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Abstract
Statistical network models describing multivariate dependency structures in psychological data have gained
increasing popularity. Such comparably novel statistical techniques require specific guidelines to make
them accessible to the research community. So far, researchers have provided tutorials guiding the estima-
tion of networks and their accuracy. However, there is currently little guidance in determining what parts
of the analyses and results should be documented in a scientific report. A lack of such reporting standards
may foster researcher degrees of freedom and could provide fertile ground for questionable reporting prac-
tices. Here, we introduce reporting standards for network analyses in cross-sectional data, along with a tuto-
rial and two examples. The presented guidelines are aimed at researchers as well as the broader scientific
community, such as reviewers and journal editors evaluating scientific work. We conclude by discussing
how the network literature specifically can benefit from such guidelines for reporting and transparency.

Translational Abstract
In recent years, network models have become increasingly popular in the field of psychology. Such compa-
rably novel statistical techniques require specific guidelines to make them accessible to the research com-
munity. So far, researchers have provided tutorials guiding how network analysis can be applied to
psychological data. However, there is currently little guidance in determining what parts of the analyses
and results should be documented in a scientific report. A lack of such reporting standards may result in
researchers being confronted with too much choice in reporting their results, which in turn might provide
fertile ground for questionable reporting practices. Here, we introduce reporting standards for network anal-
yses in cross-sectional data, along with a tutorial and two examples. The presented guidelines are aimed at
researchers as well as the broader scientific community, such as reviewers and journal editors evaluating
scientific work. We conclude by discussing how the network literature specifically can benefit from such
guidelines for reporting and transparency.

Keywords: network analysis, reporting standards, reproducibility

Over the past decade, there has been a rapid increase in empiri-
cal contributions applying network analytic methods across many
psychological disciplines. The increasing interest in networks

(Barabási, 2012; Watts & Strogatz, 1998) led to empirical applica-
tions in various fields of psychology (Robinaugh et al., 2019) and
resulted in a large number of special issues in journals such as
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Psychometrika, The European Journal of Personality, The Euro-
pean Journal of Psychological Assessment, BMC Medicine, and
The Journal of Traumatic Stress. However, there is a lack of clear
guidelines on how to report psychological network analyses. The
present article introduces such guidelines, aiming to enable
researchers to identify all elements of their analyses that should be
included in a scientific report. We argue that reporting guidelines
can facilitate the evaluation of network contributions by the
broader scientific community, including reviewers, editors, jour-
nalists, and science writers.

Questionable Reporting Practices and the Benefit of
Reporting Standards

While there are several tutorials on estimating networks from
psychological data (Costantini et al., 2015; Epskamp, Borsboom,
et al., 2018; Epskamp & Fried, 2018; Haslbeck, Bringmann, &
Waldorp, 2021; Jones et al., 2018; Williams & Mulder, 2020), as
of yet, there is no guidance for how researchers should report the
results of network analyses in a scientific paper. There are general
reporting standards for statistical analyses, such as the Journal Ar-
ticle Reporting Standards for Quantitative Research in Psychology
published by the APA Publications and Communications Board
task Force (Appelbaum et al., 2018). However, specific types of
multivariate analyses contain explicit elements that go beyond the
scope of generic reporting standards (Hoyle & Isherwood, 2013).
For this reason, more tailored reporting standards do exist for other
types of multivariate analyses, such as structural equation model-
ing (Schreiber et al., 2006). At present, however, there are no
explicated standards on how to report the results of network
analyses.
A lack of clear reporting standards, in turn, may hinder rigorous

scientific communication: Wigboldus and Dotsch (2016) highlight
that a large part of the degrees of freedom in empirical research
resulting in questionable research practices are in fact gray areas
that pertain to questionable reporting practices. To this end, objec-
tive reporting standards for network analysis are an important con-
tribution toward making empirical network studies more rigorous.
Because such norms are not yet established in the network litera-
ture, the goal of the present article is to explicate what we refer to
as “minimal shared norms” in reporting psychological network
analyses. By making these shared norms explicit, they can be
extended and debated, and they will increase the replicability and
reproducibility of network analysis, both of which will move the
field of network psychometrics forward.

A Brief Introduction to Psychological Network Analysis

While a detailed introduction to psychological network anal-
ysis is beyond the scope of this article, in this section we briefly
introduce this methodology as to keep the article self-con-
tained. A more extensive primer on network analyses in psy-
chological science has recently been published (Borsboom et
al., 2021), and a textbook dedicated to the emerging field of
network psychometrics is currently in press (Isvoranu et al., in
press). In addition, we include a glossary that provides an over-
view over the most important network-specific concepts dis-
cussed in this article.

A network is any system which can be represented with nodes
(circles), which are connected by edges (lines) denoting a strength
of connection between the nodes. In psychological networks,
nodes represent observed variables, and edges are used to repre-
sent the strength of associations between two variables, typically
after controlling for all other variables in the dataset. This type of
model is termed a Markov Random Field, which includes com-
monly used network models depending on the data used: Gaussian
graphical models (GGM)—also termed partial correlation net-
works—for continuous data (Epskamp, Waldorp, et al., 2018;
Lauritzen, 1996), Ising models for binary data (Epskamp, Waldorp,
et al., 2018; Ising, 1925; Marsman et al., 2018; van Borkulo et al.,
2014), and mixed graphical models (MGM) for mixed data (Hasl-
beck & Waldorp, 2020). Psychological networks can be estimated
with (penalized) maximum likelihood estimation (Epskamp & Fried,
2018), Bayesian estimation (Williams & Mulder, 2020), or pseudoli-
kelihood estimation (i.e., nodewise regression) where each variable is
regressed on all other variables, after which results are combined to
form a network (Epskamp, Maris, et al., 2018; Haslbeck & Waldorp,
2020; Van Borkulo et al., 2014).

As is the case for statistical models in general, a crucial aspect
of psychological network analysis is that estimated models are
subject to sampling variation. As a result, edges may falsely be
included while not being present in the true model, and differen-
ces in edge weights may be strong merely due to chance. To
address such chance fluctuations, psychological network analy-
ses should always include both model selection methods and
checks for stability and accuracy. Model selection algorithms are
diverse but generally fall under one of three categories (Blanken
et al., in press): (a) pruning/thresholding methods, which merely
remove or hide edges that do not meet some criterion as defined
by a classical statistical significance level or a lower Bayes fac-
tor; (b) model search strategies, which use extensive model
search methods to iteratively arrive at an optimal network struc-
ture, typically informed by an information criterion; and (c) reg-
ularization methods, which use penalized maximum likelihood
estimation to shrink parameters to zero, potentially removing
them from the network. Each of these strategies has its pros and
cons (Isvoranu & Epskamp, 2021). For example, regularization
techniques (e.g., Meinshausen & Bühlmann, 2006; Ravikumar et
al., 2010; Tibshirani, 1996) may work well in retrieving an inter-
pretable structure at low sample sizes, but may also feature a
lower specificity rate than desired (Williams et al., 2019). Fur-
thermore, in such circumstances, one must be careful to interpret
the sparsity of the network, as this is, at least in part, a conse-
quence of the estimation method used (Epskamp, Kruis, Mars-
man, 2017). Checks for stability and accuracy usually involve
the use of data-driven resampling methods such as bootstrapping
(Epskamp, Borsboom, Fried, 2018) or Bayesian sampling meth-
ods (Williams & Mulder, 2020) to assess and visualize uncer-
tainty around parameter estimates.

