is a couple of rounds longer than the

differential. Because the attack does not actually exist,

this attack is not included in Table 1.

3.2.1.2 RC6

The two papers presenting attacks on variants of RC6

both present a small, but iterative, statistical bias in

the round function. The resulting statistical correlations

between inputs of a certain form and their outputs can

be used to distinguish some number of rounds of RC6

from a random permutation. In other words, the two

papers construct “distinguishers.” Both papers assume

that the distribution of the subkeys is uniformly random;

the attack described in Ref. [39] on a 14 round variant

of RC6, also assumes that the variable rotation amounts

produced within the round function are random. In

Ref. [60], the authors describe a distinguisher that they

estimate, based on systematic experimental results, will

apply to variants of RC6 with up to 15 rounds. Attacks,

i.e., methods for recovering the secret key, are described

for 12, 14, and 15 round variants. For a class of weak

keys, estimated to be one key in 280, the non-randomness

is estimated to persist in reduced-round variants employ-

ing up to 17 rounds of RC6. In Ref. [76], the RC6

submitters comment on the results in Ref. [60] and

observe that those results support their own estimates of

the security of RC6.

3.2.1.3 Rijndael

The Rijndael specification describes a truncated

differential attack on 4, 5, and 6 round variants of

Rijndael [22], based on a 3 round distinguisher of

Rijndael. This attack is called the “Square” attack,

named after the cipher on which the attack was first

mounted. In Ref. [40], truncated differentials are used to

construct a different distinguisher on 4 rounds, based on

the experimentally confirmed existence of collisions

between some partial functions induced by the cipher.

This distinguisher leads to a collision attack on 7 round

variants of Rijndael.

The other papers that present attacks on variants of

Rijndael build directly on the Square attack. In

Ref. [63], the Square attack is extended to 7 round

variants of Rijndael by guessing an extra round of

subkeys. Table 1 indicates the results for the 192 and 256

bit key sizes, where the total number of operations

remains below those required for exhaustive search.

Similar attacks are described in Ref. [37]. These attacks

are improved, however, by a partial summing technique

that reduces the number of operations. The partial

summing technique is also combined with a technique

for trading off operations for information, yielding

attacks on 7 and 8 round variants that require almost

the entire codebook. The same paper also presents a

related key attack on a 9 round variant with 256 bit keys.

This attack requires not only encryptions of chosen

plaintexts under the secret key, but also encryptions

under 255 other keys that are related to the secret key in

a manner chosen by the adversary.

3.2.1.4 Serpent

In Ref. [57], the amplified boomerang technique is

used to construct a 7 round distinguisher of Serpent,

leading to an attack on a variant of Serpent with 8

rounds for the 192 and 256 bit key sizes. In Ref. [58], a

refinement based on an experimental observation re-

duces the texts, memory, and processing required for the

attack; an extension to an attack on a 9 round variant is

also offered. The same paper also presents a standard

meet-in-the-middle attack and differential attacks on

6 and 7 round variants of Serpent, and a standard

boomerang attack on an 8 round variant of Serpent

that requires the entire codebook.

3.2.1.5 Twofish

The Twofish team has found two attacks on variants

of Twofish. In Ref. [35], a 5 round impossible differen-

tial is used to attack a 6 round variant of Twofish under

256 bit keys, with the required number of processing

operations equivalent to that required for an exhaustive

search. If the pre- and post-whitening is removed from

the variant, then the attack can be extended to 7 rounds;

alternatively, without whitening, 6 round variants

can be attacked with a complexity less than that of an

exhaustive search for each key size. In Ref. [36], the

Twofish team explains why the partial chosen-key and

related key attack on a 9 round variant of Twofish that

they reported in the Twofish specification does not

work. The best such attack of which they are aware

applies to a 6 round variant, or a 7 round variant without

whitening. The Twofish specification [83] also reports

attacks on reduced-round variants of Twofish that are

considerably simplified in other ways: for example, by

using fixed S-boxes, by removing whitening or subkeys,

or by allowing partial key guesses.

Outside of attacks mounted by the Twofish team,

NIST knows of no attacks that have been mounted on

Twofish by simply reducing the number of rounds. In

Ref. [70], differential characteristics on 6 rounds are

presented that apply only to certain key dependent

S-boxes and thus, only to a fraction of the keys. This

particular fraction of the keys could be considered as a

523

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

class of weak keys, because the authors claim that

characteristics like theirs should lead directly to an

attack on 7 or eight round variants of Twofish. Because

the attack does not actually exist, it does not appear in

Table 1. In Ref. [59], an attack is mounted on a 4 round

variant of Twofish in which 32 bit words are scaled

down to 8 bit words; other properties of Twofish are

also explored.

3.2.2 Security Margin

NIST wished to evaluate the likelihood that an

analytic shortcut attack would be found for the

candidate algorithms with all specified rounds in the

next several decades, or before attacks by key exhaustion

become practical. It is difficult, however, to extrapolate

the data for reduced-round variants to the actual

algorithms. The attacks on reduced round variants are

generally not even practical at this time because they

require huge amounts of resources. In fact, most of these

attacks on reduced round variants are, arguably,

more difficult to execute in practice than attacks

by exhaustive key search, despite smaller processing

requirements, because of their information and memory

requirements. Moreover, even if a shortcut attack on a

simplified variant were practical, the original algorithm

might remain secure.

Nevertheless, attacks will improve in the future, and

the resources available to carry them out will be greater,

so it might be prudent to favor algorithms that appear

to have a greater margin for security. If only a little

simplification allows an attack on one algorithm, but a

second algorithm has only been attacked after much

greater simplification, then that may be an indication

that the second algorithm has a greater margin for

security. Simplification includes round reductions,

which is not surprising, because the most notable

frameworks of attacks, differential and linear crypt-

analysis, may be effectively resisted if the number of

rounds is high enough. Therefore, the full number of

rounds specified for the algorithm has been compared

to the largest number of rounds at which an attack

currently exists. In Ref. [85], the ratio of these numbers

was defined as the “safety factor” and calculated for

each candidate.

There are several problems with relying heavily on

this measure, or on any single figure of merit that is

based on the attacks on reduced-round variants.

In general, the results will be biased against algorithms

that attract greater scrutiny in a limited analysis period.

This could plausibly occur, for example, if a particular

algorithm is simpler, or at least appears to be simpler, to

analyze against certain attacks. Another factor could

be the ancestry of the algorithm and its constituent

techniques, and the existence of previous attacks upon

which to build. The proposed measure would tend to

favor novel techniques for resisting attacks, techniques

that have not yet stood the test of time. Similarly,

the proposed measure may not be a good index to the

resistance of the algorithms to new and novel techniques

for attacking algorithms.

To develop a measure based on the largest number of

rounds that are currently attacked is also technically

problematic, as is acknowledged in Ref. [85]. There is

no natural definition for the number of analyzed rounds,

or even the total number of rounds specified for each

algorithm. For example, should the whitening in

MARS, Twofish, RC6, and Rijndael count as rounds or

partial rounds? MARS has 16 unkeyed mixing rounds

and 16 keyed core rounds: is MARS a 16 round or a

32 round algorithm, or something in between? Should

attacks that ignore the mixing rounds be considered?

Should reduced-round variants of Serpent or Rijndael be

required to inherit the slightly modified final round?

Another complicating factor is the key size, especially

for Rijndael, which varies the number of rounds

depending on the key size.

What types of attacks should be included in the

definition? Some attacks were successful against only a

small fraction of keys; some required encryption

operations under related unknown keys; some

distinguished outputs from random permutations

without an explicit method for recovering the key; and

some relied on experimental conjectures. In addition,

the attacks required considerably different resources;

some even assume that nearly the entire codebook was

available to the attacker.

In light of these difficulties, NIST did not attempt to

reduce its assessment of the security margins of the

finalists to a single measurement. NIST considered all

of the reported data, and used the raw number of

analyzed rounds out of the total rounds specified for an

algorithm as a first approximation. The results are

summarized below for each finalist.

Note that the rounds defined for the candidates are not

necessarily comparable to each other. For example, the

algorithms based on the Feistel construction, MARS,

RC6, and Twofish, require two rounds to alter an entire

word of data, while a single round of Rijndael or Serpent

accomplishes this.

MARS: The results for MARS depend on the treat-

ment of the “wrapper,” i.e., the pre- and post-

whitening and the 16 unkeyed mixing rounds that

surround the 16 keyed core rounds. Without the

wrapper, 11 out of the 16 core rounds have been

attacked. With the wrapper, MARS has many more

rounds than have been successfully attacked: only

5 out of the 16 core rounds, or 21 out of the 32 total

524

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

rounds have been attacked. Or, if the wrapper is

regarded as a pair of single, keyed pair of single,

keyed rounds, then 7 out of the 18 rounds have been

attacked. For any of these cases, MARS appears to

offer a high security margin.

RC6: Attacks have been mounted against 12, 14,

and 15 out of the 20 rounds of RC6, depending on

the key size. The submitters point out in Ref. [78]

that these results support their original estimate

that as many as 16 out of the 20 rounds may be

vulnerable to attack. RC6 appears to offer an ade-

quate security margin.

Rijndael: For 128 bit keys, 6 or 7 out of the 10

rounds of Rijndael have been attacked, the attack on

7 rounds requiring nearly the entire codebook. For

192 bit keys, 7 out of the 12 rounds have been

attacked. For 256 bit keys, 7, 8, or 9 out of the 14

rounds have been attacked. The 8 round attack

requires nearly the entire codebook, and the 9 round

attack requires encryptions under related unknown

keys. The submitters point out in Ref. [26] that the

incremental round improvements over their own

6 round Square attack come at a heavy cost in

resources. Rijndael appears to offer an adequate

security margin.

Serpent: Attacks have been mounted on 6, 8, or 9

out of 32 rounds of Serpent, depending on the key

size. Serpent appears to offer a high security

margin.

Twofish: The Twofish team has mounted an attack

on 6 out of the 16 rounds of Twofish that requires

encryption operations under related unknown keys.

Another attack proposed on 6 rounds for the 256 bit

key size is no more efficient than exhaustive key

search. Twofish appears to offer a high security

margin.

3.2.3 Design Paradigms and Ancestry

The history of the underlying design paradigms

affects the confidence that may be placed in the security

analysis of the algorithms. This also applies to the

constituent elements of the design, such as the S-boxes.

It may require more time for attacks to be developed

against novel techniques, and traditional techniques

may tend to attract more analysis, especially if attacks

already exist on which to build. For example, the Feistel

construction, such as employed by DES, has been well

studied, and three of the finalists use variations of this

structure. Another element that can affect public

confidence is the design of the S-boxes, which can be

suspected of containing a hidden “trapdoor” that can

facilitate an attack. These considerations are discussed

below for each finalist.

MARS: The heterogeneous round structure of

MARS appears to be novel. Both the mixing round

and the core rounds are based on the Feistel

construction, with considerable variation. MARS

uses many different operations, most of which are

traditional. A product of key material and data is

used to regulate the variable rotation operation. The

S-box was generated deterministically to achieve

certain desired properties; thus, the MARS specifi-

cation asserts that MARS is unlikely to contain any

structure that could be used as a trapdoor for an

attack. The MARS specification does not cite any

algorithm as an ancestor.

RC6: The design of RC6 evolved from the design of

RC5, which has undergone several years of analysis.

The security of both algorithms relies on variable

rotations as the principal source of non-linearity;

there are no S-boxes. The variable rotation operation

in RC6, unlike RC5, is regulated by a quadratic

function of the data. The key schedules of RC5 and

RC6 are identical. The round structure of RC6 is a

variation on the Feistel construction. The RC6

specification asserts that there are no trapdoors in

RC6 because the only a priori defined part of RC6

is the well known mathematical constants used

during key setup.

Rijndael: Rijndael is a byte-oriented cipher based

on the design of Square. The submitters’ presenta-

tion of the Square attack served as a starting point

for further analysis. The types of substitution

and permutation operations used in Rijndael are

standard. The S-box has a mathematical structure,

based on the combination of inversion over a Galois

field and an affine transformation. Although this

mathematical structure might conceivably aid an

attack, the structure is not hidden as would be the

case for a trapdoor. The Rijndael specification

asserts that if the S-box was suspected of containing

a trapdoor, then the S-box could be replaced.

Serpent: Serpent is a byte-oriented algorithm. The

types of substitution and permutation operations

are standard. The S-boxes are generated determi-

nistically from those of DES to have certain proper-

ties; the Serpent specification states that such a

construction counters the fear of trapdoors. The

Serpent specification does not cite any algorithm as

an ancestor.

525

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Twofish: Twofish uses a slight modification of the

Feistel structure. The Twofish specification does not

cite any particular algorithm as its ancestor, but it

does cite several algorithms that share an important

feature of Twofish, the key-dependent S-boxes, and

weighs the various design approaches to them. The

Twofish specification asserts that Twofish has no

trapdoors and supports this conclusion with several

arguments, including the variability of the S-boxes.

3.2.4 Simplicity

Simplicity is a property whose impact on security is

difficult to assess. On the one hand, complicated

algorithms can be considered more difficult to attack.

On the other hand, results may be easier to obtain on a

simple algorithm, and an algorithm that is perceived to

be simple may attract relatively more scrutiny. There-

fore, during the AES analysis period, it may have been

easier to be confident in the analysis of a simple

algorithm.

There is no consensus, however, on what constitutes

simplicity. MARS has been characterized as compli-

cated in several public comments, but the submitters

point out in Ref. [20] that MARS requires fewer lines of

C code in the Gladman implementations than Rijndael,

Twofish, and Serpent. RC6, by contrast, is generally

regarded as the simplest of the finalists, yet the modular

multiplication operation it contains is arguably much

more complicated than typical cipher operations. In

Ref. [49], the MARS team points out that the published

linear analysis of RC5 was found to be in error three

years after the publication of that analysis, so seemingly

simple ciphers are not necessarily easier to analyze.

For standard differential cryptanalysis, the type of

operations employed tangibly affects the rigor of the

security analysis. If key material is mixed with data only

by the XOR operation, as in Serpent and Rijndael, then

plaintext pairs with a given XOR difference are the

natural inputs, and the security analysis is relatively

clean. If key material is mixed with data by more than

one operation, as in the other finalists, then there is no

natural notion of difference, and the security analysis

requires more estimates. Similarly, the use of variable

rotations in MARS and RC6 would seem to inhibit the

possibility of clean security results against a variety of

differential and linear attacks.

Another aspect of simplicity that relates to security

analysis is scalability. If a simplified variant can be

constructed with a smaller block size, for example, then

conducting experiments on the variant becomes more

feasible, which in turn may shed light on the properties

of the original algorithm. In Ref. [79], it is claimed that

the lack of smaller versions of MARS severely hampers

analysis and experimentation. Similarly, in Ref. [59], the

authors assert that a “realistic” scaled-down variant of

Twofish seems difficult to construct. Both claims are

plausible, although it should be noted that the MARS

and Twofish specifications contain considerable

analysis of their individual design elements. The Serpent

specification asserts, plausibly, that it would not be

difficult to construct scaled-down variants of Serpent.

RC6 and Rijndael are scaleable by design.

3.2.5 Statistical Testing

NIST conducted statistical tests on the AES finalists

for randomness by evaluating whether the outputs of

the algorithms under certain test conditions exhibited

properties that would be expected of randomly gener-

ated outputs. These tests were conducted for each of the

three key sizes. In addition, NIST conducted a subset of

the tests on reduced-round versions of each algorithm.

All of the testing was based on the NIST Statistical Test

Suite [80].

For the full round testing, each of the algorithms

produced random-looking outputs for each of the key

sizes. For the reduced-round testing of each finalist, the

outputs of an early round appear to be random, as do the

outputs of each subsequent round. Specifically, the out-

put of MARS appears to be random at four or more

core rounds, RC6 and Serpent at four or more rounds,

Rijndael at three or more rounds, and Twofish at two

or more rounds. The test conditions and results are

described in Ref. [88]. For comments on the limitations

of NIST’s methodology, see Ref. [69].

Additional testing, as described in Ref. [53] and

limited to RC6, confirmed NIST’s results for RC6

on certain statistical tests. Reference [74] presented

detailed results from measuring the diffusion properties

of full round and reduced round versions of the finalists.

The quantities measured—including the degrees of

completeness, of the avalanche effect, and of strict

avalanche criterion—were “indistinguishable from

random permutations after a very small number of

rounds,” for all of the finalists.

In summary, none of the finalists was statistically

distinguishable from a random function.

3.2.6 Other Security Observations

Many observations have been offered about various

properties that might impact the security of the finalists.

Because the implications of these observations are

526

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

generally subjective, they did not play a significant role

in NIST’s selection.

MARS: In Ref. [20], the MARS team conjectures

that the heterogeneous structure of MARS and its

variety of operations constitute a kind of insurance

against the unknown attacks of the future. The

MARS key schedule requires several stages of

mixing; in Ref. [77], key schedules that require the

thorough mixing of key bits are cited for security

advantages. The estimates in the MARS specifica-

tion of the resistance of the core to linear crypt-

analysis are questioned in Ref. [79]. In Ref. [61], one

conjectured estimate from the MARS specification

is proven incorrect. In Ref. [14], it is pointed out that

the MARS S-box does not have all of the properties

that the designers required. No attacks are proposed

based on these observations. In Ref. [49], the MARS

team offers a clarification of its analysis, supporting

the original assessment that MARS is resilient

against linear attacks.

RC6: In Ref. [77], the thorough mixing provided

by the RC6 key schedule is cited as a security

advantage. In Ref. [20], the concern is raised that

RC6 relies mainly on data-dependent rotations

for its security, constituting a “ ‘single point of

failure’ . . . (as it does not use S-boxes).”

Rijndael: In Ref. [86], the author discusses three

concerns about the mathematical structure of

Rijndael and the potential vulnerabilities that result.

First, he observes that all of the operations of the

cipher act on entire bytes of the data, rather

than bits; this property allows the Square attack on

reduced-round variants. Moreover, the nearly

symmetric movement of the bytes troubles him. The

only break to the symmetry is the use of different

round constants in the key schedule, and for the first

eight rounds, these constants are only one bit.

If Rijndael were simplified to omit these round

constants, then encryption would be compatible with

rotating each word of the data and subkeys by a byte.

The second concern discussed in Ref. [86] is that

“Rijndael is mostly linear.” He disagrees with the

deliberate design decision to avoid mixing the XOR

operations with ordinary addition operations. He illus-

trates how to apply a linear map to the bits within each

byte without changing the overall algorithm, by com-

pensating for the linear map in the other elements of the

cipher, including the key schedule. Similarly, the Galois

field that underlies the S-box can be represented in

different basis vectors or can be transformed to other

Galois fields with different defining polynomials.

In other words, the Rijndael’s mathematical structure

permits many equivalent formulations. The author

suggests that, by performing a series of manipulations

to the S-box, an attacker might be able to find a

formulation of Rijndael with an exploitable weakness.

The third concern discussed in Ref. [86] is the

relatively simple algebraic formula for the S-box, which

is given in the Rijndael specification. The formula is a

polynomial of degree 254 over the given Galois field,

but there are only nine terms in the polynomial, far

fewer than would be expected in a typical randomly

generated S-box of the same size. The mathematical

expression for the iteration of several rounds of Rijndael

would be much more complex, but the author asserts

that the growth of the expression size as a function of

rounds has not been analyzed in detail. He presents

some examples of calculations in this setting, including

the possible use of a “normal” basis, under which the

squaring operation amounts to just a rotation of bits. If

the expression for five rounds of Rijndael turned out to

contain, say, only a million terms, then the author asserts

that a meet in the middle attack could be mounted by

solving a large system of linear equations. Such an

attack would require the attacker to collect two million

plaintext-ciphertext pairs.

In Ref. [86], it is also noted that an attacker that

recovers or guesses appropriate bits of Rijndael’s

subkeys will be able to compute additional bits of the

subkeys. (In the case of DES, this property aided the

construction of linear and differential attacks.)

Extensions of this observation are discussed in Ref. [37];

its authors deem these properties worrisome and

suggest that, contrary to a statement in the Rijndael

specification, the key schedule does not have high

diffusion.

In Ref. [72], some properties of the linear part of the

round function in Rijndael are explored. In particular,

the linear mapping within the round function has the

property that 16 iterations are equivalent to the identity

mapping. The authors suggest that this casts doubt on

the claim in the Rijndael submission that the linear

mapping provides high diffusion over multiple rounds.

In Ref. [24], the Rijndael submitters explain that the

observations in Ref. [72] do not contradict their claims

about the security of Rijndael. The authors of Ref. [72]

offer a further response in Ref. [71].

Serpent: In Ref. [3], the Serpent team asserts that

Serpent is the most secure of the finalists. They cite

Serpent’s many extra rounds, beyond those needed to

resist today’s attacks, as a reason why future advances in

cryptanalysis should not break its design. In Ref. [67], a

concern is raised about the small size of Serpent’s

S-boxes. Although the author views the S-boxes as well

designed with respect to linear and differential

cryptanalysis, the S-boxes may turn out to exhibit some

527

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

other properties that are exploitable in an attack. No

such properties or attacks have been proposed. In

Ref. [86], it is noted that an attacker that recovers or

guesses appropriate bits of the subkeys will be able to

compute additional bits of the subkeys.

Twofish: Twofish uses an innovative paradigm, in the

form of key-dependent S-boxes. This creates an unusual

dependency between the security of the algorithm and

the structure of the key schedule and S-boxes. In the 128

bit key case (where there are 128 bits of entropy),

Twofish may be viewed as a collection of 264 different

cryptosystems. A 64 bit quantity (representing 64 bits of

the original 128 bits of entropy) that is derived from the

original key controls the selection of the cryptosystem.

For any particular cryptosystem, 64 bits of entropy

remain, in effect, for the key. As a result of this

partitioning of the 128 bits of entropy derived from the

original key, there has been some speculation [66]

that Twofish may be amenable to a divide-and-conquer

attack. In such an attack, an attacker would determine

which of the 264 cryptosystems is in use, and then deter-

mine the key to the cryptosystem. If a method could be

devised to execute these steps, the work factor for each

step would presumably be 264. However, no general

attack along this line has been forthcoming. That is, if

an attacker is faced with the task of decrypting cipher-

text encrypted with a 128 bit key, it is not clear that the

partitioning of the 128 bits of entropy gives the attacker

any advantage. On the other hand, if a fixed 128 bit key

is used repeatedly, each usage may leak some informa-

tion about the cryptosystem selected. If an attacker

can make repeated observations of the cryptosystem in

action, he might conceivably be able to determine which

of the 264 cryptosystems is in use. Similar remarks apply

to higher key sizes (in general, for k bit keys, the

cryptosystem is determined by k /2 bits of entropy).

This feature of Twofish, called the key separation

property of Twofish in Ref. [66], is discussed further

in Refs. [55], [68], and [96]. In particular, Ref. [55]

notes that the dependence of the S-boxes in Twofish

on only 64 bits of entropy in the 128 bit key case was a

deliberate design decision. This decision is somewhat

analogous to the security/efficiency tradeoff involved in

establishing the number of rounds in a system with a

fixed round function. The authors note that if the

S-boxes had depended on 128 bits of entropy, the

number of rounds of Twofish would have had to be

reduced in order to avoid an overly negative effect on

key agility and/or throughput.

In Ref. [55], the Twofish team asserts that key-

dependent S-boxes constitute a form of security margin

against unknown attacks.

In Ref. [59], the author explores a variety of proper-

ties of Twofish, including the construction of truncated

differentials for up to 16 rounds. Although these

differentials do not necessarily lead to an attack, the

author finds it surprising that non-trivial information

can be pushed through all 16 rounds of Twofish.

3.2.7 Summary of Security Characteristics

of the Finalists

As noted earlier, no general attacks against any of the

finalists is known. Hence, the determination of the level

of security provided by the finalists is largely guess-

work, as in the case of any unbroken cryptosystem.

The following is a summary of the known security

characteristics of the finalists.

MARS appears to have a high security margin. A

precise characterization of MARS is difficult be-

cause of the fact that MARS employs two different

kinds of rounds. MARS has received some criticism

based on its complexity, which may have hindered

its security analysis during the timeframe of the

AES development process.

RC6 appears to have an adequate security margin.

However, RC6 has received some criticism because

of its low security margin relative to that offered by

other finalists. On the other hand, RC6 has been

praised for its simplicity, which may have facilitated

its security analysis during the specified timeframe

of the AES development process. RC6 is descended

from RC5, which has received prior scrutiny.

