S

S

o

Report On The Programming Language Euclid

by B. W. Lampson', J. J. Horning?, R. L. London3, J. G. Mitchell!, and G. J. Popek?

This report describes the Euclid language, intended for the expression of system programs
which are to be verified.

Authors' addresses and support:
1. Xerox Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304

2. Computer Systems Research Group, University of Toronto, Toronto, Canada M5S 1A4
Supported in part by a Research Leave Grant from the University of Toronto.

3. USC information Sciences Institute, 4676 Admiraity Way, Marina del Rey., CA 90291
Supported by the Advanced Research Projects Agency under contract DAHC-16-72-C~0308.

4. 3532 Boelter Hall, Computer Science Department, University of California, Los Angeles, CA 90024
Supported in part by the Advanced Research Projects Agency under contract DAHC-73-C-0368.

The views expressed are those of the authors.

SIGPLAN Notices i February 1977

Table of contents

Preface 1
Acknowledgements 1
1. Introduction 2
2. Summary of the language 4
3. Notation, terminology and vocabulary 9
3.1 Vocabulary 9
3.2 Legality assertions 10
3.3 Lexical structure 11
4. Identifiers, numbers and strings 12
5. Manifest constants 13
6. Data type declarations 14
6.1 Simple types 15
6.1.1 Enumerated types 15
6.1.2 Standard simple types - 16
6.1.3 Subrange types 18
6.2 Structured types 18
6.2.1 Array types 18
6.2.2 Record types 19
6.2.3 Module types 21
6.2.4 Machine-dependent records , 24
6.2.5 Set types 25
6.2.6 Pointer and collection types _ 26
6.3 Parameterized types 29
6.4 Type compatibility ' 31
6.5 Explicit type conversion 32
7. Declarations and denotations of constants and variables 34
7.1 Entire variables 36
7.2 Component variables 36
7.2.1 Indexed variables 36
7.2.2 Field designators 37
7.2.3 Referenced variables 37
1.3 Scope rules ‘ . 38

1.4 Binding 40

SIGPIL.AN Notices ii February 1977

8. Expressions 39
8.1 Operators 43
8.1.1 Multiplying operators 44
8.1.2 Adding operators 44
8.1.3 Relational operators 44
8.1.4 Other operators 45
8.2 Function designators 45
9. Statements 46
9.1 Simple statements 46
9.1.1 Assignment statements 46
9.1.2 Procedure statements 46
9.1.3 Escape statements 47
9.1.4 Assert statements 43
9.2 Structured statements 48
9.2.1 Compound statements and blocks 438
9.2.2 Conditional statements 49
9.2.2.1 If statements 49
9.2.2.2 Case statements 50
9.2.3 Repetitive statements 51
9.2.3.1 Loop statements 52
9.2.3.2 For statements 52
9.2.4 Other uses of binding e 53
10. Procedure declarations 55
11. Function declarations 58
12. Prograins 60
13. A standard for implementation and program interchange 63
13.1 Representation of basic symbols 64
13.2 Standard format for programs 64
13.3. Annotation 65
14. Implementation notes 66
14.1. identifiers 66
14.2 Parsing 66
14.3 One-pass translation 66
14.4 Routine parameters 66
14.5 Routines in modules 67
14.6 Constant components of records and modules 67
14.7 Finalization 67
14.8 Inline code . 67
14.9 Reference counts 68
14.10 Representation of pointers 68
14.11 Parameterized types 638
References ‘ : 70
Appendix A, Collected syntax 71

Appendix B. Zone Fxample 78

SIGPLAN Notices 1 February 1977

Preface

This report describes a new programming language called Euclid, intended for the expression
of system programs which are to be verified. Euclid draws heavily on Pascal for its
structure and many of its features. In order to reflect this relationship as clearly as possible,
the Euclid report has been written as a heavily edited version of the revised Pascal report.

Proof rules for Euclid appear in a separate report [London et ai 1977]. A Euclid
implementation is under development by the System Development Corporation, 2500
Colorado Avenue, Santa Monica, California; information may be obtained from Mr. Hugh
C. Lauer.

No implementation of the language has yet been completed, and no Euclid programs of any
size have been written. As a result of experience in implementing and using it, changes in
the language or its defining report may be made.

This is the third version of the Euclid report; earlier versions appeared in May 1976 and
August 1976.

Acknowledgements

copied from Pascal, and for the structure and much of the wording of the report. We are
also much in debt to Hoare's work in the areas of programming language design, axiomatic
methods, and program verification. In particular, we have tried to follow his suggestion that
"the language designer should be familiar with many alternative features designed by others,
and should have excellent judgement in choosing the best. .. One thing he should not do.is
to inciude untried ideas of his own. His task is consolidation, not innovation." [Hoare
19731]. :

We have consciously borrowed ideas and features from Alphard [Wulf, London, and Shaw
19761, BCPL [Richards 1969], CLU [Liskov 1976], Gypsy [Ambler et al. 1976], LIS
[Ichbiah et al. 19747, Mesa [Geschke and Mitchell 1975], Modula [Wirth 1976}, and the
SUE System Language [Clark and Horning 1973, Clark and Ham 1974]; other languages and
suggestions for language features have also undoubtedly influenced our thinking. We have
benefitted greatly from comments and criticisms by numerous individual colleagues on
previous versions of the language and report, and from the comments of the implementors,
especially Lauer.

We are grateful to Prof. Wirth, and to Springer-Verlag, for permission to use portions of
the Pascal report [Wirth 1971, Jensen and Wirth 1975] in this report.

Our work has been significantly aided by the Arpanet, which allowed us to maintain
effective and rapid communication in stating and resolving problems, in spite of the wide
geographical distribution of the authors.

SIGPLAN Notices 2 February 1977

1. Introduction

"There is no royal road to geometry.”
Proclus, Comment on Euclid, Prol. G. 20.

The programming language Euclid has been designed to facilitate the construction of
verifiable system programs. By a verifiable program we mean one written in such a way
that existing formal techniques for proving certain properties of programs can be readily
applied; the proofs might be either manual or automatic, and we believe that similar
considerations apply in both cases. By system we mean that the programs of interest are
part of the basic software of the machine on which they run; such a program might be an
operating system kernel, the core of a data base management system, or a compiler.

An important consequence of this goal is that Euclid is not intended to be a general-purpose
programming language. Furthermore, its design does not specifically address the problems
of constructing very large programs; we believe most of the programs written in Euclid will
be modest in size. While there is some experience suggesting that verifiability supports
other desired goals, we assume the user is willing, if necessary, to obtain verifiability by
giving up some run-time efficiency, and by tolerating some inconvenience in the writing of
his programs.

We see Euclid as a (perhaps somewhat eccentric) advance along one of the main lines of
current programming language development: transferring more and more of the work of
producing a correct program, and verifying its correctness, from-the programmer and the
verifier (human or mechanical) to the language and its compiler.

The main changes relative to Pascal take the form of restrictions, which allow stronger
statements about the properties of the program to be made from the rather superficial, but
quite reliable, analysis which the compiler can perform. In some cases new constructions
have been introduced, whose meaning can be explained by expanding them in terms of
existing Pascal constructions. The reason for this is that the expansion would be forbidden
by the newly introduced restrictions, whereas the new construction is itself sufficiently
restrictive in a different way.

The main differences between Euclid and Pascal are summarized in the following list:

Visibility: Euclid provides explicit control over the visibility of identifiers, by
requiring the program to list all the identifiers imported into a routine or
module, or .exported from a module.

Variables: The language guarantees that ‘two identifiers in the same scope can
never refer to the same or overlapping variables. There is a uniformi mechanism
for binding an identifier to a variable in a procedure call, on block entry
(replacing the Pascal with statement), or in a variant record discrimination, The
variables referenced or modified by a routine (i.e., procedure or function) must
be accessible in every scope from which the routine is called.

Pointers: This idea is extended to pointers, by allowing dynamic variables to be
assigned to collections, and guaranteeing that two pointers into different
collections can never refer to the same variable.

Storage allocation: The program can control the allocation of storage for
dynamic variables explicitly, in a way which confines the opportunity for
making a type error very narrowly. It is also possible to declare that some

SIGPLAN Notices 3 February 1977

dynamic variables should be reference-counted, and automatically deallocated
when no pointers to them remain.

Types: Types have been generalized to allow formal parameters, so that arrays
can have bounds which are fixed only when they are created, and variant records
can be handled in a type-safe manner. Records are generalized to include
constant components,

Modules: A new kind of record, called a module, can contain routine and type
components, and thus provides a facility for modularization. The module can
include initialization and finalization statements which are executed whenever a
module variable is created or destroyed.

Constants: Euclid defines a constant to be a literal, or an identifier whose value
is fixed throughout the scope in which it is declared.

For statement. A generator can be declared as a module type, and used in a for
statement to enumerate a sequence of values.

Loopholes: features of the underlying machine can be accessed, and the
type-checking can be overridden, in a controlled way. Except for the explicit
loopholes, Euclid is designed to be type-safe.

Assertions: the syntax allows assertions to be supplied at convenient points.

‘Deletions: A number of Pascal features have beenomitted from Euclid:
input-output, reals, multi-dimensional arrays, labels and gotos, and functions
and procedures as parameters.

The only new features in the list which can make it hard to convert a Euclid program into a
legal Pascal program by straightforward rewriting are paramctenzed types, storage allocation,
finalization, and some of the loopholes,

There are a number of other considerations which influenced the design of Euclid:

It is based on current knowledge of programming languages and compilers;
concepts which are not fairly well understood, and features whose
implementation is unclear, have been omitted.

Although program portability is not a major goal of the language design, it is
necessary to have compilers which generate code for a number of different
machines, including mini-computers.

The object code must be reasonably efficient, and the language must not require
a highly optimizing compiler to achieve an acceptable level of efficiency in the

object program.

Stnce the total size of a program is modest, separate compilation is not required -
{(although it is certainly not ruled out).

The required run time support must be minimal, since it presents a serious
problem for verification.

SIGPLAN Notices 4 February 1977

2. Summary of the language

"Be sure of it; give me the ocular proof.”
Othello 111, iii, 361.

This section contains a summary of Euclid. The information here is intended to be
consistent with the remainder of the report, but in case of conflict the body of the -report
(sections 3-12) governs. Because it is a summary, many details are omitted, and some
general statements are made without the qualifications which may be found in the body of
the report.

An algorithm or computer program consists of- two essential parts, a description of actions
which are to be performed, and a description of the data which are manipulated by these
actions. Actions are described by statements, and data are described by type definitions. A
data type essentially defines a set of vaiues and the actions which may be performed on
elements of that set.

The data are represented by values. A value may be constant, or it may be the value of a
variable. A value occurring in a statement may be represented by a literal constant, an
identifier which has been declared to be constant, an identifier which has been declared as a
variable, or an expression containing values. Every identifier occurring in the program
must be introduced by a declaration. A constant or variable declaration associates with an
identifier a data type, and either a value or a variable.

In general, a definition specifies a fixed value, type, or routine, and a declaration introduces
an identifier and associates some properties with it. A data type may either be directly
described in the constant or variable declaration, or it may be referenced by a type
identifier, in which case this identifier must be introduced by an explicit type declaration.

A constant declaration associates an identifier with a value; the association cannot be
changed within the scope of the declaration. [If the value can be determined at
compile-time, the constant is said to be manifest, the expression defining a manifest
constant must contain only literal constants, other manifest constants, and built-in
operations.

An enumerdted type definition indicates an ordered set of values, i.e, introduces identifiers
standing for each value in the set. The simple data types are the enumerated types, the
subrange types, and the four standard simple types:. Boolean, integer, char and
StorageUnit. The real type has been omitted. For the first three, there is a way of writing
literal constants of that type: True and False for Boolean, numbers for integers, and
quotations for characters. Numbers and quotations are syntactically distinct from
identifiers. The set of values of type char is the character set available in a particular
implementation. The type StorageUnit has values which occupy the minimum unit in which
storage allocation is done; this may of course differ from one implementation to another,
Since no operations are defined on StorageUnit values, nothing more need be said about
them.

A type may also be defined as a subrange of a simple type by indicating the smallest and
the largest value of the subrange.

SIGPLAN Notices 5 February 1977

Structured types are defined by describing the types of their components, and indicating a
structuring method. The various structuring methods differ in the selection mechanism
serving to select the components of a variable of the structured type. In Euclid, there are
five basic structuring methods available: array, record, module, set, and collection.

In an array structure, all components are of the same type. A component is selected by an
array selector, or computable index. The index type, which must be simple, is indicated in
the array type declaration. It is usually a programmer-defined enumerated type, or a
subrange of the type integer. Given a value of the index type, an array selector yields a
variable or constant of the component type. Every array structure can therefore be regarded
as a mapping of the index type into the component type.

In a record structure, the components (called fields) are not necessarily of the same type.
In order that the type of a selected component be evident from the program text (without
executing the program), a record selector is not a computable value, but instead is an
identifier uniquely denoting the component to be selected. These field identifiers are
declared in the record type definition. Records may include constant as well as variable
components; manifest constant components, of course, do not need to be stored in each
record instance.

A record type may be specified as consisting of several variants. This implies that different
record values, although declared to be of the same type, may assume structures which differ
in a certain manner. The difference may consist of a different number and different types
of components. The variant which is assumed by a record value is indicated by a constant
of some simple type which is called the tag.

A module structure is much like a record, but may include routines and types as
components. In this way, the operations which are defined on a data structure can be
conveniently packaged with the structure. Module components cannot be accessed outside
the module body unless they are explicitly exported. Thus in a properly written program it
is evident from the lexical structure how the state of a module can be altered.

A set structure defines the set of values which is the powerset of its base type, i.e., the set of
all subsets of values of the base type. The base type must be a simple type.

Variables declared in explicit declarations are called static. The declaration associates an
identifier with the variable, and the identifier is used to refer to the variable. The language
guarantees that two identifiers which can legally be used in the same scope cannot refer to
the same variable, or to overlapping variables. Thus, an assignment to an identifier cannot
change the value of any other identifier accessible in the same scope.

In contrast, variables may be generated by an c¢xecutable statement. Such a dynamic
generation yields a pointer value (a substitute for an explicit identifier) which subsequently
serves to refer to the variabie. This pointer may be assigned to other variables, namely
variables of type pointer. Each pointer variable may assume values pointing to variables in
a single collection C. all of whose members are of the same type. It may, however, also
assume the value C.nil, which points to no variable. Because pointer variables may also
occur as components’ of structured variables, which are themselves dynamically generated,
the use of pointers permits the representation of finite graphs in full generality. Although
the Janguage cannot guarantee in general that two pointer variables do not refer to the same
variable, it can make this guarantee for two pointers in different collections.

SIGPLAN Notices 6 February 1977

A zone can be associated with each collection to provide procedures for allocating and
deallocating the storage required by variables in that collection; if the zone is omitted, a
standard system zone is used. The program may free a dynamic variable explicitly, in which
case the program is responsible for ensuring that there will be no further references to the
non-existent variable. .Alternatively, the collection may be reference-counted, in which case
each variable is automatically freed when no pointers to it remain. The main advantage of
reference-counted variables, as compared with explicit deallocation, is that the correctness
of the deallocation does not have to be verified.

Throughout this report, the word variable means a container which can hold a value of a
specific type. A variable may or may not be associated with an identifier. A constant, by
contrast, is simply a value of a specific type. The fundamental difference is that assignment
to a variable is possible.

A type declaration may have formal parameters; such a parameterized declaration represents
a set of types, one of which is specified each time the type is referenced and actual
parameters are supplied for the formals.

Two types are the same if their definitions are identical after any type identifiers which are
not opaque have been replaced by their definitions, and any actual parameters and any
identifiers declared outside the type have been replaced by their values. A type identifier is
opaque if it is a module type, or is exported from a module.

The most fundamental statement is the assignment statement, It specifies that a newly
computed value be assigned to a variable (or a component of a variable). The value is
obtained by evaluating an expression. Expressions consist of variables, constants, sets,
operators and functions operating on the denoted quantities and producing new values.
Variables, constants, and functions are either declared in the program or are standard
entities. Euclid defines a fixed set of operators, each of which can be regarded as describing
a mapping from the operand types into the result type. The set of operators is subdivided
into groups of:

1. arithmetic operators of addition, subtraction, sign inversion, multiplication,
division, and computing the remainder (mod).

2. Boolean operators of negation (not), conjunction (and), disjunction (or) and
implication (->).

3. set operators of union, intersection, set difference, and symmetric, difference
(xor).

4. relational operators of equality, inequality, ordering, set membership and set
inclusion. The results of relational operations are of type Boolean.

The procedure statement causes the execution of the designated procedure (see below).

There are two kinds of escape statements: an exit stafement is used to terminate a loop, and
a return statement to terminate a routine. An escape statement may be qualified by a when
clause, which causes termination only if a Boolean expression is True,

Assignment, procedure, and escape statements are the components or building blocks of
structured statements, which specify sequential, selective, or repeated execution of their
components, Sequential -execution of statements is specified by the compound statement,

SIGPLAN Notices 7 February 1977

conditional or selective execution by the if statement and the case statement; and repeated
execution by the loop statement and the for statement. The if statement serves to make the
execution of a statement dependent on the value of a Boolean expression, and the case
statement allows for the selection among many statements according to the value of a
selector. The discriminating case statement provides a safe way of discriminating the
current variant of a variant record. The for statement is used when a bound on the number
of iterations is known beforehand, and the loop statement is used otherwise.

A block can be used to associate declarations with statements. The identifiers thus declared
have significance only within the block. Hence, the block is called the scope of these
identifiers, and they are said to be local to the block. Since a block may appear as a
statement, scopes may be nested. An if, case, for or loop statement, or a module type
declaration, also defines a scope in a similar way.

A block can be named by an identifier, and be referenced through that identifier. The
block is then called a procedure, and its declaration a procedure declaration. However, an
identifier which is not local to a given procedure body is accessible in that body only if it is
accessible in the immediately enclosing scope, and

it is pervasive in some enclosing scope or
it is explicitly imported into the given procedure body.