Scope of Models and Software

In this article, whenever we refer to “network models,” we
intend to designate statistical models that are designed to capture
pairwise statistical interactions between variables and that are esti-
mated on cross-sectional data. Our focus lies on cross-sectional
networks, because network analyses for this type of data account
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for the largest part of empirical network contributions over the past
10 years (83% of the identified empirical articles between 2008 and
2018 as reported by Robinaugh et al., 2020). Of note, there are
many other types of psychological network analyses than the ones
we discuss here, including models estimated in panel data and time
series data (Epskamp, 2020a; Gates & Molenaar, 2012; Haslbeck et
al., 2020) or moderated network models (Haslbeck, Borsboom, &
Waldorp, 2021). These are beyond the scope of the present article
as they require different reporting standards due to differences in
data structure, estimation methods, and model assumptions.
Within the domain of cross-sectional network analysis, there is

a wealth of software options. Depending on the choice of software,
different reporting elements, such as specific test statistics, might
be required to ensure interpretability of the results. Here, we focus
on software implemented in the open-source environment R (R
Core Team, 2015), specifically on packages that have been most
frequently used in the past decade in empirical, psychological net-
work contributions (Robinaugh et al., 2020). An overview of the
software packages that we cover in this article can be found in Ta-
ble 1. While we focus on a specific set of R-packages, most of the
discussed reporting standards represent core elements of cross-sec-
tional network analysis in psychological data. We therefore expect
that the introduced reporting standards will also be applicable to
other software, albeit not in regard to the specific test statistics
included in this article. For instance, reporting parameter uncer-
tainty is not a unique standard of the packages discussed in this ar-
ticle but should be included for any contribution that estimates
partial correlation networks. Consequently, the listed packages
should be seen as examples of how the core reporting standards
introduced here can be applied to software that is frequently used
in the literature, rather than restricting the domain of reporting
standards to this type of software alone.
Lastly, the presented guidelines may also be applicable to some

aspects of reporting simulation studies on network analyses. For
example, simulation studies should include information on how
networks were derived from the simulated data. However, simula-
tion studies may require specific additional reporting elements,
such as information on data-generating mechanisms and perform-
ance measures (e.g., bias or mean squared error). We therefore rec-
ommend considering additional guidelines for simulation studies,
such as the guidelines provided by Morris et al. (2019).

Organization of the Proposed Reporting Standards

This article adopts the typical structure of a psychological report
according to APA standards (American Psychological Associa-
tion, 2020) and can therefore be used as a reference for authors
who prepare their work for submission to an APA journal. Of
note, some of the recommendations discussed below, such as
reporting on the variable selection procedure, are not unique
reporting elements for network analyses. We included those ele-
ments for two reasons: First, to ensure that these guidelines are
standalone readable, and second, because some more general ele-
ments deserve specific attention when using network analyses
(e.g., variable selection is related to the problem of topological
overlap, see Box A).
We provide a reporting routine for both the Methods and the

Results sections of an empirical APA report, using the following
structure:

General analysis routine: These sections contain reporting
standards that are applicable to all analyses as defined above, inde-
pendent of specific research questions. These routines include the
reporting of general features of the data, the statistical approach,
details about the sample and variables, as well as accuracy and sta-
bility checks. We recommend to always report these elements.

Analysis-specific routine: These sections contain reporting
standards that apply only to specific research questions and
analyses within the network analytic framework, such as
reporting on group comparisons, centrality analyses, edge dif-
ferences, and visualization. Not all of these will be of interest
for every empirical network contribution and are therefore only
applicable if they align with their specific research question.

What to watch out for: The main focus of this article lies on
providing reporting standards and not interpretation guide-
lines. However, some reporting standards are closely related
to interpretation. Therefore, in the What to watch out for
boxes, we discuss some of considerations that are important
when applying network analyses to psychological data.

To illustrate these norms and reporting standards, we include two
examples of network analyses on openly available data with two dis-
tinct research goals. Further, we include an overview of most network
estimation packages and functions referred to in this article, along
with information on important arguments, current estimation defaults,
applicable input data, and parameter interpretation (see Table 1).

Reporting Standards for the “Methods” Section

General Analysis Routine

Sample Collection

We recommend to specifically consider and report how and
from which population the participants were recruited and whether
a subpopulation was included in the analyses (e.g., depressed
patients; see Box A, Subsample selection). Subsample selection
can occur because of recruitment strategies (e.g., collecting data in
clinical practice) or by selection after data collection (e.g., only
include participants that scored higher than a certain cut-off).
Make sure to report on subsamples in either case. Report the num-
ber of participants for whom data was collected and the number of
participants that were included in the network analyses.

Variable Selection Procedure

As with any other study, it is important to precisely report what
instruments were used to collect the data, as well as the versions of
these instruments, if applicable (Flake & Fried, 2019). We recom-
mend specifically considering the instrument, as some questionnaires
might include multiple items that have the same relations to other
nodes (i.e., topological overlap), which can lead to problematic infer-
ences in networks (see Box A, Instrument design). With regard to
network analyses, we recommend to additionally report on the num-
ber of variables on which data were collected. When the data are pre-
processed before being included in the analyses (e.g., variable
selection or transformation), report on these processing steps and
indicate the number of variables included in the network analysis.

REPORTING STANDARDS FOR PSYCHOLOGICAL NETWORKS 3
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Preprocessing choices concern, but are not limited to, collapsing vari-
ables (e.g., aggregating variables such as loss or increase of appetite),
collapsing categories (e.g., binarization of Likert-scale data), data
transformations (e.g., in case of violating assumptions; see Box A,
Variable distribution), and imputation or removal of missing data
(e.g., listwise deletion of cases). An exhaustive list of choices that
warrant justification is listed elsewhere (Flake & Fried, 2019). For
the variables that are included in the network, we recommend com-
paring the distribution of the variables with the assumptions of the
estimation method and checking any violations (e.g., skewness of the
data; see Box A, Variable distribution). If variables are removed/
included following network stability analyses (see Accuracy and Sta-
bility of Edge-Estimates section), this should be reported as well.

Deterministic Relations Between Variables and Skip-
Structures

The article should specifically report if the scale used to construct
the network contains a so-called skip-structure, that is, some questions
in the questionnaire are skipped based on responses to previous ques-
tions. This can occur when participants are instructed to only answer
one question or the other (e.g., report either on weight loss or weight
gain) or when certain follow-up items are only administered to a subset
of participants (e.g., only assessing nuanced depressive symptomatol-
ogy if one of the core depression symptoms is present). This creates a
missingness problem for the data that should be addressed, and the
report should indicate precisely how this problem has been handled.
This is important because some methods, such as imputing zeroes for
skipped items, will induce dependency relationships in the data that
bias the network structure and can lead to faulty inference (see Bors-
boom et al., 2017). The latter problem will hold for any deterministic
relationship included in the network (e.g., including a sum-score vari-
able together with the components that make up the sum-score) and
should be avoided. To our knowledge, no validated methods for han-
dling such structures exist to date and therefore it is recommended not
to analyze skip-structure questionnaires using network analysis. In the
case of large diagnostic questionnaires (e.g., SCID, CIDI), one alterna-
tive could be to focus on the diagnostic category questions that all sub-
jects have answered rather than on follow-up skip items.

Estimation Method

We recommend to specifically mention in the article how the
data was modeled (i.e., continuous, ordinal, binary, etc.). The mea-
surement level is linked to the estimation method used when per-
forming a network analysis, which should always be reported as
well (e.g., EBICglasso, IsingFit, MGM, etc.; see Table 1 for a
description of commonly used estimation techniques). In addition
to the estimation method, mention any additional specifications.
For example, when the networks are thresholded, report the chosen
thresholds; when regularization is used, report the parameter speci-
fying the search for appropriate regularization. Of note, even if
researchers stick to default arguments (i.e., the standard settings
that are used in the estimation procedure), we recommend report-
ing them, because defaults in software packages can change which
in turn would make reproducing analyses difficult.1 Finally, we
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1 Within the R statistical software (R Core Team, 2015), the defaults of
each package can be checked using the “?” þ name of the function within a
statistical package (e.g.,?estimateNetwork).
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advise considering the assumptions of each estimation method
(see Box A, Variable distribution), as well as how each estimation
method handles missing data (see Box B,Missing data).