Rijndael appears to have an adequate security

margin. The security margin is a bit difficult to

measure because the number of rounds changes with

the key size. Rijndael has received some criticism on

two grounds: that its security margin is on the low

side among the finalists, and that its mathematical

structure may lead to attacks. However, its structure

is fairly simple, which may have facilitated its

security analysis during the specified timeframe of

the AES development process.

Serpent appears to have a high security margin.

Serpent also has a simple structure, which may have

facilitated its security analysis during the specified

timeframe of the AES development process.

Twofish appears to have a high security margin.

Since Twofish uses key-dependent round function,

the notion of security margin may have less meaning

for this algorithm than for the other finalists. The

dependence of the Twofish S-boxes on only k /2 bits

528

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

of entropy in the k bit key case has led to a speculation

that Twofish may be amenable to a divide-and-conquer

attack, although no such attack has been found. Twofish

has received some criticism for its complexity, making

analysis difficult during the timeframe of the AES

development process.

3.3 Software Implementations

Software implementations cover a wide range. In

some cases, space is essentially unrestricted; in other

cases, RAM and/or ROM may be severely restricted. In

some cases, large quantities of data are encrypted or

decrypted with a single key. In other cases, the key

changes frequently, perhaps with each block of data.

Encryption or decryption speed may be traded off

against security, indirectly or directly. That is, the

number of rounds specified for an algorithm is a factor

in security; encryption or decryption speed is roughly

proportional to the number of rounds. Thus, speed

cannot be studied independently of security, as noted in

Sec. 3.3.6.

There are many other aspects of software implemen-

tations. Some of these are explored below, along with

the basic speed and cost considerations.

3.3.1 Machine Word Size

One issue that arises in software implementations is

the basic underlying architectures. The platforms on

which NIST performed testing were oriented to 32 bit

architectures. However, performance on 8 bit and 64 bit

machines is also important, as was recognized in the

public comments and analyses. It is difficult to project

how various architectures will be distributed over the

next 30 years (roughly the minimum period in which

the AES is expected to remain viable). Hence, it is

difficult to assign weights to the corresponding perfor-

mance figures that accurately represent their impor-

tance during this timeframe. Nonetheless, from the

information received by NIST, the following picture

emerges:

It appears that over the next 30 years, 8 bit, 32 bit,

and 64 bit architectures will all play a significant role

(128 bit architectures might be added to the list at some

point). Although the 8 bit architectures used in certain

applications will gradually be supplanted by 32 bit

versions, 8 bit architectures are not likely to disappear.

Meanwhile, some 32 bit architectures will be sup-

planted by 64 bit versions at the high-end, but 32 bit

architectures will become increasingly relevant in

low-end applications, so that their overall significance

will remain high. Meanwhile, 64 bit architectures will

grow in importance. Since none of these predictions can

be quantified, it appears that versatility is of the

essence. That is, an AES should exhibit good perfor-

mance across a variety of architectures.

Some information on the performance of the finalists

with respect to word size may be accrued from Tables 16

through 25 of Appendix A. In this appendix, encryption

speeds are grouped into four categories: 8 bit, 32 bit C

and assembler code, 64 bit C and assembler code, and

other (Java, DSPs, etc.). Graphs are also provided in

order to aid the visualization of the table information.

It should be noted that performance cannot be

classified by word size alone. One additional factor is

the support provided by software. This is noted (but not

systematically explored) in the next section.

3.3.2 Other Architectural Issues

Both MARS and RC6 use 32 bit multiplies and 32 bit

variable rotations. These operations, particularly the

rotations, are not supported on some 32 bit processors.

The 32 bit multiply and rotation operations are both

awkward to implement on processors of other word

sizes. Moreover, some compilers do not actually use the

rotation operations even when they are available in

the processor instruction set. Therefore, the relative

performance of MARS and RC6, when running the

same source code, shows somewhat more variance from

specific platform (processor and compiler) to platform,

than do the other three finalists.

3.3.3 Software Implementation Languages

The performance of the finalists also depends

somewhat on the particular high-level language used

(e.g., assembler, compiler or interpreter). In some cases,

the role played by particular software has a strong effect

on performance figures. There is a spectrum of possibil-

ities. At one extreme, hand-coded assembly code will

generally produce better performance than even an

optimizing compiler. At the other extreme, interpreted

languages are, in general, poorly adapted to the task of

optimizing performance. Compilers are typically in

between. In addition, as noted in the Sec. 3.3.2, some

compilers do a better job than others in making use of

the support provided by the underlying architecture for

operations such as 32 bit rotations. This increases the

difficulty of measuring performance across a variety of

platforms. Some finalists benefited from the use of

certain compilers on certain processors. However, this

type of performance increase on specific platforms does

not necessarily translate into high performance results

across platforms.

There is no clear consensus on the relative

importance of different languages. In Ref. [84],

the opinion is expressed that assembler coding is the

best means of evaluating performance on a given

529

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

architecture. The reason provided is that hand-coded

assembler will be used when speed is important and a

hardware implementation is not available. On the other

hand, the use of assembler or another means of optimiz-

ing for speed may raise costs. Code development cost

may be significant, especially if the goal is maximum

speed. For example, optimizations may be effected

using hand coding for high-level languages such as C, or

by the use of assembly code. This developmental cost

may or may not translate into significant monetary cost,

depending upon the specific environment. In some

environments, the speed at which the code runs is

perceived as a paramount consideration in evaluating

efficiency, overriding cost considerations. In other

cases, the time and/or cost of code development is a

more important consideration. In some cases, the speed

of key setup is more significant than encryption or

decryption speed. This makes it difficult to develop a

universal metric for evaluating the performance of the

finalists.

Code development cost may need to be traded off

against speed. That is, the use of standard reference code

may minimize cost, but may not allow significant

optimization in a particular environment. On the other

hand, the use of non-standard code, such as hand-coded

assembler, may optimize speed at the expense of higher

development cost.

Optimization spans a broad range. Some optimiza-

tions may be made without great effort. Furthermore,

some optimizations may be portable across platforms.

At the opposite extreme, some optimizations require

much effort and/or are restricted to particular platforms.

Two related examples are discussed in Refs. [43] and

[73], in which optimized implementations of the

Serpent S-boxes are obtained. This work involves

exhaustive searching through possible instruction

sequences. The results improve Serpent’s performance

on the targeted platforms. However, this level of opti-

mization involves resource expenditures (e.g., 1000

hours of execution of search programs [43]) far beyond

optimizations that may be obtained using hand coding.

Optimizations obtained by such searches do not

necessarily port to different platforms. Maximal

optimization on specific platforms may raise the cost of

code development substantially.

In Tables 16-21 of Appendix A, the results were

obtained via a mixture of reference code and hand-

coded assembler. Some finalists (notably, Rijndael and

Twofish) performed better on some platforms when

hand-coded assembler was used as opposed to compil-

ers. The results from Refs. [43] and [73] and from other

papers dealing with heavily optimized implementations

of one finalist have been omitted from these tables.

Although such papers would be valuable aids in imple-

menting a finalist in practice, their significance for com-

paring the finalists is questionable since the papers only

address a single algorithm. Without knowing the level of

effort applied to optimizing the algorithms in the sepa-

rate studies, it is impractical to compare studies where a

single algorithm was optimized. Choosing an AES al-

gorithm on the basis of heavily optimized implementa-

tions would not necessarily be an accurate predictor of

the general performance of the algorithm in the field,

since extreme optimization may not be feasible or cost-

effective in many applications.

3.3.4 Variation of Speed With Key Size

The software performance of MARS, RC6, and

Serpent does not vary significantly for the three differ-

ent AES key sizes. For Rijndael and Twofish, however,

key setup or encryption/decryption is noticeably slower

for 192 bit keys than for 128 bit keys, and slower still for

256 bit keys; see Tables 16-30 in Appendix A.

Rijndael specifies more rounds for the larger key

sizes, affecting the speed of both encryption/decryption

and key setup. The key setup time remains the fastest

among the finalists for the larger key sizes.

For the larger key sizes, Twofish specifies extra

layers both in the generation of its subkeys and in the

construction of its key-dependent S-boxes. Subkey

computation only affects the speed of key setup. How-

ever, the S-box construction can affect the speed of

either key setup or encryption/decryption, or both,

depending on the extent to which the S-boxes are pre-

computed during key setup. For example, under the full

keying option, which optimizes for throughput, the

effect of the extra layers in the S-boxes is confined to

key setup.

The variation of Rijndael and Twofish for the three

key sizes complicates the evaluation and comparison of

the performance of all of the finalists. Most of the sub-

mitted data applied to the 128 bit case. Rijndael and

Twofish pay a performance penalty for the larger key

sizes, although in those cases, they arguably offer some

compensation in increased security.

3.3.5 Summary of Speed on General Software

Platforms

An enormous amount of information has been

gathered on the speed of the finalists on a variety of

software platforms. These platforms include 32 bit

processors (C and Java implementations), 64 bit

processors (C and assembler), 8 bit processors (C and

assembler), 32 bit smart cards (ARM), and Digital

Signal Processors. Tables 16-30 of Appendix A provide

530

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

the performance findings of the finalists on these soft-

ware platforms. These tables provide information from

various contributors on the encryption speed (Tables

16-21), decryption speed (Tables 22-25), and key setup

time (Tables 26-30). Tables 2-4 summarize the perfor-

mance of the finalists on the various platforms when

using 128-keys. Additionally, an overall performance

table is also included. The performance of the finalists

is grouped into tiers. At times, these tiers were difficult

to determine because of the multitude of studies. Hence,

the groupings are not meant to be definitive. Tier I is the

highest level of performance; Tier III is the lowest level

of performance.

In the following assessments, “low-end,” “average”

and “high-end” are relative terms used only within the

context of these five finalists.

MARS provides average performance for encryp-

tion, decryption and key setup.

RC6 provides average to high-end performance for

encryption and decryption, and average performance

for key setup.

Rijndael provides consistently high-end perfor-

mance for encryption, decryption and key setup,

although performance decreases for the 192 bit and

256 bit key sizes.

Serpent provides consistently low-end performance

for encryption and decryption, and platform-

dependent performance for key setup.

Twofish provides platform-dependent performance

for encryption and decryption, and consistently

low-end performance for key setup. The “Full Key-

ing” option was used in the implementations (see

Sec. 3.9.2). This option provides the fastest possible

encryption time by placing more computations in

key setup. Encryption/decryption or key setup

performance decreases with the larger key sizes,

depending upon the keying option used.

3.3.6 Variation of Speed With Mode

Another factor that may impact an algorithm’s speed

is the mode of operation in use. An algorithm running

in a non-feedback mode (e.g., Electronic Codebook

(ECB) and Counter modes) can be implemented to

process data blocks independently and, therefore,

simultaneously. The results from the simultaneous

processing are then interleaved to produce a stream of

information that would be identical to the stream

produced by sequential processing. An implementation

using this approach is considered to be using an

“interleaved mode.” This contrasts with feedback modes

of operation (e.g., Cipher Feedback, Cipher Block

Chaining, etc.), which must process data blocks

sequentially. Thus, interleaved modes have the potential

for taking advantage of parallel processing functionality

within some processors.

Only a few studies provided data comparing

algorithm speed in both feedback and non-feedback

modes. In Ref. [19], a TriMedia VLIW CPU was used

to test the throughput of the finalists in the ECB mode

using varying amounts of interleaving. Although all five

algorithms exhibited better speed with interleaving,

RC6 benefited the most, in terms of both raw speed and

percentage improvement. Although Rijndael’s raw

speed remained competitive, the author indicates that

Rijndael’s speed varied the least between interleaved and

non-interleaved modes [19].

The authors of Ref. [95] offer speed estimates

for the finalists on the Alpha 21264 processor for

processing single and multiple streams of data (used in

Table 2. Encryption and decryption performance by platform

32 bit 32 bit 64 bit 8 bit 32 bit Digital

(C) (Java) (C and (C and smartcard Signal

assembler) assembler) (ARM) Processors

MARS II II II II II II

RC6 I I II II I II

Rijndael II II I I I I

Serpent III III III III III III

Twofish II III I II III I

Table 3. Key setup performance by platform

32 bit 32 bit 64 bit 8 bit Digital

(C) (Java) (C and (C and Signal

assembler) assembler) Processors

MARS II II III II II

RC6 II II II III II

Rijndael I I I I I

Serpent III II II III I

Twofish III III III II III

Table 4. Overall performance

Enc/Dec Key setup

MARS II II

RC6 I II

Rijndael I I

Serpent III II

Twofish II III

531

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

feedback and interleaved modes of operation, respec-

tively). The Alpha 21264 processor, like the TriMedia

used in Ref. [19], indicates that the speed of RC6 can

benefit greatly (by more than 33 % in an interleaved

mode, while MARS, Rijndael, and Twofish may not

improve at all. Serpent’s speed is estimated to improve

somewhat when processing multiple streams

simultaneously.

In Ref. [97], all five finalists are implemented in the

TMS320C6201 DSP, in both feedback and interleaved

modes. As in the previous two studies, Rijndael showed

no speed improvement when executed in an interleaved

mode. The authors indicate that the DSP tools can very

efficiently optimize the Rijndael code (in both mode

types), which is the reason for no change in speed [97].

However, all four of the other finalists demonstrated

improvements of between 10 % and 40 % when using

an interleaved mode for encryption. Twofish experi-

enced the greatest percentage improvement for

encryption and decryption, while MARS and RC6 also

executed significantly more quickly. Serpent’s

improvement was less dramatic.

Irrespective of the raw speed figures, the three

studies indicate that for some processors, there may

be a significant difference in an algorithm’s speed for

encryption and decryption when comparing interleaved

and feedback modes. Whether an algorithm demon-

strates any improved speed from one mode to another

appears to depend on the processor in use. For the

processors in question, RC6 consistently improved its

speed significantly when used in an interleaved mode,

while Rijndael’s speed varied the least between the two

mode types.

3.4 Restricted-Space Environments

In some environments, relatively small amounts of

RAM and/or ROM are available for such purposes as

code storage (generally in ROM), representation of data

objects such as S-boxes (which could be stored in ROM

or RAM, depending on whether pre-computation or

Boolean representation is used), and subkey storage (in

RAM). In theory, intermediate forms of storage such as

EEPROM could be used for non-static quantities such

as subkeys. However, this would be impractical in

many instances, since it would negatively impact key

agility. Thus, in particular, it must be assumed that

subkeys are stored in RAM.

Another consideration is that the available RAM

must be used for various purposes, such as the storage

for intermediate variables during program execution.

Thus, it cannot be assumed that a large portion of this

space is available for subkey storage.

In restricted-memory environments, the amounts of

ROM and RAM needed to implement the finalists may

be a factor in determining their suitability for a given

environment. A major advantage (and in some cases, a

virtual prerequisite) is support for on-the-fly subkey

computation (or some equivalent scheme that obviates

the necessity of computing and storing all subkeys in

advance), as discussed in Sec. 3.8. In addition, ROM

usage must be reasonable.

3.4.1 A Case Study

In Ref. [82], the finalists are implemented on a

high-end smart card. The smart card is equipped with a

Z80 microprocessor (8 bits), a coprocessor, 48 kB of

ROM, and 1 kB of RAM. The Z80 can execute logical

instructions, 1 bit shifts or rotations, addition, and

subtraction. The coprocessor is useful in handling

modular multiplications, completing a multiplication

within the execution time of a Z80 instruction. The

coprocessor can also be called upon for other arithmetic

or logical operations, if advantageous.

Code was written so that an encryption or decryption

operation runs in the same amount of time, regardless of

the specific key or data bits used. This was intended to

deflect timing attacks and simple power analysis

(Sec. 3.6.1). Defense against differential power analysis

and other variants was not considered. On-the-fly

subkey computation was used wherever possible. Only

the results for encryption and key scheduling are

reported, although decryption is also analyzed.

3.4.1.1 Notes on the Finalists

MARS: MARS caused some problems because of

its heterogeneous round structure (four different

round types). The 2 kB of ROM needed for S-boxes

were not a problem because of the plentiful amount

of ROM that was available.

Parsing for weak keys caused some problems in

restricted-resource environments. It was necessary

to use some form of pattern matching in order to

eliminate certain patterns arising in key words

(10 consecutive zeroes or ones are disallowed). The

needed checks increased the execution time and the

amount of ROM required. If subkeys needed to be

regenerated, processing time was affected. This con-

ditional regeneration of subkeys opens the process to

timing attacks. For simplicity, the authors omitted

the required weakness checks in the key schedule.

Thus, their implementation of MARS was

incomplete.

Variable rotations could have caused problems

per se because of the constant-time requirement.

532

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

However, the coprocessor solved this problem by

emulating variable rotations using modular multipli-

cations (to left-rotate an m bit string by n positions,

store it twice in a 2m bit area, multiply by 2n mod

22m, then extract the high-end m bits).

The overall conclusion is that MARS causes

problems in restricted-resource environments,

including high-end smart cards.

RC6: Encryption in RC6 is well suited to the partic-

ular smart card used in this study. This is due to its

reliance upon arithmetic operations, which the Z80

can off-load to the coprocessor. As in the case of

MARS, variable rotations can be handled using

modular multiplications.

The key schedule is simple, but on-the-fly subkey

computation is not an option. This could cause

problems on low-end cards. In this study, storage for

subkeys was plentiful. On the other hand, key setup

was very time-consuming, and took about four times

as many cycles as encryption.

Rijndael: Rijndael is the most efficient of the

finalists according to this study. The AddRoundKey

operation was carried out on the coprocessor. Other

operations were carried out by the Z80. Key setup

was very efficient. However, the efficiency edge

of Rijndael over the other finalists was reduced

if encryption and decryption were implemented

simultaneously, due to the relative lack of resource

sharing between encryption and decryption.

Specifically, Rijndael would then require twice the

amount of ROM reported in the study.

Serpent: Two different Serpent implementation

modes are possible: ordinary and bit-sliced. Only

the ordinary implementation was employed in this

study. 2kB of ROM were required for tables, not a

problem on the card employed. Most of the rotations

required by Serpent were simpler using the 1 bit

rotations of the Z80 rather than the coprocessor.

An exception was the 11 bit rotations that were

off-loaded to the coprocessor, along with XORs.

It is possible to implement Serpent using 80 bytes

of RAM, due to support for on-the-fly subkey

computation. However, the authors chose to involve

the coprocessor, which required twice as much

RAM. Key setup took about twice as many cycles as

encryption.

The authors estimate that a bitsliced implementa-

tion would degrade speed somewhat, but also reduce

ROM requirements.

Twofish: There are several possible modes for

implementing Twofish; these are particularly

relevant to restricted storage environments such

as were used for this study. Rotations were

implemented with the Z80’s 1 bit rotations. Subkey

additions and XORs were off-loaded to the co-

processor. Performance depended, to some extent,

on the size of pre-computed tables; this was not

systematically explored.

The connection between decryption and key

setup was ignored in all case studies within this

study, due to the concentration on encryption. If

encryption and decryption were implemented

simultaneously, however, Twofish would have a

substantial advantage due to its independent

subkey computation property.

3.4.1.2 Comparison of the Finalists

The results of this study do not necessarily corre-

spond to other studies, because of the particular features

of the smart card used. In particular, the invocation of

the coprocessor had a considerable effect on both time

and RAM usage.

The results are summarized in Table 5, taken directly

from Table 8 of Ref. [82]. In this study, the algorithm

implementations were optimized for speed. Note that

the MARS implementation was incomplete due to the

omission of the weakness check during key setup. This

table clearly indicates that Rijndael is superior in every

respect, within the scope of the present study. Twofish

is next best, followed by RC6; MARS and Serpent seem

to fall behind the other three algorithms, depending on

the weights assigned to the various categories. The

figures listed for MARS are too low, because of the

incomplete implementation of the key schedule.

Table 5. A smart card study. Source: Ref. [82], Sec. 3.4.1

RAM ROM ENC KEY TIME

MARS 572 5468 45 21 67

RC6 156 1060 34 138 173

RIJN 66 980 25 10 35

SERP 164 3937 71 147 219

TWOF 90 2808 31 28 60

RAM = Total RAM in bytes.

ROM = Total ROM in bytes.

ENC = Time for encryption of one 128 bit block, in units of 1000

cycles.

KEY = Time for key scheduling, in units of 1000 cycles.

TIME = Encryption + key scheduling, in units of 1000 cycles.

533

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

If the parameters of the study were altered, the results

would undoubtedly differ somewhat. For example,

if encryption and decryption were implemented

simultaneously, Serpent and Rijndael would be

penalized because of the lack of resource sharing, and

Twofish would be rewarded for its independent subkey

computation. The presence of an arithmetic coprocessor

clearly benefited MARS and RC6, since multiplication

and variable rotation could be executed efficiently.

3.4.2 A Second Case Study

In Ref. [54], the performances of four of the finalists

(all except Twofish) were simulated on the Motorola

6805 and are summarized in Table 6. “In general, the

algorithms were implemented to fit within 120 bytes of

RAM including the key schedule. The algorithms were

implemented to take about 1024 bytes of ROM, but

flexibility was allowed where this would cause a large

speed penalty” [54]. The performance for Twofish on

the 6805 is quoted from the Twofish submission. The

6805 family contains a number of variants, with RAM

ranging from 64 B to 384 B, and ROM ranging

from 1240 B to 32 040 B. The author considered two

implementations of RC6 and MARS. The first, denoted

simply by RC6 and MARS in the table, were designed

so that the RAM required for encryption plus subkey

storage did not exceed 120 B. The alternative

implementations, denoted by RC6(2) and MARS(2) in

the table, had no limit on RAM for encryption plus

subkey storage. The results are given for the encryption

of a single block with a 128 bit key, except that the

author considered decryption as well as encryption

for Rijndael (RIJN(d)). For Serpent, a bitslice

implementation was used to conserve ROM.

It is important to note that this study only tested the

Round 1 version of MARS, which had a different key

schedule than the Round 2 version. Before Round 2, the

MARS submission team “tweaked” the key schedule,

with a goal of making the key schedule better suited for

restricted-space environments. Unfortunately, during

Round 2, there was a general lack of cross cutting

performance testing in those environments. Therefore,

NIST felt it was worthwhile to discuss Ref. [54],

keeping in mind that the values for MARS may be

different for the Round 2 version.

3.4.2.1 Notes on the Finalists

MARS has a relatively large ROM requirement. Its

key setup is very slow, and encryption is also slow,

especially when the amount of RAM is constrained

(this study only examined the original MARS

submission, not the Round 2 version).

RC6 has a moderate ROM requirement. However,

both key setup and encryption are slow, especially

when amount of RAM is constrained. In addition, if

the amount of RAM is constrained, then decryption

will be very slow.

Rijndael has a low ROM requirement and very low

RAM requirement. Both encryption and decryption

are at least twice as fast as any other finalist.

Serpent has a low ROM requirement and moderate

RAM requirement. Encryption is very slow.

Twofish has a very low RAM requirement, except

possibly for the key schedule that is omitted for this

study. The ROM requirement is fairly high. The

speed is second best among the finalists, although

only about half as fast as the Rijndael decryption

speed.

Table 6. Performance study on the 6805. Source: Ref. [54], Tables 2 and 3

RAM ROM TIME

KEYA ENCA SCHA ENCO EOSO ENCT SCHT

MARS 23 91 74 4059 4077 358 213

MARS(2) 160 33 32 3329 4136 34 110

RC6 56 55 38 1342 1374 106 79

RC6(2) 176 24 30 639 933 33 82

RIJN 16 34 0 879 879 9 0

RIJN(d) 16 37 1 976 1049 14 2

SERP 16 85 0 1056 1056 126 0

TWOF 24 36 N/A N/A 2200 27 2

KEYA = Bytes of RAM needed for subkey storage.

ENCA = Bytes of RAM needed for encryption.

SCHA = Bytes of RAM needed for key setup.

ENCO = Bytes of RAM needed for encryption.

EO+SO = Bytes of RAM needed for encryption + key setup.

ENC = Time to encrypt one block, in units of 1000 cycles.

SCHT = Time to execute key setup, in units of 1000 cycles.

534

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

3.4.2.2 Comparison of the Finalists

It is difficult to draw any general conclusions about

the finalists as a whole from this study, due to the incom-

plete treatment of MARS and Twofish (i.e., the Round

1 version of MARS is used, and the Twofish results have

been quoted from statements made by the Twofish sub-

mitters). Rijndael emerges as the best, with a low RAM

requirement and at least twice the encryption and

decryption speed of any other finalist. Serpent is second

from a space point of view, but is slow.