A procedure has a fixed number of parameters, each of which is denoted within the
procedure by an identifier called the formal parameter, which is local to the procedure
body. Upon an activation of the procedure statement, an actual quantity has to be indicated
for each parameter which can be referenced from within the procedure through the formal
parameter. This quantity is called the actual parameter. There are two kinds of
parameters: constant parameters and variable parameters; routine and type parameters are
not allowed. In the first case, the actual parameter is an expression which is evaluated
once. The formal parameter represents a local constant whose value is the result of this
evaluation. In the case of a variable parameter, the actual parameter is a variable and the
formal parameter is bound to this variable. Possible indices or pointers are evaluated before
execution of the procedure.

Functions are declared analogously to procedures; procedures and functions are collectively
called routines. The main difference lies in the fact that a function yields a result, which
may be of any assignable type and must be specified in the function declaration. Functions
may therefore be used as constituents of expressions. Variable formal parameters and
imported variables are not permitted within function declarations; as a consequence,
functions cannot have side effects.

Since Euclid is intended for the writing of programs which are to- be verified (either
mechanically or by hand), there are a number of explicit interactions between the language
and the verifier, in addition to the many aspects of the language which have been motivated
by the desire to ease verification. These explicit interactions fall into two main categories:

embedding of assertions in the program: the special symbols assert, invariant, pre
and post introduce assertions. These may be written as comments which are ignored
by the compiler. Presumably they will be used by the verifier, which can take
advantage of their relationship to the structure of the program. Alternatively, an
assertion may be writlen as a Boolean expression, which is compiled into a run-time
check if the checked option has been specified for an enclosing scope.

SIGPLAN Notices 8 February 1977

compiler-generated assertions: in cases where the compiler needs to be able to
assume that some condition holds, but is unable to deduce that it does, the compiler
may generate an assertion (in a new listing of the program) for the verifier, and then
proceed as though confident of its truth. The legaiity of the program will then
depend on the validity of the compiler-generated assertion. Each case in which such
an assertion may be generated is spelled out in this report.

SIGPLAN Notices 9 February 1977

3. Notation, terminology, and vocabulary

"The best words in the best order."
Coleridge.

The syntax is described in a modification of Backus-Naur form, in which syntactic
constructs are denoted by English words or phrases, not enclosed in any special marks.
These words also suggest the nature or meaning of the construct, and are used in the
accompanying description of semantics. Basic symbols of ‘the language are written in
boldface or enclosed in quote marks; e.g., begin and ";". Possible repetition of a construct is
indicated by enclosing the construct within metabrackets { and } . Possible omission of a
construct is indicated by enclosing the construct within metabrackets [and] . The word
empty denotes the null sequence of symbols.

The grammar defining the syntax of Euclid is distributed throughout this report; for
convenient reference, it has also been collected in Appendix A.

3.1 Vecabulary

The primitive vocabulary of Euclid consists of basic symbols classified into letters, digits,
and special symbols. Note that this vocabulary is not the character set. The character set is
implementation dependent, and each implementation. must define, in its character set,
distinct representations for all the basic symbols. Suggestions~tor~ doing this in some
common cases may be found in section 13. ‘

Each implementation must specify a single break character which can be used within an
identifier. Two identifiers are similar if they are composed of the same sequence of
characters, except for changes from upper to lower case letters or vice versa, and for the
presence or absence of break characters. The intended use of the break character is to
visually separate an identifier into its component parts. In an implementation which can
print upper and lower case letters, a transition from lower to upper case can also be used for
this separation. It is recommended that this convention be used when possible, in
preference to the explicit break character, for implementations which have lower case letters;
obviously it cannot be used if the entire identifier is upper case, for example. Thus, an
identifier might be represented as

alphaBeta using 96-character ASCII, with capitalization as the break.
ALPHA_BETA using the IBM PL/I character set, with __ as the break..
ALPHA\BETA using the Model 33 Teletype character set, with \ as the break.

All of these identifiers would be similar to the identifier ALPHABETA. With these
conventions, it is possible to convert from one representation to another in a reasonable way

(see 13.).

Fach time an identifier is used, it must be written in exactly the same way (i.e., with the
same capitalization and use of break characters) as it was written when it was declared.
However, another identifier which is similar according to the above rules may not be
declared in any scope in which the first identifier is accessible (see 7.3).

The following capitalization convention is generally used in this report: type and routine
identifiers begin with a capital letter (except for certain standard types); other identifiers
begin with a small letter. This convention is not part of the definition of Euclid, however.

SIGPLAN Notices 10 February 1977

letter z== "A" ["B" | "C" | "D" | "E" { "F" 1 "G" | "H" | "I" | "J" | "K" | "L" |
"M UNT O | P QE LR ST LT UM |V] W X Y
AR R A I S R T B S Tl e S R W R A
I I e I B B e I R R e A

octalDigit == "0" | "1™ ["2" | "3" | "4" | 5T Q6" | "I

digit = octalDigit | "8" | "9"

hexDigit == digit | "A" | "B" | "C" | "D" | "E" | "F"

breakChar := <some implementation-dependent character not a letter or digit>

specialSymbol =
l|+'l I "-ll | LLE 344 ‘ ll=ll ! Il<l| l ll>ll l ll<=ll l '|>=|' | "_)" l "(l’ l l')" l
"{" | "}" ' l':=" ' ".ll l Il’ll I l';!l I ":ll ' " ot " | "T" ' "=>" | Il<<=ll l "$ll I "#" l
wordSymbol '

wordSymbol =
abstraction | aligned | all | and | any | array | assert | at | begin | bind | bits |
hound | case | checked | code | collection | const | counted | decreasing |
dependent | discriminating | div | else | elseif | end | exit | exports | finally |
for | forward | from | function | if | imports | in | include | initially | inline |
invariant | loop | machine | mod | module | net | of | on | or | otherwise |
packed | parameter | pervasive | post | pre | procedure | readonly | record |
return | returns | set | then | to | type | unknown | var | when | with | xor

The construct
"{" <any sequence of symbols not containing "}"> "}"

may be inserted between any two identifiers, literal constants (see 4.), or special symbols. It
is called a comment, and may be removed from the program text without altering its
meaning. The symbols "{" and "}" do not occur otherwise in the language.

Any verification system which accepts Euclid programs as input may define a convention
for distinguishing comments which have special meaning for the verifier. One reasonable
convention is that every comment in which a certain character appears as the first character
after the { is intended for the verifier.

The word routine is used as a synonym for the phrase "procedure or function.”

3.2 Legality assertions

Throughout this report, various restrictions will be placed on legal Euclid programs. Many
of these restrictions cannot be checked syntactically, and in some cases they involve dynamic
conditions that are difficult (or impossible) to check statically. Nevertheless, programs that
violate them are not considered to be meaningful Euclid programs. It is the responsibility
of the compiler to verify as many of these properties as it can, and to produce Boolean
expressions called legality assertions for those it cannot. Thus, any program whose legality
assertions can all be verified is a legal Euclid program, with well-defined semantics. Note
that legality assertions are produced only for conditions specified in this report.

SIGPLAN Notices 11 February 1977

If checked is specified for a scope and not overridden by an inner not checked (see 6.2.3 and
9.2.1), all legality assertions in the block, and all programmer-supplied assertions which are
Boolean expressions, are compiled into run-time checks, as an aid in detecting illegal
programs, even before the verification process is complete.

3.3 Lexical structure

The text of a program is built up out of declarations and statements, collectively called
units, according to the syntax specified below. In general units are separated by semicolons.
The syntax is constructed in such a way that a unit may al/ways be legally followed by a
semicolon. In order to make it unnecessary to write semicolons between units which appear
on separate lines, a semicolon is automatically inserted at the end of a line whenever the last
token of the line could be the end of a unit, namely one of:

identifier, literal constant,), +, exit, return, forward, or end possibly followed by
if, loop, case, record, or module,

and the first token of the next line could be the beginning of a unit, namely one of:

identifier, literal constant, abstraction, assert, begin, bind, case, const, exit,
finally, for, function, if, initially, inline, invariant, loop, machine, pervasive,
procedure, return, type, var or with.

Commas are used as separators in enumerated types, case label lists, element lists, and
parameter lists, and within declarations in identifier lists, bind lists, and import/export lists.

There are several kinds of brackets which are used to group declarations and statements for
various purposes. The following list gives the unique closing bracket for each opening

bracket.

if end if

loop end loop

case end case

=) end caselabel

begin end, or end routineldentifier whenever the block is the body of a
routine

code end routineldentifier.

record end record, or end typeldentifier whenever the record definition is the
declaration of a type identifier.

module end module, or end typeldentifier whenever the module definition is

the declaration of a type identifier.

SIGPLAN Notices 12 FTebruary 1977

4. Identifiers, numbers and strings

"And twenty more such names as these
Which never were nor no man ever saw.”
The Taming of the Shrew, Induction, ii, 95.

Identifiers serve to denote constants, variables, types, and routines. Their association must
be unique within their scope of validity, i.e, within the scope in which they are declared
(see 6, 7.3).

identifier z= letter { letterOrDigit }

letterOrDigit == letter | digit | breakChar

The usual decimal notation is used for numbers, which are the literal constants of the data
type integer (see 6.1.2.). Numbers may also be written in octal. or hexadecimal notation.
Note that unsigned numbers are always positive; a negative manifest constant can be written
as an expression, eg., ~14.
unsignedNumber = digit { digit } |
octalDigit { octalDigit } "#8" |
digit { hexDigit } "#16"

Examples:
1 100 717#8 OCAD1#16 123#16

Sequences of characters enclosed by quote marks are called literal string constants. They
are the literal constants of the standard type string (see 6.2.2). A character code, whether or
not it is in the printing character set, can also be represented in a literal string constant as
follows:

$ddd, where each d stands for a decimal digit, represents the character code with
the decimal representation ddd. WNote: char.Ord($$ddd) = ddd (see 6.1.2).

For convenience, §S, $T, $N, §3, §' represent space, tab, newline, §, and ' respectively. The
$ddd construction can be used only in a machine-dependent module (see 6.2.3).

literalString z=" ' " { extendedCharacter } " ' "
extendedCharacter == character | "$" extension
extension = digit digit digit | "S" P T P UN" ["§St "

Examples:
v ‘A " § ‘Here comes a null: $000 and there it went'
'Euclid’ - "THIS IS A STRING' "ThisSisSa$Sstring’

A single character preceded by a dollar sign is a literal constant of the standard type char
(see 6.1.2). The $ convention may also be used in these constants.

literalChar = "$" extendedCharacter

Examples:
$a $8S {space character} $$000 {the NUL character} §" $5%

SIGPLAN Notices 13 February 1977

5. Manifest constants

"One here will constant be,
Come wind, come weather.”
Pilgrim's Progress

A manifest constant is a literal constant or an expression which can be used in place of a
literal constant. The value of a manifest-constant can be computed in a straightforward way
at compile time. Thus, a manifest constant expression may not involve any functions,
except the standard ones defined in this report. A general constant, by contrast, has a value
which is fixed during the lifetime of the scope in which it is defined, but may be computed
in an arbitrary way at the beginning of that lifetime.

literalConstant ::= unsignedNumber | literalString | literalChar | enumeratedValueld
manifestConstant = literalConstant | manifestConstantExpression
manifestConstantExpression 1= expression

Examples:
-100 $a 'Euclid’ red 3*Color.Ord(Color.last)

SIGPLAN Notices 14 February 1977

6. Data types

"What is written without effort is in general read without pleasure.”
Johnson

A data type determines the set of values which variables and constants of that type may
assume, and the set of basic operations that may be performed on them. A type declaration
associates an identifier with the type. The type identifier is considered to denote the same
type as its definition, unless it is declared as a module type (see 6.2.3) or is exported from a
module, in which case the identifier denotes a different type; type equivalence is discussed
in detail in 6.4, Parameterized types are introduced in 6.3.

A type declaration introduces a new scope in which the formal parameters of the type, if
any, are declared (see 6.3). If the type definition is a module type, the definition is a
second, closed scope (see 7.3), and identifiers declared outside it are inaccessible unless
imported. If the type definition is not a module type, however, its scope is the open scope
of the declaration (or possibly a second open scope for a record definition), and importing
is not necessary (or possible).

An identifier must be declared before it is used. When there are mutually recursive
routines or types, however, it is impossible to give the definition of every identifier before
its use. In this situation, a definition of forward may be given instead, and later another
declaration, of the form type T=.. (or procedure P=.., or function F=..) must appear to
provide the true definition. Between its forward and true definitions, or within its own
definition, a type may only be used as the object type of a collection, or to declare a formal
parameter. If an identifier declared with forward has parameters, these must appear in the
forward definition and must nor be repeated in the true definition,

A type declaration may not contain variable identifiers which are free, i.e., declared outside
the type declaration, except that a module definition may explicitly import variables. As a
consequence, an unparameterized type identifier denotes the same type throughout the scope
in which it is declared, and the type denoted by a parameterized type identifier depends only
on the values of the actual parameters. Note, however, that the same type identifier may
denote different types in different scopes, e.g., in different instantiations of a routine or a
module,

All types (except integer) automatically acquire components when they are declared. For
example, an array type T has the component T.IndexType (see 6.2.1). Any component of a
type is automatically also a component of every constant or variable of that type. Thus if e
is a constant or variable of type T, elndexType is the same as T.IndexType.

This report specifies the standard representations, in terms of bits, for the values of certain
types. These specifications are given so that machine-dependent records and machine-code
procedures can be sensibly defined, and so that the effect of an explicit type conversion can
be predicted. The following contexts are defined as sensitive:

a variable component of a machine-dependent record (see 6.2.4)
a variable declared at a fixed address (see 7.)
an actual parameter or result of a machine-code routine (see 10.)

SIGPLAN Notices 15 February 1977

the actual parameter or result of an explicit type conversion (see 6.5)

A type may not appear in a sensitive context unless its standard representation is specified,
either in this report, or explicitly by the implementation. Except in these sensitive contexts,
there is no way for a Euclid program to determine the standard representation of any value,
and an implementation is therefore free to use other representations, provided that it
converts each value to the standard representation when it appears in a sensitive context.

type := simpleType | structuredType | pointerType | parameterizedTypeReference

typeDeclaration ;1= type typeldentifier formalParameterList =
preAssertion typeDefinition
typeldentifier = identifier

typeDefinition = type | forward

There are two components implicitly declared for each type other than integer:

Tsize the result, of type integer, is the number of StorageUnits (see
6.1.2) required for the representation of a variable of type T.

T.alignment the result, of type integer, is the required alignment of variables
of type T, in StorageUnits. Thus, if p: pType is a pointer to such
a variable, then (AddressType<<=pType(p)) mod
pType.alignment=0.

There is a component implicitty declared for each variable or constant:

x.itsType the type of x

6.1. Simple types

There are no type variables in Euclid. However, a type may be a component of a module
(see 6.2.3), and hence may be referenced by a field designator (see 7.2.2), as well as by an
identifier.

simpleType = enumeratedType | standardSimpleType | subrangeType |
derivedSimpleType

derivedSimpleType == [containingVariable "."] simpleTypeldentifier
simpleTypéldentifier == identifier

6.1.1. Enumerated types

An enumerated type defines an ordered set of values by enumeration of the identifiers
which denote these values, There must be at least two such identifiers. The identifiers are
declared as constants in the current scope. If the current scope is a type declaration of type
T for which the enumerated type is the definition, however, the identifiers are declared in
the enclosing scope instead, i.e., the scope in which T is declared. In any case, the identifiers
may not be used for any other purpose in the scope in which they are declared.

The standard representation of the ith identifier (counting from 0) in the cnumeration is
the same as the representation of the unsigned integer i. Thus, if T is an enumerated type,

SIGPLAN Notices 16 February 1977

Tfirst is represented exactly like the integer 0,
enumeratedType == "(" enumeratedValueld { ",” enumeratedValueld } ")
enumeratedValueld = identifier

Examples:

type Color = (red, green, blue, orange, yellow, purple)

type Suit = (club, diamond, heart, spade)

type Day = (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday)
type SexType = (female, male)

type Classification = (confidential, secret, topSecret)

type Device = (disk, display, keyboard, printer, tape)

Components implicitly declared for each enumerated and subrange (see 6.1.3) type T are:

T first the first value (in the enumeration)
T last the last value (in the enumeration)
TSucc(x) the value succeeding x (in the enumeration). T.Succ(T.last) is

undefined if T is an enumerated type, or T is a subrange of an
enumerated type U and T.last=U.last.

T.Pred(x) the value preceding x (in the enumeration). T.Pred(T.first) is
undefined if T is an enumerated type, or 7 is a subrange of an
enumerated type U and T.first=U.first.

T.Ord(x) an unsignedint which is the ordinal number of the value x in the
enumeration of 7. Thus, T.0rd(T.first)=0.

For instance, Swuitlast is spade, and Dayfirst is Monday.

6.1.2. Standard simple types

The following types are standard in Euclid, and are pervasive throughout all programs (see

7.3):

integer Its values are the positive and negative integers, in the mathematical sense. It
is not possible to declare a variable to be of type integer. Instead, variables
can be declared to be of some suitable subrange type. Constants of type
integer may be declared, however, and numbers are literal constants of type
integer.

signedint,

unsignedint Every implementation has two standard types, signedInt and unsignedlnt,
they are ordinary subranges of integer which are pre-defined for
convenience. These are implementation-defined; the intention is that they
should be large subranges of integer type which can be handled efficiently by
the machine, and which contain:

for signedlInt. equal numbers of positive and negative numbers,
or perhaps one more negative number.

for unsignedint, 0 and no negative numbers.

SIGPLAN Notices 17 February 1977

Boolean

char

StorageUnit

An operation is called well-behaved if its operands are in the range
signedint, or unsignedInt, and it yields an integer result in the same range.
An implementation must support the evaluation of any expression in which
all the operations are well-behaved (see 8.1). An implementation may also
support the evaluation of expressions involving larger integers (e.g.,
double-precision integers), but this is not required. It is recommended,
however, that on machines which have unsignedint=0.210-1, at least
double-precision integers.should be supported.