Accuracy and Stability of Edge-Estimates

As with any procedure that involves parameter estimation, it is
important to assess how accurate our estimates are (Fried et al., in
press). In the context of the currently most common estimation
techniques in network analysis, accuracy can be assessed via a
bootstrap procedure implemented in the R-package bootnet
(Epskamp, Borsboom, Fried, 2018; using the function bootnet and

specifying the argument type as “nonparametric”). In this proce-
dure, the model is estimated repeatedly under resampled or simulated
data and statistics of interest (e.g., edge weights) are computed
(Efron, 1979). As such, bootstrapping allows to approximate the
sampling distribution of the parameters in the population. The sam-
pling distribution can then be inspected visually (for details see, e.g.,
Epskamp, Borsboom, Fried, 2018). Specifically, in the methodology
section of the article, we advise reporting the number of bootstrap
samples, as well as the type of bootstrap method employed (in the
above case “nonparametric”). For methods that make use of Bayesian
inference, such as BGGM (Williams & Mulder, 2020), there are

What to watch out for, Box A:

Dataset Instrument design. It is important to consider how the instrument used to gather the data was constructed. For instance,
variables included in a network may come from a single questionnaire that was constructed to measure a latent vari-
able, and is therefore intended to measure a single underlying construct. If a set of items does in fact depend on the
same latent variable, but the items are interpreted as measuring distinct factors, possible distortions in e.g., centrality
estimates should be taken into account (Fried & Cramer, 2017).

Variable distribution Assumptions of estimation methods. For each estimation method, model assumptions should be considered and viola-
tions of these assumptions should be addressed. Main assumptions include (a) independent cases; (b) the presence of
(log) linear relationships and pairwise interactions only; (c) missing data are missing (completely) at random (Rubin,
1976); (d) relevant distributional assumptions of the variables included in the network.

Variance. Certain restrictions to variance, such as floor/ceiling effects or restrictions in range, can affect statistical
relationships. This should be considered when interpreting edges and the importance of variables (e.g., suicidal
ideation is typically restricted in variance but clinically relevant; see also “centrality” below and Fried et al.,
2018). Note that these artifacts not only pertain to networks estimated from continuous data but also to those esti-
mated from binary data; for example, if symptoms are coded as present versus absent and most participants in the
sample are healthy individuals without symptoms, floor effects may occur.

Subsample selection Biases due to subsample selection (e.g., Berkson’s bias). Sample selection is important because it can lead to unex-
pected patterns in the data. For example, if a subpopulation (e.g., depressed patients) is recruited based on a cut-off on
the total score of symptoms included in the network structure, one may find that, in that subpopulation, many edges
between symptoms are negative. The reason for this result is that the total score is composed of the individual item
scores. As a simple example that illustrates the effect, suppose one throws coins A and B repeatedly and only selects
cases in which only one of them falls heads (i.e., total score = 1). Within this set of throws (i.e., conditioning on the
total score), the correlation between the outcomes of the tosses for the two coins will be negative because if Coin A
falls heads then, given a total score of 1, Coin B must have fallen tails. This effect has been referred to as Berkson’s
bias (de Ron et al., 2021). However, it has also been noted that Berkson’s bias is but one of various effects of condi-
tioning, and that these need not constitute bias in the statistical sense (Haslbeck et al., 2020). Nevertheless, it is impor-
tant for researchers to realize that creating subsamples based on functions of the variables in the network will often
have strong effects on the network structures found in these subsamples.

Variable inclusion Variable selection. The structure of network estimation results depends on which variables were included in the analy-
sis. This is due to the fact that conditional dependencies are used in network estimation: conditioning on different sets
of variables can therefore lead to different network structures. This implies that the network structure may change if
variables are included in or excluded from the model.

Item-scores versus sum-scores. Depending on the research question, item-scores may sometimes be preferred, whereas
sum-scores may be the best option at other times. For example, the general comorbidity of different psychopathologies
can be shown at the sum-score level, but the specific symptoms that connect these clusters can only be identified at
the more detailed item level. This is illustrated in the article by Deserno et al. (2017), where the authors show how the
relation between autism and well-being yields different information at different levels (item scores, subscale scores,
sum-scores) and can be used to answer different research questions. Another option is to use latent network modeling,
in which the indicators are modeled through the use of a latent node and independent measurement error (Epskamp,
Rhemtulla, Borsboom, 2017). Ultimately, what level to include in the network depends on the research question. The
guiding principle should be to match the level of the included variables with the resolution at which inferences are
ought to be made.

Centrality Local network properties. Centrality is not a characteristic of a variable, but it is determined within the estimated net-
work (see also “variable distribution” and “variable inclusion”; Bringmann et al., 2019; Fried et al., 2018). Thus, a
variable that is peripheral in one network may be central in another. For instance, the symptom of insomnia may be on
the periphery of a depression network and of a generalized anxiety network. At the same time, it may connect the
depression network to the generalized anxiety network and thus may be highly central in the combined network.
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equivalent measures to assess accuracy and stability, such as credibil-
ity intervals for estimates and convergence diagnostics.

Statistical Packages

Finally, we recommend reporting the statistical software and
packages that are used, including their versions. Full reproduci-
bility is guaranteed only if this information is shared along with
code and data, because statistical packages can change estima-
tion defaults when they are updated (Epskamp, 2019). With this
information, the reader can mimic the analyses under identical
estimation settings and reproduce all results, for example using
the checkpoint package in R (Ooi & de Vries, 2020). We further
recommend including any seed-settings in the code that have
been used in conducting analyses (e.g., if estimation techniques
based on cross-validation or the Network Comparison Test were
used; Haslbeck & Waldorp, 2020; van Borkulo et al., 2017).
Note, however, that setting a seed does not fix results if parallel
computing is used, as is often the case when drawing many boot-
strap samples.

Analysis-Specific Routine

Group Comparisons

If groups are compared, we recommend reporting which meth-
ods have been employed to compare groups (usually correlating
weighted adjacency matrices; comparing networks using the Net-
work Comparison Test, van Borkulo et al., 2017; comparisons
based on the posterior predictive distribution or model selection in
Bayesian GGMs; Williams et al., 2020; estimating moderated net-
work models in mgm; Haslbeck, 2020; Haslbeck & Waldorp,
2020; or through using multigroup network modeling, Epskamp et
al., 2021). If groups are compared using multiple methods, we rec-
ommend reporting all comparisons that were made and in addition
reflect on the consistency of the results. Of note, these methods are
dependent on the sample size and identifying no differences may
sometimes reflect power issues.

Centrality Indices

One particular application of network analysis is to identify nodes
that could be particularly influential, for example because they are
well connected to other nodes. In graph theory and network analysis,
the quantification of this relative influence based on the network flow
is referred to as centrality analysis. Centrality metrics can be com-
puted that quantify the role of each node in a network (Costantini et
al., 2015; Jones et al., 2019; Opsahl et al., 2010), for example via the
qgraph package in R (Epskamp et al., 2012; using the functions cen-
trality, centralityPlot, or centralityTable), or via the networktools
package in R (Jones, 2017; using the function bridge). If such infer-
ences are of interest, we recommend carefully selecting centrality
metrics that relate to the specific research question. For example, if
the research question involves identifying the most strongly con-
nected nodes (as is the case in e.g., Elliott et al., 2020), “strength cen-
trality”may be most suited, whereas if the research question involves
identifying nodes that bridge different clusters (as is the case in e.g.,
Levinson et al., 2018) “bridge centrality” measures may be most in-
formative. There may also be research scenarios in which a combina-
tion of these metrics is of interest (as is the case in e.g., Isvoranu et
al.,2021). We recommend reporting all centrality metrics that were

computed, alongside the accuracy of their estimates (e.g., case-drop
bootstrap in the bootnet package, using the function bootnet and
argument type set to “case,” for more information see Epskamp,
Borsboom, Fried, 2018; see also Box A, Centrality). Suppose the dif-
ferences between node centralities are not robust. In that case, it can-
not reliably be determined which node is “most central” (note that
this does not imply the network was estimated with low accuracy; it
is also possible that there simply are no differences in centrality
between nodes; see Box B). In this case, we recommend only report-
ing that the centrality metric was computed, but that the centrality
differences between nodes will not be further interpreted because
these differences are not stable.