3.5 Hardware Implementations

While a relatively large amount of data was available

on the performance of software implementations on

various platforms, there was much less data available

to NIST for hardware implementations. A software

implementer is simply trying to efficiently express an

algorithm in terms of an existing hardware device.

However, a hardware implementer is designing a device

to perform the algorithm and has far more degrees of

freedom, but much more work to do to compare each

alternative explored.

This is particularly true when attempting to exploit

the parallelism of an algorithm. The software imple-

menter simply tries, as best he can, to use the available

execution units of a processor to maximize perfor-

mance. The hardware implementer has many options

to design the hardware to best exploit the inherent

parallelism of an algorithm.

Like software, hardware implementations can be

optimized for speed or for size. However, in the case of

hardware, size translates much more directly into cost

than is usually the case for software implementations.

Doubling the size of an encryption program may make

little difference on a general-purpose computer with a

large memory, but doubling the area used in a hardware

device typically more than doubles the cost of the

device.

Two major classes of hardware devices, Field Pro-

grammable Gate Arrays and Application Specific Inte-

grated Circuits were studied during Round 2 and are

discussed separately in Sec. 3.5.3 and 3.5.4. First, how-

ever, some architectural considerations that apply to

both classes of hardware are explored.

3.5.1 Architectural Options

There are many possible approaches to the hardware

design of the finalists. Some of the major options are

explored below. The suitability of a particular option

depends upon the specific environment, including space

and other available resources.

Another major consideration is the intended crypto-

graphic mode of operation. The two categories are the

feedback and non-feedback modes. In both modes,

plaintext consists of a sequence of blocks to be pro-

cessed. In the feedback modes (e.g., Cipher Block

Chaining, Cipher Feedback, and Output Feedback), the

encryption or decryption of the next block cannot begin

until the present block has finished. This prevents the

parallel processing of separate blocks. In the non-

feedback modes (e.g., Electronic Code Book, counter

mode or interleaved modes), this restriction is removed,

and blocks can be pipelined and/or processed in parallel,

achieving substantially higher throughput performance.

However, for feedback modes, parallel encryption of

separate plaintext blocks is not possible; pipelining

yields no performance gain and may cause a substantial

increase in the area required to implement the

algorithm.

3.5.1.1 The Basic Architecture

If an algorithm has homogeneous rounds, the simplest

implementation of encryption or decryption in hardware

is to implement one round in combinational logic.

Combinational logic circuits are circuits whose current

output state is solely dependent on the present state of

the circuit inputs. In a system clock cycle, data is fed to

the circuit implementing that round via a multiplexer,

and the output of the circuit is stored in a register. Thus,

in each system clock cycle, one round of the algorithm

is evaluated. If the algorithm uses k rounds, it takes k

clock cycles to encrypt one block. This configuration is

often referred to as the basic architecture. An advantage

of this architecture is the minimization of the area

required for round function implementation. However,

additional hardware is required for subkey multiplexing

(and multiplexing of other large data objects such

as S-boxes, if applicable). The basic architecture is

versatile; it may be used in either feedback or non-

feedback modes. It is also fairly efficient, since the logic

implementing the round is in continuous usage.

However, not all parts of this logic are in use at any

given time during a cycle. Some optimization may

be attainable by exploiting this fact, as noted in

Sec. 3.5.1.2.

If an algorithm has heterogeneous rounds, the basic

architecture will have to be modified accordingly. Each

type of round will have to be implemented.

As discussed in Sec. 3.8, an algorithm may have

an option for generating subkeys on-the-fly. Another

possibility is to perform subkey computation in hard-

ware prior to encryption or decryption, and store the

subkeys in registers or RAM. A third possibility is

to have subkey computation performed externally,

and subkeys stored prior to the processing of the data

blocks.

535

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

3.5.1.2 Internal Pipelining

The basic architecture can be modified, in some

cases, by partitioning the logic within a round, with

registers separating the individual portions of the

rounds. It may be possible to do so in such a fashion that

the latencies associated with the portions are roughly

equal. In this event, the portions can form the stages of

an internal pipeline within the round, with each stage

executed in one system clock cycle. This presents an

opportunity for instruction-level parallelism: if there are

k stages, k blocks of data can be processed in parallel.

However, pipelining can only be fully exploited when

non-feedback modes are used.

Internal pipelining can increase throughput and

efficiency considerably in non-feedback modes.

Throughput (i.e., the number of blocks processed per

second) increases almost linearly with the number of

stages, but area requirements presumably increase at a

much lower rate, since the only requirement is the

addition of some registers. However, the potential

for internal pipelining is generally limited, since it is

necessary to subdivide a round into portions with

similar delays. Thus, in this form of pipelining, the

number of stages is generally small.

3.5.1.3 Loop Unrolling

Another variation on the basic architecture is loop

unrolling. In this case, k copies of a round are used,

where k is usually a divisor of the number of rounds. All

k rounds are implemented as a single combinational

logic. Loop unrolling increases both the area devoted to

round logic and the system clock cycle by a factor of

roughly k . Furthermore, k subkeys must be stored prior

to each clock cycle, possibly increasing the number of

registers needed for this purpose. Loop unrolling can be

used to increase throughput in a feedback mode.

However, with loop unrolling, the area requirement

usually increases more than the increase in throughput,

resulting in lower efficiency.

3.5.1.4 External Pipelining

Another variation on the basic architecture is attained

by placing registers between k unrolled rounds. Then

the k rounds form the stages of a pipeline (technically

the registers, rather than the logic implementing the

rounds, form the stages). As in the case of internal

pipelining, this option can be fully exploited only in

non-feedback modes. External pipelining increases the

area required by a factor of roughly k . Included in this

increase is often a k -fold replication of data objects

such as S-boxes. On the other hand, in non-feedback

modes, throughput increases by a factor of roughly k as

well.

3.5.1.5 Hybrid Pipelining

Both external and internal pipelining can be imple-

mented simultaneously. That is, k rounds of an algorithm

can be replicated. In turn, each can be subdivided into

m portions. Altogether, a pipeline of k � m stages can

be formed.

3.5.2 Design Methodologies and Goals

There are two basic approaches to hardware design:

low-level and high-level. High-level design, which is

language-based, tends to be predominant because of

practical considerations. The result of high-level design

is implementations that are relatively easy to produce,

but may not be as optimal as would be the case with a

low-level (schematic-based) design methodology. All of

the studies reporting on the hardware implementations

of AES finalists were high-level designs. In most cases,

the reported performance data were the result of device

simulations, rather than measurements performed on the

actual devices. Tools for designing and simulating

FPGAs and ASICs are mature and reliable. However, the

tools use conservative design rules and assumptions,

therefore the attainable clock rates of actual devices may

sometimes exceed the predictions of the simulations.

Another consideration is the implementation goals.

Possible goals include:

• Minimum area.

• Maximum throughput, with unlimited area.

• Maximum throughput within a fixed area.

• Maximum efficiency, as measured by throughput/

area.

Generally, the goal determines the design approach;

different goals often produce incompatible design

decisions. In particular, area minimization and speed

maximization are generally polar opposites. The

maximization of speed may affect efficiency. For

example, full loop unrolling (all rounds unrolled) may

maximize throughput but increase the required area and

reduce efficiency. On the other hand, in non-feedback

modes, pipelining may increase throughput but keep

efficiency essentially constant (in the external case—see

Sec. 3.5.1.4) or increase efficiency (in the internal

case—see Sec. 3.5.1.2).

3.5.3 Field Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) is an

integrated circuit consisting of a large two-dimensional

array of small computing units that can be programmed.

Data can be routed within the array, vertically or

horizontally. Altering connections between the units can

536

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

effect re-routing. This type of hardware offers the

advantages of flexibility, low development cost, and low

product cost for relatively low volume devices. In partic-

ular, it is possible to reconfigure an FPGA to switch

from one algorithm to another algorithm, or from

encryption to decryption or key setup. Reconfiguration

takes only a fraction of a second. However, the flexi-

bility advantages are traded off against speeds lower

than those attainable by non-reconfigurable hardware

devices (e.g., ASICs). On the other hand, FPGAs

can achieve speeds considerably higher than software

implementations.

The computing units of an FPGA are sometimes

called Configurable Logic Blocks (CLBs). Reconfigura-

tion changes the functions of the CLBs and the connec-

tions between them. A CLB typically consists of lookup

tables and flip-flops. The lookup tables are configured

as either a small amount of combinational logic or a

small RAM.

An FPGA may also contain embedded RAM blocks

that can be employed as either lookup tables or memory

elements. However, there is a considerable variation

between FPGAs in this regard, and the use of embedded

RAM may affect portability and the universality of the

results obtained. In addition, RAM has slower access

time than CLBs.

Subkey computation can be implemented within the

FPGA, in which case the array could be configured for

subkey computation, and then reconfigured for encryp-

tion or decryption. Alternatively, subkey computation

could be performed externally, and the subkeys could

be loaded through the input interface prior to the

processing of the blocks.

In order to hold down time and cost, all FPGA

investigations of the finalists had to focus on certain

priorities. For example, some researchers implemented

only encryption. Others implemented a wider scope

of functions, but did not explore as wide a range

of architectures. All four of the FPGA case studies

presented in this report used 128 bit keys.

Unless otherwise noted, all case studies were

implemented using VHDL3 and simulated on a general-

purpose computer for the specified FPGA. These

simulations incorporated all device and design specific

timing constraints.

3.5.3.1 Operations and Their Implementation

The operations used by the finalists are summarized

in Table 7. Note that the finalists can be implemented

using either table lookups, or both Boolean and fixed

shift operations. S-boxes can be implemented via

combinational logic or embedded RAM. The XOR, mod

232 add and subtract, and fixed shift operations are fast

and use few hardware resources. The GF(28) multi-

plications used by the finalists are also efficient. The

most costly operation in terms of both area and time is

mod 232 multiplication.

3.5.3.2 A Case Study

In Ref. [30], all finalists except MARS were

implemented using FPGAs. However, only the encryp-

tion function was implemented. It was assumed that

subkeys were generated externally, loaded from the

external key bus, and stored in internal registers before

encryption began.

3 VHDL stands for VHSIC Hardware Description Language. VHSIC
is yet another acronym that stands for Very High Speed Integrated
Circuits.

Table 7. Operations used by the candidate algorithms. Source: [30], Table 1

MARS XOR Table FixShi VarShi Add Sub Mul GFmul

MARS Y Y Y Y Y Y Y

RC6 Y Y Y Y Y

RIJN Y Y Y Y

SERP Y Y Y

TWOF Y Y Y Y Y

Y = Yes (operation is used by the algorithm).

Table = Table lookup.

FixShi = Fixed shift or rotate.

VarShi = Data dependent shift or rotate.

Add = Mod 232 addition.

Sub = Mod 232 subtraction.

Mul = Mod 232 multiplication.

Gfmul = GF(28) multiplication.

537

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

The target FPGA was the Xilinx Virtex XCV

1000BG560-4. This device has 128 kbit of embedded

RAM, 512 I/O pins, and a 64 � 96 array of CLBs.

Language-based design methodology was used, with

VHDL being the chosen language. Synthesis tools

(FPGA Express by Synopsis, Inc. and Synplify by

Synplicity, Inc.) were set to optimize the implementa-

tion for speed. For internally pipelined architectures, a

40 MHz timing constraint was used.

Note: The terms basic architecture, external pipe-

lining, and internal pipelining are referred to in

Ref. [30] as iterative looping, partial pipelining, and

sub-pipelining, respectively.

3.5.3.2.1 Notes on the Four Finalists Implemented

RC6: Although RC6 can use a mod 232 multiplier,

a simpler structure called an array squarer was all

that was needed. The array squarer reduced the

logic required for round function implementation.

Nonetheless, squaring was the dominant operation

in terms of time and space. Although the fast 32 bit

variable rotation used by RC6 is potentially resource

intensive, the implementers found that a simple five-

stage 32 bit barrel shifter was sufficient. Full

loop unrolling and full external pipelining were

infeasible, due to space constraints.

In a feedback mode, 2-round external pipelining

was found to yield the highest throughput. This

implementation increased the system clock

frequency and throughput by about 50 % over the

basic architecture, while increasing the area by only

about 20 %. In contrast, 2-round loop unrolling

increased throughput by only about 8 % over the

basic architecture, while using nearly as much area

as 2-round external pipelining. External pipelining

using more than 2 rounds was counterproductive

with respect to throughput, as was the use of all

forms of internal pipelining and hybrids of external/

internal pipelining.

In a non-feedback mode, it was found that about

2/3 of the delay of the round function was caused by

mod 232 multiplications. Partitioning the multiplier

and adding two internal pipeline stages nearly

tripled the system clock frequency. Combining this

with 10-round external pipelining resulted in a

throughput that was more than 27 times greater than

the basic architecture. However, this required more

than a four-fold increase in area requirements.

Further internal pipelining was counterproductive

due to the atomic nature of the multiplications, and

further external pipelining was infeasible due to

space constraints.

In both feedback and non-feedback modes,

the area requirement was minimized by the basic

architecture.

Rijndael: In this case study, the S-boxes predomi-

nated in terms of required logic resources. Each

S-box is an 8 bit by 8 bit lookup table, and 16 copies

are required per round. Other operations were

simple. Full loop unrolling and full external pipe-

lining were infeasible due to space constraints.

In a feedback mode, 2-round loop unrolling

attained the best throughput. However, the improve-

ment in throughput over the basic architecture was

slight, while the increase in area was about 50 %.

All forms of pipelining produced smaller through-

puts. The use of one internal pipeline stage lowered

the area requirement compared to the basic architec-

ture, but also lowered throughput by about the same

proportion.

In a non-feedback mode, about half of the round

function delay was produced by S-box substitutions.

Adding one internal pipeline stage to separate the

S-boxes nearly doubled the system clock frequency.

The highest throughput was obtained from 5-round

external pipelining combined with one internal

pipeline stage. This increased throughput by a factor

of about 7 over the basic architecture, while roughly

doubling the area requirement. Further internal

pipelining was not explored; further external

pipelining was infeasible due to space constraints.

Adding one internal pipeline stage to the basic

architecture minimized the area requirement. This

also increased throughput by about 70 % over the

basic architecture.

Serpent: The small size of the S-boxes permitted

implementation via combinational logic. In addition,

the S-boxes matched well with the Xilinx CLBs.

Other operations were simple. The Serpent round

function is so compact relative to the other three

analyzed finalists that it was the only one of the four

implemented finalists that was amenable to full loop

unrolling and external pipelining (i.e., all 32

rounds).

In a feedback mode, 8-round loop unrolling

attained the highest throughput. This reduced the

need for S-box multiplexing hardware. Throughput

increased by nearly a factor of 8 over the basic

architecture, while the area increased by only about

40 %. However, 32-round loop unrolling, while

feasible, lowered the system clock frequency

and throughput. External pipelining was counter-

productive.

538

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

In a non-feedback mode, 32-round external pipe-

lining produced the highest throughput, about 8

times greater than the basic architecture, while in-

creasing the area by about 80 %.

In both feedback and non-feedback modes, the

area was minimized by the basic architecture. The

round function components are simple enough that

internal pipelining was counterproductive.

Twofish: The predominant feature of the Twofish

round function is the key-dependent S-boxes. The

S-boxes produced about half the delay. Internal

pipelining with one stage was feasible, separating

the S-boxes. Full loop unrolling and full pipelining

were infeasible.

In a feedback mode, the highest throughput was

obtained by adding one internal pipeline stage to the

basic architecture. However, this increased through-

put by only about 15 %, with a similar increase

in the area requirement. External pipelining was

counterproductive.

In a non-feedback mode, the highest throughput

resulted from 8-round external pipelining, combined

with one internal pipeline stage. This increased

throughput by about a factor of 15 over the basic

architecture, while increasing the area by about a

factor of 3. Further external pipelining was infeasi-

ble due to space constraints.

In both modes, area was minimized by the basic

architecture.

3.5.3.2.2 Comparison of the Four Implemented

Finalists

As noted in Sec. 3.5.2, there is at least four different

ways that the finalists could be evaluated. One of these,

maximum throughput with unlimited area, is not

applicable in the context of the present study, since only

Serpent has a round function that is small enough to

permit full loop unrolling and external pipelining. Area

measurements are made in terms of CLB slices (a slice

is half of a CLB).

The constraints on the available area could be inter-

preted in two different ways. One viewpoint is to look at

the maximum throughput attained in the available space.

However, this is device-dependent. In some cases, a

more portable measurement is efficiency, as measured

by throughput/area. This could provide some insight

into what might be achievable if the space constraint

were loosened or removed. However, there is also a

limitation on this measurement: throughput may not

scale linearly with increases in the number of rounds in

loop unrolling. This is clearly illustrated in the case of

Serpent, where 8-round loop unrolling is superior to

32-round unrolling. It is dangerous to try to extrapolate

measurements from one FPGA family to another, or

even within the same family.

In addition to the omission of MARS and the imple-

mentation of encryption only, a significant constraint of

this study is that the synthesis tools were set to optimize

for highest throughput. If minimum area or optimum

efficiency were the goal, synthesis tools would have

to be reset accordingly. Thus, this study provides an

accurate comparison between the four implemented

finalists only with respect to throughput optimization.

The results are given in Table 8; these results are based

on Tables 4 and 5 of Ref. [30]. It should be noted that the

latter two tables are optimum throughputs from

the much more comprehensive Tables 2 and 3 of

Ref. [30]. Implementations included encryption only,

and were optimized for speed. Thus, different architec-

tural options are represented in the table.

The interpretation of the results is dependent upon the

mode of operation used and the implementation goals. If

a feedback mode is assumed, Serpent provides the

highest throughput (at least 45 % better than any of the

other three implemented finalists). However, this

throughput is attained at a high area cost. In terms of

efficiency, Serpent and Rijndael are virtually identical,

with RC6 and Twofish both about 30 % behind.

In a non-feedback mode, Serpent has an unequivocal

edge over the competition, providing more than twice

the throughput of any of the other three finalists and, at

the same time, occupying the smallest area.

The authors conclude that among the four

implemented finalists, Serpent is, in general, the best

suited to FPGA implementation. This is due mainly to

the use of small S-boxes, which increases efficiency

in loop unrolling and makes full external pipelining

feasible. However, it should be kept in mind that

these conclusions are specific to the device and the

implementation design goals.

Table 8. An FPGA study of optimized speed for encryption. Source:

Ref. [30], Tables 2 and 3

Non-Feedback Feedback

THRU AREA TH/AR THRU AREA TH/AR

RC6 2398 10.8 221 126 3.19 39.6

RIJN 1938 11.0 176 300 5.30 56.6

SERP 4860 9.0 539 444 7.96 55.7

TWOF 1585 9.3 169 120 3.05 39.1

THRU = Throughput in megabits per second.

AREA = Area in units of 1000 CLB slices.

TH/AR = THRU/AREA.

539

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

3.5.3.3 A Second Case Study

In Ref. [38], all five of the finalists were implemen-

ted, again using Xilinx FPGAs. Two different Xilinx

families were employed: the Virtex XCV1000BG560-4

and the smaller XC4000. The CLBs of the two families

are nearly identical from a functional point of view.

Language-based design was employed, with VHDL

being the chosen language. The exact Xilinx synthesis

tools used are not specified.

Subkey computation was not implemented. It was

assumed that subkeys were generated externally

and stored in internal memory. Both encryption and

decryption were implemented in units co-existing

simultaneously within the FPGA. One advantage

of simultaneous implementation (as opposed to recon-

figuration) is efficiency: resources can be shared

between the two units in most cases. The design

paradigm used was to maximize such resource sharing.

This decreased both the speed and the total area for the

encryption and decryption units. In the case of MARS,

RC6 and Twofish, an encryption/decryption pair took

up only about 10 % more space than a dedicated

encryption unit. However, the increase was 60 % for

Rijndael and 100 % for Serpent when both encryption

and decryption were implemented.

For each finalist, only one architectural option was

implemented; this was chosen to be as close as possible

to the basic architecture. The basic architecture was

implemented for RC6, Rijndael, and Twofish. For

Serpent, 8-round loop unrolling was used. This was

motivated by the fact that Serpent has eight kinds of

rounds, with each type using a single replicated S-box.

MARS uses two kinds of rounds, keyed and mixing.

This necessitated the use of two separate round imple-

mentations that share resources such as S-boxes.

Other architectural options such as pipelining are

discussed, but were not implemented. In particular,

internal pipelining was analyzed in terms of what

the authors designate as the critical path. This path of

operations, shared by encryption and decryption,

determines the minimum clock period of the system. A

detailed study was made of critical paths, shedding

some light on the area required and the potential for

internal pipelining. The treatment of loop unrolling and

external pipelining was largely speculative, and has

been superceded by the actual implementations of the

first case study (see Sec. 3.5.3.2).

Only two of the finalists were able to fit on the

largest XC4000 FPGAs. Hence, these results are

omitted from this report. All five finalists were

implemented in Virtex FPGAs. The largest Virtex

device (the XCV1000BG560-4) was used; all results

below pertain to the Virtex device. Actually, at most

38 % of the available CLBs were used in implementing

the basic architecture (or its approximation, in the case

of MARS and Serpent). Hence, smaller members of the

Virtex family could be used with this choice of architec-

tural option. Alternatively, on the XCV1000BG560-4,

key setup could be implemented in addition to encryp-

tion and decryption.

Note: The terms internal and external pipelining are

referred to in Ref. [38] as outer-round and inner-round

pipelining, respectively.

3.5.3.3.1 Notes on the Finalists

MARS: MARS fared well when measured by the

hardware that needed to be added to the encryption

hardware to support decryption: two 32 bit

subtracters and three 32 bit, 2-input multiplexers.

The extra hardware needed for both encryption and

decryption increased the required area by only about

10 % beyond that needed for encryption alone.

MARS had the slowest minimum clock period of

the five finalists. It used mod 232 multiplications,

which are atomic and slow, and limit internal

pipelining potential. An additional source of delay in

MARS was the resource sharing between the

forward and backward keyed transformations. On

the other hand, resource sharing between encryption

and decryption (one encryption/decryption

multiplexer) on the critical path caused a negligible

delay.

In addition to being slow, MARS also fared

poorly in the area requirement, due to the hetero-

geneous round structure, the use of large S-boxes,

and the 32 bit multiplications. The S-boxes were the

major contributor to the large area requirement.

RC6: RC6 also fared well when measured in terms

of the hardware that needed to be added to the en-

cryption hardware to support decryption. A 32 bit

subtracter, two 32 bit, 2-input XORs, and eight 32

bit, 2-input multiplexers were required. The extra

hardware needed for both encryption and decryption

increased the area requirement by only about 10 %

over and above the space needed for encryption

alone.

Operations dominating the area were two mod 232

squarings, twelve 32 bit multiplexes, and two

variable rotations of 32 bit words. The squarings,

which are atomic and slow, dominated the round

function delay and limited the internal pipelining

potential. This observation agreed with that of the

first case study (see Sec. 3.5.3.2). Resource sharing

caused additional delay, due to the presence of three

encryption/decryption multiplexers on the critical

path. RC6 ranks fourth in terms of the minimum

clock period.

540

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

While the squaring and variable rotation opera-

tions were slow, they were not excessively large,

resulting in a relatively low area requirement

(second best among the finalists).

Rijndael: In Rijndael, the encryption and decryp-

tion units are more separate than in RC6 or

MARS. The units shared 16 lookup tables that

implement inversions in GF(28). Otherwise, the

units were independent. Since the lookup tables

took up about 40 % of encryption area, implement-

ing both encryption and decryption required about

60 % more hardware than encryption alone.

Rijndael has the lowest clock period of the

finalists. Its critical path contained only fast opera-

tions, with the greatest delay produced by S-box

accesses. The large data objects needed, together

with limited resource sharing between encryption

and decryption, required a relatively large area. The

potential for internal pipelining was limited by

the atomic nature of the S-box accesses. This

observation agreed with the first case study.

The area required by Rijndael was adversely

affected by the limited resource sharing between

encryption and decryption, as well as by the use of

relatively large S-boxes. The area requirement is, in

fact, the polar opposite of speed: Rijndael had the

largest area requirements of the finalists.

Serpent: Serpent allows the least resource sharing

of the finalists; the encryption and decryption units

are virtually independent. Thus, implementing both

encryption and decryption took roughly double the

area needed for encryption alone.