If T is defined by type T = m .. n, for any manifest constants m, n>=0, and i
is a value of type T, the standard representation of i is the ordinary binary
representation of the integer i, filled out on the left with any number of
extra zeros. The standard representation of a signed integer must be defined
by the implementation, but is not defined in this report.

There are two standard functions defined on any subrange of integer:
Abs(x) returns an integer which is the absolute value of x.
Odd(x) returns a Boolean which is True if and only if x is odd.

Its values are the truth values denoted by the identifiers False and True. [t is
defined by type Boolean = (False, True). '

[t is an enumerated type whose values are a-set”of characters determined by
the implementation. They are denoted by the characters themselves preceded
by a dollar sign (see 4.).

There is a standard function Chr(x: 0.char.Ord(char.last)) with the property
that char.Ord(Chr(x))=x.

Warning: the ordering of ‘the values of type char is implementation
dependent. Use of this ordering in comparisons of chars, subranges of chars,
or the Chr and char.Ord functions, will in general result in non-portable
programs. Unlike most other machine-dependent features of Euclid, this one
is not restricted to machine~dependent modules.

This is the basic unit for storage allocation (see 6.3). There are no
distinguishable values of this type, and no operations are defined on this
type. Thus, a StorageUnit variable simply serves to occupy a known amount
of space. The standard representation of a StorageUnit is not defined.

There are two standard components of the type StorageUnit:

sizeInBits, an integer constant which defines the number of bits in a
StorageUnit.

Address, a function declared by
function Address (Aarray 0.n of StorageUnit) returns
AddressType,
which returns the machine address of A(0). It may only be used in a
machine-dependent module. '

SIGPLAN Notices 18 February 1977

AddressType This is an unsigned subrange of integer, large enough to hold a full machine
address; i.e., a value returned by the function StorageUnit.Address.

6.1.3. Subrange types

A type may be defined as a subrange of another simple type by indication of the smallest
and the largest value in the subrange. The first constant specifies the lower bound, and the
second the upper bound. If type 4 is a subrange of type B, and type B is a subrange of type
C, we say that A is also a subrange of C. The Succ, Pred, first and last components are
defined for all subrange types. If 4 is a subrange of B, and a is of type 4 and b is of type
B, and a=b, and the standard representation of b is defined, then the standard representation
of a is the same as the standard representation of b.

subrangeType == constantSum ".." constantSum
constantSum := sum

Examples:

type OneToOneHundred = 1 .. 100

type SymmetricRange = -10 .. 10

type Primary = red .. blue {the values of a Primary are red, green, and blue}
type ScreenPosition = 1 .. 525 {y coordinate for display screen}

6.2. Structured types

A structured type is characterized by the type(s) of its components and by its structuring
method. Moreover, a structured type definition may contain an indication of the preferred
data representation: if a definition is prefixed with the symbol packed, this is a hint to the
compiler that storage should be economized even at the price of some loss in efficiency of
access, and even if this may expand the code necessary for accessing components of the
structure.

Adding occurrences of packed may make a legal program into an illegal one (because of type
compatibility (see 6.4) or if a component of the structure has been renamed as an entire
variable (see 7.4)), but will not otherwise change the meaning of the program.

structuredType := [packed] unpackedStructuredType | derivedStructuredType

unpackedStructuredType == arrayType | recordType | moduleType |
mdRecordType | setType | collectionType

derivedStructuredType == [containingVariable "."] structuredTypeldentifier
structuredTypeldentifier == identifier

6.2.1. Array types

An array type is a structure consisting of a fixed number of components which are all of the
same type, called the component type. The elements of the array are designated by indices,
values belonging to the index type. The array type definition specifies both the component
type and the index type.

SIGPLAN Notices 19 February 1977

The standard representation of an unpacked array A4 of type array [of C is defined as
follows. Let (=Csize+(Calignment-1), and s=r-(t mod Calignment). Then successive
components of A occupy successive groups of s StorageUnits, with no unoccupied
StorageUnits in between. A(/first) occupies the first s StorageUnits, i.e., the ones with the
smallest machine addresses, and A(/.last) occupies the last s StorageUnits, i.e., the ones with
the largest machine addresses. Each component is aligned in the same way as a variable of
type C. The entire array thus occupies max(0,s*(/last - Ifirst + 1)) StorageUnits. The
standard representation of a packed array is not defined.

arrayType = array indexType of componentType
indexType = simpleType
componentType = type

There are two standard components of an array type T:
T.IndexType the index type
T.ComponentType the component type

Like other components of types, they are also components of any variable or constant of the
type (see 6.). Thus if a is a variable of type 7, then alndexType is the same as
T.IndexType, and likewise for ComponentType.

Examples:

type Array0 = array 1 .. 100 of signedint

type Arrayl = array -10 .. 10 of 0 .. 99

type Array2 = array Boolean of Color

type NameTable = array OneToOneHundred of string(50)

1 HOH

6.2.2. Record types

A record type is a structure consisting of a fixed number of components, possibly of
different types. The record type definition specifies for each component, called a field, its
type and an identifier which denotes it. The scope of these field identifiers is the record
definition itself. They are also accessible within a field designator (cf. 7.2) referring to a
record variable or constant of this type. Record components may be constants or variables.
“Components other than “variables are accessible within a field designator referring to the
type itself, as well as in a designator referring to a variable.

For the syntax of constant and variable declarations, see 7. If the record type appears as the
definition of a type identifier, it must end with the clause end identifier; otherwise it must
end with end record.

The size of a record containing an unpacked array is equal to some constant value,
independent of the array size, plus the size of the array. The standard representation of a
record is not defined.

recordType ::= record fieldList endRecord
endRecord = end record | end identifier

fieldList z= . [recordDeclaration [";"]] [variantPart J [™"]
recordDeclaration = pervasive recordDeclarationPart
{ " pervasive recordDeclarationPart }

recordDeclarationPart ;= constantDeclaration | variableDeclaration
pervasive ;= pervasive | empty

SIGPLAN Notices 20 February 1977

A record type may have several variants. In this case a constant of some simple type must
be used as a selector in a case construction which enumerates the possible variants. This
constant is called the tag, and its value indicates which variant is assumed by the record
variable at a given time. Each variant structure is identified by a case label which is a set of
manifest constants of the type of the tag. - Usually the tag will be a formal parameter of the
type declaration in which the case appears (see 6.3). When a variable of the record type is
declared, however, the tag must be a manifest constant, or any.

The case label lists must be disjoint. Furthermore, the union of the lists must exhaust the
enumerated type of the tag, unless there is an otherwise variant, in which case all the tag
values not mentioned explicitly are lumped under that variant. The case label following the
end of the variant must be one of the labels specified by the case label list.

variantPart ;= case tag of variant { ;" variant } [otherwiseVariant][™"] end case
variant = caseLabelList "=>" fieldList end caseLabel | empty

oy

caselLabelList == caselLabel { "," caseLabel }
caselLabel = manifestConstant | subrangeType
tag == constant

otherwiseVariant = otherwise "=>" fieldList

Examples:

type Date = record
var day: 1 .. 31
var month. (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)
var year. 1900 .. 2100
end Date

type stream (dev. Device) = record
case dev of
display =>
var first, last. DisplayControlBlock {not defined in this report}
var height. ScreenPosition := ScreenPositionfirst
var nlines. 0 .. (ScreenPositionlast)/8.
end display
tape, disk =>
var file. FileHandle {not defined in this report}
var positionm. unsignedInt := 0
var buffer. array 0 .. 255 of char
end tape
keyboard => '
var buffer. array 0 .. 20 of char
var bufFirst, bufLast. bufferindexType := bufferIndexType.first
end keyboard
otherwise => {null fieldList}
end case
end stream

SIGPLAN Notices 21 February 1977

There are three pervasive standard types having to do with strings, declared as follows.

type Stringindex = 1 .. stringMaxLength

type Stringlength = 0 .. stringMaxLength

type string{maxLength. Stringlndex) = record
var lengti 0 .. maxLength = O,
var fext. packed array 1 .. maxlength of char
end string

Literal string constants are of type string, with [ength equal to the number of characters.
The maxLength of a literal string constant is chosen to make its type suitable for the context
in which it appears; it must not be less than the /ength, however. Routines can readily be
defined to extract substrings, do pattern matching, or perform any other desired operations
on strings (see 10. and 11. for examples). Furthermore, these routines might be
machine-coded for efficiency. The value of the pervasive manifest constant
stringMaxLength is implementation-defined.

6.2.3 Module types

A module type is a generalization of a record type. Module components may be declared as
constants, variables, routines, or types. These declarations have the same form and the same
meaning as the declarations in a block. Thus, a module serves as a package for a collection
of related objects. A module type is always opaque; i.e., it is not the same as any other type
(see 6.4). Thus, two different module definitions always define différent types, even if the
definitions are textually identical. '

Identifiers declared in a module are not known outside unless they are exported explicitly,
so the packaging supplied by the module also provides protection against improper use of
components which are intended to be known only within the module definition. An
exported identifier x is accessible (but only within a suitable field designator) in any scope
in which the module type is accessible. A constant identifier is always exported as a
constant; this may be specified by a binding condition of const, or the binding condition
may be omitted. A variable identifier may be exported as a variable, using the binding
condition var, or as a readonly variable, using the binding condition readonly or omitting
the binding condition (see 7). A variable may not be exported as a constant. No two
variables in the union of the import and the export lists of a module may overlap (see 7.4).

A constant or variable identifier may not be exported unless its type is exported, or is
accessible in the scope S enclosing the module definition; the itsType component of an
exported constant or variable is automatically exported. Similarly, a routine identifier may
not be exported unless the types of its parameters and results are exported or accessible in S.

When a type T is exported from a module M, it is always opaque outside its defining
module; i.e., it is not the same as any other type (see 6.4). Thus all operations on values of
type T, other than possibly assignment and equality tests, must be performed by routines
defined in M. The export item for a type may specify, in an appended with clause, that it is
to be exported with assignment, equality or both; an operation not specified is not exported.
If assignment is not exported, then T is not assignable; i.e., outside M constants or constant
parameters of type T cannot be declared. and variables of type T cannot appear on the left
side of an assignment statement. Furthermore, T's field identifiers (including standard
ones, like size) are not accessible outside M, unless the with clause specifies that they should

be exported. If T is an array type, subscripting is exported if and only if the IndexType

SIGPLAN Notices 22 February 1977

component is exported. If T is an enumerated type, its enumerated value identifiers are not
exported unless they are mentioned explicitly in T's with clause; subrangeType is permitted
in an exportltem to facilitate this. Only an exported type identifier may havé a with clause.

Values of the module type itself may not be assigned or compared for equality unless := or
=, respectively, appear in the export list. Furthermore, := and = may not appear in the
export list if the module imports any variables.

The identifiers which may be exported from a module are those which are accessible in the
scope between the end of the module’s declarations and the end of the module; loosely, these
are just the identifiers -declared at the outermost level in the module.

A module is a closed scope; i.e., identifiers declared outside the module are not known inside
unless they are known in the immediately enclosing scope, and ecither are pervasive or are
explicitly imported into the module (by the imports clause in the module definition, or
because they appear in the formal parameter list of the module declaration). Importing is
discussed in detail in 7.3.

The optional identifier following module in the type definition may be used within the
definition to name the entire value, i.e, for self-referencing.

A module type may be prefixed with the symbols machine dependent, which simply means
that it may contain other machine-dependent module and Ttecord declarations, fixed
addresses in variable declarations (see 7.), extended characters of the form $ddd (see 4.),
type converters involving types with implementation-dependent representations (see 6.5),
uses of StorageUnit.Address (see 6.1.2), and machine-code procedure declarations (see 10.); a
module which is not machine-dependent may not contain any of these things. Thus it is
possible to tell from the heading of a module type whether it contains any machine
dependencies or not. Note that machine-dependent identifiers exported from a
machine-dependent module, as well as the machine-dependent module type itself, may be
used in other modules which are not machine-dependent. Since exported types can only be
manipulated by exported routines, the routines serve to encapsulate the
machine-dependencies,

The standard representation of a module is not defined.

moduleType = [machine dependent] module [identifier]
importClause exportClause moduleBody endModule

endModule = end module | end identifier

[LX1]

importClause == imports "(" importltem { ;" importltem } ")" | empty
importitem := pervasive bindingCondition identifier | typeConverter

"o

exportClause = exports exportList [™;"] | empty

exportList == "(" exportitem { "," exportltem} ")"

exportltem = bindingCondition identifier [with exportList] | "=" | "=" |
subrangeType

bindingCondition ::= const | readonly | var | empty

A module may include an initial action which is executed whenever a new variable of the
module type is created, and a final action which is executed whenever such a variable is

SIGPLAN Notices 23 February 1977

destroyed. Note that if several module variables are declared, as in the program fragment
begin xxM1;, y M2, zM1; .. end

the order of creation is x, y, z, and the order of destruction is z, y, x. This follows from the
fact that the three declarations start three nested scopes, all of which end at the end (see 7.3).

A module may also specify an invariant which is supposed to be true during the lifetime of
the module variable (i.e., after the execution of the initial action and before the execution
of the final action), except perhaps when one of the procedures of the module has been
called and has not yet returned. Like other assertions, this one may be empty or a Boolean
expression. In the former case the content of the assertion is supplied in a comment. This
comment is of course ignored by the compiler, but presumably is interpreted by the
verifier. In the latter case the assertion must be a legal Boolean expression, but it generates
code only if the checked option is enabled for the enclosing scope.

The abstraction function, necessary for one approach to the verification of modules [Hoare
1972, London et al. 19771, maps the variables inside the module into a value of the module
type. The need for this mapping in verification arises because a variable of the module type
is represented inside the module by different variables. The body of the abstraction
function may contain constructs outside Euclid in the same way that assertions may, i.e.,
within comments. The abstraction function is not callable from a Euclid program.

moduleBody ::= checkedClause declaration [";"] initialAction invariant finalAction

checkedClause := checked | not checked | empty

declaration ::= empty | pervasive declarationPart { ";" pervasive declarationPart }

declarationPart = constantDeclaration | variableDeclaration | typeDeclaration |
procedureDeclaration | functionDeclaration

initialAction = initially routineDefinition ";" | empty

invariant == [abstraction functionDeclaration] invariant assertion ";" | empty

assertion = expression | empty

finalAction = finally routineDefinition ™" | empty

The following example outlines how one rﬁight package floating-point numbers and
operations on them in a module. Examples of complete modules may be found in section

12 and Appendix B.
var Real: machine dependent module

exports (Add, Subtract, Times, Div, Greater, const zero, number,
Value with (=, =, sign, exponent, mantissa))

type Exp = -80#16 .. TF#16; type Mant = 0 .. OFFFFFF#16

type Value = machine dependent record
var sign (at 0 bits 0 . 0): 0 .. 1 := 0
var exponent (at 0 bits 1 .. 7): Exp = 0
var mantissa (at 0 bits 8 .. 31): Mant := 0
end Value

const zero. Value := (0,0,0)

inline function number (m signedint, ex. Exp) returns num: Value =

SIGPLAN Notices . 24 February 1977

imports (Mant)
begin
if m < O then num.sign := 0 else num.sign := 1 end if
num.mantissa = Abs(m), num.exponent ;= ex
end number

function Add (const I, - Value) returns sunt Value =
code ... end Add

inline function Greater (const [, r» Value) returns Boolean =
imports (signedInt<<=Value)
begin {use type converters to compare | & r as signedints}
return True when (signedInt<<=Value(l)) > (signedIint<<=Value (r))

return False
end Greater

end Real

6.2.4 Machine-dependent records

A machine-dependent record type is a restricted kind of record type which allows the
programmer to. specify the exact position and size of each variable field. The position is
specified in StorageUnits, where the first StorageUnit of the record is numbered 0, and then
in bits, where the first bit of the specified StorageUnit is numbered 0, and the bit
numbering continues to successive StorageUnits in the obvious way. The ordering of bits in
a StorageUnit is implementation-defined. If the bits clause is omitted, the field occupies an
integral number of StorageUnits, and its size is computed from the size of its type; the value
is right-justified in the field. The compiler's responsibility is to check that fields do not
overlap and that each field is at least large enough to hold values of its type. The size of a
value of machine-dependent record type is determined by the largest position specified by
the declaration, where the value of the at clause (in StorageUnits) is added to the ending
value of the bits clause (in bits). An implementation may place restrictions on how fields
overlap natural storage boundaries. The index type specifying bits must be a subrange of
integer, and must be manifest except possibly for the last component of the record.

A machine-dependent record may have constant components like an ordinary record. It
may not have any parameters. All its wvariable components must have position
specifications, and they cannot be exported or passed as variable parameters. Furthermore,
they must all have types whose standard representation is specified. Note that the standard
representation of a machine-dependent record is specified, but the standard representation
of an ordinary record is not.

An alignment clause, aligned mod a4, in a machine-dependent record declaration forces a
value of the record type to be allocated so that the machine address of its first StorageUnit
is 0 mod @, a must be a power of 2.

The module in which a machine-dependent record type appears must be a
machine-dependent module,

SIGPLAN Notices 25 February 1977

mdRecordType = machine dependent record [alignmentClause]

mdDeclarationPart { ";" mdDeclarationPart } endRecord

mdDeclarationPart = constantDeclaration |
var identifier "(" at manifestConstant [bits simpleType] ")"
™" typeDefinition [initialization]

alignmentClause := aligned mod manifestConstant
Examples

type InterruptWord = machine dependent record aligned mod 8
var device (at 0 bits 0 .. 2): DeviceNumber,
var channel (at 0 bits 3 . 5): 0 .. 7;
var stopCode (at O bits 6 .. 7). (finishedOk, errorStop, powerOff);
var command (at 1 bits 0 .. wordSize): ChannelCommand
end InterruptWord

6.2.5. Set types

A set type defines the range of values which is the powerset of its base type. Base types
must be simple types. Operators applicable to all set types are:

+ union o

- set difference: i appears in a-b if and only if it appears in a and not in b

xor symmetric difference: i appears in a xor b if and only if it appears in

exactly one of a and b.