Differences Between Edges Within One Network

If edges within a network are compared with one another, we
recommend reporting the method of comparison (e.g., the boot-
strapped difference-test in the R package bootnet, using the differ-
enceTest function; Epskamp, Borsboom, Fried, 2018). Further, if
hypotheses are tested in a Bayesian context (Williams & Mulder,
2020), these should be stated explicitly (e.g., A—B . C—D).

Clustering

Clustering refers to the tendency of a network to exhibit groups
of nodes that arise from their specific interconnections. If cluster-
ing of nodes is of interest, we recommend reporting which cluster-
ing method was employed when running the analyses (e.g.,
Exploratory Graph Analysis; Golino & Epskamp, 2017), why this
particular method has been chosen (Hennig, 2015), as well as if
and how the stability of the identified clusters was checked.

Reporting Standards for the “Results” Section

General Analysis Routine

Final Sample Size

As with general statistical guidelines (e.g., Appelbaum et al.,
2018), all information regarding sample size should be reported.
This includes all operations that are relevant to the sample size,
such as removal of outliers and missing data, data imputation, data
transformations, split-half approaches, and so forth. For further
details please refer to Table 1 and Box B.

Results of the Accuracy and Stability Checks

Results on how accurate parameters are estimated (e.g., Epskamp,
Borsboom, Fried, 2018) should be reported. Usually, reports include
plots giving information on bootstrapped confidence intervals (CIs),
inclusion probabilities, or case-drop bootstraps, but which specific
method to use is based on the choice of software. It is important to
note that the bootstrapped confidence intervals discussed here cannot
always be interpreted in the same manner as traditional confidence
intervals (for detailed information, see Box B as well as Epskamp,
Borsboom, Fried, 2018; and Fried et al., in press). Of note, which sta-
bility analysis to use is conditional on the research questions to be
addressed (e.g., if centrality is not analyzed, reporting stability results
for centrality may not be relevant). For most existing analyses and
research questions, stability analyses are available.
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What to watch out for, Box B:

Features of the network structure Sparsity. A Central assumption of most of the models highlighted in the current manuscript is the
assumption of sparsity, i.e., the true network structure can be expressed as a simplified, “sparse” net-
work. If this assumption is violated, the performance of regularized estimation algorithms may be sub-
optimal (Epskamp, Kruis, Marsman, 2017), because many edges that are small but nonzero will be
incorrectly set to 0. In this case, a nonregularized method (without model selection) can be used as an
alternative (Williams et al., 2019), or the low-rank estimation approach proposed by Marsman et al.
(2015).

Collider structures. Collider structures occur when a variable is a common effect of two or more varia-
bles. If a true causal collider structure (A ! B / C) underlies the data and the variables A and C are
marginally uncorrelated or weakly positively correlated, then the undirected network could feature an
edge between the causes (A—C), which is negative if both causal effects are positive. As such, collider
structures can produce strong and unexpected negative edges in the network structure, which may ham-
per the interpretation of results. While there is no principled way to detect collider structures, one way
to detect at least potential collider structures is by comparing the partial correlations to marginal corre-
lations. If a partial correlation is of a different sign (e.g., negative) than a marginal correlation (e.g.,
positive), then this can signal conditioning on a collider (in this case, also check whether the two varia-
bles are both strongly connected to a third, which may be a common effect).

Network architecture. When interpreting a network structure, it is important to keep an eye open for global
features of the network. For instance, are there hubs in the network? How do these hubs influence the network
structure? Is the network structure dense? Are there subnetworks? Global network aspects can inform and
drive the interpretation of the network. Network architecture refers to the structure of the network as a whole;
for instance, well-known architectures include small world, scale-free, and random graphs (Newman, 2018).
Network architecture has been suggested to influence the recovery of the network structure (van Borkulo et
al., 2014). For example, if a network features locally dense structures in the form of strong hubs (as in a scale
free network), regularized estimation may have trouble recovering this (as it promotes sparsity). In contrast, in
a ring graph (as e.g. used by Epskamp & Fried, 2018) each node has only two neighbors, which a regularized
estimation technique can easily recover.

Network visualization Plotting algorithms. Network plots are always dependent on the chosen plotting settings, i.e., settings
that determine the spatial position of nodes in the network. Some plotting algorithms, such as the
Fruchterman-Reingold algorithm (Fruchterman & Reingold, 1991), can be sensitive to small changes
(e.g., small differences in edge weights). Although network plots are informative visual representa-
tions, the exact placement of nodes should not be interpreted as standing in a one-to-one relation with
features of the data. In order to arrive at representations that optimally represent patterns in the data,
one may utilize MDS-based algorithms (Jones et al., 2018).

Unstable network structures Accuracy and stability. Network stability is typically assessed by investigating whether the same order-
ing of edge strengths or centrality estimates arises across random subsamples of the data. Importantly,
an unstable network structure does not necessarily imply that the analysis failed and the network
should be discarded. This is because there are two reasons why orderings of edges may be unstable
under bootstrapping: (a) there are estimation problems (e.g. N is too small), and (b) all edges are
equally strong so that there is no ordering in the first place (e.g., the network is a Curie-Weiss model;
Marsman et al., 2018). However, unstable network structures do limit the interpretation of the network
(e.g., if the centrality ordering is unstable for whatever reason, centrality differences should not be
interpreted). In general, instability should be acknowledged, and findings from unstable network mod-
els should be presented with caution.

Using bootstrapped confidence intervals. Unless saturated (no model selection or regularization) maximum
likelihood estimation is used, we argue against checking if bootstrapped CIs do (not) include 0, because the
model selection methods themselves are already designed to put edges to zero. Therefore, doing additional
checks on the CIs may lead to double thresholding. To this end, bootstrapped CIs of, for example, regularized
network edges should never be used to assess for ‘significance’ of edges (Fried et al., in press), and seeing
bootstrapped CIs that include zero is in no way evidence for instability or inaccuracy of parameter estimates.
Rather, the width of CIs reflects the accuracy of parameter estimates, irrespective of whether they include 0 or
not (Epskamp, Borsboom, Fried, 2018). Wide confidence intervals imply caution in interpretation, especially
when interpreting the strength of edges, or the presence of weaker edges. While a clear definition of what wide
represents is not established, this resolution can be driven by the specificity of a research question. For exam-
ple, if the research question focuses on a specific edge (as for example done in Blanken et al., 2020), then it is
particularly important to investigate the stability and accuracy of that edge: the wider the bootstrapped CI is for
that edge, the less confidence we can attach to the estimate, and the more careful our inferences should be.

Case-drop bootstrapping. To assess the stability of centrality indices, an alternative method must be used, the
case-dropping bootstrap. This is because centrality indices rely on absolute edge weights, and consequently, an
edge weight of 0 is at the boundary of the parameter space. Bootstrapping parameters near the boundary of the
parameter space is highly problematic and leads to false inferences. Because edge weights of 0 are to be
expected in Pairwise Markov Random Fields (PMRFs), Epskamp et al. (2018) propose an alternative method
to circumvent this problem by correlating the centrality indices from the whole sample with centrality indices
obtained through estimating networks on subsets of the sample (i.e., the case-dropping bootstrap). Epskamp et
al. (2018) term this stability (of the centrality rank order), as such correlations cannot say how accurate
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Analysis-Specific Routine

Network Visualization

When a network plot is included in the article, we recommend
using a colorblind-friendly theme, as well as reporting:

• What the edges represent (for example, partial correla-
tions in the GGM or averaged logistic regression coeffi-
cients in the Ising model. In networks estimated using
mgm, Haslbeck and Waldorp (2020), edges between
Gaussian variables can be interpreted as partial correla-
tions, whereas relations that involve categorical variables
can be interpreted in terms of (averaged) regression coef-
ficients; for details on which type of coefficient is rele-
vant, see Table 1);

• Information about the plot, such as the size of the smallest
and largest edges in the network and whether any specific
visualization tools were used (e.g., in qgraph; Epskamp et
al., 2012; whether a minimum, maximum, or cut value
were used when plotting the network);

• How the layout of the network was set (e.g., manually or
using a pre-defined algorithm).