In this study, eight “official” rounds of Serpent

were regarded as one “implementation round.” This

had the effect of stretching out the system clock,

compared to the other finalists, so that the clock

period appeared to be slow. However, with a

relatively slow clock and only four implementation

rounds, Serpent had a higher throughput in this study

than any other finalist.

Round function delay was dominated by S-box

accesses. The authors note that Serpent had a

considerable potential for internal pipelining; how-

ever; this was a consequence of combining eight

normal Serpent rounds into a single implementation

round.

Serpent’s area requirement was adversely affected

by the lack of resource sharing between encryption

and decryption and the use of S-boxes. In addition,

8 of the 32 “normal” Serpent rounds were included

in this variation of the standard model. Thus,

Serpent fared relatively poorly in area requirements.

Twofish: Twofish fared best among the finalists

when measured by the extra hardware required to

implement both encryption and decryption: two 32

bit, 2-input XORs and two 32 bit, 2-input multiplex-

ers. This increased the area by only about 10 %

above that needed for encryption alone.

Twofish had the second best minimum clock pe-

riod (i.e., the second fastest), only about 10 %

greater than Rijndael. Like Rijndael, the critical path

of Twofish contained only simple operations. As in

the case of Serpent, the authors noted that there was

some potential for internal pipelining. However, the

pipelining was not explored empirically, so the first

case study (see Sec. 3.5.3.2) is a better source of

analysis in this regard.

Twofish had the smallest area requirement of the

finalists, due to a high degree of resource sharing

between encryption and decryption and the use of

simple operations.

3.5.3.3.2 Comparison of the Finalists

The Virtex speed and area measurements are

presented in Table 9; these measurements were taken

from Fig. 10 of Ref. [38]. Implementations included

both encryption and decryption, using only one

architectural option (mainly the basic architecture, with

appropriate modifications for MARS and Serpent).

Only a feedback mode was considered.

As in the first case study (Sec. 3.5.3.2), the interpre-

tation of the results depends on the modes of operation

used and the goals. Since the implementations in this

second case study were essentially restricted to the basic

architecture used in a feedback mode, the scope of the

study is not as comprehensive as in the first study. In

addition, the results are not directly comparable to the

first case study. The first case study implemented only

encryption; the emphasis in the present study is on

the simultaneous implementation of encryption and

decryption.

Table 9. An FPGA study of the basic architecture for encryption/

decryption. Source: Ref. [38], Fig. 10

THRU AREA TH/AR

MARS 39.8 2.7 14.5

RC6 103.9 1.1 91.2

RIJN 331.5 2.9 114.2

SERP 339.4 4.4 76.5

TWOF 177.3 1.0 164.8

THRU = throughput in megabits per second.

AREA = area in units of 1000 CLB slices.

TH/AR = THRU/AREA.

541

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

As in the first study, Serpent emerged as the fastest

finalist, achieving a throughput at least 45 % higher than

any other finalist. Minimum clock periods were not

used in Table 9, in deference to the deviations from the

basic architecture for Serpent and MARS. As noted in

Sec. 3.5.3.3.1, this affects the ranking of Serpent

considerably, and makes throughput the better metric.

The fast speed of Serpent was traded off against area:

Serpent used over four times as much area as Twofish,

partly because of near-zero resource sharing between

encryption and decryption.

Twofish used a very small area, partially as a result

of near-100 % sharing of encryption and decryption

resources. Thus, Twofish emerged as best in terms

of both area requirements and efficiency, achieving a

throughput/area ratio at least 60 % higher than any other

finalist. The efficiency of the two fastest finalists,

Rijndael and Serpent, was reduced by their large area

requirements.

Comparison of Tables 8 and 9 reveals several other

observations. The restriction to the basic architecture

in a feedback mode caused a much greater variation

between the speeds of the finalists. The inclusion

of both encryption and decryption punished the non-

Feistel algorithms (Rijndael and Serpent) with respect

to area requirements. Furthermore, this second study

helped to fill in the gap created by the omission of

MARS from the first case study. In this second

study, MARS finished at the bottom in both speed

and required area (i.e., low speed and high area

requirement), and fared very poorly on efficiency.

3.5.3.4 A Third Case Study

In Ref. [27], all five finalists were implemented on the

Xilinx Virtex family of FPGAs. Language-based design

was used, with the Foundation Series v2.1i tool used for

mapping onto the devices.

This third study analyzed key setup, which was not

treated in the first two studies. Two functions were

implemented simultaneously in separate units: encryp-

tion, referred to as the cryptographic core, and the key-

setup circuit. Simultaneous implementation allows key

setup and encryption to be done in parallel.

Performance is measured in two ways: throughput

and “latency.” Throughput measures the data encrypted

per a unit of time, while latency, in this study, is the time

delay required for key-setup circuit before the crypto-

graphic core can begin processing data. Latency

becomes an important factor when only small amounts

of data are processed per key. This distinguishes the

third study from the previous two studies, in which the

throughput was the major time metric. Low latency

and high throughput are generally preferred in

implementations.

Only a feedback mode is considered, and only the

basic architecture is implemented for each finalist, with

no deviations (except for the implementation of one of

each of the two round types of MARS). The key-setup

circuit uses embedded RAM to pass subkeys to the

cryptographic core. The cryptographic core can begin

processing as soon as the first subkey is available. Two

different system clocks are possible, one for the crypto-

graphic core and another for the key-setup circuit, and in

some cases this reduces latency somewhat.

3.5.3.4.1 Notes on the Finalists

MARS: MARS had by far the highest latency,

as well as the highest ratio of latency to block

encryption time. The use of two clocks improved

latency somewhat; however, latency remained

significantly greater than the other algorithms. Key

setup involved string-matching operations that are

relatively slow and expensive. Most operations of

the cryptographic core were simple. The exception

was multiplication, which required a multiplier

computing partial results in parallel. The area

requirement is high for both the key-setup circuit

and the cryptographic core (not to be confused with

the inner 16 rounds of MARS, designated as the

cryptographic core in the MARS submission).

Throughput is average.

RC6: RC6 permits very compact implementations

of both the key-setup circuit and the cryptographic

core, despite the necessity of a 32 bit multiplier.

RC6 has moderate latency but below average

throughput. Employing separate clocks for the

key-setup circuit and the cryptographic core

reduced latency by a factor of nearly three.

Rijndael: A ROM-based, fully parallel lookup-

table oriented implementation gave low latency and

high throughput. This results, however, in a moder-

ately high area. Using separate clocks for the

key-setup circuit and the cryptographic core

reduced latency somewhat.

Serpent: Serpent has low latency. Although the

Serpent round function allows a fast clock, through-

put is only average, due to the large number of

rounds. Serpent had the most compact implementa-

tion of the algorithms.

Twofish: The Twofish key schedule allows a range

of space/time tradeoffs. The authors of the paper

decided to achieve the lowest possible latency. This

was effected by replicating permutation boxes and

maximum distance separable (MDS) matrices. As a

result of these design decisions, the Twofish

542

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

key-setup circuit occupies by far the most area of any

finalist, and requires far more space than the crypto-

graphic core. However, area minimization would

evidently have resulted in excessive latency. The net

result was moderate latency at high area cost; through-

put is average.

3.5.3.4.2 Comparison of the Finalists

As in the two previous studies (Sec. 3.5.3.2 and

3.5.3.3), the conclusions reached about the candidates

are heavily dependent upon the design paradigm. In

this third study, the focus of attention was minimizing

latency. This resulted in some tradeoffs between space

and latency that make the results of this study, summa

rized in Table 10, difficult to compare with the results

of the previous studies (as summarized in Tables 8 and

9). In this table, the implementations included encryp-

tion and key setup. Only the basic architecture

was used, with no deviations. A feedback mode was

assumed.

MARS has a much higher latency than the other

finalists. The other four finalists are much closer

together with respect to latency. Rijndael has the

smallest latency, followed closely by Serpent.

Rijndael has the best throughput, at least 75 % better

than any other finalist. However, Serpent achieves the

best ratio of throughput to area. Serpent has the smallest

total area, followed closely by RC6. Unless area

minimization is a paramount consideration, Rijndael

emerges as the overall best finalist in this study.

3.5.3.5 A Fourth Case Study

In Ref. [93], all five finalists were studied from the

point of view of a “potential FPGA implementer.”

Analyses, which are quite detailed, were nonetheless

referred to as implementation sketches. The target

FPGA family was the Xilinx Virtex.

The notation used in Ref. [93] is somewhat different

than that used in the previous studies (Secs. 3.5.3.2–

3.5.3.4). The authors considered the use of a micro-

coded datapath, that is, a processor designed for the

application and driven by a small microprogram. They

found this primarily applicable to key setup. The authors

also used “C-slow” to refer to C-stage pipelines formed

from one or more rounds. This appears to be similar to

the approach of the second study (Sec. 3.5.3.3): the only

case in which multiple rounds were used is Serpent, in

which eight rounds form an 8-stage pipeline. In other

cases, a round or half-round was internally pipelined.

The use of half-rounds to implement rounds (applicable

to RC6 and Twofish) resulted in an option called a

“folded round.”

This fourth study analyzes encryption, decryption,

and key setup, and hence has something in common

with each of the three previous studies (Secs. 3.5.3.2–

3.5.3.4). However, the architectural options considered

in this study seem to be somewhat out-of-synch with

those used in the previous studies. For example, Fig. 1 of

Ref. [93] contains some information similar to that

found in Ref. [30]; however, it is difficult to reconcile

the two treatments. Since the treatment of Ref. [30]

is based on VHDL implementations, and the treatment

in this fourth study appears to be more sketchy,

it is assumed in this report that the treatments of

Ref. [30] take precedence when Refs. [30] and [93]

do not agree.

On the other hand, this fourth study provides a more

detailed investigation of subkey computation than

any of the previous studies. In particular, the authors

considered several architectural options for the

circuit used for subkey computation, which was

assumed to be implemented along with encryption or

decryption units. In some cases, it was possible to

run subkey computation concurrently with encryption,

decryption or both.

Table 10. An FPGA study of the basic architecture for encryption/key setup. Source: Ref. [27], Tables 1-16

LAT THRU TH/AR KEYA CORA AREA LAT2

MARS 1.96 2.04 2.96 2.28 4.62 6.89 1.45

RC6 0.17 1.12 4.26 0.90 1.74 2.65 0.06

RIJN 0.07 3.53 6.22 1.36 4.31 5.67 0.05

SERP 0.08 1.49 6.62 1.30 1.25 2.55 0.08

TWOF 0.18 1.73 1.84 6.55 2,81 9.36 0.16

LAT = latency in microseconds, using a single system clock.

THRU = throughput in units of 100 megabits per second.

TH/AR = throughput per area, in units of 10 kilobits per (seconds � CLB slices).

KEYA = key-setup circuit area in units of 1000 CLB slices.

CORA = encryption area in units of 1000 CLB slices.

AREA = total area in units of 1000 CLB slices.

LAT 2 = latency in microseconds, using separate system clocks for key setup and encryption.

543

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

3.5.3.5.1 Notes on the Finalists

MARS: Subkey computation in MARS was slow.

The generation process required sets of subkeys

to be modified several times. This effectively

precluded pipelining or other methods for accelera-

tion. The authors state that the best implementation

option was a custom microcoded datapath. This

resulted in a reasonably compact area requirement.

RC6: RC6 also had slow subkey computation. The

serial nature of the generation process again

precluded pipelining or other forms of acceleration.

A custom microcoded datapath is recommended,

requiring a reasonably compact area.

Rijndael: Rijndael permits subkey computation

concurrently with encryption, but not for decryp-

tion. Subkey computation was compact and

amenable to pipelining to some degree that was not

precisely specified. Efficient subkey computation

produced fairly low encryption latency. However, for

decryption, subkey computation required either

buffering or generating the entire key schedule

before decryption could begin. S-boxes could be

independent or shared with the encryption pipeline.

Either way, the area requirements were modest.

Serpent: As in the case of encryption, subkey

computation in Serpent required many S-box

accesses. Theoretically, the circuit used for subkey

computation could share S-boxes with the encryp-

tion unit, but in practice, multiplexing would make

this impractical. Instead, a separate, 8-stage pipeline

is recommended to implement subkey computation.

This pipeline allowed key setup to be concurrent

with encryption, but not with decryption. As in

the case of Rijndael, the buffering of subkeys was

required for decryption. The pipeline required

considerable area. Even if a smaller pipeline

(2 rounds) were used, the required area would still be

high.

Twofish: Twofish was ideal in cases where switch-

ing between encryption and decryption occur often.

Subkeys can be generated independently in either

direction; shared with the encryption and decryption

pipelines. When shared S-boxes were used, latency

was low, but area was moderately high. When

separate S-boxes were used, latency was extremely

low, but area was high.

3.5.3.5.2 Comparison of the Finalists

Reference [93] actually discusses both encryption/

decryption and key setup, although Sec. 3.5.3.5.1

focuses on key setup. A rough summary of the

conclusions of this study concerning encryption and

decryption, as embodied in Fig. 1 of [93], is as follows.

Only one round of each finalist was generally

implemented, with internal pipelining. An exception

was Serpent, for which 8 rounds were implemented.

Rijndael had the lowest latency, high throughput, and

low area. Serpent achieved the highest throughput due to

the 8 rounds, but also had a large area requirement.

MARS was slow with respect to both latency and

throughput; RC6 and Twofish were in between.

The results on key setup, as summarized in the

Sec. 3.5.3.5.1, are tabulated in Table 11. Imple-

mentations giving the lowest latency are listed, with the

highest bandwidth being the second priority; other

implementations may have lower areas. Twofish

emerged as by far the best finalist from the point of view

of this fourth study, due to its independent generation of

subkeys. MARS and RC6 were very slow, with Serpent

and Rijndael in between.

3.5.3.6 Overall Summary of FPGA

Implementations

It is difficult to directly compare the results of the

four previous studies (Secs. 3.5.3.2–3.5.3.5), since all

made different assumptions about modes, architectural

options, and the implementation of decryption and

key setup. Tradeoffs between area and speed make it

essentially impossible to condense hardware results into

one dimension. Thus, it would be difficult to obtain

anything analogous to the speed charts that are feasible

in software for comparing the finalists. The best that can

be accomplished for FPGAs is to profile the finalists

individually.

MARS suffers from its large S-boxes and, to a lesser

extent, from its multiplications, data-dependent

rotations and heterogeneous round structure. MARS

is generally characterized by high latency for subkey

computation and low efficiency, as measured by

throughput/area. The general opinion of the FPGA

implementers is that MARS is the least suitable for

FPGA implementation, often by a considerable

margin.

Table 11. An FPGA study of key setup. Source: Ref. [93], Fig. 2

LAT BAND AREA

MARS 270 270 50

RC6 264 264 290

RIJN 36 36 128

SERP 32 4 2060

TWOF 4 4 1260

LAT = latency for subkey generation, in clock cycles.

BAND = number of clock cycles to generate a set of subkeys.

AREA = number of CLB slices required for subkey generation.

544

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

RC6 suffers, to some extent, from the use of multi-

plications and data-dependent rotations. These oper-

ations tend to have a negative impact on throughput

and latency. However, RC6 has no S-boxes, which

has a positive effect on the area requirements. Over-

all, the design choice of using complex operations

instead of S-boxes has a canceling effect, putting

RC6 in the middle range of the candidates by most

FPGA metrics provided during Round 2.

Rijndael has a low latency and the highest through-

put of all the finalists in a feedback mode, and good

throughput in a non-feedback mode. Fully unrolled

Rijndael implementations have the highest through-

put of any of the algorithms in feedback modes.

Rijndael’s area requirements are increased by

limited resource sharing between the encryption and

decryption units, giving Rijndael moderately high

area requirements in the general case, where both

encryption and decryption must be supported.

Rijndael’s efficiency is average or better.

Serpent has a low latency and allows the highest

throughput of all the finalists in non-feedback mode,

and good throughput in a feedback mode. Fully

pipelined versions of Serpent have the highest

throughput of the candidate algorithms for non-

feedback modes. However, although reasonably

compact implementations are possible, Serpent,

often has high area requirements as well. These are

interconnected: Serpent is most naturally viewed in

this context in terms of 8-round groupings. These

groupings increase the potential for pipelining and

loop unrolling, but also increase the area require-

ments. Moreover, Serpent’s area requirements are

increased by its lack of resource sharing between

the encryption and decryption units. Serpent’s

efficiency is average or better.

Twofish tends to be in the middle range with respect

to both latency and throughput. Twofish’s area tends

to be compact; however, it still tends to score in the

low to moderate range in efficiency. The details vary

considerably with the setting. If decryption is

implemented simultaneously with encryption, Two-

fish benefits from considerable resource sharing

between the encryption and decryption units. If key

setup is implemented simultaneously with encryp-

tion and decryption, Twofish benefits from its

independent subkey computation.

3.5.4 Application Specific Integrated Circuits

An Application Specific Integrated Circuit (ASIC) is

not reconfigurable and cannot be altered once produced.

ASICS can be economically produced only in large

quantities; they can have far more gates and be much

faster than FPGAs. However, there are many similari-

ties, including architectural options and the general use

of language-based design tools such as VHDL.

3.5.4.1 A Case Study

In Ref. [94], all five finalists were implemented in

CMOS4-based ASICs, using a 0.5 micrometer standard

cell library that is not available outside the National

Security Agency (NSA). VHDL was used to describe

the finalists. The final output of the design process

was a gate-level schematic for each finalist. The perfor-

mance estimates are based on simulations.

Both the basic “iterative” architecture (see Sec.

3.5.1.1) and a full external pipelined version were

implemented for each finalist. All three key sizes (128,

192, 256 bits) were implemented. Time and area results

are reported for the case where all three key sizes were

implemented in a single key-setup circuit that could

be controlled. This flexibility reduced performance

compared to the case where only a single size was

implemented.

3.5.4.1.1 Notes on the Finalists

MARS: The heterogeneous round structure of

MARS caused some problems. There are six

different round types altogether (unkeyed forward

and backward, keyed forward and backward, pre-

addition, and post-subtraction). This heterogeneity

caused unusually complex synchronization of the

key-setup circuit and encryption/decryption blocks.

The Round 2 modified version of MARS was

implemented. This version permits generating and

storing the 40 subkeys in groups of 10 during the

encryption process. In the pipelined architecture,

each group of 10 subkeys was stored, creating a

4-stage key schedule pipeline. The cryptographic

core required only two subkeys at a time. Thus,

some space was wasted on the storage of extra

subkeys. Decryption required generating and storing

all 40 subkeys in registers before processing began.

Therefore, because both encryption and decryption

were implemented, the decision was made to

generate and store all 40 subkeys for the iterative

architecture.

RC6: In RC6, resource sharing was used between

encryption and decryption. The iterative architecture

was straightforward. In the pipelined architecture,

the key schedule was also pipelined, performing one

subkey computation per clock cycle.

4 Complementary Metal Oxide Semiconductor.

545

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Rijndael: In Rijndael, the number of rounds was

adjusted automatically with the key size. In the

pipelined architecture, the key schedule was also

pipelined. Similar functions could be used to gener-

ate subkeys for encryption or decryption; this aided

Rijndael’s key agility. For decryption, the pipeline

started with the last subkey; the generation of this

subkey was essentially key setup time. For the

iterative architecture, the key schedule was used to

calculate all subkeys. The last subkey was stored in

the case that multiple decryptions occurred with the

same key.

Serpent: In the pipelined architecture, the key

schedule was pipelined along with encryption or

decryption. For decryption, all subkeys were first

generated in order to obtain the last subkey. Four

types of rounds were required, two for encryption

and two for decryption. In the iterative architecture,

all subkeys were generated in order to obtain the last

subkey before decryption could commence.

Twofish: An advantage of Twofish is the substan-

tial resource sharing between encryption, decryp-

tion and key setup. Sharing between encryption and

decryption did not improve efficiency, since they

were run in parallel. However, such sharing reduced

design time, since blocks could be replicated. Other

optimizations are possible with Twofish, but consti-

tute area/time tradeoffs. The independent subkey

computation property eliminates the setup time

needed by decryption for the other finalists. In addi-

tion, encryption and decryption are almost identical.

Both the pipelined and iterative architectures were

straightforward.

3.5.4.1.2 Comparison of the Finalists

The results of Ref. [94] are summarized in Table 12.

In the basic architecture, Rijndael gave the best perfor-

mance as measured by throughput/area. Serpent was

close behind. RC6 and Twofish were substantially

lower, and MARS was poor. Rijndael was best in terms

of throughput; RC6, Serpent and Twofish were best in

terms of their area requirements. In the fully pipelined

mode, Serpent was best when measured by throughput/

area. Rijndael was somewhat lower; RC6 and Twofish

were considerably lower, and MARS was poor. Serpent

was best in throughput, followed by Rijndael; all

algorithms except MARS had small area requirements.

Key setup times were low for Rijndael, Serpent, and

Twofish; they were high for RC6 and MARS.

3.5.4.2 A Second Case Study

In Ref. [50], the finalists were implemented in

Mitsubishi Electric’s 0.35 micrometer CMOS ASICs.

The design library is publicly available.

The design philosophy was to optimize the encryp-

tion speed for feedback modes. The required area was

not considered a significant metric. Full loop unrolling

was used for encryption, decryption, and key setup.

Prior to encryption or decryption, it was assumed that

subkey bits had been stored in registers. No pipelining

was used. Hence, one block was encrypted or decrypted

in one clock cycle. Only 128 bit keys were used for this

study.

No special optimization was used for the lookup

tables. Performance depends on the optimization

capabilities of the synthesis tool used. The design

language was Verilog HDL5. Some operations, such as

addition and multiplication, were taken from a library.

5 Hardware Design Language.

Table 12. An ASIC study. Source: Ref. [94], Tables 11 and 12

Basic Fully Pipelined

AR TH KE KD AR TH KE KD

MARS 127 56 9553 27470 1333 2189 3718 3718

RC6 21 103 8139 8139 554 2171 3660 3660

RIJN 46 443 0 286 471 5163 0 233

SERP 23 202 19 672 438 8030 18 212

TWOF 23 104 61 61 343 2278 0 0

AR = area in units of mm2.

TH = throughput, Mbit/s.

KE = key setup time, encrypt, in nanoseconds.

KD = key setup time, decrypt, in nanoseconds.

546

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

3.5.4.2.1 Notes on the Finalists

MARS requires four types of round functions.

The use of 16 multiplications in the critical path

resulted in its slow performance. The multipli-

cations accounted for about 2/3 of the delay. Key

setup was about three times slower than encryption.

RC6 required 20 multiplications in its critical path,

which resulted in slow performance. The multiplica-

tions accounted for about 3/4 of the delay. Key setup

was about three times slower than encryption.

Rijndael is well suited to a hardware implementa-

tion. The Rijndael implementation used logical

functions and lookup tables. However, there was an

asymmetry between encryption and decryption. The

inverse of the MixColumn operation used more

complex constant values than the MixColumn.

Hence, the critical path was longer for decryption.

The table lookups accounted for about half the delay.

Key setup took about 85 % as much time as encryp-

tion.

Serpent is very well suited to a hardware implemen-

tation. The Serpent implementation used linear

transformations (XORs and shifts) and table

lookups. The 32 tables were small. The linear trans-

formations accounted for about 36 % of the delay,

and the table lookups accounted for 45 %. The effect

of the asymmetry of encryption and decryption is

not discussed in Ref. [50]. Key setup took about

85 % as much time as encryption.

Twofish is moderately well suited to a hardware

implementation. The Twofish implementation used

8 bit by 8 bit lookup tables, additions, and logical

operations. The critical path had 48 lookup tables,

which accounted for about half the delay. Key setup

used only about 5 % of the time used for encryption.

3.5.4.2.2 Comparison of the Finalists

A summary of the results of this case study is given

in Table 13. The emphasis in this study was on encryp-

tion speed, although encryption, decryption and key

setup were all implemented. The table clearly shows that

Rijndael was the best in terms of both throughput

and efficiency (throughput/area). The throughput of

Rijndael was more than twice that of any other finalist,

while its area requirements were only modestly higher.

Serpent also fared well in both throughput and

efficiency. Twofish was smaller than Rijndael or

Serpent, but did not fare nearly as well in throughput or

efficiency. MARS and RC6 were even lower for

throughput, and fared very poorly for efficiency.

The authors [50] suggest some ways in which their

results could have been optimized, at some expense. For

example, a full-custom multiplier would reduce the

critical path time of MARS by about 50 % and of RC6

by about 70 %. However, the efficiencies of MARS and

RC6 would still be poor. An optimization of the lookup

tables would not affect the rankings by much.