* intersection

in membership

<=, >= set inclusion

Sets can be built up from values of the base type as described in section 8. The standard
representation of a set S : set of B is defined if B is a manifest type and the standard
representation of values of B is defined. It is a sequence of n significant bits, where
n=(B.last-Bfirst+1), preceded by any number of insignificant zero bits. If the significant
bits are numbered 0, 1, .., n-1, then bit i is one if and only if x is in § and B.Ord(x)=i

setType == set of baseType
baseType = simpleType
There is one standard component of a set type T:
T.BaseType the base type
Examples:
type Hue = set of Color
type SubtractivePrimaries = set of red .. green

type SymSet = set of -5 .. +5
type EntriesinUse = set of Arrayl.IndexType

SIGPLAN Notices 26 February 1977

6.2.6. Pointer and collection types

A variable which is declared in a program (see 7.) is referred to by its identifier. The
variable exists during the entire lifetime of the scope to which it is local, and such a
variable is therefore called static. In contrast, variables may also be generated dynamically,
i.e., without much correlation to the structure of the program. These dynamic variables are
generated by the standard procedure component New described below; since they do not
occur in an explicit variable declaration, they cannot be referred to by an identifier.
Instead, they may be referred to by a pointer value which is provided by New when the
dynamic variable is generated. A pointer type thus consists of an unbounded set of values
pointing to elements of the same type. No operations are defined on pointers except the test
for equality, the pointer following operator t* which yieids the variable referred to by the
pointer, and the standard function component, Index, which converts a pointer into an
integer.

The standard representation of a pointer is the same as the standard representation of an
AddressType.

A dynamic variable must be an element of a collection. A collection is not a type: it is a
variable which behaves very much like an array variable. Just as an element of an array
variable A can be referenced by subscripting 4 with an index whose type is the index type of
A (AlndexType), so an element of a collection C can be referenced by subscripting C with a
pointer whose type is the pointer type of C (t(). There are two differences:

No two collections have the same pointer type. Hence the pointer alone is
sufficient to specify the collection, and we allow pt as shorthand for C(p),
where p is of type tC.

There are no operations which produce pointer results, except the standard
procedure C.New which creates a new variable (or an explicit type conversion).
Hence the storage allocation strategy for collections can be quite different from
the strategy for arrays.

The reason for having collections is that two pointers to different collections are guaranteed
to point to different variables; two pointers to the same collection are either equal, and
point to the same variable, or unequal, and point to non-overlapping variables. Hence
collections are a means by which the programmer can express some of his knowledge about
the ways in which his program is using pointers. If he prefers not to do this, or has no
knowledge about pointers to variables of type T which can be expressed in this way, he can
simply declare a single collection of Ts and use it everywhere.

There are no operations on collections. A collection may not be assigned to another
collection. In fact, there is nothing to do with a collection except to subscript it, or to pass
it as an actual parameter. '

Associated with every collection is a zone which provides storage for its variables. A zone is
a module variable with three special components (and possibly other components):

a variable storageBlocks which is a collection of a record type containing a special
component (and possibly other components):

theStorage, a StorageUnit

SIGPLAN Notices 27 February 1977

a procedure Allocate(size, alignment. unsignedInt, var pointer: *storageBlocks)
a procedure Deallocate(pointer: tstorageBlocks, size: unsignedint)

These components must not be exported; they are intended only for use by the standard
procedures New and Free. A zone must be a machine-dependent module variable. Note
that a collection C’s zone must be imported as a variable into any scope in which C.New or
C.Free is called. If C is reference-counted, C.zone must also be imported as a variable into
any scope in which a non-local variable of type +C is assigned to. Appendix B contains
examples of module types which implement zones.

A collection declared without a zone will get a standard zone called SystemZone. This zone
is not pervasive (since it is a variable), but must be imported where it is needed.

A collection can be reference-counted, in which case a variable in the collection will be
freed automatically when no pointers to it remain. The optional manifest constant is an
integer which gives the maximum reference count which should be maintained; any variable
to which more than this number of pointers ever exists at one time may never be freed. The
Free procedure does not exist for a reference-counted collection.

collectionType = [counted [manifestConstant]] collection of
objectType [in zone]

objectType := type

zone = variable

pointerType = "1" collectionVariable

collectionVariable ;= variable

There are six standard components of a collection variable C:
C.nil a pointer which points to no variable at all.
C.ObjectType the object type. If there are any unknowns in the collection
definition, C.ObjectType is a parameterized type with
formal parameters corresponding to the unknowns, in the
same order (see 6.3).

C.zone the zone (see above).

C.Index{obj: +C) a function which takes a pointer to C and returns an
integer. This function has only one defined property: it is
one-to-one.

C.New(var p: 1C) allocates a new variable v of type T in collection C and
assigns the pointer to v to the pointer variable p. C.New
imports C as a variable. This procedure works by calling
Allocate for the pointer's zone with T.size and T.alignment
as parameters. It gets back a tstorageBlocks, and uses the
theStorage component in this block as the first StorageUnit

-for the newly created variable. [t is up to the verifier of
the zone to ensure that a sequence of at least n free
StorageUnits begins there if Allocate(n, i, p) was called, and
that the storage allocated does not overlap with that of any
other variable. Any initialization specified by the type of v
is performed. If the object type of C is parameterized, and
any of the actual parameters are unknown, then specific

SIGPLAN Notices 28 February 1977

values for these parameters must be supplied as additional
parameters to New, and in the same order in which they
appear in the type's formal parameter list, so that the
variable being created will have a definite type.

CFree(var p: 1C) frees the variable v pointed to by p and sets p to Cnil. The
variable becomes undefined. C.Free imports C as a
variable. Any finalization specified by the type of v is
performed. Then the Deallocate procedure for C's zone is
called with a pointer to the storageBlocks variable from
which v was originally allocated by C.New, and the size
which was given to C.New. This procedure is not defined
for reference-counted collections.

Note that New and Free are procedures which violate the strict type checking of Euclid.
These procedures, explicit type conversions (see 6.5) and machine code routines (see .10), are
the only ways of doing so.

Examples:

var myStreams. collection of Stream{unknown) in ioZone
type StreamRef = tmyStreams
var userlnput, userQutput, anyStream: StreamRef

myStreams.New(userlnput, keyboard) {create & initialize input Stream}
myStreams.New(userQutput, display) {also an output stream}
myStreams.New(anyStream, any)

var stringStorage. collection of string(unknown)

type StringRef{imaxLength Stringindex) = tstringStorage{maxLength)

SIGPLAN Notices 29 February 1977

6.3 Parameterized types

It is possible to declare a parameterized type by including a formal parameter list (see 10.)
in the type declaration:

type T(a: signedint, b color) = ..

Every reference to such a type (i.e., every use of T except in an import or export list) must
have an actual parameter list which supplies values for all the formal parameters. Thus, a
parameterized type is like a template, from which a numbeér of types can be obtained by
supplying actual parameters for the formals. The formal parameters of a type must be
constant, and of an assignable type; a type may not have a variable formal parameter.

When a parameterized type is referenced in the formal parameter list of a procedure, an
actual parameter of the reference can be a previous formal parameter of the procedure (see
10.). Thus, procedures can be written to accept actual parameters whose type is any
reference to a parameterized type.

The built-in type constructors array i.j of T, i.j (subrange), case ¢ of ... (variant part of a
record type), and tC also take parameters. In fact, the first three can take parameters of
any simple type, and the last can take any collection. Thus all four are unlike user-defined
parameterized types, in which the types of the parameters are specified in the formal
parameter list. For subrange, array and case the actual parameters must be constants, but
need not be manifest. Thus, textually identical occurrences of one of iliese constructors do
not necessarily produce the same type.

The case constructor is normally used in the declaration of a type T in which its parameter
is in turn declared to be a (necessarily constant) formal parameter of 7. Note that when T
is referenced, actuals must be supplied for all its formals, even though some of the formals
may be referred to only in a variant which is not selected. Furthermore, the actual
parameter supplied for the tag must be a manifest constant, any or unknown,

Parameters of a type may be referenced like record components; thus after

type T(p: color) . . .; var x. T(red)
the expression x.p=red is True. Note that the parameters of a module type need not be
exported, since they are declared outside the module definition.

When a parameterized type 7 is referenced (e.g., in the declaration of a variable), the actual
parameters are substituted for the formals, and an unparameterized type results. In certain
cases, however, Euclid makes it possible to defer fixing the value of a parameter. In
particular:
If a parameter is the tag of a variant, it may be specified as any, so that a
variable can be changed from one variant to another during execution, by
assigning values of different variants to the variable.
If T is referenced as the object type of a collection, one or more parameters may
be specified as unknown, and fixed only when a variable -in: that collection is
created. ' '

If T is the type of a formal parameter of a routine, one or more parameters of T
may be specified as parameter. This is a shorthand which indicates that they are
to be passed as additional parameters of the routine. b :

SIGPLAN Notices 30 February 1977

The first two cases are described in detail below: for the third, see 10.

The special value any may be used as an actual parameter of a type reference, provided that
the corresponding formal is only used as the tag of a variant. Suppose V is such a
parameterized type, with a formal parameter s, of enumerated type 7, used as a tag (there
might be other formals, but they are omitted in this example). Then ¥(any) is a type whose
values are the union of the values of V(i) as i/ ranges over all the elements of T. It differs
from any particular V(i) in two important ways:

If x is declared to be of type W any), only those components of x which are
outside the case constructor with tag s can be referenced. A discriminating case
statement (see 9.2.2.2) can be used to bind x to an identifier y whose type is ¥(i),
and then all the components of y can be referenced in the scope of the
discrimination.

The value of the parameter x.s, and hence the choice of variant, can be changed
during execution by assignment to x (but not, of course, to y if y is of type
V(i)). This is the only case in which any property of a variable which is
determined by the parameters of its type can be changed after the variable has
been created.

The special value unknown may be used as an actual parameter in a type reference, provided
the reference appears as the object type of a collection. A variable in the collection can
only be created by the standard procedure New, however (see 6.2.6), and when New is called,
actual parameters must be supplied for all the unknowns in the object type; note that any is a
legitimate actual parameter. Hence a type never involves unknown except in the object type
of a collection. When a pointer to collection of 7(..., unknown, ...) is dereferenced to yield a
variable v, that variable has type 7(..., x, ...), where x is the value which was supplied to New
when v was created.

As in other cases where the parameters of types are not manifest constants, the compiler
may have to generate legality assertions to ensure that the type of a dereferenced pointer has
some property demanded by the context in which the dereferenced pointer is used. If the
unknown parameter is only used as the tag of a variant, a discriminating case statement can
be used to bind a referenced variable to an identifier of known type, just as is done with any.

Note that all actual parameters in an object type other than any and unknown are evaluated
when the collection is declared, not when a variable in the collection is created.

"o

parameterizedTypeReference == [containingVariable "."] typeldentifier
"(" typeActualParameter
{ ", typeActualParameter } ")"

typeActualParameter = expression | any | unknown | parameter
Examples of type definitions:

type FamilyMember(sex. SexType) = forward
var members. collection of FamilyMember(unknown)
type FamilyMember = record

var age. 0 .. 100

var mother, father, sibling. + members

var oldestChild. tmembers

end FamilyMember

SIGPLAN Notices 31 February 1977

type Subject = FamilyMember(any)
type Family = t members

6.4 Type compatibility

This section defines the conditions under which two types are the same, and describes the
rules for type compatibility in the language. The basic idea is this: a type identifier is an
abbreviation for its definition. After all such abbreviations have been removed, two types
are the same if their definitions look the same. However, a module type, or any type
exported from a module, is considered to be different from any other type; hence operations
on such a type are restricted to procedures defined in the module.

Two types are the same if their expanded definitions are equal. The expanded definition
of a type is obtained by the following algorithm:

Start with the type.
Replace each type identifier by its definition, unless the definition is a module

type, or the identifier was exported from a module. During this replacement,
substitute any actual parameters for the corresponding formals.

Replace x.itsType by the type of x. If x is a formal parameter, and its type has
occurrences of parameter, replace them with additional formals as described in
10.

Repeat these replacements until there are no more to be done.
The result is the expanded definition.

Two expanded definitions are equal if,
when all extended parameters of types (including array, subrange, case and 1t
constructors) are removed, they are identical sequences of basic symbols;
each extended parameter in one sequence is equal to the corresponding extended
parameter in the other sequence.

The extended parameters of a type are the actual parameters, if any, together with the values
of all constant identifiers used free (i.e., not declared) in the type definition.

If the compiler cannot determine whether or not two types are the same (e.g., because their
constant parameters are not manifest), and they must be the same for the program to be
legal, then the compiler will assume that they are the same, and generate a legality assertion

guaranteeing this fact for the verifier to prove.

When a value is assigned to a variable, or a variable is bound to an identifier, the types
must be compatible according to the following rules:

an operand for any operator other than dot, subscripting, and t, must have a
type which is not parameterized;

in an assignment, both types must be the same, except that

ranges of variables on the left side may differ from the ranges of the
corresponding components on the right side (Note, however, that
other parameters of types, such as array bounds, may nof differ): [n
a legal Euclid program, each actual value being stored will be within

SIGPLAN Notices 32 February 1977

the range of the corresponding variable. Where the compiler cannot
verify the legality of an assignment, it will generate one or more
legality assertions concerning the range of the actual value,

occurrences of any as an actual parameter in the type of the variable,
and not within the object type of a collection, may correspond to
occurrences of any value in the type of the right side. Thus, a
T(red) may be assigned to a T(amy), but not the reverse.
Furthermore, a pointer to T{red) may not be assigned to a pointer to
T{(any).

In a binding (see 7.4), the type T, of the variable must be the same as the type T; of the
identifier. If the binding is part of a procedure or function call, however, actual parameters
in the specification of 7, may be other formal parameters of the procedure or function (see
10).

The following table summarizes the transitions which are possible:

To (formal | T(red) T(any)
or left side) 1
From (actual |
or right side) |
|
T(red) | bind assign
i assign
|
T(any) | discriminate bind
| assign

6.5 Explicit type conversions

In recognition of the fact that controlled breaches of the type system are sometimes
necessary, Euclid provides a mechanism for specifying such breaches. It takes the form of a
class of pseudo-functions called type-converters. A type-converter specifies an explicit
conversion from one type (the source) to another (the target). The two types must have the
same size, and must not be parameterized. The function takes a value of the source type as
its single argument, and produces a value of the target type. No code is generated by the
function, except perhaps for code supplied by the implementation to bring the
representations of the argument and result into the standard form specified in this report.

It is possible to specify procedure or function as the source type, so that a program can get
hold of the starting address for a routine in order to link to it from a machine code body
(see 10.)

A type converter is automatically declared in the largest scope in which both the source type
and the target type are declared. However, it may not be referenced in this scope, but must
be explicitly imported into any inner closed scope which references it.

If either source or target type.has an implementation-dependent representation, the type
converter can only appear in a machine-dependent module.

SIGPILAN Notices 33 February 1977

typeConverter = targetType "<<=" sourceType
targetType = typeldentifier
sourceType == typeldentifier | procedure | function

Examples: (from Appendix B)

Cell Ptr{<{=AddressType
SBP1r<<{=CellPtr

SIGPLAN Notices 34 February 1977

7. Declarations and denotations of comnstants and variables

"Declare, if thou hast understanding.”
Job 38, 4

A constant is a literal constant, or an identifier declared as a constant, or an expression
containing only constants.

constant ;= expression

A constant declaration, consists of an identifier denoting the new constant, followed
optionally by its type, and then by an expression which defines its value. The defining
expression is evaluated, and its value becomes the value of the constant, which can never
change thereafter. The type of the constant, if specified, must be assignable, and
assignment-compatible with the type of the defining expression (see 6.4).

A structured constant may be used to define a constant of a structured type which is not a
module type. The constants within the parentheses are the values of the components of the
structured value. For a record, the order is the order in which the components appear in
the definition. For an array g, the order is a(a.IndexType.first) to a(a.IndexType.last). If
the structured type contains other structured types as components, their values are in turn
represented as nested structured constants.

constantDeclaration = const idList [™" typeDefinition] ":=" expression |
const idList ":" typeDefinition ":=" structuredConstant

idList == identifier { ",” identifier }

structuredConstant == "(" [constantltem { "," constantitem }] ")"

constantitem := constant | structuredConstant

A variable declaration consists of a list of identifiers denoting the new variables, followed
by their type and optional initialization, or it consists of a binding. The initialization is
exactly equivalent to an assignment statement executed immediately after the declaration of
which the variable declaration is a part. A bind declaration specifies that each of the
identifiers in the bindList is to be bound to an already existing variable, rather than to a
newly created one (see 7.4). If the variable binding condition is readonly, or omitted, then
the newly declared identifier cannot be changed within the new scope. In particular, it
cannot be assigned to, or passed as a variable parameter, and the same restrictions apply to
any variable which is part of it. All the renamings of components of a single entire
variable must be accomplished within a single bindList, since otherwise the no-overlap rule
(see 7.3) will be violated.

The fixed address, if present, specifies the physical address in memory where the variable is
to be allocated. It is the compiler's responsibility to ensure that a variable allocated at a
fixed address does not overlap any other variable. A fixed-address component is either a
variable declared at a fixed address, or a module type containing a fixed-address
component. Such a component may only appear as a component of a machine-dependent
module type which is not the definition of a type identifier (i.e., is not named). It is a
consequence of the no-overlap rule that only one variable of each type with a fixed-address
component may be declared.

Note that a variable may not be declared to be of type integer, but only of some subrange
type. Constants may be of type integer, however.