Network Density and Average Absolute Edge Weights

The network density refers to the number of estimated edges relative
to the total number of possible edges and is used to give an indication
of the sparsity of the network. If the overall network structure is of inter-
est, we recommend reporting the network density and average absolute
edge weights. When visualized with qgraph (Epskamp et al., 2012), pa-
rameters adjust the color saturation and width of an edge to the absolute
weight and scale relative to the strongest weight of the graph. One can-
not get a clear notion of the average edge weight from visualization
alone (Epskamp et al., 2012), and thus reporting this is essential.

Centrality Indices

If centrality is of interest (Costantini et al., 2015; Jones et al., 2019;
Opsahl et al., 2010), we recommend including a supplementary table
or appendix reporting the raw centrality scores in addition to visualiz-
ing raw centrality scores in the centrality plot itself,2 as exact parameter
values can often not be inferred from centrality plots with high

centrality estimates are. For example, suppose that all nodes in a network feature the exact same centrality.
Then, any differences in centrality are due to chance, and we should expect these correlations then to be low
even if the centrality measures are closely estimated to their true values (Borsboom et al., 2017).

Missing data Missing values. It should be noted that not all estimators can handle missing data (see Table 1). Besides
the use of (multiple) imputation strategies, which have not yet been studied in detail for network mod-
els, there are currently two ways for handling missing data when estimating GGMs. First, some estima-
tors, such as EBICglasso and ggmModSelect, only require a correlation matrix as input, which can be
estimated using pairwise observations. The bootnet package (Epskamp, Borsboom, Fried, 2018) does
this by default for these estimators and will use the average of pairwise sample sizes as a proxy for the
sample size (e.g., for BIC computation; Epskamp, 2020b). Specifically, the sample sizes used when esti-
mating each pairwise correlation separately are computed, and the average of these is taken as the final
sample size in the analyses. Second, the psychonetrics package includes full information maximum likeli-
hood estimation (Epskamp, Isvoranu, & Cheung, 2021), which will only use observed data to estimate the
network structure.

We recommend including the portion of missing data, as well as to consider and report any potential source
of systematic missingness. If such systematic influences are present, using any statistical strategy can lead
to problematic inferences because accurate inferences will depend on strong assumptions regarding the
missingness mechanism (e.g., that data are missing at random or missing completely at random Rubin,
1976). An example of such a systematic influence would be that missingness primarily occurs in partici-
pants with specific clinical features, such as high symptom levels.

Error rate Error rate. The error rate, as well as the circumstances under which the error rate changes, should be
considered. It is thus essential for researchers to consider whether they are favoring the sensitivity
(true positive rate) or the specificity (true negative rate) of a model. Some estimation techniques (e.g.,
the EBICglasso algorithm; Epskamp & Fried, 2018) have high sensitivity but lower specificity. This
means that weaker edges in the estimated network may be more prone to be false positives (i.e., Type I
errors). Other estimation routines may be more conservative, retaining high specificity but featuring
lower sensitivity (i.e., some edges may be missing from the network). As is typically the case in diag-
nostic situations, researchers face a trade-off between sensitivity and specificity: if one is more lenient
to include edges in the estimated network, sensitivity will increase at the cost of specificity.
Researchers can choose to err on the side of discovery (favor sensitivity over specificity) or to err on
the side of caution (favor specificity over sensitivity). This choice is also driven by the research ques-
tion. For example, in the study by Isvoranu et al. (2020), the aim was to identify edges between a poly-
genetic risk score and symptoms, which are generally weaker than edges between symptoms
themselves. While good sensitivity is required to identify such small edges (and this was achieved in
the article as a result of a large sample size), high specificity is essential to justify interpreting the
smaller edges in substantive terms. The authors therefore chose ggmModSelect as an estimator, which
has been shown to have good specificity in large sample sizes (Isvoranu & Epskamp,2021).

2 The default behavior in qgraph up to version 1.6.9 provides z-scores
instead of raw-scores. This, however, may inflate dissimilarity between
centrality indices, and we therefore recommend to use raw scores instead.
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precision. To assess the degree to which centrality estimates are subject
to sampling error, we recommend reporting results of centrality stabil-
ity (i.e., a case-drop bootstrap plot for the reported centrality indices),
as well as the correlation stability coefficient (CS coefficient;
Epskamp, Borsboom, Fried, 2018). In addition, the bootstrapped dif-
ference test allows to test for differences in centrality between two
nodes, which should be reported in case a centrality comparison
between two particular nodes is of interest. The bootstrapped differ-
ence tests can also be used to compare specific edge pairs in a network,
see Specific Nodes and Edges section.

Predictability

The predictability of a node quantifies how well that particu-
lar node can be predicted by all remaining nodes (Haslbeck &
Fried, 2017; Haslbeck & Waldorp, 2018, 2020). If predictabil-
ity of nodes is of interest, we recommend specifying which pre-
dictability measure was chosen for which type of variable (e.g.,
R2), and including the predictability measures in the network
plot. In addition, we recommend including a supplementary ta-
ble or appendix reporting the raw predictability scores, as exact
predictability values typically cannot be inferred from the
visualization.

Specific Nodes and Edges

If more specific features of the network are of interest, such as
a particular edge A–B, we recommend reporting the stability of
that particular edge. Likewise, if specific nodes are of interest,
say node A, it is important to report the stability of the edges
between node A and its connecting nodes, as well as the stability
of the centrality for that particular node (see also Centrality Indi-
ces section). When comparing the strength of two edges, we rec-
ommend reporting the results of the bootstrapped difference test.
These may also be informative in other settings, for example, if
one is interested in the overall stability of the network structure.
Finally, if clustering of nodes is of interest, we recommend
reporting the number of resulting clusters, as well as the stability
of the clusters.

Group Comparisons

When interested in comparing the network structure between
different groups, we recommend reporting:

• The sample size per group after data preprocessing
choices (e.g., removal of outliers, removal of missing
data, data imputation, data transformations);

• Whether a particular statistical test was used to compare
the groups: the resulting p-values or Bayes Factors, and
whether these were adjusted for multiple testing;

• Whether the chosen comparison method allows, the stabil-
ity of each network structure should be reported alongside
the network comparisons.

When comparing networks visually, arguments used for visual-
ization become crucial (e.g., minimum, maximum, and cut values;
whether the same layout was used, etc.), as well as the correlation
between the weighted adjacency matrices of the two (or more) net-
work structures. We thus recommend:

• Using the same layout when comparing network struc-
tures. Note that merely comparing networks visually may
be misleading and is not recommended in isolation (e.g.,
without also carrying out a statistical test), even if the lay-
out is fixed across networks (e.g., equal layouts might sug-
gest that network structures are more similar than they
actually are).

• Setting the same value as the strongest edge in both net-
works (e.g., in qgraph by setting the same maximum
value) in both network structures.

Illustrative Examples

To illustrate the highlighted norms and reporting standards, we
provide two examples of network analyses on openly available
data, with two distinct research goals. Both examples contain the
elements described under the general analysis routine, as well as
analysis specific elements matched with the indicated research
goal. For an overview of elements covered in both examples, see
Table 2. This table may also be used as a summary checklist of the
article. First, using data from Burger et al. (2020), we aim to high-
light the analysis specific routine on group comparisons, network
visualization, and global network properties. Second, using open
data (https://openpsychometrics.org/tests/TMAS/) collected on the
Taylor Manifest Anxiety Scale (Taylor, 1953), we aim to highlight
the analysis specific routine elements on centrality, differences
between edges, network visualization, and local network
properties.