3.5.5 Comparison of All Hardware Results

It is difficult to completely reconcile the results for

ASICS and FPGAs. As noted in Sec. 3.5.2, there are at

least four metrics that could be used to evaluate perfor-

mance in a hardware context. Area requirements and

efficiency apply to any hardware implementation. How-

ever, FPGAs are much more strongly constrained by

area limitations. Thus, for example, Tables 2 and 3 of

Ref. [30] are constrained by area limitations on all the

finalists except Serpent, ruling out options such as full

loop unrolling. On the other hand, Ref. [50] employed

full loop unrolling for all the finalists. FPGAs impose a

certain structure on the logic and memory, while ASICs

are not similarly constrained. The studies did not usually

include area minimization as a design goal.

Table 13. An ASIC study of optimized speed. Source: Ref. [50], Table 4.1

CORA KEYA TOTA KEYT CRIT K/C THRU T/A

MARS 690 2245 2935 1740 567 3.1 225 0.07

RC6 741 901 1643 2112 627 3.4 203 0.12

RIJN 518 93 612 57 65 0.9 1950 3.18

SERP 298 205 503 114 137 0.8 931 1.85

TWOF 200 231 431 16 324 0.1 394 0.91

CORA = area (in units of 1000 gates) for encryption/decryption core.

KEYA = area (in units of 1000 gates) for key scheduling.

TOTA = total area (in units of 1000 geates).

KEYT = key setup time, in nanoseconds.

CRIT = critical path time, in nanoseconds.

K/C = KEYT/CRIT.

THRU = throughput in megabits per second.

T/A = THRU/TOTA.

547

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Another problem in trying to reach conclusions about

hardware in general is that the number of parameters

(e.g., feedback vs non-feedback mode, implementation

vs omission of decryption and/or key setup, speed or

area optimization) overwhelms the available set of

experiments. Thus, the set of studies to draw upon is

somewhat diffuse, with different implementers employ-

ing different sets of options. This limits comparability.

The summaries below focus on throughput, area and

efficiency. Key agility, which may be an important

factor in some hardware applications, is treated

separately in Sec. 3.8.

MARS required the largest area of any of the

finalists, often by a considerable margin, in every

study where it was implemented. This is apparently

due to the large S-boxes, the key schedule, and the

heterogeneous round structure. Its throughput in the

studies was generally low. Therefore, its efficiency

(throughput/area) was uniformly less than the other

finalists.

RC6 can be effectively implemented in hardware.

Despite the need to implement a multiplier or

an array squarer circuit, fairly compact implementa-

tions are possible. In comparison to the other

finalists, RC6’s throughput is generally average.

RC6 seems to perform relatively better in pipelined

implementations, useful mainly for non-feedback

modes, than unrolled implementations that are

optimized for feedback modes. This may be at least

partially a result of its reliance on multiplication, a

long latency operation that lends itself well to

pipelining.

Rijndael allows high throughput designs for a variety

of architectures, namely basic, pipelined and

unrolled implementations. When fully unrolled, 128

bit Rijndael has the lowest single block encryption

latency of any of the finalists and, therefore, the

highest throughput for feedback mode encryption.

In standard architecture implementations, the

throughput of 128 bit implementations is also at or

near the top. Most of the studies did not consider

other key sizes. However, since Rijndael adds

additional rounds for larger key sizes, throughput in

the standard architecture or unrolled implementa-

tions falls with larger key sizes, but still remains

good. For fully pipelined implementations, area

requirements increase with larger key sizes, but

throughput is unaffected. Rijndael has good perfor-

mance in fully pipelined implementations, giving

it non-feedback throughput performance that is

second only to Serpent. Efficiency is generally very

good.

Serpent uses eight different S-boxes for each of

eight successive rounds, and repeats this four times

for a total of 32 rounds. This, “major/minor” round

structure offers two different interpretations of the

basic architecture: one with one “minor” round

repeated 32 times and multiplexing hardware for the

S-boxes, and another with eight pipelined or un-

rolled minor rounds that are repeated four times. The

first alternative allows compact implementations,

while the second alternative eliminates S-box multi-

plexing and offers better throughput and efficiency.

One round of Serpent has the smallest latency of any

of the finalist algorithms; therefore, fully pipelined

(32 stage) implementations of Serpent offer the

highest throughput of any of the five finalists for

non-feedback modes. Fully or partially (8 round)

unrolled implementations of Serpent offer good, low

latency single block encryption that is useful for

feedback mode encryption. Serpent is second only

to Rijndael in feedback mode throughput (that is,

for the basic architecture and fully unrolled

implementations). Efficiency is generally very good.

Twofish offers many implementation options that

somewhat complicate analysis. However, throughput

and efficiency in the basic architecture, pipelined

and unrolled implementations was generally average.

Most studies considered only 128 bit key sizes;

however, Twofish’s throughput is reduced some-

what with larger key sizes in both the standard

architecture and pipelined implementations.

Compact implementations are possible.

In summary, MARS is not a good choice for hardware

implementation in terms of either throughput or area

requirements. Both RC6 and Twofish seem to have aver-

age throughput and efficiency. Rijndael and Serpent

generally have the best throughput and efficiency of the

candidates. Rijndael has the throughput advantage for

feedback mode implementations, while Serpent has the

throughput advantage for non-feedback modes.

Rijndael’s 192 bit and 256 bit throughput is reduced

somewhat for feedback modes from that of 128 bit

implementations, while Serpent’s speed is independent

of key size.

3.6 Attacks on Implementations

In Sec. 3.2, the general security of the finalists was

discussed. The attacks discussed therein were

essentially mathematical in nature and did not exploit

the physical characteristics of the implementations.

There is another class of attacks that use physical

measurements conducted during algorithm execution to

548

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

gather information about quantities such as keys. Such

attacks exploit a combination of intrinsic algorithm

characteristics and implementation-dependent features.

3.6.1 Timing and Power Attacks

In some environments, timing attacks can be effected

against operations that execute in different amounts of

time, depending on their arguments. Power analysis

attacks can be effected against operations that use

different amounts of power, depending on their power

consumption pattern, which may vary with the

arguments to the operation. As noted in Sec. 3.6, the

vulnerability of an algorithm to such attacks is generally

a function of both the algorithm characteristics (e.g., the

operations employed) and the implementation character-

istics (which affect the feasibility of the physical

measurements needed). This implies that some

algorithms may be more suitable than others in certain

environments in which certain attacks are feasible,

depending on the cost of defending the algorithm

against the particular attack. Defending against timing

and/or power analysis attacks may involve some

combination of physical defenses (e.g., increasing the

noise to signal ratio of measurements) and various forms

of modified implementation (e.g., changes in code).

3.6.2 The Role of Operations

A general defense against timing attacks is to ensure

that each encryption and decryption operation runs in

the same amount of time. A possible defense against a

power analysis attack is software balancing. In order

to accomplish software balancing, the data to be treated

(e.g., an intermediate result of the cryptographic

algorithm) and the complement of that data are pro-

cessed using the same basic operation as near-simulta-

neously as possible. In this way, the correlation to single

bits of information is diminished. Software balancing

may be effective for certain operations whose power

consumption can be “masked” to some extent by execut-

ing the operation twice, employing the complement of

the argument(s) during the second execution. A rough

summary of the vulnerabilities of the basic operations

used by the algorithms and their vulnerabilities to

timing and power attacks is as follows [25]:

• Table lookup: not vulnerable to timing attacks;

relatively easy to effect a defense against power

attacks by software balancing of the lookup address.

• Fixed shifts/rotations: not vulnerable to timing

attacks; relatively easy to effect a defense against

power attacks by software balancing of the register

containing the shift/rotate amount, and its comple-

ment.

• Boolean operations: not vulnerable to timing

attacks; relatively easy to effect a defense against

power attacks by software balancing of arguments.

• Addition/subtraction: somewhat difficult to defend

against timing or power attacks by software

balancing of arguments because of the propagation

of carry bits.

• Multiplication/division/squaring or variable shift/

rotation: most difficult to defend against timing and

power attacks by software balancing of arguments

because of intricate dependencies.

In the above list of operations, stating that a defense

may be effected does not guarantee that a given opera-

tion is, in fact, protected; it merely means that such a

defense is theoretically possible. Conversely, stating that

an operation is difficult to defend against an attack does

not imply that any given implementation of an algorithm

employing that operation is vulnerable to attack.

A summary of the basic operations used for encryp-

tion by the finalist algorithms is given in Table 7 in

Sec. 3.5.3.1, which was taken from Ref. [30]. Note that

the GFmul operations can be implemented using table

lookups, or both Boolean and fixed shift operations.

A rough summary of this information is as follows:

• Rijndael and Serpent use only Boolean operations,

table lookups, and fixed shifts/rotations. These

operations are the easiest to defend against attacks.

• Twofish uses addition, which is somewhat more

difficult to defend against attacks.

• MARS and RC6 use multiplication/division/

squaring and/or variable shift/rotation. These

operations are the most difficult to defend.

Stating that an algorithm uses an operation that is

difficult to defend does not mean that the algorithm is

indefensible; “difficulty” refers to the complexity of the

task of defense. For example, in some cases, software

defenses may be sufficient to defend against a particular

attack. In other cases, a software defense may be infea-

sible, and some form of hardware defense may be neces-

sary. Furthermore, there is no guarantee that in a partic-

ular situation, any form of defense will work. That is,

timing and power analysis are implementation-depen-

dent attacks; the vulnerability of algorithms to such

attacks is not an intrinsic algorithm characteristic.

549

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

3.6.3 Implicit Key Schedule Weaknesses

A general question regarding an algorithm is the

following. If an attacker gains access to a subkey (or, in

some cases, a whitening key), does knowledge of this

key yield information about other subkeys or the original

key? If so, this might be termed an implicit (or perhaps

conditional) key schedule weakness. This raises an

issue that has had significant consequences in practice,

particularly in connection with power analysis attacks.

At the present time, two attacks are known that exploit

implicit key schedule weaknesses; these are discussed

below.

3.6.3.1 A Power Analysis Variant

In Ref. [13], the authors employed a variant of power

analysis to attack the finalists’ key schedules in envi-

ronments in which power analysis is feasible. Their

approach correlated the power consumed during the

operation of the algorithm with the number of ones in a

subkey byte. Evaluating the number of ones yielded an

equation involving the bits of the original key, regarded

as independent variables. A sufficient number of such

evaluations may provide a system of equations that can

be used to obtain the original key, assuming that the

system of equations has a sufficiently high rank. The

rank, in turn, depends upon the randomness of the

process used to generate subkeys from the original key;

conversely, redundancy in this process inhibits the

attack by lowering the rank. However, even if the full

original key cannot be recovered, it may still be possible

to obtain some information about the original key.

If the power analysis attack in Ref. [13] could be

effected, a rough classification of the finalists by key

schedule is as follows:

• Some implicit weakness: MARS, RC6 and Rijndael.

An attack may reveal some information about the

original key.

• No weakness: Serpent and Twofish.

Even if the attack were feasible in some instance,

the attack would only demonstrate the feasibility with

respect to a given implementation of the finalist. Vulner-

ability to this type of attack is not an intrinsic algorithm

characteristic. Thus, stating that a finalist has an implicit

weakness that might be exploited under certain condi-

tions simply means that certain defenses may be needed

to defend against the attack. There might also be restric-

tions on the class of suitable implementations for a

finalist. More generally, the algorithm characteristics,

implementation characteristics, and usage scenarios may

impact the feasibility of an attack.

3.6.3.2 A Second Power Analysis Variant

In Ref. [16], another power analysis variant was

employed to attack the algorithm key schedules in

certain implementations. The attack exploited the

particular operations used to generate subkeys. If some

subkeys (or, in some cases, whitening keys) can be

found, it may be possible to obtain information about

other subkeys or the original key. The viability of the

attack depends partially on the number of rounds that

need to be attacked to obtain the sought-after informa-

tion (e.g., subkeys). For this attack, the finalists may be

classified roughly as follows:

• Most vulnerable: Rijndael, Serpent and Twofish.

Their vulnerability springs from the derivability of

the original key from a small number of subkeys or

whitening keys. Only a small number of rounds need

to be attacked.

• Less vulnerable: MARS and RC6. All or a large

number of rounds need to be attacked.

Stating that a finalist is vulnerable to the attack

presupposes that the attack is feasible. See Ref. [16] for

a discussion of the precise conditions under which the

attack is feasible. It should again be noted that vulnera-

bility to such an attack is not an intrinsic algorithm

characteristic, but rather is heavily implementation-

dependent.

3.6.4 Defenses Against Implementation-Dependent

Attacks

Various mechanisms have been proposed to defend

against timing and power analysis attacks. Proposed

defense mechanisms include (e.g., Ref. [25]):

• Elimination of branching in program execution, to

defend against timing attacks.

• Software balancing (e.g., using complements of

arguments to even out the total power consumed).

• Algorithm design (e.g., avoiding operations that are

difficult to defend, and avoiding implicit key

schedule weaknesses).

• Hardware mechanisms (e.g., random noise produc-

tion).

• Choice of implementation device.

• Operational defenses.

Notes on the proposed defense mechanisms: software

balancing and algorithm design strategies were

discussed in Sec. 3.6.2. Other mechanisms relate to the

550

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

fact that the essence of most attacks is to collect statisti-

cal samples of quantities such as power consumption.

Hardware defenses may raise the noise to signal ratio,

requiring the number of samples to be higher.

The choice of implementation device is significant

in several respects. First, high-end devices may have

hardware defenses that are unavailable in lower-

end devices. Second, attacks often model devices

as finite-state automata, that is, a set of connected

finite states. The difficulty in effecting an attack

(reflected in the number of statistical samples of

power consumption) may be related to the number

of possible states of the device. The number of states

determines, in part, the complexity of the state space

that must be analyzed. The complexity may be greater

for high-end devices.

Operational defenses also relate to the sampling

phase of an attack. It may be possible to limit an

attacker’s ability to obtain samples pertaining to one key

(e.g., by limiting the number of encryptions that can be

performed by one key). One method of defending

against timing or power attacks is to physically protect

the device. This is feasible for cases in which the owner

of the device is not a potential adversary of the entity

that places keys on devices (in particular, when the

device stores only keys generated by the owner).

Practical defense systems are only beginning to be

studied. One such study [21] is limited to bit-slice

ciphers, and hence is only applicable to Serpent. It is still

unclear as to what performance penalties would be

entailed if the techniques described in this study were

implemented. A more general case study is summarized

below.

3.6.4.1 A Case Study in Defense

In Ref. [65], a study was made of smart card

implementations of the finalists. In this study, imple-

mentations were augmented with defenses against

power analysis attacks. The performance degradation-

caused by these defenses was measured. The results of

this study are summarized in Table 14; these results

were obtained from Table 2 of Ref. [65]. The study

compared the results both with and without masking

used as a defense against power analysis attacks.

The approach in Ref. [65] can be considered a

generalization of software balancing. In software

balancing, the bit-wise complements of data words are

generated; in Ref. [65], random strings of bits, called

masks, were generated to combine with the input data

and key data. The fundamental algorithm operations

were then carried out on the masked data, after which

the masks were removed. Because different random

masks were used for every execution of the algorithm,

over a statistical sample, the power consumption should

be uncorrelated with the secret key and the input and

output data.

A general note on the results: the RAM requirements

of all the finalists were out-of-range of typical low-end

smart cards. The implementations were performed on a

high-end, 32 bit ARM-based card. In the cases of four

of the finalists (all but Twofish), the RAM requirements

were similar, and the major distinctions came in speed

and ROM requirements.

3.6.4.1.1 Notes on the Finalists

MARS was the most difficult of the finalists to mask

against power analysis attacks. The large size of the

table used for table lookups created a problem, as

did the masking of multiplications and frequent

converting between Boolean and arithmetic

masking. Consequently, MARS suffered severe

performance degradation under masking, running

nearly eight times slower than in the unmasked

mode. Its masked mode speed was the slowest of the

finalists, and its masked ROM requirement was

second highest. The only strong point was a low

RAM requirement in both masked and unmasked

modes, but this resulted from the necessity for

implementing the lookup table in ROM.

Table 14. A smart card study of power analysis defense. Source: Ref. [65], Table 2

CYCU CYCM RAMU RAMM ROMU ROMM

MARS 9425 73327 116 232 2984 7404

RC6 5964 46282 232 284 464 1376

RIJN 7086 13867 52 326 1756 2393

SERP 15687 49495 176 340 2676 9572

TWOF 19274 36694 60 696 1544 2656

CYCU = Cycle count, no masking.

CYCM = Cycle count, with masking.

RAMU = RAM in byres, no masking.

RAMM = RAM in bytes, with masking.

ROMU = ROM in bytes, no masking.

ROMM = ROM in bytes, with masking.

551

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

RC6 was easier to mask than MARS, but still

suffered severe performance degradation under

masking, running nearly eight times slower than in

the unmasked mode. Problems resulted from the

masking of multiplications and frequent changing

from Boolean to arithmetic masking. On the other

hand, RC6 had a high speed and very low ROM

requirements in the unmasked mode. Thus, RC6,

when implemented using the masked mode, finished

in the middle of the finalists in speed and was still

the lowest for ROM requirements. RC6 was second

lowest in required RAM in the masked mode, but

only by a small margin.

Rijndael was relatively easy to mask because it uses

only Boolean operations and table lookups. The

lookup table was small enough to be masked and

stored in RAM. This resulted in a considerable

increase in RAM requirements from the unmasked

case, where it had the lowest RAM requirement, to

the middle for the finalists for the masked case. All

mask operations were independent of data, permit-

ting a pre-calculation of the mask values. Rijndael

was by far the fastest of the finalists in the masked

mode, nearly three times faster than its nearest

competitor. Rijndael was second lowest in its ROM

requirement and third in its RAM requirement for

the masked mode, but only by a small margin due to

the very small unmasked requirement.

Serpent was implemented only in the bit-slice mode

(the standard mode would have been inefficient and

harder to secure). In the bit-slice mode, there was a

considerable overhead due to the masking of

Boolean operations. In some instances, masks could

not be pre-calculated. Thus, Serpent suffered some

performance degradation in the masked mode:

Serpent’s speed was about three times slower in the

masked mode than in the unmasked mode, finishing

second slowest among the finalists for both modes.

Serpent’s ROM requirement in the masked mode

was the highest among the finalists, and its RAM

requirement was second highest, though by only a

relatively small margin compared to MARS, which

required the least amount of RAM.

Twofish was relatively easy to implement in the

masked mode. The masks were pre-calculated, and

many masks were shared. The masked lookup

table was stored in RAM. This resulted in 1) a

considerable increase in the RAM requirement from

that of the unmasked mode (where it had the second

lowest RAM requirement), and 2) the highest RAM

requirement among the finalists when the masked

mode was used. Twofish’s masked mode speed was

second among the finalists. Twofish was in the

middle of the finalists in ROM requirements, which

were still relatively low due to the placement of the

masked table.

3.6.4.1.2 Comparison of the Finalists

Overall, Rijndael appeared to offer the best combina-

tion of speed and memory usage when the masking

approach specified in Ref. [65] was used to protect

against power attacks. RC6 followed closely with rela-

tively low memory requirements, although its speed was

mediocre among the finalists. The other three finalists

exhibited greater memory requirements: Twofish re-

quired almost 700 bytes of RAM, while MARS and

Serpent required over 7400 bytes and 9500 bytes of

ROM, respectively. Although Twofish and Serpent

showed mediocre performance that was significantly

slower than Rijndael, MARS displayed an exceptionally

slow performance.

3.7 Encryption vs Decryption

For MARS, RC6, and Twofish, encryption and

decryption use similar functions. For Rijndael and

Serpent, encryption and decryption are distinct

functions. This has some impact on the measurement of

efficiency. Tables 16-21 of Appendix A provide

encryption speeds, and Tables 22-25 provide decryption

speeds. These speeds cannot simply be averaged, since

there are some applications that require only encryption

or decryption, but not both.

Another consideration is the extra space needed for

decryption when the decryption function is different

from the encryption function, and both must be in-

cluded in an implementation. The amount of extra space

needed to house both functions depends on the amount

of shared resources (e.g., S-boxes) between the two

functions. In addition, the significance of this penalty

depends on how significant space requirements are and

upon the total amount of space needed to house both

functions. In some instances, it may be sufficient to

implement only one function, in which case the issue of

accommodating both the encryption and the decryption

operations does not arise.

For each finalist, the encryption speed and decryption

speeds are very similar. However, when key setup is

included with encryption and decryption, there is a

noticeable difference in the performance of Rijndael:

decryption plus key setup is slower than encryption plus

key setup. However, this difference becomes negligible

when numerous blocks are processed. The other

finalists do not display this difference in performance.

552

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

3.8 Key Agility

Key agility refers to the ability to change keys quickly

and with a minimum of resources. This includes both

subkey computation and the ability to switch between

different ongoing security associations when subkeys

may already be available.

There are two basic methods for key schedule

computation: pre-computation with the storage of sub-

keys, and on-the-fly subkey computation (i.e., computa-

tion of the specific subkeys needed for a particular

round just prior to use in the round). Rijndael, Serpent,

and Twofish support on-the-fly-subkey computation.

RC6 can support on-the-fly subkey computation for

encryption, but not for decryption, due to the non-

invertible nature of the subkey computation. MARS is a

hybrid in that 10 of the 40 subkeys can be computed at

a time.

In the case of finalists supporting on-the-fly subkey

computation, a second consideration may arise con-

cerning decryption. If the function used to generate

subkeys is recursive (i.e., a subkey value is based on

previous subkey value[s]) and the function is also invert-

ible, a one-time execution of the key schedule must be

performed fully in the forward direction (i.e., used for

encryption) to obtain the last subkey. An application

could save this last subkey as well as the first subkey for

subsequent processing. Henceforth, the key schedule

can be run in either the forward or reverse direction6 to

perform on-the-fly subkey computation. This is the case

for Rijndael. MARS also exhibits this property, but sub-

keys are computed 10 at a time. Serpent’s key schedule

has the property that the last subkey can be computed

directly from the original key, although the specification

does not explicitly state this. On the other hand, Twofish

permits subkeys to be computed in any order.

In cases where large amounts of data are processed

with a single key, the time to execute the key schedule

may be unimportant. On the other hand, in applications

in which the key is changed frequently, key agility

may be an overriding factor. (See Tables 26-30 in

Appendix A. Note that this is the “Full Keying” option

for Twofish.)

Subkey computation methods impact key agility. If

subkeys can be computed on-the-fly, much less informa-

tion is needed when switching between different

security associations (i.e., between contexts). If subkeys

cannot be computed on-the-fly, more information is

needed to switch security associations rapidly. In this

6 The forward direction would be used to produce the subkeys in the

correct order for the encryption process, starting from the first subkey;

the reverse direction would produce the subkeys in the order needed

for the decryption process, starting from the last subkey.

case, the additional information is stored off-line. If

there are a large number of security associations, this

will require a large amount of memory for storing the

context information. A large amount of memory can be

a significant cost in hardware implementations or any

other implementations that require that all needed con-

texts be stored close at hand (e.g., in high-speed local or

cache memory).

Based on these considerations, the finalists may be

characterized as follows (key setup times are available in

Tables 26-30 of Appendix A):

MARS requires the computation of 10 of the

40 subkeys at a time, requiring additional resources

to store these 10 subkeys. In Ref. [46], three differ-

ent levels of pre-computations to foster key agility

are described. The option with the fastest key setup

requires about 60 bytes of memory in addition to the

storage of the original key; this is a detriment in

memory-restricted environments or environments

where memory is a costly commodity. MARS also

requires a one-time execution of the key schedule to

generate all subkeys prior to the first decryption

with a specific key. The computation of multiple

subkeys at one time uses more memory resources

than are required for algorithms performing on-the-

fly subkey computation of a single subkey.

RC6 supports on-the-fly subkey computation

only for encryption, given intermediate values. The

implementation indicated in Table 6 appears to

compute the subkeys in this way, requiring about

100 bytes of RAM; this is a detriment in memory-

restricted environments. The decryption subkeys

must be pre-computed. The lack of on-the-fly

subkey computation reduces the level of key agility

afforded by RC6.

Rijndael supports on-the-fly subkey computation

for encryption and decryption. However, it is not

possible to produce the first decryption subkey

directly from the original key in a single computa-

tion. Therefore, prior to the first decryption with a

specific key, Rijndael requires a one-time execution

of the key schedule, cycling through all the subkeys,

to generate the first decryption subkey. Thereafter,

all other decryption subkeys can be recomputed

on-the-fly. This places a slight resource burden on

Rijndael’s key agility.