SIGPLAN Notices 35 February 1977

variableDeclaration = var variableDeclarer |

bind variableBinding | bind "(" bindList ")"
bindList = variableBinding {"," variableBinding}
variableBinding = varBindingCondition identifier to variable
varBindingCondition = readonly | var | empty
variableDeclarer = idList [fixedAddress] ™" typeDefinition [initialization]
fixedAddress == "(" at manifestConstant “)"

initialization := expression

Examples:

const iC, jC := -1 {iC and jC will be integers and have the value -1}
const tc. Color = red

var k, I -5 .. 5 := iC {both variables initially have the value of iC}
var sensitivity. array Device of Classification

bind var arrayEntry to a®(1) {a0(1) must be a valid reference. arrayEntry is simply
another name for a((1) over the scope of this declaration}

bind input to Userlnput {input is UserInput for the scope of this declaration, but
cannot be changed within the scope}

var a, b : signedint := iC {a and b initially have the value -1}
var cv. Color
const tenN = 10*n

const huel = Hue(red, blue)

const diskldle InterruptWord = (0, 1, finishedOk, nullCommand)
var diskControl (at 104#38). InterruptWord = diskldle

var dateTable. array 1 .. 10-iC of Date

const index: array -1 .. 9 of unsignedint := (3,1,4,1,5,9,2,6,5,3,6)
var str. string(10)

var shades. array Color of Hue

var jimH, butler, ralph, jimM, gerald: FamilyMember (male)
var Smiths, Joneses. Family

var i, j, x,-y, z, max. signedInt

var p, ¢. Boolean := False

var strPl, strP2. StringRef{100)

var real2, real2. RealValue

var pl, p2. tmembers

var country: (NotKnown, UnitedStates, Canada, GreatBritain, Other)
var operator. (plus, minus, times)

var col: Color

var anArray. array OneToOneHundred of signedint

Denotations of variables designate an entire variable, or a component of a variable, or a
variable referenced by a pointer (see 6.2.6). Variables or constants occurring in examples
below are assumed to be declared as indicated above.

SIGPLAN Notices 36 February 1977

Associated with every variable is a main variable which is entire; the variable is said to be
part of its main variable. One variable is part of another if, roughly, an assignment to
either can change the value of the other, and the space of possible values of the first
variable is a {(not necessarily proper) subset of the space of possible values of the second
variable. The following sections define main variables and part precisely. "Part of” is a
transitive relation: if x is part of y and y is part of z then x is part of z It is also
reflexive: x is part of x. Two variables are the same if and only if each is part of the
other. Two variables overlap if and only if one is part of the other.

variable u= entireVariable | componentVariable

7.1. Entire variables

An entire variable is denoted by its identifier, and is its own main variable. An entire
variable is never part of another entire variable (see 7.4). Hence, two entire variables never
overlap.

entireVariable ::= variableldentifier
variableldentifier = identifier

7.2. Component variables

A component of a variable is denoted by the variable followed by a selector specifying the
component. The form of the selector depends on the structuring type of the variable.

componentVariable = indexedVariable | fieldDesignator | referencedVariable
baseVariable z= variable

Corresponding to each kind of component variable described below, there is a
corresponding constant expression which differs from the component variable in only one
way: a constant array, record, or module appears in place of the base variable.

7.2.1. Indexed variables

A component of an array variable is denoted by the variable followed by an index
expression. The main variable of an indexed variable is the main variable of the array
variable. The indexed variable is part of the array variable. An indexed variable i1 is part
of another indexed variable {2 if and only if either they have the same array variable and
the two indexes are equal, or the array variable of il is part of i2.

indexedVariable z= arrayVariable "(" expression ")"
arrayVariable == baseVariable

The index expression and the index type declared in the definition of the array type must
be subranges of the same type. The value of the index expression must be a value of the
index type for the program to be legal.

SIGPLAN Notices 37 February 1977

Examples:

index(-1)
dateTable({i mod 10-iC) + 1)
shades(green)

7.2.2. Field designators

A component of a record or module variable, or a formal parameter of the type of any
variable, is denoted by the variable followed by the field identifier of the component or
parameter. The field identifier of a module component must be exported in the type
definition. A field designator is a variable only if the field identifier was declared as a
variable; otherwise it is a constant. A variable field designator is readonly if the field
identifier was exported as readonly. If a field designator is a variable, its main variable is
the main variable of the containing variable, and the field designator is part of the
containing variable. A fieid designator f1 is part of another field designator f2 if and only
if either their containing variables are the same and their field identifiers are identical, or
f1's containing variable is part of f2.

fieldDesignator = containingVariable "." fieldldentifier
containingVariable = baseVariable
fieldldentifier == identifier

Examples:

str.length

jimM.sex

diskldle.command {a manifest constant}
reall.mantissa

7.2.3. Referenced variables

If pis a pointer variable whose collection C is of type 7, p denotes that variable and its

pointer value, whereas pt is short for C(p), which denotes the variable of type T referenced

by p. The main variable of a referenced variable is the main variable of the collection to

which the variable belongs. The referenced variable is part of the collection variabie. A

referenced variable rl is part of another referenced variable r2 if and only if either they

have the same collection and the two pointers are equal, or the collection of rl is part of r2.
referenced Variable = collectionVariable "(" pointer ")" | pointer "t"
collectionVariable ::= baseVariable

pointer ::= factor

Examples:

Smithst
Smithst.mother
strPIt . text(1)

SIGPLAN Notices 38 February 1977

7.3 Scope rules and importing

A scope is a region of text in which an identifier (other than a field identifier) is known
with a single meaning. A scope is either

a type or routine declaration, beginning with the type, procedure, or function and
ending at the end of the declaration, or

a region of the program between.the end of a declaration and the next unmatched
end, or

a record or module definition, bracketed by record or module and the matching end,
or

a routine definition (see 10.)

A module or routine definition is called a closed scope; other scopes are open. Note that
these closed scopes are nested within the open scopes of the surrounding declarations.

An identifier is accessible in a scope S if it is
declared in that scope, or
accessible in the enclosing scope if S is open, or

pervasive in some enclosing scope, or imported into S, or a formal parameter of the
type or routine declaration in which S appears, if S is closed.

An identifier must be accessible in S to be used in S in any context except as a field
identifier.

New identifiers are declared
as record or module components,
as enumerated value identifiers, ,
in a declaration at the head of an executable scope,
as parameters of a for or discriminating case, or
as formal parameters of a routine or type declaration.

These new identifiers are accessible within the newly established scope. They are not
accessible outside of this scope, except that:

Field identifiers of records, or of modules if exported, are accessible outside the
scope in a suitable field designator, which is considered to be a continuation of that
scope.

If an enumerated type is the definition in a declaration of type T, its value
identifiers are declared in the same scope as 7, rather than in the inner scope of the
type declaration.

Note that the name declared by a module type or routine declaration is not declared in the
closed scope which is the definition, but in the enclosing scope; it must be imported
explicitly into that scope if the definition is recursive. The formal parameters of the
declaration, if any, are accessible in the closed scope. Note also that in the case of a
module, the type may only be used within the module definition as the object type of a
collection (see 6.)

SIGPIL.AN Notices 39 February 1977

A new identifier may not be introduced which is the same as any other identifier accessible
in the scope. Of course, an identifier accessible in the enclosing scope of a closed scope,
but not imported or pervasive, is not accessible, and hence may be reused. This is the only
way in which an identifier can become inaccessible in an inner scope.

An identifier used in a scope and not declared in that scope is said to be free in that
scope. Any identifier which is free in a closed scope must be accessible in the immediately
enclosing scope, and either explicitly imported into the closed scope, or declared pervasive
in some enclosing scope; see 6.2.3 for syntax. An identifier declared pervasive is imported,
as a constant, into all scopes nested within the one in which it is declared; hence it may not
be redeclared in any of these scopes. Only constant identifiers may be declared pervasive,
since variables cannot be imported as constants.

If a routine is imported into a scope S, every identifier which it imports must also be
imported into S. If a module type is imported into S, every identifier imported by the type
which is in turn imported by any component of the type which is exported, must also be
imported into S. Furthermore, in both cases a variable imported var into such a module
type or routine must be imported var into S, rather than readonly. Thus, it is not possible
for a scope to cause any variable to be referenced or modified which the scope could not
itself have referenced or modified (except that a called routine may be able to access
components of a module, when the caller could only access the module as a whole).

An explicitly imported identifier has the same status as a newly declared one. The imports
clause can specify (in the binding condition) for each variable identifier whether it is
imported as an ordinary variable, or readonly (the default). A readonly variable may not
be changed explicitly; i.e, it may not be assigned to, or passed as a variable parameter. A
readonly variable is not a constant, however, since its value may change as a resuit of
statements executed in an enclosing scope where it is not readonly. A variable identifier
may not be imported as a constant. A constant identifier is always imported as a constant;
its binding condition may be const or may be omitted.

Any identifier used in a formal parameter list is automatically imported into the closed
routine or module body which follows. If an enumerated type is imported, all its
enumerated value identifiers are automatically imported. If a record or module type is
imported, any of its field names (if it is opaque, any exported field names) can be used as
field identifiers in a field designator whose containing variable is of that type.

A closed scope has the property that all its possible interactions with the rest of the world
can be determined by examining its imports list, identifiers declared pervasive in some
enclosing scope, its parameters, and, in the case of a module, its exports list. In the case of
a routine no exports list is needed, since nothing is left after the routine returns.

The defining expressions for constants and the index expressions for variable bindings are
evaluated when a scope is entered, or when a record or module variable or constant is
declared, or when a dynamic record or module variable is created.

Note that a pointer cannot be dereferenced within a given scope unless its collection @s
accessible in that scope, and cannot be dereferenced to a variable unless the colleytnon is
accessible as a variable in that scope; these rules are identical to the rules for indexed

variables.

SIGPLAN Notices 40 February 1977

A declaration in Euclid cannot have any side effects, with one exception: a declaration of a
module variable may have side effects from the execution of the module's initial action, if
the module imports any variables.

7.4 Binding

An identifier may be bound to a variable when it appears

as a var formal parameter in a procedure declaration (functions cannot have var
parameters);

in a variable binding in a variable declaration.
A variable to which an identifier is bound is said to be renamed.

The scope of a binding is the scope of the declaration, and within this scope the identifier
represents the variable. That is, the initial value of the identifier is the value of the
renamed variable at the time of binding, and the last value assigned to the identifier will be
the value of the renamed variable after control finally leaves the scope. If this variable is
part of an array, its index is evaluated when the scope is entered; if it is part of a
referenced variable, the pointer is evaluated when the scope is entered.

The type and range of the identifier being bound must be the same as the type and range of
the renamed variable to which it is bound (but see 10 for the use of parameter). A
component of a packed structure or a machine-dependent -record must not appear as a
renamed variable. Note that this does not prevent discrimination of a packed variant
record (see 9.2.2.2), since in.that case it is the entire record which is renamed, not a
component.)

Any variable imported by a scope is considered to be renamed. For open scopes, any
variable free in the scope is considered to be imported by the scope, and hence to be
renamed. A variable is renamed even if it is bound or imported readonly (but not if it is
passed as a constant parameter), and even if it is readonly in the outer scope.

In order to allow a simple description of the rules for renaming variables, we will assume
for the rest of this section that a procedure does not import any variables; the initial and
final actions of a module are considered to be parameterless procedures for this purpose.
Any procedure which does import variables is to be rewritten as a procedure which accepts
the imported variables as additional variable formal parameters, and every call is rewritten
to supply the same variables as additional actual parameters. This also applies to
procedures in modules: if a component of the module is imported as a variable by the
procedure, that component is supplied as an additional actual parameter (in spite of the-fact
that it might not be exported). The rewritten program will behave exactly like the original
one.

In order to ensure that the rewritten program is a legal one, however, we must (and do)
impose the following requirement on the original program: any free variable in a procedure
must have the property that it would be accessible as a variable in every scope which
contains a call of the procedure, if the field identifiers required to reach it were exported as
variables.

The language ensures that an eniire variable can never overlap (see 7.1) any other variable
accessible in the same scope which has a different main variable, or in other words that

SIGPLAN Notices 41 February 1977

the value of an entire variable can change only
as the result of assignment to that variable or one of its parts, or

as a result of a procedure call in which that variable was the main variable
of an actual parameter corresponding to a variable formal parameter;

an .assignment to an entire variable can never change the value of any other variable
which is accessible in the scope containing the assignment, except one of its own
parts.

To prevent binding from destroying this non-overlap property, the following restriction is
imposed: no two variables which are renamed on entry to a scope can overlap. If the
compiler cannot determine whether or not two variables overlap (e.g., a({) and a(j) overlap
iff i=j), it will assume that they don't, and generate a legality assertion to that effect for the
verifier to deal with. Note that variable identifiers which it is illegal to access in a scope
because of this rule are nor therefore inaccessible and hence are not eligible for
redeclaration. An identifier is accessible everywhere in its scope, except inside nested
closed scopes which do not import it.

In general, identifiers that are declared as constants cannot cause any aliasing problems,
since their values can always be copied. Of course the compiler is free to use a pointer
rather than copy the value if it can determine that the meaning of the program is the same;
this will certainly be true if the variable involved does not overlap any variable accessible
in the same scope. In other cases the value must be copied.

Copying may be very inefficient for large arrays or records. Hence we impose a stronger
rule in this case: if a large variable v is accessible in a scope as a constant, no variable
which overlaps v can be renamed on entry to the scope. The definition of "large” is
implementation-dependent. If the programmer really wants a large array or record to be
copied, he can declare a constant for that purpose; unlike passing a constant parameter, a
constant declaration looks like an operation which makes a copy, and indeed it generally
does, unless the constant is manifest.

A parameterized type with a large actual parameter which is a variable poses a similar
problem, since in general the value will have to be copied when such a type is used to
declare an identifier, unless the variable is not modified in the scope of the declaration.
Hence the same restriction is imposed in this situation: the compiler will reject a program
which requires copying a large value in this way.

SIGPLAN Notices 42 February 1977

8. Expressions

“"Grant me some wild expressions, Heavens, or 1 shall burst.”
Farquhar, The Constant Couple, V, iii

Expressions are constructs denoting rules of computation for obtaining values of variables
and generating new values by the application of operators. Expressions consist of operands
(i.e., variables and constants), operators, and functions.

The rules of composition specify operator precedences according to seven classes of
operators. The multiplying operators have the highest precedence, then the adding
operators, then the relational operators, then not, then and, then or and finally, with the
lowest precedence, ->. Sequences of operators of the same precedence are executed from left
to right.

Since functions cannot have side effects, the order of evaluation of operands in an
expression need not be defined.

The rules of precedence are reflected by the following syntax:

factor = variable | literalConstant | constantldentifier | functionDesignator | set |
"(" expression ")" | "-" factor

set == setTypeldentifier "(" elementList ")"

elementList = element { ", element } | all | empty

element ::= expression | simpleType

term = factor | term multiplyingOperator factor

sum := term | sum addingOperator term

relation = sum | sum relationalOperator sum | sum [not] in simpleType
negation z= relation | not relation

conjunction := negation] conjunction and negation

disjunction = conjunction | disjunction or conjunction

expression = disjunction | disjunction "->" disjunction

Expressions in an element list for a set of type T = set of U must all be of type U. T()
denotes the empty set of type 7, T(all) denotes the set containing all the elements of U, and
T(x..y) denotes the set of all values in the interval x..p. If V is a subrange of U, T(V) is an
abbreviation for T(V.first..V.last).

Note that the operators on sets, summarized in 6.2.5, can be used to perform bitwise logical
operations, and in fact these operators are intended to be implemented with the machine's
logical operations on words.

SIGPIL.AN Notices

Examples:

Factors:

Terms:

Sums:

Relations:

Negations:
Conjunctions:

Disjunctions:

Expressions:

8.1. Operators

The compiler is expe '
expression; if it is unable to verify this, it must p

to check (see 6.1.2).

43

x

15

(x+y+2)

Abs(x+y)

Hue(blue, col, green)
Hue(all)

SymSeu(1, 5, -4 .. -1, 2)
-X

x*y
i div (1-))
x mod (5*y)

X4y

huel xor shades(red)
*j+l

huel - Hue(blue)

x =15

x not= 15

p<=q

(Kj) = (_/(k)

cv in huel

cv not in shades(orange)
i in oneToOneHundred
i not in 25 .. (x*5)

not (p not= ¢)
not ¢q

x<=y and y<z
p and not ¢

p or (x>))

False -> p or (x > »)
a*a > b*b -> (Abs(a) > Abs(b))

February 1977

cted to check that no overflow will occur during the evaluation of an
ut out a legality assertion for the verifier

The types of the operands must be the same as the types specified below, or subranges of

those types. A consequence is that a value whos
an operand in an expression outside the module, except perhaps of the

e type is exported from a module cannot be

"o

operator.

SIGPL AN Notices 44 February 1977

8.1.1. Multiplying operators

multiplyingOperator z= ™" | div | mod
operator gperation type of operands type of resuit
* multiplication integer integer
set intersection any set type T T
div division with integer integer
truncation
mod modulus integer integer

The div operator truncates toward zero, so that -(a div b)=-a div b. Also, a div ~b=-a div b, |
The mod operator is defined by a mod b=a-{{a div b)*b). The right operand of div or med
must be non-zero.

8.1.2. Adding operators

addingOperator == "+" | "-" | xor
operator operation type of operands type of result
+ addition integer integer
set union any set type T T
- subtraction integer integer
set difference any set type T T
Xor symmetric any set type T T
difference

When used as an operator with one integer operand only, - denotes sign inversion.

8.1.3. Relational operators

re]ationalope[ator ::= l'=ll ' not l'=ll I "<" I fl<=l' I ")" I '|>=" ! in l not i"
operator type of operands result
= not= most types Boolean
< 2 any enumerated or subrange type Boolean
(= D= any enumerated, subrange or set type
in any enumerated or subrange type Boolean
not in and its set type, respectively

any enumerated or subrange type
and an index type (not value),
respectively.

Notice that all enumerated types define ordered sets of values.