Example 1: Relationships in Later Life

Data for the first example stem from the Swiss longitudinal
study “Relationships in later life”, which followed widowed and
separated individuals after their loss experience and collected in-
formation on their psychosocial functioning, including depressive
symptomatology. The data and project description can be found
online (https://www.kpp.psy.unibe.ch/forschung/projekte/nccrlives/
index_ger.html), and the results have been discussed in a previous
article (Burger, Stroebe et al., 2020). The main research interest
here lies in comparing depressive symptom networks between the
widowed and separated individuals, specifically comparing how
strongly they are connected and the overall structure of the two net-
works. Next to the general analysis routine, we therefore focus on
group comparison (methods and results), network visualization
(results), and network density (results).

Method

General Analysis Routine

Sample Collection and Variable Selection Procedure. For this
analysis, we included data collected on the German version of the
center for epidemiologic studies depression scale (CES-D; Radloff,
1977; German: Allgemeine Depressions-Skala, ADS-K; Hautzinger
& Geue, 2016).

The dataset consists of 1,276 married, 566 widowed, and 971
separated individuals.

Participants were contacted via post mail and filled in a pen-
and-article questionnaire. To circumvent the issue that participants

REPORTING STANDARDS FOR PSYCHOLOGICAL NETWORKS 11

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://openpsychometrics.org/tests/TMAS/
https://www.kpp.psy.unibe.ch/forschung/projekte/nccrlives/index_ger.html
https://www.kpp.psy.unibe.ch/forschung/projekte/nccrlives/index_ger.html


might be at different stages of adaptation to the adverse life event,
we only included participants with a maximum distance of 2 years
to the event (widowhood/separation). This resulted in 145 wid-
owed and 217 separated individuals. To be able to include widow-
hood/separation as a node in the network, we added 145 married
controls to the widowed sample, and 217 married controls to the
separated sample3. This way, widowhood/separation is included as
a binary node, indicating the presence versus absence of the re-
spective life event.
In order to investigate conceptual overlap between variables, we

examined bivariate correlations between all variables, and com-
bined items if their content suggested strong conceptual similarity,
and their bivariate correlation was r $ .50. Accordingly, we com-
bined the original items mood, upset, and depressed (new item
“mood”), as well as the items happy and enjoy (new item
“happy”). This resulted in 12 variables, each rated on an ordinal
scale with four answer categories: 1 = rarely or none of the time
(less than 1 day), 2 = some or a little of the time (1–2 days), 3
occasionally or a moderate amount of time (3–4 days), 4 = most
or all of the time (5–7 days).
Estimation Method. We estimated partial correlation net-

works for both, the widowed and separated sample, using the
glasso regularization and a tuning-parameter gamma set to 0.5
(Foygel & Drton, 2010). Due to the ordinal, non-normal nature of
the data, we used Spearman’s rank-correlation and pairwise com-
plete observations to handle missing data. In total, of all variables

included in the network analysis, 6.6% of the ratings were missing
in the widowed/married sample and 5.1% in the separated/married
sample. Here, we assume that these ratings are missing at random
(Rubin, 1976).

Accuracy and Stability of Edge-Estimates. To assess accu-
racy of the edge estimates, we conducted the routine implemented
in the bootnet package (Epskamp, Borsboom et al., 2018; version
1.4.3), using nonparametric bootstrapping with 1,000 bootstrap
samples.

Statistical Packages. The analyses have been conducted
using R-version 3.5.2 on October 8, 2020. For network estimation,
we used the estimateNetwork function in the bootnet package
(Epskamp, Borsboom et al., 2018; version 1.4.3). Networks have
been visualized using the qgraph package (Epskamp et al., 2012;
version 1.6.5).

Analysis-Specific Routine

Groups were compared by obtaining the difference in global
strength within the Network Comparison test (NCT; van Borkulo

Table 2
Overview of Routines Covered in the Two Examples

Reporting element Example 1 Example 2

Data Description Relationships in later life (data and results from
Bereavement or breakup: Differences in

networks of depression; Burger et al., 2020).

Taylor Manifest Anxiety Scale (data and results
from an online offering of the Taylor Manifest

Anxiety Scale; Taylor, 1953).

Methods: General Analysis Routine
Sample Collection � �
Variable Selection Procedure � �
Deterministic Relations Between Variables
and Skip-Structures

�(not applicable) �(not applicable)

Estimation Method � �
Accuracy and Stability of Edge-Estimates � �
Statistical Packages � �

Methods: Analysis-Specific Routine
Group Comparison �
Centrality Indices �
Differences Between Edges �
Clustering

Results: General Analysis Routine
Final Sample Size � �
Results of the Accuracy and Stability Checks � �

Results: Analysis-Specific Routine
Network Visualization � �
Network Density and Average Absolute Edge
Weights

�

Centrality Indices �
Predictability
Specific Nodes and Edges �
Group Comparisons �

3 Note that adding control participants and including group membership
in the network is only but one way to approach group comparisons. Many
other techniques have been discussed recently, such as moderated network
analysis (Haslbeck, Borsboom, & Waldorp, 2021), or Bayesian approaches
(Williams et al., 2020). For more detailed information on the approach used
here, we advise to consider the original publication.
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et al., 2017; version 2.2.1), using 2,000 iterations, and with seed
set to “123.” This test assesses if the two networks differ in their
overall level of connectivity. because we are primarily interested
in global differences in network connectivity, other tests available
within the NCT were disregarded in the present analyses. Addi-
tionally, we correlated the weighted adjacency matrices of the two
networks as an additional measure of similarity between the
networks.

Results

General Analysis Routine

Final Sample Size. The widowed network included 290 indi-
viduals (145 widowed and 145 married controls), and the sepa-
rated network included 434 individuals (217 separated and 217
married controls).
Results of Accuracy and Stability Checks. Results of the

nonparametric bootstrap analysis can be found in the supplemen-
tary materials (Supplementary Figure 1). In general, the confi-
dence intervals were rather broad and overlapping. The order of
edge estimates should therefore be interpreted with caution.

Analysis-Specific Routine

Network Visualization. The networks of widowed and sep-
arated individuals are visualized in Figure 1. Here, edges repre-
sent regularized partial correlations between symptoms. Edge
weights in the widowed network ranged from 0.002 (sad –

getgo) to 0.300 (lonely – widowed). Edge weights in the sepa-
rated network ranged from 0.001 (mood – unfriendly) to 0.320
(lonely – separation). to facilitate interpretability, we used the
colorblind-theme in qgraph (Epskamp et al., 2012), fixed the
average layout between the two network plots using the avera-
geLayout function, curved edges that would otherwise cross
nodes, and made negative edges dashed (note: This is useful if
printed without colors). No specific minimum/maximum/cut
values have been used for network visualization.
Note: Any exploratory reporting of findings, such as relevant

edges, will be specific to the given research context. The figures
presented below are based on an adapted version of the publicly
available code from the original article (Burger, Stroebe, et al.,
2020).
Network Density and Average Absolute Edge Weights.

Because we are interested in comparing the two networks with
regard to their connectivity, we computed the density of the
two networks by determining the ratio of detected edges to the
total number of edges in a fully connected network. The net-
work of widowed/married individuals had a density of .615 (48/
78 edges), with a mean weight of 0.044, and the separated net-
work had a density of .744 (58/78 edges), with a mean weight
of 0.053.
Group Comparisons. While the global invariance test

within the Network Comparison Test procedure indicated that
there were some differences in the overall level of connectivity
between the widowed and separated network (p = .003), the
weighted adjacency matrices showed a rather large correlation
(r = .750), indicating that the overall structure between the net-
works was similar. This shows that the networks differed in
how strongly connected they are (sum of absolute edge weights,

connectivity), while edges that were detected showed a similar
pattern across the two networks (correlation of edges), i.e.,
edges that were large (small) in the separated network were
generally also large (small) in the widowed network.