Serpent supports on-the-fly subkey computation for

encryption and decryption. For decryption, only a

single computation is needed to obtain the first

decryption subkey from the original key. This

computation is distinct from the transformation that

is used for every other subkey. The need to prepare

553

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

for the decryption process by computing the first

subkey by using a distinct transform places a slight

resource burden on the key agility of this algorithm.

Twofish supports on-the-fly subkey computation in

any order. As a result, this algorithm is very key

agile.

Although subkey computation is discussed in this

section because it is a general property of algorithms,

different modes of subkey computation are mainly

relevant in restricted-memory environments (see

Sec. 3.5). In restricted-memory environments, on-the-

fly subkey computation is beneficial because memory,

which is at a premium, is not needed to store the

pre-computed subkeys. With on-the-fly subkey compu-

tation, subkeys are generated as they are needed and

then discarded. Therefore, with respect to key setup,

Twofish, Serpent, and Rijndael are well suited to

memory-restricted environments, followed to a lesser

degree by MARS and RC6.

3.9 Other Versatility and Flexibility

3.9.1 Parameter Flexibility

In the call for candidate algorithms [32], NIST

indicated that, at a minimum, all AES candidates must

support a 128 bit block size and three key sizes of

128 bits, 192 bits, and 256 bits. The call for algorithms

also indicated that an algorithm’s support for additional

key and block sizes would be considered as part of the

evaluation. Another potential area for flexibility that

was not identified in Ref. [32] is the number of rounds

to be used for the encryption and decryption operations.

Algorithm flexibility may be beneficial in the future if

NIST determines that changes to the algorithm are

necessary due to new attacks or requirements. However,

before any of these additional key, block, or round sizes

could be specified for use in the AES, they would need

to undergo further analysis.

Below is a summary of the key, block, and round

size capabilities that each of the algorithms offers (i.e.,

capabilities that are integrated into the current algorithm

specifications).

MARS: MARS supports key sizes from 128 bits to

448 bits, in multiples of 32 bits. Three possible

approaches to extending the design of MARS to

256 bit blocks are mentioned in the MARS

specification.

RC6: The RC6 specification asserts that RC6

is “a fully-parameterized family of encryption

algorithms.” Members of the family are specified by

RC6-w/r/b , where w is the word size in bits, r is the

number of rounds, and b is the key size in bytes.

Rijndael: Rijndael supports block sizes and key

sizes of 128 bits, 192 bits, and 256 bits, in any

combination. The Rijndael specification only de-

fines the number of rounds and the offsets for the

Shiftrow function for combinations of key sizes

and block sizes within this range. Otherwise, in

principle, any combination of key sizes and block

sizes that are multiples of 32 bits could be

accommodated. The number of rounds of Rijndael

is fixed but, if necessary, can be modified as a para-

meter.

Serpent: Serpent can handle any key size up to

256 bits, due to the padding scheme used in key

setup. The Serpent specification asserts that

versions of Serpent with different block sizes

(64 bits, 256 bits, or 512 bits, for example) would be

straightforward to develop.

Twofish: The Twofish algorithm can use any key

size up to 256 bits. Twofish is defined for the AES

key sizes; keys of other sizes can be padded

with zeroes to reach the next AES defined key size.

Additionally, the Twofish specification indicates

that if extra rounds are required, the key schedule is

designed to allow for natural extensions.

RC6 and Rijndael offer the greatest flexibility in

supporting key, block, and round sizes beyond the

required values. MARS, Serpent, and Twofish provide

for key sizes other than 128 bits, 192 bits, and 256 bits,

but less flexibility is provided in block and round sizes.

3.9.2 Implementation Flexibility

Another aspect of flexibility is the possibility of

optimizing cipher elements for particular environments.

One example of implementation flexibility is on-the-fly

subkey computation, discussed in Sec. 3.8; another

example is pipelining for hardware implementations,

discussed in Sec. 3.5. Some of the algorithm specifica-

tions identify other elements that can be implemented in

alternative ways, providing the flexibility to optimize

implementations for different performance goals. Such

elements are summarized in this section.

One category of flexibility that, to some extent,

is common to all of the finalists is the potential for

resource sharing in hardware. Any element of an

algorithm that is used repeatedly typically offers trade-

offs in hardware: to maximize the throughput, the

element is duplicated, and to minimize the chip area, the

resource is shared. Resource sharing between encryp-

tion and decryption is discussed in Sec. 3.5; other types

of resource sharing are summarized below for each

finalist.

554

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

MARS: The MARS S-boxes are used in all four

types of MARS rounds, as well as the key schedule;

thus, logic for the S-boxes could be shared in hard-

ware implementations. The four types of round

functions also share other operations, and they have

a similar overall structure.

RC6: The quadratic function in RC6 can be

implemented via a squaring operation rather than

a general multiplication operation. In hardware,

resource sharing is possible in the two halves of the

round function, in particular, for the squaring/multi-

plication and variable rotation operations. The key

schedule might also potentially share the resources

for variable rotations.

Rijndael: At the cost of an extra transformation in

the key schedule, decryption can be implemented

with the same structure as encryption, although with

different components. To optimize for throughput on

processors with a word length of 32 bits or more, the

different steps of the round function can be com-

bined into a set of four table lookups. A single

table can replace the lookup tables, at the cost of

additional rotation operations. The same optimiza-

tion applies to the decryption round function,

although with a different table. The MixColumn

operation is designed to allow an efficient imple-

mentation on 8 bit processors. Multiplication in the

Galois field can be implemented either with Boolean

operations and fixed rotations or with a table.

Rijndael’s key schedule uses its S-box, offering

an opportunity for resource sharing in hardware

implementations.

Serpent: The Serpent specification describes a

“bitslice” implementation that can optimize the

calculation of the S-boxes. Each round contains

32 parallel applications of one of the eight 4 � 4

S-boxes. The bitslice implementation simulta-

neously calculates all of the applications of the

S-box by applying appropriate sequences of

Boolean operations to four 32 bit words. One

sequence of Boolean operations is required for each

of the four output bits. For 32 bit processors, the

bitslice method is faster than looking up S-box

values in stored tables, during which the processor is

mostly idle as it computes operations on the 4 bit

words. The increase in speed comes at a slight cost

in memory, because the S-box tables are likely to

require less memory than any equivalent sequences

of Boolean operations. Serpent’s key schedule uses

the S-boxes, offering an opportunity for resource

sharing in hardware implementations.

Twofish: The Twofish specification describes four

options for implementing the key dependent

S-boxes, plus a fifth option that applies only to

implementations that are coded in assembly

language. The options represent a good range of the

possible tradeoffs for setup versus throughput. For

example, the “full keying” option gives the greatest

throughput by pre-computing the combination of

each of the four S-boxes with the appropriate

column of the maximum distance separable (MDS)

matrix. On the other end of the spectrum, the “zero

keying” option uses the minimum setup time and

table storage by computing the S-boxes on-the-fly

from key material and two fixed 8 bit permutations.

In order to save additional ROM on smart cards,

the 8 bit permutations can be computed from the

underlying 4 bit permutations, although at a heavy

cost in throughput.

In hardware, the analogous construction of the 8 bit

permutations of Twofish from its constituent 4 bit

permutations would decrease the number of gates.

The modular nature of other Twofish elements

offers several possibilities for resource sharing. For

example, the structures of the key schedule and the

S-boxes are similar; similarly, each round contains two

sets of S-box computations. As in software, another

means of increasing throughput, at the cost of setup

time, would be to pre-compute the S-boxes, which could

then be stored in on-chip RAM.

3.10 Potential for Instruction-Level Parallelism

It is anticipated that future processors will support

various modes of parallelism to a greater extent than

existing processors. This raises the following type of

question. If an unlimited number of instruction issue

slots are available so that any potential parallelism for

single block encryption in a finalist can theoretically be

exploited, to what extent can the finalist take advantage

of this situation? (Note: The issue of encrypting

multiple blocks simultaneously using interleaving was

addressed in Sec. 3.3.6.)

Some information can be gleaned from an examina-

tion of the operations to be executed for an algorithm.

One concept, in this regard, is that of a critical path

through code for a particular instruction set [18]: each

instruction can be weighted according to the number of

latent clock cycles. Latent clock cycles refer to the

number of cycles between the instruction issuance and

the availability of the result to another instruction. A

critical path could then be defined to be the path from

plaintext to ciphertext requiring the largest number of

cycles. Table 15 presents the results of several studies.

555

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

The studies discussed in Refs. [18] and [45] present

two theoretical estimates that indicate quite similar

lower bounds for the critical paths of the finalists. See

the “Crit1” and “Crit2” columns of Table 15.

The author of Ref. [18] extended his analysis by

measuring the performance of compiled C code when

using one through eight instruction issue slots of a hypo-

thetical family of VLIW7 processors. The theoretical

performance results in Ref. [18] for the five instruction

issue slot case were later confirmed when the author

measured the throughput of the algorithms (in feed-

back mode) on an actual VLIW processor with five

instruction issue slots [19].

Two independent studies (see Refs. [18] and [98])

also provided comparable estimates of instruction-level

parallelism in software. The results of these studies are

also summarized in Table 15.

In conclusion, Rijndael has the most potential to

benefit from instruction-level parallelism. The rest of the

algorithms appear to have less opportunity to benefit

from instruction-level parallelism.

4. Intellectual Property Issues

During the initial call for algorithms to develop the

AES, NIST established a goal of worldwide, royalty

free availability for the AES. While it is impossible to

guarantee such an outcome, NIST did take specific steps

to help achieve this goal. First, NIST required that the

algorithm submitters identify all known intellectual

property (IP) that may be infringed by implementing

their candidate algorithm. Secondly, submitters had to

obtain and provide written agreements as to the royalty

free availability and use of all the previously identified

IP, in the event that their candidate was selected for

inclusion in the AES. NIST also specifically called

attention to the IP issue at its various AES conferences

7 Very Long Instruction Word.

and in public calls for IP related comments. In its call for

Round 2 public comments, NIST stated:

NIST seeks detailed comments regarding any

intellectual property—particularly any patent

not already identified by the finalists’ submit-

ters—that may be infringed by the practice of

any of the finalist algorithms. This also

includes comments from all parties—includ-

ing submitters—regarding specific claims that

the practice of a finalist algorithm infringes

on their patent(s). Claims regarding infringe-

ment of copyrighted software are also partic-

ularly solicited. NIST views this input

as a critical factor in the eventual wide-

spread adoption and implementation of the

algorithm(s) specified in the FIPS.

NIST reminds all interested parties that the

adoption of AES is being conducted as an

open standards-setting activity. Specifically,

NIST has requested that all interested parties

identify to NIST any patents or inventions that

may be required for the use of AES. NIST

hereby gives public notice that it may seek

redress under the antitrust laws of the United

States against any party in the future who

might seek to exercise patent rights against

any user of AES that have not been disclosed

to NIST in response to this request for

information. [34]

After comments were analyzed, and the review

process was completed, IP was not a factor in

NIST’s selection of the proposed AES algorithm.

Consistent with its practice for FIPS, however,

NIST intends to state in the proposed AES FIPS

that U.S. and foreign patents may cover crypto-

graphic devices implementing the standard.

Table 15. Critical path and instruction-level parallelism. Sources: refs. [18], [45], and [98]

Crit1 Crit2 ETHR THR Par IPC

MARS 258 214 0.56 0.57 2 10

RC6 185 181 0.69 0.69 2 2

Rijndael 86 71 0.93 0.93 7 10

Serpent 556 526 0.27 0.28 3 3

Twofish 166 162 0.69 0.70 3 6

Crit1 = the first estimate of critical path (in clock cycles); taken from Ref. [45]

Crit2 = the second estimate of critical path (in clock cycles); taken from Ref. [18]

ETHR = Estimated throughput (bits per cycle) on a hypothetical VLIW processor with 5 instruction issue slots, from Ref. [18], Fig. 1.

THR = Throughput (bits per cycle) on an actual VLIW processor with 5 instruction issue slots, in feedback mode [19], slide #3.

Par = An estimate of the maximum number of processing elements that can be effectively used in parallel, taken (roughly) from Table 6 in

Ref. [18].

IPC = An estimate of the maximum number of processing elements that can be effectively used in parallel; taken from Ref. [98].

556

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

5. Finalist Profiles

The following summarizes the salient information

that NIST was able to accrue about the finalists.

5.1 MARS

5.1.1 General Security

MARS has no known security attacks.

Unlike the other finalists, MARS uses both data

dependent rotations and S-boxes as non-linear compo-

nents. The nonstandard, heterogeneous round structure

(16 mixing and 16 core rounds) of MARS makes it

difficult to assess the margin of security provided, as

discussed in Sec. 3.2.2. However, MARS appears to

have a high margin of security. MARS has received

some criticism on its complexity, which may have

hindered its security analysis during the timeframe of

the AES development process. Refer to Sec. 3.2 for

details.

5.1.2 Software Implementations

The efficiency of software implementations of

MARS depends on how well the processor/language

combination handles the 32 bit multiplication and

variable rotation operations. This causes some variation

between processors in the same family, and also causes

some variation between compilers on a given processor.

MARS tends to finish in the middle range in overall

performance for encryption/decryption and for key

setup, as shown in Table 4 of Sec. 3.3.4. Refer to

Sec. 3.3 for details.

5.1.3 Restricted-Space Environments

MARS is not well suited for restricted-space environ-

ments because of its ROM requirement. As indicated by

Table 6, the ROM requirement tends to be high. MARS

has a disadvantage in that it uses pattern-matching oper-

ations during key setup, requiring extra resources. Refer

to Sec. 3.4 for details.

5.1.4 Hardware Implementations

MARS has an above average area requirement. Its

throughput is generally below average, and its efficiency

is uniformly below average. The speed of a MARS

implementation is independent of the key size used.

Refer to Sec. 3.5 for details.

5.1.5 Attacks on Implementations

When implemented on devices that are vulnerable to

timing or power attacks, MARS is difficult to defend,

due to the use of multiplications, variable rotations, and

additions. The use of masking techniques to provide

MARS with some defense against these attacks pro-

duces severe performance degradation and high ROM

requirements, as indicated by Table 14. The key

schedule is slightly vulnerable to the power analysis

attacks in Refs. [13] and [16]. Refer to Sec. 3.6 for

details.

5.1.6 Encryption vs Decryption

Encryption and decryption in MARS are similar

functions. Thus, the speed of MARS does not vary

significantly between encryption and decryption. One

FPGA study reports that the implementation of both

encryption and decryption takes about 10 % more space

than the implementation of encryption alone. Refer to

Secs. 3.5.3.3 and 3.7 for details.

5.1.7 Key Agility

MARS requires the computation of 10 of the 40

subkeys at a time, requiring additional resources to store

these 10 subkeys. This is a detriment in memory-

restricted environments. MARS also requires a one-

time execution of the key schedule to generate all sub-

keys prior to the first decryption with a specific key. The

computation of multiple subkeys at one time uses more

memory resources than are required for algorithms per-

forming on-the-fly subkey computation of a single

subkey. Refer to Sec. 3.8 for details.

5.1.8 Other Versatility and Flexibility

MARS supports key sizes from 128 bits to 448 bits.

Refer to Sec. 3.9 for details.

5.1.9 Potential for Instruction-Level Parallelism

As shown by Table 15, MARS has a limited potential

for parallelism for a single block encryption. Refer to

Sec. 3.10 for details.

557

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

5.2 RC6

5.2.1 General Security

RC6 has no known security attacks.

RC6 uses data dependent rotations as non-linear

components. Its security margin appears to be adequate.

RC6 has received praise for its simplicity, which may

aid in its security analysis during the timeframe of the

AES development process. RC6’s lineage is a plus:

its predecessor, RC5, has been subjected to previous

analysis. Refer to Sec. 3.2 for details.

5.2.2 Software Implementations

The predominant operations for RC6 are multiplica-

tions and variable rotations. Software performance

depends on how well the processor/language combina-

tion handles these operations. The behavior of RC6 for

encryption and decryption is mixed, as shown by Tables

16-25 of Appendix A. Generally, RC6 is the fastest

finalist on 32 bit platforms. However, its relative perfor-

mance drops off substantially on 64 bit processors.

RC6’s performance improves most significantly relative

to the other finalists if it is used in a mode capable of

interleaving. Key setup time is average. Refer to Sec. 3.3

for details.

5.2.3 Restricted-Space Environments

RC6 has a low ROM requirement, which is an advan-

tage in space-restricted environments. However, RC6

lacks an on-the-fly subkey computation capability for

decryption, which creates a high RAM requirement. It

is, therefore, not well suited for implementation on

devices with a very restricted amount of RAM available

when decryption is required. Refer to Sec. 3.4 for

details.

5.2.4 Hardware Implementations

RC6 can be compactly implemented. Its throughput is

average, and it is faster in non-feedback modes. The

throughput of an RC6 implementation is independent of

the key size used. Refer to Sec. 3.5 for details.

5.2.5 Attacks on Implementations

When implemented on devices vulnerable to timing

or power attacks, RC6 is difficult to defend, due to the

use of multiplications, variable rotations, and additions.

The use of masking techniques to provide RC6 with

some defense against these attacks degrades its perfor-

mance considerably, as indicated by Table 14. However,

when masked, the RAM and ROM requirements are

very reasonable when compared to other finalists. RC6

is slightly vulnerable to the power analysis attacks in

Refs. [13] and [16]. Refer to Sec. 3.6 for details.

5.2.6 Encryption vs Decryption

Encryption and decryption in RC6 are similar

functions. Thus, the efficiency of RC6 does not vary

significantly between encryption and decryption. One

FPGA study reports that the implementation of both

encryption and decryption takes only about 10 % more

space than the implementation of encryption alone.

Refer to Secs. 3.5.3.3 and 3.7 for details.

5.2.7 Key Agility

RC6 supports on-the-fly subkey computation only for

encryption, given about 100 bytes of intermediate val-

ues. The decryption subkeys must be pre-computed. The

lack of on-the-fly subkey computation reduces the level

of key agility afforded by RC6. Refer to Sec. 3.8 for

details.

5.2.8 Other Versatility and Flexibility

Block, key, and round sizes are parameterized. RC6

supports key sizes much higher than 256 bits. Refer to

Sec. 3.9 for details.

5.2.9 Potential for Instruction-Level Parallelism

As shown by Table 15, RC6 has a limited potential for

parallelism for a single block encryption. Refer to

Sec. 3.10 for details.

5.3 Rijndael

5.3.1 General Security

Rijndael has no known security attacks.

Rijndael uses S-boxes as non-linear components.

Rijndael appears to have an adequate security margin,

but has received some criticism suggesting that its

mathematical structure may lead to attacks. On the other

hand, the simple structure may have facilitated its

security analysis during the timeframe of the AES

development process. Refer to Sec. 3.2 for details.

5.3.2 Software Implementations

As shown by Tables 16-25 of Appendix A, Rijndael

performs encryption and decryption very well across

a variety of platforms, including 8 bit and 64 bit

platforms, and DSPs. However, there is a decrease in

performance with the higher key sizes because of the

increased number of rounds that are performed.

Rijndael’s high inherent parallelism facilitates the

efficient use of processor resources, resulting in very

good software performance even when implemented in

a mode not capable of interleaving. Rijndael’s key setup

time is fast. Refer to Sec. 3.3 for details.

558

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

5.3.3 Restricted-Space Environments

In general, Rijndael is very well suited for restricted-

space environments where either encryption or decryp-

tion is implemented (but not both), as indicated by

Tables 5 and 6. It has very low RAM and ROM require-

ments. A drawback is that ROM requirements will

increase if both encryption and decryption are imple-

mented simultaneously, although it appears to remain

suitable for these environments. The key schedule for

decryption is separate from encryption. Refer to Sec. 3.4

for details.

5.3.4 Hardware Implementations

Rijndael has the highest throughput of any of the

finalists for feedback modes and second highest for non-

feedback modes. For the 192 bit and 256 bit key sizes,

throughput falls in standard and unrolled implementa-

tions because of the additional number of rounds. For

fully pipelined implementations, the area requirement

increases, but the throughput is unaffected. Refer to

Sec. 3.5 for details.

5.3.5 Attacks on Implementations

The operations used by Rijndael are among the

easiest to defend against power and timing attacks. The

use of masking techniques to provide Rijndael with

some defense against these attacks does not cause

significant performance degradation relative to the other

finalists, and its RAM requirement remains reasonable,

as indicated by Table 14. Rijndael appears to gain a

major speed advantage over its competitors when such

protections are considered. However, implementations

are vulnerable to the power analysis attack in Ref. [16],

and slightly vulnerable to the power analysis attack in

Ref. [13]. Refer to Sec. 3.6 for details.

5.3.6 Encryption vs Decryption

The encryption and decryption functions in Rijndael

differ. One FPGA study reports that the implementation

of both encryption and decryption takes about 60 %

more space than the implementation of encryption

alone. Rijndael’s speed does not vary significantly

between encryption and decryption, although the key

setup performance is slower for decryption than for

encryption. Refer to Secs. 3.5.3.3 and 3.7 for details.

5.3.7 Key Agility

Rijndael supports on-the-fly subkey computation for

encryption. Rijndael requires a one-time execution of

the key schedule to generate all subkeys prior to the first

decryption with a specific key. This places a slight

resource burden on the key agility of Rijndael. Refer to

Sec. 3.8 for details.

5.3.8 Other Versatility and Flexibility

Rijndael fully supports block sizes and key sizes of

128 bits, 192 bits and 256 bits, in any combination. In

principle, the Rijndael structure can accommodate any

block sizes and key sizes that are multiples of 32, as well

as changes in the number of rounds that are specified.

Refer to Sec. 3.9 for details.

5.3.9 Potential for Instruction-Level Parallelism

As indicated by Table 15, Rijndael has an excellent

potential for parallelism for a single block encryption.

Refer to Sec. 3.10 for details.

5.4 Serpent

5.4.1 General Security

Serpent has no known security attacks.

Serpent uses S-boxes as non-linear components.

Serpent appears to have a high security margin and a

simple structure, which may have facilitated its security

analysis during the timeframe of the AES development

process. Refer to Sec. 3.2 for details.

5.4.2 Software Implementations

Serpent is generally the slowest of the finalists

in software speed for encryption and decryption, as

indicated by Tables 16-25 of Appendix A. Serpent’s

key setup time is average. Refer to Sec. 3.3 for details.

5.4.3 Restricted-Space Environments

Serpent is well suited to restricted-space environ-

ments, as indicated by Table 6, due to low RAM and

ROM requirements. A drawback is that ROM require-

ments will increase if both encryption and decryption

are implemented simultaneously, but Serpent should

remain suitable for restricted-space environments.

Refer to Sec. 3.4 for details.

5.4.4 Hardware Implementations

Fully pipelined implementations of Serpent offer the

highest throughput of any of the finalists for non-feed-

back modes. Serpent is second in feedback mode

throughput for the basic architecture and fully unrolled

implementations. Efficiency is generally very good, and

Serpent’s speed is independent of key size. Refer to

Sec. 3.5 for details.

559

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

5.4.5 Attacks on Implementations

The operations used by Serpent are among the easiest

to defend against timing and power attacks. Serpent is

most effectively defended against these attacks by using

the bitslice mode. Table 14 shows that when bitsliced

Serpent is defended against power attacks by masking,

its performance degrades somewhat. In particular,

Serpent’s speed is low, and its ROM requirement is high.

Implementations are vulnerable to the power analysis

attack in Ref. [16]. Refer to Sec. 3.6 for details.

5.4.6 Encryption vs Decryption

Encryption and decryption in Serpent are different

functions that share very limited resources in hardware.

One FPGA study reports that the implementation of

both encryption and decryption takes roughly twice the

amount of space needed for encryption alone. This is a

disadvantage in hardware when both functions need to

be implemented. Serpent’s speed does not vary signifi-

cantly between encryption and decryption. Refer to

Secs. 3.5.3.3 and 3.7 for details.

5.4.7 Key Agility

Serpent supports on-the-fly subkey computation for

encryption and decryption. For decryption, only a single

computation is needed to obtain the first decryption

subkey from the original key. This computation is

distinct from the transformation that is used for every

other subkey. This places a slight resource burden on the

key agility of Serpent. Refer to Sec. 3.8 for details.

5.4.8 Other Versatility and Flexibility

Serpent can handle any key sizes up to 256 bits. In

addition, a bitslice technique may be used on 32 bit

processors to improve performance. Refer to Sec. 3.9 for

details.