SIGPLAN Notices 45

February 1977

The operators <=and >= stand for ’less than or equal, and greater than or equal respectively.
They may also be used for comparing values of set type, and then denote set inclusion. If p
and g are Boolean expressions, p=q denotes their equivalence.

8.1.4 Other operators

operator operation type of operands type of result
not logical negation Boolean Boolean
and logical "and" Boolean Boolean
or logical "or" Boolean Boolean
-> logical implication Boolean Boolean

The right operand of and need not be legal if the left operand is False; the right operand of
or need not be legal if the left operand is True; the right operand of -> need not be legal if

the left operand is False.

8.2. Function designators

A function designator specifies the evaluation of a function. It consists of the identifier or
field designator designating the function, and a list of actual parameters.--The parameters
are expressions, and their values are substituted for the corresponding formal parameters

(see 9.1.2, 10, and 11).

" "

functionDesignator == function ["(" expression { "," expression } ")"]|
typeConverter "(" expression ")"

"o
.

function == [containingVariable
functionldentifier = identifier

Examples:

FindMax(Index)

Ged(147, k) -

Power(Index(i), str.length)
Real.Add(reall, Real.number(314159,1))

] functionldentifier

SIGPLAN Notices 46 February 1977

9. Statements

"The statements was interesting, but tough.”
' Huckleberry Finn, Ch. 17

Statements denote algorithmic actions, and are said to be executable.
statement ;= simpleStatement | structuredStatement

9.1. Simple statements

A simple statement is a statement of which no part constitutes another statement. The
empty statement consists of no symbols and denotes no action.

assignmentStatement | procedureStatement | escapeStatement |
assertStatement | emptyStatement

simpleStatement ::

emptyStatement = empty

9.1.1. Assignment statements

The assignment statement serves to replace the current value of a variable by a new value
specified as an expression.

‘assignmentStatement == variable

"=" expression

The variable and the expression must be of the same type, with the following exceptions
being permitted:

1. The types of the expression and the variable are both subranges of the same type.
If the value of the expression is not within the subrange of the variable's type, the
program is illegal.

2. The type of the variable may have any as an actual parameter of a type where the
type of the expression has some specific vaiue (see 6.4).

Note that assignment is not allowed if the type T of the variable is not assignable, or if the
variable is readonly. A type is not assignable if it is a collection type, or if it is an exported
type for which assignment was not exported, or if it is a structured type which has a
variable component whose type is not assignable,

Examples:
X = y+z
p = (in 1.99

p = (1<=i) and (i<100)
shades(blue) := Hue(blue, ColorSucc(c))
reall := real2

.
]}

9.1.2. Procedure statements

A procedure statement serves to execute the procedure denoted by the procedure identifier.
The procedure statement may contain a list of actual parameters which are assigned or
bound to the corresponding formal parameters declared in the procedure declaration (cf.

SIGPLAN Notices 47 February 1977

10). The correspondence is established by the positions of the parameters in the lists of
actual and formal parameters, respectively. There are two kinds of parameters: constant
parameters and variable parameters; routine and type parameters are not permitted.

In the case of a constant parameter, the actual parameter must be an expression (of which a
variable is a simple case). The corresponding formal parameter represents a local constant
of the called procedure, and the current value of the expression is the value of this
constant. As in the case of a constant declaration, the type of the actual parameter must be
assignable, and assignment-compatible with the type of the formal (see 6.4). Note that a
constant formal parameter is not a manifest constant, since its value is not known at
compile-time.

In the case of a variable parameter, the actual parameter must be a variable, and the
corresponding formal parameter is bound to this actual variable (see 7.4) during the entire
execution of the procedure. The types must be the same. A variable parameter must be
used whenever the parameter represents a result of the procedure.

" e

procedureStatement = procedure ["(" expression { ", expression } ")"]

procedure ::= [containingVariable "."] procedureldentifier
procedureldentifier = identifier

Examples:

TreeSort(DA)
ZeroArray(DA)
Replace(str, i, 3, "***")

9.1.3 Escape statements

An escape statement serves to indicate that further processing should continue at the
statement following the smallest enclosing repetitive statement (exit), or that control should
return immediately from the routine currently being executed (return). Note that any
module variables which are destroyed as a result of the escape will have their final actions
executed first. The when clause, if present, makes execution of the escape conditional.

Thus, the statement
S when B
is equivalent to
if B then S end if.

An expression must not appear in a return statement unless the statement is in a function
body, and in that case the type of the expression must be assignment-compatible with the
type of the function's result value.

escapeStatement == escapeBody [when expression]
escapeBody = exit | return | return expression

SIGPLAN Notices 48 February 1977

Example:

begin
var flag : (a, b, finished) := finished
for .. loop

;lag :

flag = b, exit

a, exit

end loop
case flag of
a=> ..end a

b=z=>..end b
Sfinished => .. end finished
end case

end

9.1.4 Assert statements

An assert statement introduces an assertion (see 6.2.3) which is supposed to hold whenever
control reaches that point in the program. The compiler treats it as a comment, as it does
with the assertions supplied by invariant,-pre and post clauses, unless the assertion is a
Boolean expression, and the checked option is specified for an enclosing block, in which
case the Boolean expression is evaluated, and execution of the program is terminated if it is
False.

assertStatement = assert assertion
Examples:

assert x<{y and y<z
assert {z%(w**i) = x**y}

9.2. Structured statements

Structured statements are constructs composed of other statements which have to be executed
either in sequence (compound statement and block), conditionally (conditional statements),
or repeatedly (repetitive statements).

structuredStatement ;= compoundStatement | block |
conditionalStatement | repetitiveStatement

9.2.1. Compound statements and blocks

The compound statement specifies that its component statements are to be executed in the
same sequence as they are written. Note that a compound statement is a statement, and has
no brackets; hence a sequence of statements can be written wherever a single statement can
be written, ‘

0

compoundStatement = statement { ";" statement }

1]

¥4

Example: z = x; x =y y:

SIGPL.AN Notices 49 February 1977

A block is a compound statement within which new identifiers can be introduced. The
symbols begin and end act as brackets to delimit the scope of the new identifiers. If a scope
S starts with checked, each legality assertion in S, and each assertion in the source text of S
which is a Boolean expression, is compiled into a runtime check, which aborts execution of
the program if the assertion is False. If S starts with not checked, any occurrence of
checked in an enclosing scope is ineffective in S.

block = begin executableScope end

executableScope == checkedClause [declaration ";" 7] statement
Example:

begin

const twolX = 2*%*x
var w. signedint
w = twoX*twoX-x
begin
bind y to w;
y = twoX*twoX*twoX+y { really means w := twoX*twoX*rwoX+w}
end
end

9.2.2. Conditional statements

A conditional statement selects for execution a single one of its component statements,
conditionalStatement == ifStatement | caseStatement

9.2.2.1. If statements

The if statement specifies that a statement is to be executed only if a certain condition
(Boolean expression) is True. If it is False, then either no statement is to be executed, or the
statement following the symbol else is to be executed.

The statement
if a then b elseif ... end if
is an abbreviation for
if a then b else if ... end if end if.

if expression then executableScope elseifClause
[else executableScope] end if

elseifClause == { elseif expression then executableScope }
The expression between the symbols if or elseif and then must be of type Boolean.

if Statement ::

Examples:

if x<15 then z := x+y, cv = blue else cv = red; z := 0 end if

if pl not= members.nil then pl := plt.relations, p2 := members.nil end if
if str.text(l) = $$$ then country := UnitedStates

elseif str.text(l) = $# then country = GreatBritain

else country = NotKnown
end if

SIGPLAN Notices 50 February 1977

9.2.2.2. Case statements

The case statement consists of an expression (the selector) and a list of elements, each
labelled by a set of manifest constants of the type of the selector. It specifies that the one
element is to be executed whose label contains the current value of the selector. A special
label otherwise can be used to label a statement which should be executed if none of the
other labels contains the current value of the selector. If none of the labels contains the
selector, and there is no otherwise, the program is illegal. Each element, except the
otherwise element, must be terminated with end followed by one of the constants in its label.

If the selector is discriminating an object, the parameter bound to the object is automatically
declared in each case list element, either as a constant whose value is the expression in the
object, or as a variable bound to the variable in the object. The expression or variable in
the object must be a variant record, say of type T(any) or T(unknown), and the tag of this
record, specified by the on clause, is used to select one of the case list elements; in this
situation, each case label list of the discriminating case statement must correspond to exactly
one variant of the record. Within the element selected by a particular value of the tag, say
red, the parameter has the type T(red). Thus with the type declaration

type T(tag: (red, green, ..)) = record
case rag of
red - => . ..
green => . ..

.end case
end T

the program

var anyx: T(any); ..;

with x := anyx case rag of
red => ..
green => ..
end case

is equivalent to
var anyx: T(any); ..;
case anyx.tag of
red => const x: T(red) := anyx, ..
green => const x: T(green) = anyx; .

end case

except that the constant declarations in the latter would not be legal, because it is illegal to
assign a T(any) to a T(red).

SIGPL.AN Notices 51 February 1977

caseStatement =z simpleCase | discriminatingCase
simpleCase = case expression of caseBody end case
discriminatingCase ;= with object case identifier of caseBody end case

caseBody = caseListElement { ;" caseListElement } otherwiseElement [;"]
caseListFlement == caseLabelList "=>" executableScope end caselabel | empty
otherwiseElement = ";" otherwise "=>" executableScope | empty

object == [comst] parameter ":=" expression |

varBindingCondition parameter bound te variable
parameter = identifier

Examples:

case operator of
plus => x
minus => Xx:
times => X

x+y end plus
x-y end minus
x*y end times

W

end case
case i of
1=>cvi=redendl
2 => cv:= blue end 2
3,8 => c¢v:= greenend 3

4.6,9,10 => cv := yellow end 4
otherwise => cv := purple
_’,end case

with s bound to anyStreamt case dev of {begin new line}
display => s.height = s.height +1 end display
tape, disk =>
s.position := s.position +1
s.buffer(s.position) := $N
end tape .
keyboard => end keyboard {don't send characters to input device}
otherwise => {also null}
end case

9.2.3. Repetitive statements

Repetitive statements specify that certain statements are to be executed repeatedly. If a
bound on the number of repetitions is known before the repetitions are started, or if the
repetition is controlled by a generator, the for statement is the appropriate construct
otherwise the loop statement should be used.

A repetitive statement introduces a new scope. The declarations of this scope take effect
before the repetition starts, and remain in effect until the end of the repetition. The
statements of the scope are executed repeatedly.

repetitiveStatement == loopStatement | forStatement

SIGPLAN Notices 52 February 1977

9.2.3.1. Loop statements

The statements in the scope are executed repeatedly until control leaves the scope through an
escape statement.

loopStatement == loop executableScope end loop

Examples:

loop; exit when Color.Ord(ic) = x; tc := ColorSucc(tc) end loop

loop

if Odd(i) then z := z*x end if

i= idiv 2

exit when /=0

x = x*x

end loop

loop k := i mod j; i := j, j := k; exit when j = O; end loop

9.2.3.2. For statements

The for statement indicates that a statement is to be repeatedly executed while a progression
of values is assigned to a new constant identifier called the parameter or controlled constant
of the for staterent. '

forStatement := for parameter generator [";"] loop executableScope end loop
generator = in moduleType | [decreasing] in indexType | in setExpression
setExpression = expression

The parameter is declared as a constant in the scope. The type of the parameter is the type
of the value component of the module type, the type of the elements of the index type, or
the base type of the set.

A module type generator is a module type which has three components with special names:
variables called value and stop, and a procedure called Next. These names must be
exported. A for statement of the form

for v in moduleTypeGenerator loep LoopBody end loop
is equivalent to the block

begin var crec. moduleTypeGenerator,
loop exit when crec.stop
begin const v:i=crec.value; LoopBody end
crec.Next
end loop
end

The initial and final actions in the declaration of the generator module type can perform
any initialization or cleanup which may be appropriate; note that the final action is
executed whenever control finally leaves the for statement, whether normally or via an
escape statement.

SIGPLAN Notices | 53 February 1977

A for statement with an index type generator, of the form

for v in AnindexType loop LoopBody end loop
is equivalent to the block

begin var vv.AnindexType = AnlndexTypefirst
if v <{= AnindexType.last then
loop
const vi=vy
LoopBody
exit when vv=AnlndexType.last
vv.=AnlndexType.Succ(vv)
end loop
end if
end

If decreasing is present, interchange first and last, and replace Succ by Pred and <= by >= .

A for statement with a set expression generator, of the form
for v in SetExp loop LoopBody end loop
is equivalent to the statement

begin const se=SetExp

for v in SetFxpBaseType
loop
if v in se then LoopBody end if
end loop -

end

Note that if the generator imports no variables, the loop body and the generator are
independent, and interact only through the parameter values which are passed from the
generator to the body. Thus termination can be proved solely as a property of the generator.

Examples:

for /m in OneToOneHundred
loop if anArray(im)>max then max = anArray(Im) end if end loop
for ci decreasing in Color loop ((ci) end loop

9.2.4 Other uses of binding

If a record variable is to be used a number of times in field designators, it is often
convenient to bind a short identifier to it (see 7.4). Note that the binding is fixed on entry

to the scope.

Example:
begin bind d to dateTable(i+5);
if d.month = 12 then d.month := 1; d.year = d.year+1
else d.month = d.month+1
end if

SIGPLAN Notices 54 February 1977

end
is equivalent to

if dateTable(i+5).month = 12 then
dateTable(i+5).month = 1
dateTable(i+5).year = dateTable(i+5).year+l
else dateTable(i+5).month = dateTable(i+5).month+1
end if

and, also equivaient to

begin

bind d to dateTable (i+5)

bind (m to d.month, y to d.year) ,

if m=12 then m:= 1, y := y+1 else m := m+1 end if
end

SIGPLAN Notices 55 February 1977

16. Procedure declarations

“"But a name for an effect."
Cowper

A procedure declaration serves to define a part of a program, and to associate an identifier
with it S0 that it can be activated by procedure statements; a function declaration (see 11.)
plays a similar role. Collectively, procedures and functions are called routines.

A machine-code routine is exactly like an ordinary routine, except that its body is a
sequence of machine instructions, represented as manifest integer constants according to an
implementation-dependent convention. An implementation may define a more elaborate
syntax for code bodies. Machine code routines may only appear in machine-dependent
modules.

" on

procedureDeclaration = procedureHeading "=" routineDefinition
routineDefinition = importsClause preAssertion postAssertion routineBody
routineBody := begin<executabIeScope end identifier | forward | codeBlock
codeBlock = code manifestConstant { ;" manifestConstant } end identifier

The procedure heading specifies the identifier naming the procedure, and the formal
parameter identifiers (if any). The parameters are either constant or variable parameters
(see also 9.1.2).

The standard representation of a routine identifier must be defined by the implementation,
so that a routine can be the argument of an explicit type conversion. A linkage between a
machine code routine and a Euclid routine R can then be done by making a declaration of
the form

var Rlink : routineLink (at 100) := routineLink<<=procedure(R)

and Writing in the machine code body an appropriate jump to the routine address stored at
100. The type routinelink would of course have to be properly. declared in the program.

If the heading is prefixed by inline, this is a hint to the compiler that the procedure body
should be copied at each call. Such copying tends to result in faster execution, at the
expense of a larger object program. The meaning of the program is not changed by the
inline prefix. However, an inline routine may not have a forward body or import its own
name (i.e., may not be recursive).

procedureHeading ::= [inline] procedure identifier formalParameterList

formalParameterList == "(" formalSection { ",” formalSection } “)" | empty
formalSection = pervasive bindingCondition identifier { ", identifier }
™" typeDefinition
preAssertion = pre assertion ";" | empty
postAssertion == post assertion ";" | empty

A formal section without const, var, or readonly implies that its constituents are constants.

A type specification for a formal parameter may have actual parameters which are other
formal parameters; thus

SIGPLAN Notices 56 February 1977

procedure flm 0.1000, a array l..n of signedint) ..
is a legal declaration. This procedure might be called as follows:
begin var aa: array 1.200 of signedint; ... /{200, aa); ... end

Furthermore, in order to reduce the proliferation of parameters which would otherwise be
required, we make the following rule: the type of a formal parameter may be a
parameterized type with some or all of the actual parameters of the type replaced by the
symbol parameter. Each actual parameter of the type for which parameter appears is treated
as though it appeared as an additional formal parameter of the procedure, and the
appropriate actual parameter of the procedure is supplied in every call. Thus

type Ta(m unsignedInt)=array 1.n of signedint; procedure fla: Ta(parameter)) ...
is also legal and is equivalent to the previous declaration of f, except that all the calls on f
will be modified appropriately. The previous call would be written

.. flaa) ..
and would be modified to become

. f200, aa) ...

The use of the procedure identifier in a procedure statement within its declaration implies
recursive ~execution of the procedure.