Example 2: Taylor Manifest Anxiety Scale

Data for the second example data stem from the openpsycho-
metrics.org project, using the Taylor Manifest Anxiety Scale
(Taylor, 1953). The data and project description can be found
online (https://openpsychometrics.org/tests/TMAS). Let us
assume the main research interests here lie in the general net-
work structure of anxiety, edge differences in the network struc-
ture, as well as in which items play a more central role in the
network. Next to the general analysis routine, we therefore
focus on centrality results (methods and results), edge differen-
ces (methods and results), network visualization (results), and
local network properties (results).

Method

General Analysis Routine

Sample Collection and Variable Selection Procedure. For this
analysis, we included data collected on the Taylor Manifest Anxi-
ety Scale (Taylor, 1953). This data was collected online; at the end
of the test users were asked if their answers were accurate and
could be used for research. A total of 76% said yes and data have
been published on the openpsychometrics.org project. The dataset
consisted of 5,410 individuals.

The network model included all questions from the Taylor
Manifest Anxiety Scale (Taylor, 1953), thus resulting in 50
nodes. Each item was rated on a binary scale with two answer
categories [0 = FALSE, 1 = TRUE]. In addition, missing data
was encoded as NA and we used listwise deletion for missing
data points, as the chosen estimation algorithm does not allow
for missing data. Data were assumed to be missing completely
at random.

Estimation Method. We estimated the network structure
using an Ising model (van Borkulo et al., 2014). An Ising model
represents associations between dichotomous variables using pair-
wise log linear relationships, similar to partial correlation coeffi-
cients in a Gaussian Graphical model (GGM; Epskamp, Waldorp,
et al., 2018). To control for potential spurious associations, the
estimation procedure here uses a penalized nodewise regression
approach, specifically the eLasso penalty based on the Extended
Bayesian Information Criterion (Ravikumar et al., 2010). Default
values as set in the package were used, with the EBIC hypertuning
parameter set to 0.25.

Accuracy and Stability of Edge-Estimates. To assess the ac-
curacy of the edge weight estimates, we conducted the routine
implemented in the bootnet package (Epskamp, Borsboom, Fried,
2018; version 1.4.3), using nonparametric bootstrapping based on
1,000 bootstrap samples.

Statistical Packages. The analyses have been conducted
using R-version 3.5.2 on October 12, 2020. For network estima-
tion, we used the estimateNetwork function in the bootnet pack-
age (Epskamp, Borsboom, Fried, 2018; version 1.4.3), using the
IsingFit package (van Borkulo et al., 2014; version 0.3.1). The
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accuracy of estimates has been assessed using the bootnet func-
tion. Networks have been visualized using the qgraph package
(Epskamp et al., 2012; 1.6.5).

Analysis-Specific Routine

Centrality Indices. To further quantify how well a node is
directly connected to other nodes in the network structure, we
investigated strength as a centrality measure (Costantini et al.,
2015; Opsahl et al., 2010).
To assess accuracy of the strength centrality estimates, we con-

ducted the routine implemented in the bootnet package (Epskamp,
Borsboom, Fried, 2018), using case-drop bootstrapping based on
1,000 bootstrap samples. Further, to ensure interpretable differen-
ces in centrality, we used the bootstrapped difference-test in the
bootnet package.
Differences Between Edges Within One Network. Finally,

as we were interested in an exploratory fashion whether certain
edges were stronger and stood out in the network structure, we car-
ried out a bootstrapped difference-test using the R package bootnet
(Epskamp, Borsboom, et al., 2018).

Results

General Analysis Routine

Final Sample Size. Following removal of missing data, 4,474
subjects were included in the current analyses.

Results of Accuracy and Stability Checks. In general, the
confidence intervals were very narrow, indicating stable results.
In addition, strength centrality estimates were stable, with a cen-
trality stability coefficient of 0.75, indicating that 75% of the
data could be dropped to retain with 95% certainty a correlation
of 0.7 with the original dataset. Of note, while the most central
items were more central than most other items in the network,
they were not more central than each other (see Supplementary
Figure 5).

Analysis-Specific Routine

Network Visualization. The network visualization is pre-
sented in Figure 2. To facilitate interpretability, here we used the
colorblind-theme in qgraph (Epskamp et al., 2012), included a
legend with the description of each item, and used a cut value of 0.
Edge weights ranged from –1.82 (Q47–Q50) to 2.28 (Q6–Q41).
The layout used was the automatically generated layout based on
the Fruchterman-Reingold algorithm (Fruchterman & Reingold,
1991). Any exploratory reporting of findings, such as relevant
edges, will be specific to the given research context.

Centrality Indices. Supplementary Figure 2 presents the
results of the centrality analyses. In addition, Supplementary
Table 1 presents the standardized and raw centrality indices. The
three most central items were: Q27, Q31, and Q48. Of note,
while these were more central than many other items in the net-
work, differences between the items themselves were not robust
(see Supplementary Figure 5).

Figure 1
Regularized Partial-Correlation Networks for the Separated and the Widowed Sample

concentr

exhaust

failure

afraidsleep

talk

lonely

sad

unfriend

getgo

separation

mood
happy

concentr

exhaust

failure

afraidsleep

talk

lonely

sad

unfriend

getgo

widowhood

mood
happy

Note. Example 1: Regularized partial-correlation networks (tuning-parameter gamma = 0.5). Solid-blue edges
represent positive, regularized partial-correlations, dashed-red edges represent negative, regularized partial-correla-
tions. No specific minimum/maximum/cut values have been used. Edge weights in the separated network ranged
from 0.001 (mood – unfriendly) to 0.320 (lonely – separation). Edge weights in the widowed network ranged
from 0.002 (sad – getgo) to 0.300 (lonely – widowed). See the online article for the color version of this figure.
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Specific Nodes and Edges. Supplementary Figure 6 presents
the results of the edge difference test. The labels are omitted for
clarity. In general, the bootstrapped difference test identified sev-
eral edges as significantly different from most other edges in the
network. Of note, the two strongest edges in the current network
structure were significantly different from each other and all other
edges in the network. These are the edge between Q6 and Q41 and
between Q40 and Q46.

Concluding Remarks

As clear norms have not yet been established in the network lit-
erature, the current article explicates minimal shared norms in
reporting psychological network analyses. While network psycho-
metrics is a relatively young field of research, we recognize that
many norms discussed here have important implications for com-
monly used inferences. We therefore included two “what to watch
out for” boxes, where we discussed important considerations for
network analysis, as well as potential sources of misinterpretation
of network structures.
It should be noted, however, that our description of validity

threats is not exhaustive and subject to ongoing research. For
example, although robustness analyses allow one to assess the

uncertainty of claims based on the model (relative to sampling
error), methods for assessing the goodness-of-fit of the model as a
whole remain underinvestigated (although model fit assessment
techniques are available for confirmatory network analyses;
Epskamp, 2020a). Currently, operational network analysis techni-
ques are better viewed as exploratory analysis and visualization
tools in the tradition of Tukey (1977), or as phenomena-detection
tools that can generate a starting point for theory formation (Bors-
boom et al., 2021; Haig, 2005, 2014), than as confirmatory theory-
testing approaches in the tradition of SEM (Hoyle, 2012). Hence,
we currently advise against strong inferences based on network
analyses alone, while noting that considerable methodological
research opportunities are open to extending network analysis in
this direction (Epskamp, 2020a).

Clear reporting standards for network psychometrics improve
transparency, which is necessary for reproducibility. Only if the sci-
entific community can follow exactly what analyses were conducted
can we vet inferences drawn by respective authors. This is especially
relevant in a field that is still fairly novel such as network psychomet-
rics, where we encounter new challenges regularly. Overall, we trust
the highlighted directions to aid researchers in identifying elements
of their analyses that are important to include in a scientific report, as
well as to make empirical network studies more rigorous.