5.4.9 Potential for Instruction Level Parallelism

As indicated by Table 15, Serpent has a limited

potential for parallelism for a single block encryption.

Refer to Sec. 3.10 for details.

5.5 Twofish

5.5.1 General Security

Twofish has no known security attacks.

Twofish uses S-boxes as non-linear components.

Twofish appears to have a high security margin, but has

been criticized because of its key separation property

and for its complexity, which may have hindered its

security analysis during the timeframe of the AES

development process. Refer to Sec. 3.2 for details.

5.5.2 Software Implementations

As shown by Tables 16-25 of Appendix A, Twofish

has mixed results when performing encryption and

decryption. Key setup time is slow. Encryption/

decryption or key setup performance decreases with the

larger key sizes, depending upon the keying option used.

Refer to Sec. 3.3 for details.

5.5.3 Restricted-Space Environments

As shown by Table 6, the RAM and ROM require-

ments of Twofish appear to make it suitable for

restricted-space environments. Refer to Sec. 3.4 for

details.

5.5.4 Hardware Implementations

Throughput and efficiency in the basic architecture

and the pipelined and unrolled implementations are

generally average. Twofish’s throughput is reduced

somewhat for the larger key sizes in both the standard

architecture and pipelined implementations. Compact

implementations are possible. Refer to Sec. 3.5 for

details.

5.5.5 Attacks on Implementations

Twofish uses addition, which is somewhat difficult to

defend against timing and power analysis attacks. The

use of masking techniques to provide Twofish with

some defense against these attacks does not degrade

performance considerably, although its RAM usage

increases significantly, as indicated by Table 14.

Twofish is vulnerable to the power analysis attack in

Ref. [16]. Refer to Sec. 3.6 for details.

5.5.6 Encryption vs Decryption

Encryption and decryption in Twofish are nearly

identical functions. Thus, the efficiency of Twofish

does not vary significantly between encryption and

decryption. One FPGA study reports that the

implementation of both encryption and decryption takes

only about 10 % more space than the implementation of

encryption alone. Refer to Secs. 3.5.3.3 and 3.7 for

details.

5.5.7 Key Agility

Twofish supports on-the-fly subkey computation for

both encryption and decryption. As a result, Twofish is

very key agile. Refer to Sec. 3.8 for details.

560

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

5.5.8 Other Versatility and Flexibility

The Twofish specification describes four options

for implementing the key dependent S-boxes, allowing

various performance tradeoffs. Twofish supports

arbitrary key sizes up to 256 bits. Refer to Sec. 3.9 for

details.

5.5.9 Potential for Instruction Level Parallelism

As indicated by Table 15, Twofish has a limited

potential for parallelism for a single block encryption.

Refer to Sec. 3.10 for details.

6. Summary Assessments of the Finalists

The following are NIST’s overall assessments of the

candidates, summarizing the results of the Round 2

analysis. The assessments below are not intended to be

a comprehensive list or description of the features and

properties of the algorithms, which were discussed in

the preceding sections of this report and in the public

comments and analyses. The preceding sections in this

report should be consulted for the specific details of

each algorithm.

As discussed in Sec. 1.3, security was considered of

primary importance during NIST’s evaluation of the

finalists. Since many of the remaining (non-security)

analysis results often covered both the “cost” and

“algorithm characteristics” evaluation criteria, NIST

considered all of these factors together, as secondary

to security (i.e., “cost” factors could not be clearly

separated from “algorithm characteristics” factors.).

As indicated above in Sec. 4, although Intellectual

Property (IP) information was reviewed during the

evaluation, it did not play a role in distinguishing one

algorithm from another, and therefore is not addressed

in this section.

6.1 General Security

Based on the security analysis performed to-date,

there are no known security attacks on any of the five

finalists, and all five algorithms appear to have ade-

quate security for the AES. In terms of security margin,

MARS, Serpent, and Twofish appear to have high

security margins, while the margins for RC6 and

Rijndael appear adequate. Some comments criticized

Rijndael for its mathematical structure and Twofish for

its key separation property; however, those observations

have not led to attacks.

6.2 Software Implementations

RC6 and Rijndael generally demonstrate above

average encryption and decryption speed for 128 bit

keys, with RC6 doing particularly well on 32 bit

platforms and Rijndael performing more evenly across

platforms. MARS has average performance for encryp-

tion and decryption across platforms, depending on how

well the processor performs 32 bit multiplications and

variable rotations. Twofish has mixed results across

platforms for encryption and decryption, but is generally

an average performer among the finalists. Serpent is

generally the slowest of the finalists for encryption and

decryption.

The key setup performance for Rijndael is consis-

tently the fastest of all the finalists. The key setup perfor-

mance for MARS, RC6, and Serpent is average, while

that of Twofish is consistently the slowest of the

finalists.

MARS, RC6, and Serpent exhibit consistent encryp-

tion and decryption performance for all three key sizes.

Rijndael’s performance for encryption and decryption

decreases with higher key sizes due to the increased

number of rounds. The encryption/decryption or key

setup performance of Twofish decreases with the larger

key sizes, depending on which keying option is used.

The performance of RC6 improves most significantly

relative to the other finalists if it is used in a mode

capable of interleaving.

6.3 Restricted-Space Environments

Rijndael has very low RAM and ROM requirements

and is very well suited to restricted-space environments

when either encryption or decryption is implemented. A

drawback is that its ROM requirements increase if both

encryption and decryption are implemented simulta-

neously, although Rijndael still appears to remain

suitable for restricted-space environments.

Serpent has low RAM and ROM requirements and is

well suited to restricted-space environments, when

either encryption or decryption is implemented. As with

Rijndael, Serpent’s ROM requirements increase when

both encryption and decryption are implemented

simultaneously, but the algorithm appears to remain

suitable for restricted-space environments.

The RAM and ROM requirements of Twofish appear

to make it suitable for restricted-space environments.

RC6 has a low ROM requirement, which is an advan-

tage in restricted-space environments. However, the

algorithm lacks an on-the-fly subkey computation

capability for decryption, creating a high RAM require-

ment relative to the other finalists. Therefore, RC6 is not

well suited for implementation on devices with a very

restricted amount of available RAM when decryption is

required.

MARS is not well suited for restricted-space environ-

ments due to its ROM requirement, which tends to be the

highest among the finalists. Additionally, MARS’ key

schedule involves pattern-matching operations, which

requires extra resources.

561

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

6.4 Hardware Implementations

Serpent and Rijndael appear to have the best hardware

throughput of the finalists, for both feedback and non-

feedback modes. Serpent offers the highest throughput

of the finalists in non-feedback modes, and its

efficiency (throughput/area) is generally very good.

Rijndael offers the highest throughput among the final-

ists for feedback modes. For the larger key sizes,

Rijndael’s throughput decreases, and fully pipelined

implementations require a higher area but without

a decrease in throughput. Rijndael’s efficiency also

appears to be generally very good.

RC6 and Twofish generally appear to have average

throughput, and both algorithms can be compactly

implemented. RC6’s throughput increases in non-feed-

back modes. Twofish’s throughput is somewhat reduced

for the larger key sizes.

MARS has an above average area requirement, its

throughput is generally below average, and its efficiency

is uniformly below average.

6.5 Attacks on Implementations

Rijndael and Serpent use operations that are among

the easiest to defend against power and timing attacks.

Since it uses the addition operation, Twofish is some-

what more difficult to defend against those same

attacks. RC6 and MARS are the most difficult of the

five finalists to defend against timing and power attacks,

due to their use of multiplications, variable rotations,

and additions.

When the algorithms are implemented using masking

techniques for defense against power and timing attacks,

it appears that the speed of Rijndael, Serpent, and

Twofish are impacted significantly less than that of

MARS and RC6. Rijndael also appears to gain a major

speed advantage over the other algorithms when such

protections are considered.

6.6 Encryption vs Decryption

Twofish, MARS, and RC6 need very little additional

area to implement both encryption and decryption in

hardware, as opposed to implementing encryption

alone. The encryption and decryption functions are

nearly identical for Twofish, while the functions are

similar for both MARS and RC6.

Rijndael’s encryption and decryption are different—

more than for Twofish, MARS, and RC6—although

Rijndael can be implemented in such a way as to share

some hardware resources.

For Serpent, encryption and decryption are different

functions that appear to share only very limited

hardware resources.

All of the finalists show very little speed variation, if

any, between encryption and decryption functions for a

given key size. Rijndael’s key setup performance is

slower for decryption than for encryption.

6.7 Key Agility

Twofish supports on-the-fly subkey computation for

both encryption and decryption. Serpent also supports

on-the-fly subkey computation for both encryption and

decryption; however, the decryption process requires

one additional computation. Rijndael supports on-the-

fly subkey computation for encryption, but requires a

one-time execution of the entire key schedule prior to

the first decryption with a particular key. MARS has

characteristics that are similar to Rijndael’s, except that

10 subkeys must be computed and stored at a time. This

places an additional resource burden on a MARS

implementation. RC6 supports on-the-fly subkey

computation for encryption only, given intermediate

values. Decryption subkeys for RC6 must be pre-

computed.

6.8 Other Versatility and Flexibility

MARS supports key sizes ranging from 128 bits to

448 bits.

RC6 has parameterized block, key, and round sizes,

including support for key sizes much larger than 256

bits.

Rijndael supports additional block and key sizes in

increments of 32 bits, and the number of rounds can be

altered.

Serpent supports any key size up to 256 bits, and the

bitslice implementation can improve its performance on

many processors.

Twofish supports arbitrary key sizes up to 256 bits,

and the algorithm specification offers four options that

allow various performance tradeoffs.

6.9 Potential for Instruction-Level Parallelism

Rijndael has the most potential to benefit from in-

struction-level parallelism. The rest of the algorithms

appear to have less opportunity to benefit from instruc-

tion-level parallelism.

562

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

7. Conclusion

Each of the finalist algorithms appears to offer

adequate security, and each offers a considerable

number of advantages. Any of the finalists could serve

admirably as the AES. However, each algorithm also

has one or more areas where it does not fare quite as

well as some other algorithm; none of the finalists is

outstandingly superior to the rest.

NIST selected Rijndael as the proposed AES

algorithm at the end of a very long and complex evalua-

tion process. During the evaluation, NIST analyzed all

public comments, papers, verbal comments at confer-

ences, and NIST studies and reports. NIST judged

Rijndael to be the best overall algorithm for the AES.

Rijndael appears to be consistently a very good

performer in both hardware and software across a wide

range of computing environments regardless of its use

in feedback or non-feedback modes. Its key setup time

is excellent, and its key agility is good. Rijndael’s very

low memory requirements make it very well suited for

restricted-space environments, in which it also demon-

strates excellent performance. Rijndael’s operations are

among the easiest to defend against power and timing

attacks. Additionally, it appears that some defense can

be provided against such attacks without significantly

impacting Rijndael’s performance. Rijndael is designed

with some flexibility in terms of block and key sizes,

and the algorithm can accommodate alterations in the

number of rounds, although these features would require

further study and are not being considered at this time.

Finally, Rijndael’s internal round structure appears to

have good potential to benefit from instruction-level

parallelism.

There are many unknowns regarding future comput-

ing platforms and the wide range of environments in

which the AES will be implemented. However, when

considered together, Rijndael’s combination of security,

performance, efficiency, implementability, and flexibil-

ity make it an appropriate selection for the AES for use

in the technology of today and in the future.

8. Next Steps

Following NIST’s announcement of the proposed

AES algorithm, NIST will prepare the draft AES FIPS

for public review and comment. After the close of the

public comment period, the standard will be revised by

NIST, as appropriate, in response to those comments. A

review, approval, and promulgation process will then

follow. If all steps of the AES development process

proceed as planned, it is anticipated that the standard

will be completed by the summer of 2001.

When the AES officially becomes a FIPS, a con-

formance-testing program will be available for AES

implementations through NIST’s Cryptographic Module

Validation Program (CMVP).

9. Appendix A. Software Speeds for

Encryption, Decryption, and Key Setup

This appendix includes Tables 16-30 and figures

(Figs. 1-15) that present the encryption, decryption, and

key setup performance data from various studies of the

five AES finalists. Each study (identified by a letter,

A-R) contains two columns.

• Column 1 contains the actual performance data

(datapoints) from the study. This is usually ex-

pressed in clock cycles (“Clocks”); however, results

measured in terms of kilobits per second (kbit/s),

megabits per second (Mbit/s), etc. are marked as

such. In Tables 26-30, key setup times for decryption

are included in parentheses if they differ noticeably

from the key setup times for encryption.

• Column 2 presents a normalized representation of

the data (“Norm.”) when compared to the fastest

performance within a study. This allows easier com-

parisons of relative algorithm performance. The

fastest datapoint in a study receives a normalized

value of “1.00.” The remaining normalized values

are calculated as follows. Where speed is measured

in clock cycles, the normalized value of a selected

datapoint equals the fastest datapoint divided by the

selected datapoint. Where speed is measured in bits

(or keys) per second (or ms), the normalized value

equals the selected datapoint divided by the fastest

datapoint. For example, in study “A” in Table 16,

RC6 uses the fewest number of clock cycles, and

therefore has a value of 1.00 for that study. MARS

has a normalized value of 223 / 306 = 0.73.

For the key setup tables, the fastest datapoint within

a study—for either encryption or decryption key

setup speed—receives a normalized value of “1.00.”

That datapoint is used to normalize key setup speeds

for both encryption and decryption in that study.

(Normalized values for the decryption key setup

speeds are indicated in parentheses.) For example, in

study “C” in Table 26, Rijndael—when setting up

128 bit keys for encryption—uses the fewest number

of clock cycles, and therefore has a normalized value

of 1.00 for that study. The key setup for 256 bit

Rijndael keys for decryption has a normalized value

of 1289 / 3255 = 0.40.

563

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Studies C, D, E, F, G, and M include values for all

three key sizes (128 bits, 192 bits, and 256 bits) for all

five finalists. The remainder of the studies only includes

datapoints for 128 bit keys. Datapoints for 128 bit keys

are included in the tables below. If a source contains

performance figures for 192 bit and 256 bit keys that

differ noticeably from the 128 bit key performance,

those datapoints are also included. In those cases, the

datapoint for the 128 bit key size is listed first, followed

by the 192 bit and 256 bit datapoints.

Following the tables is a series of figures (Figs. 1-15)

that visually presents the normalization data for each

table.

NIST is including this information to give the reader

a sense of the relative performance of the finalists in

different types of environments. These results are not

exhaustive of Round 1 and Round 2 analysis, nor do they

necessarily reflect optimum performance. Several other

studies are available that summarize so-called “best-

known” values. However, NIST does not include those

studies in the tables below, since it is not always clear

how or where such “best-known” values were obtained,

or whether the best-known values are actually the best

possible values. NIST decided that analyzing studies

that implemented the algorithms in a relatively consis-

tent manner, in a particular environment, with well-

defined parameters would provide a better picture of the

relative performance of the algorithms.

The reader should also understand that for the

different studies presented below, the various contribu-

tors of the following values often used different coding

techniques, programming languages, compilation

tools, constraints, and amounts of encrypted data. This

obviously resulted in different raw values.

In the following tables, the candidates will be abbrevi-

ated, as follows:

RIJN=Rijndael

SERP=Serpent

TWOF=Twofish

NIST does not vouch for the accuracy of data not

obtained by NIST.

The studies in Tables 16-21 are identified by letter in

the following list.

A: Intel Pentium II, C. Source: Ref. [5], Table 1.

B: Linux/GCC-2.7.2.2/Pentium 133 MHz MMX, C. Source: Ref. [10], Table 3.

C: Intel Pentium III 600MHz, C. Ref. [7], §5.1, Table 6 (128 blocks).

D: Apple G4 PowerPC, C. Ref. [8], slide 7.

E: Intel Pentium II/III, C. Source: Ref. [41], Table 1.

F: Intel Pentium Pro 200, w/ Symantec Visual Cafe 2.5a, Java. Ref. [89], Appendix.

G: Intel Pentium Pro 200, w/ JDK 1.3, JIT, Java. Ref. [28], Appendix B.

H: UltraSPARC-I, w/ JDK1.2, JIT, Java. Ref. [9], Table 2

I: Hewlett-Packard PA-RISC, ASM. Source: Ref. [98], Appendix A.

J: Hewlett-Packard IA-64, C. Source: Ref. [98], Appendix A; Ref. [99].

K: Compaq Alpha 21164a 500 MHz, C. Source: Ref. [9], Table 1.

L: Compaq Alpha 21264, C. Ref. [95], Table 1.

M: SGI 300 MHz R12000, C w/ GCC-2.8.1. Ref. [7], §5.2, Table 2.

N: Motorola 6805 CPU Core, C. Ref. [54], Table 3. (For MARS and RC6, there were two values

presented. These two are for implementations where more than 120 bytes of RAM are available.)

O: Z80 CPU + coprocessor. Ref. [82], Table 8.

P: ARM CPU. Ref. [65], Table 2.

Q: Texas Instruments TMS320c541 DSP, C. Source: Ref. [44].

R: Texas Instruments TMS320C6201 DSP, C. Source: Ref. [97], Table 1, single-block mode.

Table 16. Software speeds (encryption): 32 bit processors (C)

A B C D E

Clocks Norm. Clocks Norm. Clocks Norm. Mbits Norm. Clocks Norm.

MARS 306 0.73 1600
a

0.78 656 0.48 80.6 0.64 364 0.74

RC6 223 1.00 1436 0.87 318 1.00 125.9 1.00 269 1.00

RIJN 237 0.94 1276 0.98 805 0.40 52.6 0.42 362 0.74

981 0.32 44.3 0.35 428 0.63

1155 0.28 38.2 0.30 503 0.53

SERP 1800 0.70 1261 0.25 50.3 0.40 953 0.28

TWOF 282 0.79 1254 1.00 780 0.41 50.3 0.40 366 0.73

a
The value is based on the Round 1 version of MARS (with a different key schedule from the Round 2 version).

564

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Table 17. Software speeds (encryption): 32 bit processors (Java)

F G H
kbits/s Norm. kbits/s Norm. Clocks Norm.

MARS 19 718 0.75 3738 0.77 8840
a

0.69
RC6 26 212 1.00 4698 0.97 6110 1.00
RIJN 19 321 0.74 4855 1.00 7770 0.79

16 922 0.65 4664 0.96
14 957 0.57 4481 0.92

SERP 11 464 0.44 1843 0.38 10 050 0.61
TWOF 19 265 0.73 1749 0.36 14 990 0.41

a
The value is based on the Round 1 version of MARS (with a different key schedule from
the Round 2 version).

Table 18. Software speeds (encryption): 64 bit processors (C and assembler)

I
a

J K L M
Clocks Norm. Clocks Norm. Clocks Norm. Clocks Norm. kbit/s Norm.

MARS 540 0.31 511 0.24 507
b

0.97 515 0.57 63 581.1 0.73
RC6 580 0.29 490 0.26 559 0.88 428 0.68 86 522.7 1.00
RIJN 168 1.00 125 1.00 490 1.00 293 1.00 58 282.7 0.67

49 080.1 0.57
42 387.4 0.49

SERP 580 0.29 565/419
c

0.22/0.30 998 0.49 854 0.34 42 174.4 0.48
TWOF 205 0.82 182 1.00 490 1.00 316 0.93 59 947.9 0.69

a
The study used assembler implementations.

b
The value is based on the Round 1 version of MARS (with a different key schedule from the Round 2 version).

c
The encryption speed for Serpent (128 bit key) was updated in Ref. [99].

Table 19. Software speeds (encryption): 8 bit processors (C and
assembler)

N O
Clocks Norm. Clocks Norm.

MARS 34 163
a

0.28 45 588 0.56
RC6 32 731 0.29 34 736 0.73
RIJN 9 464 1.00 25 494 1.00
SERP 126 074 0.08 71 924

b
0.35

TWOF 26 500 0.36 31 877 0.80

a
The value is based on the Round 1 version of MARS (with a

different key schedule from the Round 2 version).
b

The study used a non bitslice implementation of Serpent.

Table 20. Software speeds (encryption): 32 bit microprocessor for
smart cards (ARM)

P
Clocks Norm.

MARS 9 425 0.63
RC6 5 964 1.00
RIJN 7 086 0.84
SERP 15 687 0.38
TWOF 19 274 0.31

Table 21. Software speeds (encryption): Digital Signal Processors
(DSPs)

Q R
Clocks Norm. Clocks Norm.

MARS 8 908
a

0.34 406 0.56
RC6 8 231 0.43 292 0.78
RIJN 3 518 1.00 228 1.00
SERP 14 703 0.24 871 0.26
TWOF 4 672 0.75 308 0.74

a
The value is based on the Round 1 version of MARS (with a

different key schedule from the Round 2 version).

565

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

The studies in Tables 22-25 are identified by letter in the following list.

B: Linux/GCC-2.7.2.2/Pentium 133 MHz MMX, C. Source:Ref. [10], Table 3.
C: Intel Pentium III 600MHz, C. Ref. [7], §5.1, Table 6 (128 blocks).
D: Apple G4 PowerPC, C. Ref. [8], slide 7.
E: Intel Pentium II/III, C. Source:Ref. [41], Table 1.
F: Intel Pentium Pro 200, w/ Symantec Visual Cafe 2.5a, Java. Ref. [89], Appendix.
G: Intel Pentium Pro 200, w/ JDK 1.3, JIT, Java. Ref. [28], Appendix B.
I: Hewlett-Packard PA-RISC, ASM. Source:Ref. [98], Appendix A.
J: Hewlett-Packard IA-64, C. Source:Ref. [98], Appendix A.
M: SGI 300 MHz R12000, C w/ GCC-2.8.1. Ref. [7], §5.2, Table 2.
Q: Texas Instruments TMS320c541 DSP, C. Source:Ref. [44].
R: Texas Instruments TMS320C6201 DSP, C. Source: Ref. [97], Table 1, single-block mode.

Table 22. Software speeds (decryption): 32 bit processors (C)

B C D E
Clocks Norm. Clocks Norm. Mbit/s Norm. Clocks Norm.

MARS 1 580
a

0.74 569 0.53 83.9 0.68 371 0.62
RC6 1 406 0.83 307 1.00 123.9 1.00 231 1.00
RIJN 1 276 0.91 784 0.39 57.1 0.46 358 0.65

955 0.32 47.9 0.39 421 0.55
1 121 0.23 41.3 0.33 492 0.47

SERP 2 102 0.55 1 104 0.28 52.0 0.42 920 0.25
TWOF 1 162 1.00 613 0.50 47.9 0.39 376 0.61

a
The value is based on the Round 1 version of MARS (with a different key schedule from the Round 2 version).

Table 23. Software speeds (decryption): 32 bit processors (Java)

F G
Kbit/s Norm. kbit/s Norm.

MARS 19 443 0.80 3 965 0.82
RC6 24 338 1.00 4 733 0.98
RIJN 18 868 0.78 4 819 1.00

16 484 0.68 4 624 0.96
14 468 0.59 4 444 0.92

SERF 11 519 0.47 1 873 0.39
TWOF 18 841 0.77 1 781 0.37

Table 24. Software speeds (decryption): 64 bit processors (C and assembler)

I
a

J M
Clocks Norm. Clocks Norm. kbit/s Norm.

MARS 538 0.31 527 0.24 66 608.8 0.67
RC6 493 0.34 490 0.28 98 737.7 1.00
RIJN 168 1.00 126 1.00 58 282.7 0.59

49 368.8 0.50
42 819.9 0.43

SERP 585 0.29 631 0.20 46 113.8 0.47
TWOF 200 0.84 182 0.69 63 581.1 0.64

a
The study used assembler implementation.

Table 25. Software speeds (decryption): Digital Signal Processors
(DSPs)

Q R
Clocks Norm. Clocks Norm.

MARS 8 826
a

0.40 400 0.67
RC6 8 487 0.41 281 0.96
RIJN 3 500 1.00 269 1.00
SERP 16 443 0.21 917 0.29
TWOF 4 328 0.81 290 0.93

a
The value is based on the Round 1 version of MARS (with a

different key schedule from the Round 2 version).

566

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

The studies in Tables 26-30 are identified by letter in the following list.

B: Linux/GCC-2.7.2.2/Pentium 133 MHz MMX, C. Source:Ref. [10], Table 3.

C: Intel Pentium III 600MHz, C. Ref. [7], §5.1, Table 6 (128 blocks).

D: Apple G4 PowerPC, C. Ref. [8], slide 7.

E: Intel Pentium II/III, C. Source:Ref. [41], Table 1.