Examples of procedure declarations:
type DataArray(m 1.256) = array l..n of signedint;

procedure TreeSori(var a: DataArray(parameter)) =
{This procedure is a version of Floyd's TreeSort algorlthm in CACM, 7 (1964), p.
701. TreeSort sorts the array a in ascending order}
post {(a in Pern(a’) and j in 1 .. an-1) -> a(j) <= a(j+1)}
begin type /ndex = alndexType
inline procedure Swap(il, i2: Index) =
imports (var a)
post {a in Perm(a’) and a(iD)=a'(i2) and a(i2)=a'(iD)}
begin
const ¢ := a(il)
a(il) = a(i2); a(i2) :=
end Swap;,

procedure SiftUp(low, high: Index) =
imports(var a)
pre {/ in 2%(Jow+l) .. high -> a(j) <= a(j div 2)}
post {/ in 2%low .. high -> (a(j) <= a(j div 2) and a in Perm{a’))}
begin var som index = low
loop const father := son
son = 2*father
return when son > high
if son<high and a(sony{a(son+l) then son := son+l end if
return when a(son) <= a{father)
Swap(son, father)
assert {j in 2*low .. son -> a(j) <= a(j div 2)}
end loop
end SiftUp

SIGPL.AN Notices 57 February 1977

for i decreasing in 1 .. (/ndex.last div 2)
loop
SiftUp{i, Indexlast)
assert {Sifted(2*i, Indexlast)}
end loop

for i decreasing in 1 .. Indexlast-1
loop
Swap(l, i+1)
SiftUp(1, D
end loop

end TreeSort

type DataArraySegmen(m, m 1..256) = array m..n of signedint

procedure ZeroArray(var a. DataArraySegment(parameter, parameter)) =
post {i in a.m .. a.n -> a(i)=0}

begin

for { in alndexType loop a(i) := O end loop

end ZeroArray

procedure Replace(var target. string(parameter),
first, lem: Stringlndex, source: string(parameter)) =
pre (target.length+source.length-len <= target.maxLength)
post { (iin 1.first-1 -> target.text(i) = target’.text(i)) and
(i in first .. firstvsourcelength-1 ->
target.text(i)=source.text(i- first+1)) and ,
(i in first+source.length .. target.length+source.length-len ->
target.text(i) = target'.text(i+len-source.length)) and
(target.length = target'.length + sourcelength-len)}
begin
const offset ;= source.length-len
bind (var gt to target.txt, var t! to target.length)
if offset > O then
for i decreasing in first+len .. tl loop tgi(i+offset) = tgi(i) end loop
elseif offset < 0 then
for i in first+len .. tl loop tgi(i+offset) = 1gi(i) end loop
end if
tl = tlvoffset
for i in 1 .. source.length loop tgi(first+i-1) := source.text(i) end loop
end Replace

procedure Append(var target: string(parameter), source: string(parameter)) =
pre (rarget.length+source.length <= target.maxLength) ,
post {(rarget.length = targei'.length + source.length) and

(i in Ll.targer’length => target.texi(i) = target’ .texi(i)) and

(i in 1 .. source.length -> target.text(i+target'.length)) = source.text(i))}

begin

for i in 1 .. source.length
loop
target.text(i+target.length) = source.texi(i)
end loop

target.length = target.length + source.length
end Append

SIGPLAN Notices 58 February 1977

11. Function declarations

“The Form remains, the Function never dies.”
Wordsworth

Function declarations serve to define parts of the program which compute a value. A
function is activated by the evaluation of a function designator (cf. 8.2) which is a
constituent of an expression.

"0

functionDeclaration == functionHeading =" routineDefinition

The function heading specifies the identifier naming the function, the formal parameters of
the function, and the type of the function.

functionHeading := [inline] function identifier formalParameterList
returns resultName typeDefinition

"0

resultName = identifier ™" | empty

Functions may return values of any assignable type (see 9.1.1). [If the result name is
supplied, then within the function declaration there must be one or more assignment
statements assigning a value to the result name, and the value of the result name when the
function returns determines the value of the function. If no result name is supplied, the
result must be supplied in every return statement. A return statement without any value is
supplied automatically just before the end of the body. A machine-code function returns its
value by an implementation-defined convention.

Occurrence of the function identifier in a function designator within its declaration implies
recursive execution of the function.

A function may not have variable parameters, or import anything var (although importing a
variable readonly is legal); hence, a function cannot have side effects, but must return the
same value whenever it is called with the same actual parameters.

Examples:
function FindMax(a: DataArraySegment(parameter, parameter))
returns index: signedint =
post {k in a.m .. a.n -> a(index) >= a(k)}
begin
index := a.m
for i in am+l .. an
loop
assert {k in a.m .. i-1 => a(index) >= a(k)}
if a(i) > a(index) then index = i end if
end loop
end FindMax

function Ged(m, m signedint) returns signedint =
imports(Ged)
begin if n=0 then return m else return Gcd(n, m mod n) end if end Ged

SIGPLAN Notices 59 February 1977

function Power(x: signedint, y. unsignedint) returns z: signedint =
begin var w: signedInt; var [unsignedint
wi=x =y z:=1
loop assert {z*(w**i) = x**y}
exit when / = 0
if Odd(i) then z = z*w end if
i:= idiv 2
W= ww
end loop
assert {z = x**y}
end Power

function Substr(s. string(parameter), first. Stringlndex, lem StringLength)
returns r. string(len) =
pre first+len <= s.length+l
post {(i in l.len -> r.texi(i) = s.atext(i+first-1)) and r.length = len}
begin
rdength = len
for i in 1.len loop r.text(i) := s.text(i+first-1) end loop
end Substr

function Catenate(sl: string(parameter), s2. string(parameter), size: StringLength)
returns r:. string(size) =
pre sl.length + s2.length <= size
post {(r.length = sl.length + s2.length) and
(i in 1l.sl.length => ritext(i) = sl.text(i)) and
(i in l.s2.dength => r.text(i+sl.length) = s2.texi(i))}
begin
rlength = sl.length + s2.length
for i in 1 .. sl.length loop r.text(i) = sl.text(i) end loop
for i in 1 .. s2.length loop r.text(i+si.Jength) = s2.text(i) end loop
end Catenate

SIGPLAN Notices 60 February 1977

12. Programs

"All are but parts of one stupendous whole.” ‘
Pope, An Essay on Man

A Euclid program consists of a sequence of module type declarations, possibly prefixed by
an include clause which causes additional text to be inserted into the program. The include
clause is a list of items, each of which names a file containing the text of a Euclid program;
the file is named by a literal string, according to an implementation~defined convention. If
from is present, only the named module types are included; otherwise all the declarations in
the file are included. If the same type identifier from the same file is included more than
once, duplicates are suppressed. If different files contain types with the same name,
however, an error resuits because of the normal Euclid rule which forbids redeclaration of
names.

An implementation may use some method other than the textual substitution described
above to provide this facility. In particular, it may take advantage of the fact that an
included file has already been compiled. Thus the structure of compilation units is intended
to facilitate separate compilation (although not to require it).

The report does not specify how the module types declared in programs are instantiated to
start a program.

program == compilationUnit

1oty 1

~compilationUnit = [includeClause ;"] typeDeclaration { " typeDeclaration }
includeClause 3= include includeltem { "} includeltem }
includeltem == [id { "," id } from] fileName

fiteName = literalString
Example:

type NumberTuble = module exports(Search, Delete, Inserr)
{This module implements a table of numbers, e.g., currently open accounts, as an
assoclative memory}

pervasive const tableSize 1= 763
pervasive type Tablelndex = 1 .. tableSize

pervasive type CyclicScan(item: signedint) = {a generator for a for loop}

module exports (Next, value, stop)

const start := (item mod tableSize)+1

var value: Tablelndex = start

var stop. Boolean = False

procedure Next =
imports(var value, start, var stop)
begin
if value = tableSize then value = 1
else value ;= value+l end if
stop = {value notz start)
end Next

end CyclicScan

SIGPLAN Notices 61 February 1977

type State = (fresh, full, deleted)

type TableEntry(flag. State) =
record
case flag of
Sull => var key: signedInt end full
otherwise =>
end case
end TableEntry

var table: array Tablelndex of TableEntry{any)

function Search(key: signedInt) returns Boolean =
imports(table)
begin
for i in CyclicScan(key)
loop
with entry := table(i) case flag of
fresh => return False end fresh
full =>
return True when entry.key = key;
end full;
otherwise =>
end case;
end loop;
return False;
end Search;

procedure Delete(key: signedint) =
imports(var rable)
hegin ,
const deletedEntry: TableEniry(deleted) = ();
for i in CyclicScan(key)

loop
with entry = table(i) case flag of
full =>
if entry.key = key then
table(i) = deleted Entry,
return
end if
end full

fresh => return end fresh
otherwise =>
end case
end loop
cnd Delete
procedure [nseri(key: signedint) =
imports(var rable, Search)

begin
return when Search{key) {if already there};

for i in CyclicScan(key)
loop
case rable(iy.flug of

SIGPLAN Notices 62

loop
case rable(i).flag of
fresh, deleted =>
var . TableEntry{full)

tkey = key
table(i) .= t
end fresh
otherwise =>
end case
end loop
assert False {table will never be full}
end /nsert
const freshEntry. TableEntry(fresh) = ()
initially
begin

for i in tableindexType loop table(i) = freshEntry end loop

end
end NumberTable

February 1977

SIGPLAN Notices 63 February 1977

13. A standard for implementation and program interchange

“That's not a regular rule: You invented it just now.'
‘It's the oldest rule in the book,' said the King.
“Then it ought to be Number One,’ said Alice.”
' Alice in Wonderland, Ch. 12

One motivation for the development of Euclid was the need for a powerful and flexible
language that could be reasonably efficiently implemented on most computers. Its features
are defined without reference to any particular machine in order to facilitate the
interchange of programs. To establish a reasonable minimum standard for Euclid
implementations, the following requirements are imposed on every implementation.

1. Word symbols, such as begin, end, etc., may be written as a sequence of letters
{without surrounding escape characters). They may not be used as identifiers.
An implementation may also allow such symbols to be written in other ways (e.g.
in boldface), provided there is a straightforward transformation into the
representation as a sequence of letters.

2. Blanks, ends of lines, and comments are defined as separators. An arbitrary
number of separators may occur between any two consecutive Euclid symbols,
with the following restriction: no separators may occur within identifiers,
numbers, and word symbols.

3. At least one separator must occur between any pair of consecutive identifiers,
numbers, or word symbols.

4. The implementation may set limits on the size and complexity of the source
program. However, these limits must be chosen from the following list, and
must not be more restrictive than indicated below. An implementation should
not reject a program for exceeding some limit not on this list; it may accept
programs which exceed any of these limits.

a) The range of unsignedint (must include 0.2'6-1). The range of
signedint (must include -21541.215-1). It is recommended, but not
required, that larger subranges of integer than these be permitted, say up
t0 0.232-1 and -231+1.231-1.

b) The maximum number of elements in the base type of a set (at least 16).
¢) Depth of nesting of scopes (at least 31).

d) Depth of nesting of parentheses in an expression (at least 7). Number
of basic symbols in an expression (at least 50).

e) The total number of identifiers accessible in a scope (at least 200). The
total number of identifiers in the program (at least 1000).

f) The number of non-compound statements and declaration parts in the
source program (at least 2000).

SIGPLAN Notices 64 February 1977

g) The maximum number of characters in an identifier {at least 50).

h) The value of stringMaxLength (at least 255).

13.1 Representation of special symbols

The preferred representations of special symbols which are not words, in the 1BM PL/1
60-character set, and in the Model 33 Teletype set, are as follows:

Special symbo! PL/1 Teletype

{ & *
} *) *)
t @ 1
break \

Programs can be converted from one representation to another by a finite-state algorithm
which recognizes each special symbol and identifier in the source representation, and
outputs the corresponding symbol in the target representation. During this conversion,
break characters can be supplied arbitrarily, The recommended strategy for break characters
is as follows:

If neither representation has lower case, or both do, break characters should be
preserved.

If only the source has lower case, a break character shouid be inserted between a
lower case letter and a following upper case letter in an identifier.

If only the target has lower case, all letters should be converted to lower case, except
that when a letter follows a break character, the break character should be dropped
and the letter left in upper case.

13.2 Standard format for programs

It is strongly recommended that an implementation include an option to produce a version
of the source program in a standard format. The recommended standard is:

One level of indentation for each unmatched hegin, record, module, loop, if, or case.
The bracket and its corresponding end should also be indented, except in the case of
if .. elseif .. else, and case. The for clause should not be indented. Indentation
should be omitted if the entire compound statement or declaration will fit on one

line. Thus
a:=3; al = 31; a2 = 32
begin
b= 4
end

c:=15

if b=4 then
a=0

else

SIGPLAN Notices 65 February 1977

a =7

end if

if b=4 then a = 6 else a := 7 end if
loop

end loop
for i in 0.5
loop

end loop

A second level of indentation for the scope in each case element. Thus

case a of

3 =>
OutputLine(a, b, 100)
InputLine(a, b, 100)
end 3

4 =>
OutputLine(a, b, 200)
InputLine(a, b, 200)
end 4

end case

If a statement is too long for one line, it should be continued on subsequent lines
with a small amount of indentation (one or two spaces).

Several short statements may be put on the same line.
Semicolons should be omitted at the ends of lines, if they are supplied automatically
by the compiler, as they nearly always are (see 3.1).

13.3 Annotation

It is strongly recommended that an implementation include an option to produce an

annotated listing of the source program, in which all identifiers automatically imported into
a closed scope and the formal parameter declarations corresponding to uses of parameter are

noted. -

SIGPLAN Notices 66 February 1977

14. Implementation notes

"‘The horror of that moment, The King went on, 'l shall never, never forget!’
'You will, though,' the Queen said, 'if you don't make a memorandum of it.""
Through the Looking-Glass, Ch. 1

This section discusses implementation techniques for parts of the Euclid language which are
relatively new or tricky. Of course, no implementation is required to use these techniques.

14.1 Identifiers

Identifiers may vary in capitalization, and in the presence or absence of break characters.
The Euclid rule is that each time an identifier is used, it must be written the same way it
was declared (see 3.). This rule can be efficiently enforced by normally looking up the
identifier exactly as it is written, and making the more expensive comparison which ignores
break characters and capitalization only when adding an identifier to the symbol table. If a
hash table is used, the hashing algorithm should probably be chosen to map equivalent
identifiers into the same hash code.

An alternative implementation is to store the identifier in a standard case, with break
characters removed, and to append to it the additional information needed to keep track of
the case of each letter, and the presence of break characters.

14.2 Parsing

Euclid has been designed to be amenable to LALR parsing [Aho and Johnson 74]. The
syntax presented in the body of the report is not LALR, since it was chosen primarily to aid
the reader and facilitate the exposition, but a LALR grammar which generates the same
language can be obtained from the System Development Corporation (see Preface).

14.3 One-pass translation

Euclid has been designed to permit one-pass translation. To this end, identifiers must be
declared before they are used. Recursive routines and types may break this rule by using
forward for the definition, but all the type information must still be present before use.

14.4 Routine parameters

Constant parameters can be passed either by copying the value, or by reference, ie., by
passing the address of a variable containing the value, unless the variable overlaps some
variable accessible in the routine, in which case the parameter must be passed by copying.
The same test can be used to detect this overlap which is required to detect the overlap of
two variables; it depends on the definition of overlap given in section 7. Note that
imported variables must be treated exactly like variable parameters for this test.

Variable parameters can be passed either by passing the address of the variable, or by
copying the value on entry to the routine, and copying it back on exit; the latter copying is
unnecessary if it is readonly. The absence of overlap means that this doubie copying will
always work. If a variable is passed by double copying, then a constant parameter whose

SIGPLAN Notices 67 February 1977

value is an overlapping variable can safely be passed by reference; this might be desirable if
the constant is much larger than the variable.

14.5 Routines in modules

If a routine R is declared in a module M, and R imports a non-manifest component ¢ of M,
then R must obtain access to ¢ when it is called. The call must take the form m.R(...), where
m is a variable or constant of type M. This may be done in two ways:

By passing m (presumably by reference), and treating m as a record within R; ¢
would then be accessed by its known position relative to the address of m.

By passing ¢ explicitly. This might be preferable if it is the only such component.

If R imports only manifest constants, everything can be done at compile-time. If it imports
any non-manifest component ¢, however, ¢ must in general be passed as a parameter, since it
could be different for different module variables. There is one exception: if R imports only
constants which depend only on constants declared in module types for which only one
variable is ever created, then the references to these constants can be compiled into R, and
they need not be passed as parameters.

14.6 Constant components of records and modules

The same observations apply in general to constant compoiients. Except under the
conditions described above, a constant component or parameler must be stored in each
variable, since it may be different from one variable to another. Of course, if the
component or parameter is never referenced, except during initialization, then it need not be
stored.

14.7 Finalization

If a scope declares a module variable which includes a finalization statement, then code
must be executed whenever the scope is exited which performs the finalization. This might
be done inline, or by calling a routine. The same is true whenever a Free procedure is
executed to free such a variable.

Since this machinery must be present anyway, it can be used to allow variables declared in
the scope, whose size is not manifest, to be allocated someplace other than in the frame of
the routine containing the scope. The finalization code for the scope would then be
expanded to include code for freeing the storage used by such variables. Whether this
technique is worthwhile depends on the allocation strategy used for frames.

14.8 Inline code

In general, it is highly desirable for an implementation to consider the use of inline code
for all short routine bodies, even if the program has not explicitly declared them inline. It
is quite common for such bodies to be shorter than their calling sequences, especially since
they can be subjected to normal optimization once they have been inserted inline.

SIGPLAN Notices 68 February 1977

14.9 Reference counts

There is an important special case in which it is possible to avoid incrementing and
decrementing reference counts. Suppose that the program has a declaration
type C = counted collection of ...

We say that a scope S ts C-conservative if it contains no assignments to variables of type +C
which are not local to S, and if furthermore any routines which S calls are also
C-conservative. - Within .S it is not necessary to update reference counts for variables in C,
since no variable in C can be freed in S, and every such variable will have the same
reference count on exit from S that it had on entry to S. This idea can be extended to
routines which make assignments to variable parameters of type tC.

14.10 Representation of pointers

It is possible to take advantage of the fact that pointers are strictly segregated by collection,
to make the representation of a pointer depend on the collection it is in. For instance, a
pointer could be relative to some base address. Of course, such a representation cannot be
used in a sensitive context.

14.11 Parameterized types

Suppose T is a parameterized type. With two exceptions, it is not necessary to store the
parameters of a variable of type 7 with the variable. These exceptions (see 6.3) are

T has an actual parameter any; =~ -
the variable is in a collection whose object type contains unknown,

In all other cases, the values of the parameters are known from the declaration. If the
declaration contains parameter, it must be in a formal parameter list, and the value can be
passed as an additional formal (see 10.). If the type is exported from a module, it may
import components of the module, in which case the remarks of 14.5 are applicable.