Figure 2
Network for the Taylor Manifest Anxiety Scale Data
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Q14
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Q18

Q19
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Q21

Q22 Q23

Q24

Q25

Q26

Q27

Q28

Q29

Q30

Q31

Q32

Q33

Q34 Q35

Q36
Q37

Q38

Q39Q40

Q41

Q42

Q43

Q44

Q45

Q46

Q47

Q48

Q49

Q50

Q1: I do not tire quickly
Q2: I am troubled by attacks of nausea
Q3: I believe I am no more nervous than most others
Q4: I have very few headaches
Q5: I work under a great deal of tension
Q6: I cannot keep my mind on one thing
Q7: I worry over money and business
Q8: I frequently notice my hand shakes 
 when I try to do something
Q9: I blush no more often than others
Q10: I have diarrhea once a month or more
Q11: I worry quite a bit over possible misfortunes
Q12: I practically never blush
Q13: I am often afraid that I am going to blush
Q14: I have nightmares every few nights
Q15: My hands and feet are usually warm
Q16: I sweat very easily even on cool days
Q17: Sometimes when embarrassed, I break out in a sweat
Q18: I hardly ever notice my heart pounding 
 and I am seldom short of breath
Q19: I feel hungry almost all the time
Q20: I am very seldom troubled by constipation
Q21: I have a great deal of stomach trouble
Q22: I have had periods in which I lost sleep over worry
Q23: My sleep is fitful and disturbed
Q24: I dream frequently about things that 
 are best kept to myself
Q25: I am easily embarrassed
Q26: I am more sensitive than most other people
Q27: I frequently find myself worrying about something
Q28: I wish I could be as happy as others seem to be
Q29: I am usually calm and not easily upset
Q30: I cry easily
Q31: I feel anxiety about something or 
 someone almost all the time
Q32: I am happy most of the time
Q33: It makes me nervous to have to wait
Q34: I have periods of such great restlessness 
 that I cannot sit long I a chair
Q35: Sometimes I become so excited that I find 
 it hard to get to sleep
Q36: I have sometimes felt that difficulties 
 were piling up so high that I could not overcome them
Q37: I must admit that I have at times been 
 worried beyond reason over something that really did not matter
Q38: I have very few fears compared to my friends
Q39: I have been afraid of things or people 
 that I know could not hurt me
Q40: I certainly feel useless at times
Q41: I find it hard to keep my mind on a task or job
Q42: I am usually self−conscious
Q43: I am inclined to take things hard
Q44: I am a high−strung person
Q45: Life is a trial for me much of the time
Q46: At times I think I am no good at all
Q47: I am certainly lacking in self−confidence
Q48: I sometimes feel that I am about to go to pieces
Q49: I shrink from facing crisis of difficulty
Q50: I am entirely self−confident

Note. Example 2: Regularized log-linear relations. Blue edges represent positive relations, red edges represent negative relations. The cut argument has
been set to 0. Edge weights ranged from –1.82 (Q47–Q50) to 2.28 (Q6–Q41). See the online article for the color version of this figure.
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Glossary

(Weighted) Adjacency Matrix

A squarematrix that encodes connections (or their weights) in a net-
work. Each row and column represent a node in the network, and each
cell represents the strength of the connection between the respective
nodes. In this article, we focus on undirected networks, which consist
of symmetric adjacency matrices, i.e., the upper and lower triangle of
thematrix are identical, and for which the diagonal elements are 0.

Berkson’s Bias

Unexpected connections that can arise when estimating models
from a subsample of a population, where the sample has been
selected as a function of the variables included in the model (de
Ron et al., 2021). For example, Berkson’s bias can arise when esti-
mating a network of depressive symptoms from patients who score
high on the sum-score of this depression scale.

Bootstrapped Difference Test

Significance test for investigating if the weight of two edges or
the centrality of two nodes within the same network differs from
one another (Epskamp, Borsboom, Fried, 2018). The test is based
on calculating the difference between the two bootstrap values
(i.e., for the two edge weights or the two centrality indices), and
subsequently testing if the bootstrapped confidence interval around
this difference estimate includes 0.

Bootstrap: Case-Drop

Resampling of different subsets of the data. In the context of
network analysis, this allows to investigate the stability of the cen-
trality indices for retaining different proportions of the original
sample, e.g., 90%, 80%, etc. (Epskamp, Borsboom, Fried, 2018).
The stability of centrality can be calculated as the correlation
between centrality indices established from the original sample
with the ones established from the subsets.

Bootstrap: Nonparametric

Resampling data from the original sample (with replacement).
In the context of network analysis, this allows to investigate the
accuracy of edge weight estimates, based on the width of the boot-
strapped confidence intervals around the estimate (Epskamp, Bors-
boom, Fried, 2018).

Centrality Analysis

Quantifies the projected influence of a node in terms of its direct
and/or indirect connections to other nodes in the network. Different
centrality metrics exist that differ in their approach to quantify this
influence (e.g., strength/degree, betweenness, closeness, bridge cen-
trality, etc.).

Cluster Analysis

Quantifies the tendency of a network to exhibit groups of nodes
(“clusters”) that arise from their specific interconnections.

Collider Structure

Refers to the causal structure of three variables, where one is
the common effect of the other two (e.g., A ! B / C). If the

bivariate-correlation between the two cause-variables (A, C) is
zero or weakly positive, this structure may induce unexpected
strong and negative relationships between them in a partial-corre-
lation network (see also Berkson’s bias).

Density/Sparsity (of a network)

Quantifies how well connected a network is. In the context of
statistical network models, density refers to the number of esti-
mated edges relative to the number of edges if the network were
fully connected. A dense network refers to a network structure
with many connections, whereas a sparse network refers to a
weakly connected structure. Estimation methods such as regulari-
zation and pruning assume a sparse true network structure.

Edge

Connection between two nodes. Edges can be weighted or
unweighted, directed or undirected. The types of networks we dis-
cuss in this article conceptualize edges as the strength of associa-
tion between two nodes. This association is estimated from data,
for example using (partial-) correlations.

Model Search/Selection

Algorithms that evaluate and select the best fitting model for the
data, according to a criterium (e.g., penalized maximum likelihood
estimation).

Network Comparison

(Formal) comparison of two (or more) network structures consist-
ing of the same set of nodes. It is possible to compare global network
properties (e.g., the correlation between the adjacency matrices, struc-
tural invariance testing, etc.), as well as local network properties (e.g.,
comparing a specific edge between two nodes across the networks).

Node

Vertices (“circles”) among which we aim to establish connec-
tions. In the types of networks discussed in this article, nodes are
observed variables in a dataset.

(Pairwise) Markov Random Field

Type of network that establishes undirected connections
between variables. In this article, we refer to different ways of esti-
mating such undirected networks from cross-sectional data: Gaus-
sian Graphical Models (or partial-correlation networks) for
continuous data, Ising models for binary data, and mixed graphical
models for data that consists of variables with mixed distributions.
In contrast, so-called Bayesian networks, or directed acyclic
graphs (DAGs) establish directed connections between variables.

Penalization/Regularization

Method to prevent overfitting in highly parametrized models.
Penalization/regularization approaches shrink model parameters
towards zero, which includes removing some edges from the esti-
mated network structure.

Predictability

Quantification of how well a node can be predicted by all remain-
ing nodes, for example, by calculating the explained variance (R2).
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Pruning/Thresholding

Estimation method that removes or hides edges from the net-
work according to some threshold (e.g., statistical significance of
Bayes factor criterium) in order to achieve a sparse network
structure.

Seed Settings

Settings that determine the starting number (“seed”) for routines
that involve random sampling (e.g., as done in permutation tests
such as the Network Comparison Test). Setting these transparently
is essential for reproducibility because different seed settings will
lead to slightly different results.

Skip-Structures

Refers to instruments that skip certain items based on the
response to previous questions, e.g., only asking for more nuanced
depression symptoms if the central depression symptoms are
present.

Structure (of a Network)

The structure of a network is characterized by the presence/ab-
sence of its edges. Two networks with the same subset of nodes
are equal in structure if they contain the exact same set of edges
between the nodes.

Topological Overlap

Two nodes exhibit topological overlap if they share the same
relations to the other nodes in the network.
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