F: Intel Pentium Pro 200, w/ Symantec Visual Cafe 2.5a, Java. Ref. [89], Appendix.

G: Intel Pentium Pro 200, w/ JDK 1.3, JIT, Java. Ref. [28], Appendix B.

I: Hewlett-Packard PA-RISC, ASM. Source:Ref. [98], Appendix A.

J: Hewlett-Packard IA-64, C. Source:Ref. [98], Appendix A.

M: SGI 300 MHz R12000, C w/ GCC-2.8.1. Ref. [7], §5.2, Table 2.

Q: Texas Instruments TMS320c541 DSP, C. Source:Ref. [44].

R: Texas Instruments TMS320C6201 DSP, C. Source: Ref. [97], Table 1, single-block mode.

Table 26. Software speeds (key setup): 32 bit processors (C)

B C D E

Clocks Norm. Clocks Norm. Keys/ms Norm. Clocks Norm.

MARS 4 708 (5 548)a 1.00(0.85) 4 934 0.26 76.9 0.30 2 118 0.10

4 997 0.26 75.0 0.30

5 171 0.25 73.2 0.29

RC6 5 186 0.91 2 278 0.57 111.1 0.44 1 697 0.13

2 403 0.54 109.2 0.44 2 040 0.11

2 514 0.51 105.3 0.42 1 894 0.11

RIJN 17 742 (18 886) 0.27(0.25) 1 289 (1 724) 1.00(0.75) 250.0 (162.3) 1.00(0.65) 215 (1 334)) 1.00(0.16)

2 000 (2 553) 0.64(0.50) 200.0 (133.3) 0.80(0.53) 215 (1 591) 1.00(0.14)

2 591 (3 255) 0.50(0.40) 162.3 (107.2) 0.65(0.43) 288 (1 913) 0.75(0.11)

SERP 13 154 (12 648) 0.36(0.37) 6 944 0.19 58.8 0.24 1 300 0.17

8 853 0.15 46.9 0.19

10 668 0.12 38.7 0.15

TWOF 18 846 0.25 9 263 0.14 31.9 0.13 8 520 0.03

12 722 0.10 23.3 0.09 11 755 0.02

17 954 0.07 17.4 0.07 15 700 0.01

a
The values are based on the Round 1 version of MARS (with a different key schedule from the Round 2 version).

Table 27. Software speeds (key setup): 32 bit processors (Java)

F G
kbit/s Norm. kbit/s Norm.

MARS 28 680 0.30 2 110 0.47

27 680 0.29 3 131 0.70

26 683 0.28 4 131 0.93

RC6 45 603 0.47 2 233 0.50

40 625 0.42 3 335 0.75

29 683 0.31 4 444 1.00

RIJN 96 234 (56 017) 1.00(0.58) 1 191 0.27

86 773 (48 324) 0.90(0.50) 1 574 0.35

70 494 (39 963) 0.73(0.42) 1 733 0.39

SERP 34 729 0.36 487 0.11

33 729 0.35 734 0.17

31 973 0.33 979 0.22

TWOF 13 469 0.14 286 0.06

10 556 0.11 327 0.07

8 500 0.09 361 0.08

567

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Table 28. Software speeds (key setup) 64 bit processors (C and assembler)

I
a

J M

Clocks Norm. Clocks Norm. Keys/s Norm.

MARS 1 797 0.13 1 408 0.11 60 975.6 0.29

59 171.6 0.28
57 803.5 0.27

RC6 1 077 0.22 1 581 0.09 147 058.8 0.69

RIJN 239 1.00 148 1.00 212 766 (161 290) 1.00(0.76)

163 934 (125 000) 0.77(0.59)

142 857 (108 696) 0.67(0.51)

SERP 668 0.36 475 / 340
b

0.31/0.44 47 393.4 0.22

37 878.8 0.17

31 250.0 0.15

TWOF 2 846 0.08 2 445 0.06 31 055.9 0.15

23 255.8 0.11

16 420.4 0.08

a
The study used assembler implementations.

b
The key setup speed for Serpent (128 bit key) was updated in Ref. [99].

Table 30. Software speeds (key setup): Digital Signal Processors
(DSPs)

Q

Clocks Norm.

MARS 54 427
a

0.49
RC6 40 011 0.67

RIJN 26 642 1.00

SERP 28 913 0.92

TWOF 88 751 0.30

a
The value is based on the Round 1 version of MARS (with a

different key schedule from the Round 2 version).

Table 29. Software speeds (key setup): 8 bit processors

O

Clocks Norm.

MARS 21 742 0.47

RC6 138 851 0.07

RIJN 10 318 1.00

SERP 147 972
a

0.07

TWOF 28 512 0.36

a
The study used a non-bitslice implementation of Serpent.

Fig. 1. Encryption speed for 32 bit processors (C) from Table 16.

568

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Fig. 2. Encryption speed for 32 bit processors (Java) from Table 17.

Fig. 3. Encryption speed for 64 bit processors (C and assembler) from Table 18.

Fig. 4. Encryption speed for 8 bit processors from Table 19.

569

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Fig. 5. Encryption speed for ARM from Table 20.

Fig. 6. Encryption speed for DSPs from Table 21.

Fig. 7. Decryption speed for 32 bit processors (C) from Table 22.

570

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Fig. 8. Decryption speed for 32 bit processors (Java) from Table 23.

Fig. 9. Decryption speed for 64 bit processors (C and assembler) from Table 24.

Fig. 10. Encryption speed for DSPs from Table 25.

571

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Fig. 11. 128 bit key setup for 32 bit processors (C) from Table 26.

Fig. 12. 128 bit key setup for 32 bit processors (Java) from Table 27.

Fig. 13. 128 bit key setup for 64 bit processors (C and assembler) from Table 28.

572

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

Acknowledgements

NIST is grateful for the efforts of all the AES

candidate algorithm submitters, namely for their work

in preparing the submission packages, answering

questions and providing support during the specified

timeframe of the AES development process, partici-

pating in the AES conferences, and most importantly,

for allowing their algorithms to be scrutinized by the

global cryptographic community.

Additionally, NIST appreciates the efforts of all

the people who performed analysis and testing of the

candidates during AES development, and who provided

comments, testing results, and recommendations as to

which candidate(s) should be selected for the AES.

10. References

[1] AES discussion forum: http://aes.nist.gov/aes/.

[2] AES home page may be found via http://www.nist.gov/

CryptoToolkit.

[3] R. Anderson, E. Biham, and L. Knudsen, The Case for Serpent,

submitter presentation at The Third AES Candidate Conference,

April 14, 2000, available at [2].

[4] R. Anderson, E. Biham, and L. Knudsen, Serpent: A Proposal

for the Advanced Encryption Standard, AES algorithm submis-

sion, June 1998, available at [2].

[5] K. Aoki and H. Lipmaa, Fast Implementations of AES

Candidates, in The Third AES Candidate Conference, National

Institute of Standards and Technology, Gaithersburg, MD, April

13-14, 2000, pp. 106-120.

[6] P. Barreto, E-mail comment, AES Round 2 public comment,

May 14, 2000, available at [2].

Fig. 14. 128 bit key setup for an 8 bit processor (C) from Table 29.

Fig. 15. 128 bit setup for a DSP from Table 30.

573

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

[7] L. Bassham, Efficiency Testing of ANSI C implementations of

Round 2 Candidate Algorithms for the Advanced Encryption

Standard, in The Third AES Candidate Conference, National

Institute of Standards and Technology, Gaithersburg, MD, April

13-14, 2000, pp. 136-148.

[8] L. Bassham, NIST Efficiency Testing of Round 2 AES

Candidate Algorithms, presentation at The Third AES Candidate

Conference, April 13, 2000, available at [2].

[9] O. Baudron et al., Report on the AES Candidates, in The

Second AES Candidate Conference, National Institute of

Standards and Technology, Gaithersburg, MD, March 22-23,

1999, pp. 53-67.

[10] E. Biham, A Note on Comparing the AES Candidates, in The

Second AES Candidate Conference, National Institute of

Standards and Technology, Gaithersburg, MD, March 22-23,

1999, pp. 85-92.

[11] E. Biham and V. Furman, Impossible Differential on 8-round

MARS’ Core, in The Third AES Candidate Conference,

National Institute of Standards and Technology, Gaithersburg,

MD, April 13-14, 2000, pp. 186-194.

[12] E. Biham and A. Shamir, Differential Cryptanalysis of the Data

Encryption Standard, Springer-Verlag, New York (1993).

[13] E. Biham and A. Shamir, Power Analysis of the Key Scheduling

of the AES Candidates, in The Second AES Candidate

Conference, National Institute of Standards and Technology,

Gaithersburg, MD, March 22-23, 1999, pp. 115-121.

[14] L. Burnett et al., Efficient Methods for Generating MARS-like

S-boxes, in the preproceedings of the Fast Software Encryption

Workshop 2000, April 10-12, 2000.

[15] C. Burwick et al., MARS—A Candidate Cipher for AES, AES

algorithm submission, August 20, 1999, available at [2].

[16] S. Chari et al., A Cautionary Note Regarding Evaluation of AES

Candidates on Smart Cards, in The Second AES Candidate

Conference, National Institute of Standards and Technology,

Gaithersburg, MD, March 22-23, 1999, pp. 133-147.

[17] L. Chen, E-mail comment, AES Round 2 public comment,

January 14, 2000, available at [2].

[18] C. Clapp, Instruction-level Parallelism in AES Candidates, in

The Second AES Candidate Conference,National Institute of

Standards and Technology, Gaithersburg, MD, March 22-23,

1999, pp. 68-84.

[19] C. Clapp, Performance of AES Candidates on the TriMedia

VLIW Media-processor, rump session presentation at the Third

AES Candidate Conference, April 13, 2000, available at [2].

[20] D. Coppersmith et al., IBM AES3 Comments, submitter presen-

tation at The Third AES Candidate Conference, April 14, 2000,

available at [2].

[21] J. Daemen, M. Peeters, and G. Van Assche, Bitslice Ciphers and

Power Analysis Attacks, in the preproceedings of the Fast

Software Encryption Workshop 2000, April 10-12, 2000.

[22] J. Daemen and V. Rijmen, AES Proposal: Rijndael, AES

algorithm submission, September 3, 1999, available at [2].

[23] J. Daemen and V. Rijmen, The AES second round Comments of

the Rijndael, AES Round 2 public comment, May 12, 2000,

available at [2].

[24] J. Daemen and V. Rijmen, Answer to “new observations on

Rijndael,” AES Forum comment, August 11, 2000, available at

http://www.esat.kuleuven.ac.be/~rijmen/rijndael/.

[25] J. Daemen and V. Rijmen, Resistance Against Implementation

Attacks: A Comparative Study of the AES Proposals, in The

Second AES Candidate Conference, National Institute of

Standards and Technology, Gaithersburg, MD, March 22-23,

1999, pp. 122-132.

[26] J. Daemen and V. Rijmen, Rijndael for AES, submitter presenta-

tion at The Third AES Candidate Conference, April 14, 2000,

available at [2].

[27] A. Dandalis, V. Prasanna, and J. Rolim, A Comparative Study

of Performance of AES Final Candidates Using FPGAs, submis-

sion for the Third AES Candidate Conference, March 21, 2000,

available at [2].

[28] J. Dray, NIST Performance Analysis of the Final Round Java

AES Candidates, in The Third AES Candidate Conference,

National Institute of Standards and Technology, Gaithersburg,

MD, April 13-14, 2000, pp. 149-160.

[29] M. Dworkin, Conference Report: Third Advanced Encryption

Standard Candidate Conference, available at [2].

[30] A. Elbirt et al., An FPGA Implementation and Performance

Evaluation of the AES Block Cipher Candidate Algorithm Final-

ists, in The Third AES Candidate Conference, National Institute

of Standards and Technology, Gaithersburg, MD, April 13-14,

2000, pp. 13-27.

[31] Federal Register: January 2, 1997 (Volume 62, Number 93),

available at [2].

[32] Federal Register: September 12, 1997 (Volume 62, Number

177), available at [2].

[33] Federal Register: September 14, 1998 (Volume 63, Number

177), available at [2].

[34] Federal Register, September 15, 1999 (Volume 64, Number

178), available at [2].

[35] N. Ferguson, Twofish Technical Report �5: Impossible Differ-

entials in Twofish, AES Round 2 public comment, October 19,

1999, available at [2].

[36] N. Ferguson, Twofish Technical Report �6: A Twofish Retreat:

Related-Key Attacks Against Reduced-Round Twofish, AES

Round 2 public comment, February 14, 2000, available at [2].

[37] N. Ferguson et al., Improved Cryptanalysis of Rijndael, in the

preproceedings of the Fast Software Encryption Workshop 2000,

April 10-12, 2000.

[38] K. Gaj and P. Chodowiec, Comparison of the hardware perfor-

mance of the AES candidates using reconfigurable hardware, in

The Third AES Candidate Conference, National Institute of

Standards and Technology, Gaithersburg, MD, April 13-14,

2000, pp. 40-56.

[39] H. Gilbert et al., A Statistical Attack on RC6, in the preproceed-

ings of the Fast Software Encryption Workshop 2000, April

10-12, 2000.

[40] H. Gilbert and M. Minier, A collision attack on 7 rounds of

Rijndael, in The Third AES Candidate Conference, National

Institute of Standards and Technology, April 13-14, 2000, pp.

230-241.

[41] B. Gladman, AES Second Round Implementation Experience,

AES Round 2 public comment, May 15, 2000, available at [2].

[42] B. Gladman, The Need for Multiple AES Winners, AES Round

1 public comment, April 7, 1999, available at [2].

[43] B. Gladman, Serpent S-boxes as Boolean Functions,

referenced by Ref. [41], May 15, 2000, available at http://

www.btinternet.com/~brian.gladman/cryptography_technology/

serpent/.

[44] K. Gorski and M. Skalski, Comments on AES Candidates, AES

Round 1 public comment, April 15, 1999, available at [2].

[45] G. Graunke, Yet Another Performance Analysis of the AES

Candidates, AES Round 1 public comment, April 15, 1999,

available at [2].

[46] S. Halevi, Key Agility in MARS, AES Round 2 public comment,

May 12, 2000, available at [2].

574

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

[47] I. Harvey, The Effects of Multiple Algorithms in the Advanced

Encryption Standard, in The Third AES Candidate Conference,

National Institute of Standards and Technology, Gaithersburg,

MD, April 13-14, 2000, pp. 269-276.

[48] J. Hughes, E-mail comment, AES Round 2 public comment,

April 15, 2000, available at [2].

[49] The IBM MARS team, Comments on MARS’s linear analysis,

AES Round 2 public comment, May 12, 2000, available at [2].

[50] T. Ichikawa, T. Kasuya, and M. Matsui, Hardware Evaluation of

the AES Finalists, in The Third AES Candidate Conference,

National Institute of Standards and Technology, Gaithersburg,

MD, April 13-14, 2000, pp. 279-285.

[51] D. Johnson, AES and Future Resiliency: More Thoughts

and Questions, in The Third AES Candidate Conference,

National Institute of Standards and Technology, Gaithersburg,

MD, April 13-14, 2000, pp.257-268.

[52] D. Johnson, Future Resiliency: A Possible New AES Evaluation

Criterion, submission for The Second AES Conference, March

22-23,1999, available at [2].

[53] J. Jonsson, J.-O. Larsson, and M. Robshaw, On the Statistical

Testing of RC6, AES Round 2 public comment, April 7, 2000,

available at [2].

[54] G. Keating, Performance analysis of AES candidates on the 6805

CPU core, AES Round 2 public comment, April 15, 1999,

available at [2].

[55] J. Kelsey, Twofish Technical Report �7: Key Separation in

Twofish, AES Round 2 public comment, April 7, 2000, available

at [2].

[56] J. Kelsey et al., Cryptanalytic Progress: Lessons for AES, AES

Round 2 public comment, May 1, 2000, available at [2].

[57] J. Kelsey, T. Kohno, and B. Schneier, Amplified Boomerang

Attacks Against Reduced-Round MARS and Serpent, in the

preproceedings of the Fast Software Encryption Workshop 2000,

April 10-12, 2000.

[58] J. Kelsey and B. Schneier, MARS Attacks! Preliminary

Cryptanalysis of Reduced-Round MARS Variants, in The Third

AES Candidate Conference, National Institute of Standards and

Technology, Gaithersburg, MD, April 13-14, 2000, pp. 169-185.

[59] L. Knudsen, Trawling Twofish (revisited), AES Round 2 public

comment, May 15, 2000, available at [2].

[60] L. Knudsen and W. Meier, Correlations in RC6 with a Reduced

Number of Rounds, in the preproceedings of the Fast Software

Encryption Workshop 2000, April 10-12, 2000.

[61] L. Knudsen and H. Raddum, Linear approximations to the

MARS S-box, AES Round 2 public comment, April 7, 2000,

available at [2].

[62] T. Kohno, J. Kelsey, and B. Schneier, Preliminary Cryptanalysis

of Reduced-Round Serpent, in The Third AES Candidate

Conference, National Institute of Standards and Technology,

Gaithersburg, MD, April 13-14, 2000, pp. 195-214.

[63] S. Lucks, Attacking Seven Rounds of Rijndael Under 192 bit and

256 bit Keys, in The Third AES Candidate Conference,

National Institute of Standards and Technology, Gaithersburg,

MD, April 13-14, 2000, pp. 215-229.

[64] M. Matsui, Linear Cryptanalysis Method for DES Cipher,

Advances in Cryptology—Eurocrypt ’93 (LNCS 765)(1994)

pp. 386-397.

[65] T. Messerges, Securing the AES Finalists Against Power

Analysis Attacks, in the preproceedings of the Fast Software

Encryption Workshop 2000, April 10-12, 2000.

[66] F. Mirza and S. Murphy, An Observation on the Key Schedule

of Twofish, in The Second AES Candidate Conference,

National Institute of Standards and Technology, Gaithersburg,

MD, March 22-23, 1999, pp. 151-154.

[67] S. Mister, Properties of the Building Blocks of Serpent, AES

Round 2 public comment, May 15, 2000, available at [2].

[68] S. Murphy, The Key Separation of Twofish, submission for The

Third AES Candidate Conference, March 15, 2000, available at

[2].

[69] S. Murphy, The Power of NIST’s Statistical Test ing of AES

Candidates, submission for The Third AES Candidate

Conference, March 15, 2000, available at [2].

[70] S. Murphy and M. Robshaw, Differential Cryptanalysis, Key-

dependent S-boxes, and Twofish, AES Round 2 public comment,

May 15, 2000, available at [2].

[71] S. Murphy and M. Robshaw, Further Comments on the Structure

of Rijndael, AES Forum comment, August 17, 2000, available at

http://www.cs.rhbnc.ac.uk/~sean/.

[72] S. Murphy and M. Robshaw, New Observations on Rijndael,

AES Forum comment, August 7, 2000, available at http://

www.cs.rhbnc.ac.uk/~sean/.

[73] D. Osvik, Speeding up Serpent, in The Third AES Candidate

Conference, National Institute of Standards and Technology,

Gaithersburg, MD, April 13-14, 2000, pp. 317-329.

[74] B. Preneel et al., Comments by the NESSIE Project on the AES

Finalists, AES Round 2 public comment, May 24, 2000, available

at [2].

[75] R. Rivest et al., The RC6 Block Cipher, AES algorithm

submission, June 1998, available at [2].

[76] R. Rivest, M. Robshaw, and L. Yin, E-mail comment, AES

Round 2 public comment, November 29, 1999, available at [2].

[77] R. Rivest, M. Robshaw, and Y. Yin, The Case for RC6 as the

AES, AES Round 2 public comment, May 15, 2000, available at

[2].

[78] R. Rivest, M. Robshaw, and Y. Yin, RC6—The elegant AES

choice, submitter presentation at the Third AES Candidate

Conference, April 13-14, 2000, available at [2].

[79] M. Robshaw and Y. Yin, Potential Flaws in the Conjectured

Resistance of MARS to Linear Cryptanalysis, AES Round 2

public comment, April 27, 2000, available at [2].

[80] A. Rukhin et al., A Statistical Test Suite for Random and Pseu-

dorandom Number Generators for Cryptographic Applications,

NIST Special Publication 800-22, National Institute of Standards

and Technology, Gaithersburg, MD, July 2000, available via

http://www.nist.gov/CryptoToolkit..

[81] M. Saarinen, Almost Equivalent Keys in RC6 Found, AES forum

comment, April 7, 1999.

[82] F. Sano et al., Performance Evaluation of AES Finalists on the

High-End Smart Card, in The Third AES Candidate Conference,

National Institute of Standards and Technology, Gaithersburg,

MD, April 13-14, 2000, pp. 82-93.

[83] B. Schneier et al., Twofish: A 128 bit Block Cipher, AES al-

gorithm submission, June 15, 1998, available at [2].

[84] B. Schneier et al., Performance Comparison of the AES

submissions, in The Second AES Candidate Conference,

National Institute of Standards and Technology, Gaithersburg,

MD, March 22-23, 1999, pp. 15-34.

[85] B. Schneier et al., The Twofish Team’s Final Comments on AES

Selection, AES Round 2 public comment, May 15, 2000,

available at [2].

[86] R. Schroeppel, E-mail comment, AES Round 2 public comment,

May 15, 2000, available at [2].

[87] M. Smid, A Strategy for Analyzing Public Comments and

Preparing the Round 2 Status Report, AES Round 2 public

comment, May 22, 2000, available at [2].

[88] J. Soto and L. Bassham, Randomness Testing of the Advanced

Encryption Standard Finalist Candidates, NIST IR 6483,

National Institute of Standards and Technology, Gaithersburg,

MD, April 2000, available at [2].

575

Volume 106, Number 3, May–June 2001

Journal of Research of the National Institute of Standards and Technology

[89] A. Sterbenz and P. Lipp, Performance of the AES Candidate

Algorithms in Java, in The Third AES Candidate Conference,

National Institute of Standards and Technology, Gaithersburg,

MD, April 13-14, 2000, pp. 161-165.

[90] D. Wagner, The boomerang attack, in the Fast Software

Encryption, 6th International Workshop, Springer-Verlag

(1999) pp. 156-170.

[91] J. Walker, E-mail comment, AES Round 2 public comment,

May 15, 2000, available at [2].

[92] N. Weaver, E-mail comment, AES Round 2 public comment,

February 18, 2000, available at [2].

[93] N. Weaver and J. Wawrzynek, A Comparison of the AES

Candidates Amenability to FPGA Implementation, in The

Third AES Candidate Conference, National Institute of

Standards and Technology, Gaithersburg, MD, April 13-14,

2000, pp. 28-39.

[94] B. Weeks et al., Hardware Performance Simulations of Round

2 Advanced Encryption Standard Algorithms, National

Security Agency white paper, May 15, 2000, available at [2].

[95] R. Weiss and N. Binkert, A comparison of AES candidates on

the Alpha 21264, in The Third AES Candidate Conference,

National Institute of Standards and Technology, Gaithersburg,

MD, April 13-14, 2000, pp. 75-81.

[96] D. Whiting et al., Twofish Technical Report �4: Further

Observations on the Key Schedule of Twofish, March 16, 1999,

available at http://www.counterpane.com.

[97] T. Wollinger et al., How Well Are High-End DSPs Suited

for the AES Algorithms?, in The Third AES Candidate

Conference, National Institute of Standards and Technology,

Gaithersburg, MD, April 13-14, 2000, pp. 94-105.

[98] J. Worley et al., AES Finalists on PA-RISC and IA-64:

Implementations & Performance, in The Third AES Candidate

Conference, National Institute of Standards and Technology,

Gaithersburg, MD, April 13-14, 2000, pp. 57-74.

[99] J. Worley, E-mail comment, AES Round 2 public comment,

May 15, 2000, available at [2].

[100] Zunic, Suggested ‘tweaks’ for the MARS cipher, proposed

modification, submitted on May 15, 1999, available at [2].

About the authors: The authors consisted of NIST’s

AES selection committee: James Nechvatal, Elaine

Barker, Morris Dworkin and James Foti are mathema-

ticians in the Computer Security Division of the NIST

Information Technology Laboratory. Lawrence Bassham

is a computer scientist. William Burr is the Acting

Group Manager of the Security Technology Group

within the Computer Security Division, and Edward

Roback is the Acting Chief of the Computer Security

Division and chair of the AES selection committee.

The National Institute of Standards and Technology

is an agency of the Technology Administration, U.S.

Department of Commerce.

576