These considerations are especially relevant for variant records and arrays. A variant record
is normally used in one of three ways:

a) To express the uniformity of several different record structures, even though the
particular structure in use is always manifest from the declarations.

b) When the variant is expected to change during execution. A variable of this kind
must be declared with any, and the tag must be stored in the record. Furthermore,
enough space must be allocated for the largest of the possible variants.

¢) When the variable is dynamic, and the variant is fixed at the time the variable is
created. A collection of such variables must be declared with unknown, and the tag
must be stored with each variable, or with each pointer.

The third case, involving unknown, is also appropriate for arrays. For example, there might
be a collection of strings of widely varying length, all of which should be treated uniformly.

- When one of the bounds of an array is a parameter, the size of the resulting type is not
known at compile-time; such a type is called length-unresolved. I more than one
length-unresolved variable is declared in a record or routine, it is not possible to determine

SIGPLAN Notices 69 February 1977

the position of every such variable at compile-time. This situation can be dealt with by
constructing pointers to all the length-unresolved components except the first one at the
time the record variable or routine instance is created, and referring to them indirectly
through these pointers.

SIGPLAN Notices 70 February 1977

References
Aho, A.V. and Johnson, S.C, "LR parsing,” Computing Surveys 6, 2 (June 1974).

Ambler, A, et al, "Gypsy: A language for specification and implementation of verifiable
programs,” University of Texas, Austin, Texas, to appear (1976).

Clark, B.L. and Ham, F.J.B.,, "The Project SUE System Language Reference Manual,"
University of Toronto, Computer Systems Research Group Technical Report CSRG-42
(September 1974).

Clark, B.L. and Horning, J.J., "Reflections on a language designed to write an operating
system," SIGPLAN Notices 8, 9 (September 1973).

Geschke, C.M. and Mitchell, J.G,, "On the problem of uniform references to data structures,”
IEEE Trans. SE-1, 2 (June 1975).

Hoare, C.A.R., "Proof of correctness of data representations,” Acta Informatica 1, 271-281
(1972).

Hoare, C.A.R., "Hints on programming language design,"” Stanford University, Computer
Science Department, Technical Report STAN-CS-73-403 (December 1973).

Ichbiah, J. D. et al,, The System Implementation Language LIS, ClI, 638 route de Versailles,
78430 Louveciennes, France (December 1974).

Jensen, K. and Wirth, N, Pascal User Manual and Report, 2nd edition, Springer-Verlag;
1975.

Liskov, B. and Zilles, S., "Programming with abstract data types,” SIGPLAN Notices 9, 4
(April 1974).

Liskov, B. "An introduction to CLU," Computation Structures Group Memo 136, MIT
(February 1976).

London, R.L. et al., "Proof rules for the programming language Euclid,” to appear (1977).

Richards, M, "BCPL: A tool for compiler writing and structured programming,” AFIPS
Conf. Proc 34 (1969 SICC).

Thompson, D.H., "Base + Builder language definition,” Technical Note 4, Computer Systems
Research Group, University of Toronto (March 1976).

Wirth, N,, "The programming language Pascal,” Acta Informatica t (1971).

Wirth, N., Modula: A language for modular multiprogramming, Institut fur Informatik,
ETH, CH 8092 Zurich (March 1976).

Wulf, W, London, R. L. and Shaw, M., "Abstraction and verification in Alphard”, New
Directions in Algorithmic Languages-1975, Stephen A. Schuman, ed., IRIA (1976).

SIGPLAN Notices 71 February 1977

Appendix A. Collected syntax

The syntax of Euclid, as presented in this report, is collected below for convenient
reference. The numbers in the left margin are the numbers of the sections in which the
following text appears.

3.

letter ::= "AH I HB'I I "C'l I "D" I I'E'l I l'F" I "G" I "H" I Illl' l IIJII | IIKI' I "L" I I|M|I I
::N:l I"HOH l H"PI! '! "Qll I IIRI' I "S" I IITI" l "U" I "V" I "W" I "Xl' I !IY" | "Z" I "a'l I
b" I' C:" I I'd I, e" I "f" I "gll I I'h" I l'lll I V'j'l I I'le I Illll I l'm'l I lInQI I "O" I I'p|' I "q'I
| Yr! I S" I "t' I "u" l llv" I "w" I "X" l ﬂy" I "Z"

OCta]Dlglt ::= "O" l "1" l uzn l n3n I n4n I n5u I "6" l "7"

digit = octalDigit | "8" | "9"

heXDigit ::= digit I "A" I "B" I "C" I ilDIl I "E" I V'F"

breakChar ::= <some implementation-dependent character not a letter or digit>

specialSymbol :=
':+"l I l"_'" | LiF 31 ' "=" I |l<" I ")" I "<=" I ">=" I VI_>" | l'(l! I ")" |
1{' I I}' I ":=" I "." l ll’ll I ‘I;H I ":H I " ot " | "T" I I|=>VI I ll<<=" I I|$l' I "#" I
wordSymbol

wordSymbol ::=

abstraction | aligned | all | and | any | array | assert | at | begin | bind | bits | bound
| case | checked | code | collection | const | counted.}-decreasing | dependent |
discriminating | div |.else | elseif | end | exit | exports | finally | for | forward |
from | function | if | imports | in | include | initially | inline | invariant | loop |
machine | mod | module | not | of | on | or | otherwise | packed | parameter |
pervasive | post | pre | procedure | readonly | record | return | returns | set | then |
to | type | unknown | var | when | with | xor

identifier z= letter { letterOrDigit }
letterOrDigit == letter | digit | breakChar

unsignedNumber == digit { digit } |
octalDigit { octalDigit } "#8" |
digit { hexDigit } "#16"

literalString == " ' " { extendedCharacter } " ""
extendedCharacter == character | "$" extension

extension == digit digit digit | "S" | "T" | "N" | "§" | e
literalChar == "$" extendedCharacter

literalConstant = unsignedNumber | literalString | literalChar | enumerated Valueld
manifestConstant == literalConstant | manifestConstantExpression
manifestConstantExpression = expression '

SIGPLAN Notices 72 February 1977

6.
type ;= simpleType | structuredType | pointerType | parameterizedTypeReference
typeDeclaration = type typeldentifier formalParameterList =
preAssertion typeDefinition
typeldentifier = identifier
typeDefinition == type | forward
6.1
simpleType == enumeratedType | standardSimpleType | subrangeType |
derivedSimpleType
derivedSimpleType == [containingVariable "."] simpleTypeldentifier
simpleTypeldentifier = identifier
6.1.1
enumeratedType == "(” enumeratedValueld { "," enumeratedValueld })"
enumeratedValueld = identifier
613
subrangeType == constantSum "." constantSum
constantSum = sum
6.2
structuredType == [packed] unpackedStructuredType | derivedStructuredType
unpackedStructuredType = arrayType | recordType | moduleType |
mdRecordType | setType | collectionType
derivedStructuredType := [containingVariable "."] structuredTypeldentifier
structuredTypeldentifier = identifier
6.2.1
arrayType == array indexType of componentType
indexType == simpleType
componentType ::= type
6.2.2

recordType = record fieldList endRecord
endRecord := end record | end identifier

fieldList == [recordDeclaration [""]] [variantPart][™"]
recordDeclaration = pervasive recordDeclarationPart
{ """ pervasive recordDeclarationPart }

recordDeclarationPart = constantDeclaration | variableDeclaration

pervasive ©= pervasive | empty

variantPart ;= case tag of variant { ;" variant } [otherwiseVariant J [)"] end case
variant == caseLabclbhist
caseLabellList == caseLabel { "," caseLabel }

=>" fieldList end caselabel | empty

SIGPLAN Notices 73 February 1977

caseLabel := manifestConstant | subrangeType
tag 1= constant
otherwiseVariant = otherwise "=>" fieldList

6.2.3
moduleType == [machine dependent] module [identifier]
importClause exportClause moduleBody endModule
endModule = end module | end identifier
importClause = imports "(" importitem { "," importltem } ")"
importitem = pervasive bindingCondition identifier | typeConverter
exportClause = exports exportList [";"] | empty
exportList == "(" exportltem { "," exportitem} ")"
exportltem = bindingCondition identifier [with exportList]| ":="] "=" |
subrangeType
bindingCondition = const | readonly | var | empty
moduleBody ::= checkedClause declaration [™"] initialAction invariant finalAction
checkedClause := checked | not checked | empty
declaration == empty | pervasive declarationPart { ";" pervasive declarationPart }
declarationPart ::= constantDeclaration | variableDeclaration | typeDeclaration |
procedureDeclaration | functionDeclaration
initialAction == initially routineDefinition ™" | empty
invariant = [abstraction functionDeclaration] invariant assertion ";" | empty
assertion = expression | empty
finalAction ::= finally routineDefinition ™" | empty
6.2.4
mdRecordType = machine dependent record [alignmentClause]
mdDeclarationPart { ;" mdDeclarationPart } endRecord
mdDeclarationPart ;= constantDeclaration |
var identifier "(" at manifestConstant [bits simpleType] ")"
" typeDefinition [initialization]
alignmentClause = aligned mod manifestConstant
6.2.5
setType u= set of baseType
baseType == simpleType
6.2.6

collectionType = [counted [manifestConstant]] collection of
objectType [in zone]

objectType == type

zone = variable

pointerType = "1" collectionVariable
collectionVariable = variable

SIGPLAN Notices 74 February 1977

6.3

"t

parameterizedTypeReference = [containingVariable "."] typeldentifier
"(" typeActualParameter
{)" typeActualParameter } ")"

typeActualParameter ;= expression | any | unknown | parameter

6.5
typeConverter = targetType "<{<{="
targetType = typeldentifier

sourceType = typeldentifier | procedure | function

sourceType

constant = expression
constantDeclaration = const idList [™" typeDefinition] ":=" expression |

TR ",o_n

const idList ™" typeDefinition ":=" structuredConstant
idList == identifier { "," identifier }
structuredConstant = "(" [constantitem { ",” constantltem }] ")"
constantltem = constant | structuredConstant

variableDeclaration = var variableDeclarer |

" bind variableBinding | bind "(" bindList)"
bindList = variableBinding {")" variableBinding}
variableBinding = varBindingCondition identifier to variable
varBindingCondition = readonly | var | empty
variableDeclarer = idList [fixedAddress] ™" typeDefinition [initialization]
fixedAddress z= "(" at manifestConstant ")"
initialization == "i=" expression
variable ::= entireVariable | componentVariable

7.1
entireVariable == variableldentifier
variableldentifier = identifier

7.2
componentVariable := indexedVariable | fieldDesignator | referencedVariable
baseVariable 1= variable

7.2.1
indexedVariable ;= arrayVariable "(" expression)"
arrayVariable = baseVariable

7.2.2
ficldDesignator = containingVariable "." fieldldentifier
containingVariable = baseVariable

SIGPLAN Notices 75 February 1977

fieldldentifier ;= identifier

7.2.3
referencedVariable = collectionVariable "(" pointer ")" | pointer "t"
collectionVariable = baseVariable
pointer = factor

factor = variable | literalConstant | constantldentifier | functionDesignator | set |
"(" expression ")" | "-" factor

set == setTypeldentifier "(" elementList ")"

elementList = element { ", element } | all | empty

element = expression | simpleType

term ;= factor | term multiplyingOperator factor

sum := term | sum addingOperator term

relation == sum | sum relationalOperator sum | sum [not] in indexType
negation := relation | not relation

conjunction := negation | conjunction and negation

disjunction := conjunction | disjunction or conjunction

expression := disjunction. | disjunction "->" disjunctionv@

8.1.1
multiplyingOperator == "*" | div | mod

8.1.2

"o

addingOperator == "+" | "-" | xor

8.1.3

"o

relationalOperator = "=" | not "=" | "<" | "<=" | O ">=" | in | not in

8.2

functionDesignator ::= function ["(" expression { ", expression })"]|
typeConverter "(" expression ")"

function = [containingVariable "."] functionldentifier
functionldentifier == identifier

statement == simpleStatement | structuredStatement

9.1

simpleStatement = assignmentStatement | procedureStatement | escapeStatement |
assertStatement | emptyStatement

emptyStatement o= empty

SIGPLAN Notices 76 February 1977

9.11

" ”

assignmentStatement = variable "™=" expression

9.1.2
procedureStatement = procedure ["(" expression { "," expression } ")"]
procedure == [containingVariable "."] procedureldentifier

procedureldentifier ::= identifier

913
escapeStatement := escapeBody [when expression]
escapeBody := exit | return | return expression

9.14
assertStatement = assert assertion

9.2

structuredStatement = compoundStatement | block |
conditionalStatement | repetitiveStatement

9.2.1
compoundStatement = statement { ™" statement }
block == begin executableScope end

executableScope == checkedClause [declaration ™"] statement

92.2
conditionalStatement = ifStatement | caseStatement

ifStatement = if expression then executableScope elseifClause
[else executableScope] end if

elseifClause = { elseif expression then executableScope }
caseStatement = simpleCase | discriminatingCase
simpleCase = case expression of caséBody end case
discriminatingCase := with object case identifier of caseBody end case
caseBody := caseListElement { ";" caseListElement } otherwiseElement [;]
caseListElement := caseLabellist "=>" executableScope end caseLabel | empty
otherwiscElement = ";" otherwise "=>" executableScope | empty
object == [const] parameter "=" expression |

varBindingCondition parameter bound to variable
parameter = identifier

1"

"

9.2.3
repetitiveStatement = loopStatement | forStatement
loopStatement ;= loop executableScope end loop

IR

forStatement == for parameter generator [™"] loop executableScope end loop

SIGPLAN Notices 77 February 1977

10.

11.

12.

" generator = in moduleType | [decreasing] in indexType | in setExpression

setExpression 1= expression

procedureDeclaration == procedureHeading "=" routineDefinition
routineDefinition u= importsClause preAssertion postAssertion routineBody
routineBody = begin scope end identifier | forward | codeBlock
codeBlock 1= code manifestConstant { ;" manifestConstant } end identifier
procedureHeading == [inline] procedure identifier formalParameterList
formalParameterList == “(" formalSection { "," formalSection } ")" | empty
formalSection = pervasive bindingCondition identifier { ".,” identifier }

"" typeDefinition
preAssertion = pre assertion ";" | empty
postAssertion ;= post assertion ";" | empty
functionDeclaration == functionHeading "=" routineDefinition
functionHeading == [inline] function identifier formalParameterList

returns resultName typeDefinition
| empty

[T}
.

resultName = identifier

program = compilationUnit

compilationUnit == [includeClause ;"] typeDeclaration {";" typeDeclaration}
includeClause := include includeltem {";" includeltem}

includeltem == [id {",” id} from] fileName

fileName = literalString

SIGPLAN Notices 78 February 1977

Appendix B. Zone Example

The following type implements zones for allocating fixed-size cells from a free storage list.
It makes critical use of unchecked type conversions, of the built-in type, AddressType, of
StorageUnit.Address, and of machine-dependent records.

type ListZone(pervasive nCells, cellSize, celldlignment: unsignedint) =
machine dependent module exports(nfreeCells)
{this module provides a zone for allocating and deallocating list
cells of size cellSize}

{definition needed by the compiler to process this module as a zone}
type AllocUnit =machine dependent record aligned mod cellAlignment
var (heStorage (at 0): StorageUnit
var rheRest (at 1): array l.cellSize-1 of StorageUnit
end AllocUnit

var storageBlocks: collection of AllocUnit
type SBPtr = tstorageBlocks

type FreeCell = forward
var cellCollection: collection of FreeCell
type CellPtr = rcellCollection

type FreeCell =
machine dependent record aligned mod celldlignment
var fink (at Q). Cellltr
var theRest (at CellPirsize):
array l.cellSize-CellPirsize of StorageUnit
end FreeCell

var freelistHead: CellPtr
var nkreeCells: 0.nCells = nCells

procedure Allocate(s, « unsignedint, var p: SBPtr) =
imperts (var nfreeCells, SBPt<<=CellPtr, storageBlocks,
var freelistHead, cellCollection)
pre s=cellSize and a=cellAlignment, post nFreeCells in 0.nCells-1
hegin
if nFreeCells = 0 then
p = storagelBlocks.nil
return
end if
nlkreeCells = nlreeCells-1
p o= SBPr=CellPir(freeListH ead)
JreelistHead = freelistHeadr link
end Allocate
procedure Deallocute(p: SBEPir, s unsigneding) =
Shmaorty (vor nfrecCells, Cellltr, CellPird<l=85BPtr,
vary freclistHead, var cellCollection, storage Blocks)
pre s = cellSize and
nlreeCells i O.aCells~1 wnd p neis storageBlock s.anil
post freelisiHead nots collCollectionnil and néreeCells in 1.onCells
Bovin
var ¢p: CellPtr = {CellPrrd<=85BPir(p))
cpt.dink = freelistHead; freelistHead = cp
nlrecCells = nlreeCells+1
end Deallocate

SIGPLAN Notices 79 ' February 1977

var space: machine dependent record aligned mod cellAlignment
var block (at 0): array 0..nCells*cellSize-1 of StorageUnit
end space

initially {set up the free list}
imports(space, CellPtr, CellPtri<=AddressType,
var freeListHead, var cellCollection)
post freelistHead not= cellCollectionnil
begin

function MakeCellPtr(i: space.block IndexType) returns CellPtr =
i}mpprts(Ce[lPtr(<=Address’l"ype) pre cellSize >= CellPirsize
egin
const a: AddressType := StorageUnit.Address(space.block)
return (Cell Ptr<<{=AddressType(a+i*cellSize))
end MakeCellPtr

var cit CellPtr = MakeCell Ptr(0)
freelistHead := c¢i {pointer to first FreeCell}
for i in 0..nCells-2
loop const cNext := MakeCell Ptr(i+1)
cit.link = cNext

ci = cNext
end loop
cit.link = cellCollectionnil {mark the end of the free list}

end
invariant nfreeCells in 0..nCells

finally {all cells should be free}
imports (nfreeCells, FreelistHead, cellCollection)
pre nkreeCells=nCells and freeListHead wnet= cellCollectionnil
begin
end
end ListZone

