
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

USDA Wildlife Services - Staff Publications U.S. Department of Agriculture: Animal and 
Plant Health Inspection Service 

2020 

Reporting the limits of detection and quantification for Reporting the limits of detection and quantification for 

environmental DNA assays environmental DNA assays 

Katy E. Klymus 
U.S. Geological Survey, Columbia Environmental Research Center, kklymus@usgs.gov 

Christopher M. Merkes 
U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 

Michael J. Allison 
University of Victoria, Victoria, BC 

Caren S. Goldberg 
Washington State University 

Caren C. Helbing 
University of Victoria, Victoria, BC 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc 

 Part of the Natural Resources and Conservation Commons, Natural Resources Management and 

Policy Commons, Other Environmental Sciences Commons, Other Veterinary Medicine Commons, 

Population Biology Commons, Terrestrial and Aquatic Ecology Commons, Veterinary Infectious Diseases 

Commons, Veterinary Microbiology and Immunobiology Commons, Veterinary Preventive Medicine, 

Epidemiology, and Public Health Commons, and the Zoology Commons 

Klymus, Katy E.; Merkes, Christopher M.; Allison, Michael J.; Goldberg, Caren S.; Helbing, Caren C.; Hunter, 

Margaret E.; Jackson, Craig A.; Lance, Richard F.; Mangan, Anna M.; Monroe, Emy M.; Piaggio, Antoinette 

J.; Stokdyk, Joel P.; Wilson, Chris C.; and Richter, Catherine A., "Reporting the limits of detection and 

quantification for environmental DNA assays" (2020). USDA Wildlife Services - Staff Publications. 2365. 

https://digitalcommons.unl.edu/icwdm_usdanwrc/2365 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant 
Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion 
in USDA Wildlife Services - Staff Publications by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/icwdm_usdanwrc
https://digitalcommons.unl.edu/usdaaphis
https://digitalcommons.unl.edu/usdaaphis
https://digitalcommons.unl.edu/icwdm_usdanwrc?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/771?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/19?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/20?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/770?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/770?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/763?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/769?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/769?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/81?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/icwdm_usdanwrc/2365?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Katy E. Klymus, Christopher M. Merkes, Michael J. Allison, Caren S. Goldberg, Caren C. Helbing, Margaret 
E. Hunter, Craig A. Jackson, Richard F. Lance, Anna M. Mangan, Emy M. Monroe, Antoinette J. Piaggio, 
Joel P. Stokdyk, Chris C. Wilson, and Catherine A. Richter 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
icwdm_usdanwrc/2365 

https://digitalcommons.unl.edu/icwdm_usdanwrc/2365
https://digitalcommons.unl.edu/icwdm_usdanwrc/2365


Environmental DNA. 2020;2:271–282.	 		 	 | 	271wileyonlinelibrary.com/journal/edn3

 

Received:	13	May	2019  |  Revised:	19	July	2019  |  Accepted:	22	July	2019
DOI: 10.1002/edn3.29  

S P E C I A L  I S S U E  O R I G I N A L  A R T I C L E

Reporting the limits of detection and quantification for 

environmental DNA assays

Katy E. Klymus1  |   Christopher M. Merkes2  |   Michael J. Allison3 |    

Caren S. Goldberg4 |   Caren C. Helbing3  |   Margaret E. Hunter5  |   Craig A. Jackson2  |    

Richard F. Lance6 |   Anna M. Mangan7 |   Emy M. Monroe8 |   Antoinette J. Piaggio7  |   

Joel P. Stokdyk9 |   Chris C. Wilson10 |   Catherine A. Richter1

1U.S.	Geological	Survey,	Columbia	Environmental	Research	Center,	Columbia,	MO,	USA
2U.S.	Geological	Survey,	Upper	Midwest	Environmental	Sciences	Center,	La	Crosse,	WI,	USA
3Department	of	Biochemistry	and	Microbiology,	University	of	Victoria,	Victoria,	BC,	Canada
4School	of	the	Environment,	Washington	State	University,	Pullman,	WA,	USA
5U.S.	Geological	Survey,	Wetland	and	Aquatic	Research	Center,	Gainesville,	FL,	USA
6Environmental	Laboratory,	United	States	Army	Engineer	Research	&	Development	Center,	Vicksburg,	MS,	USA
7U.S.	Department	of	Agriculture,	Wildlife	Genetics	Lab,	Animal	and	Plant	Health	Inspection	Service,	Wildlife	Services,	National	Wildlife	Research	Center,	Fort	
Collins,	CO,	USA
8U.S.	Fish	and	Wildlife	Service,	Whitney	Genetics	Laboratory,	Midwest	Fisheries	Center,	Onalaska,	WI,	USA
9U.S.	Geological	Survey,	Upper	Midwest	Water	Science	Center,	Marshfield,	WI,	USA
10Aquatic	Research	and	Monitoring	Section,	Ontario	Ministry	of	Natural	Resources	and	Forestry,	Peterborough,	ON,	Canada

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2019	The	Authors.	Environmental DNA	published	by	John	Wiley	&	Sons	Ltd

Correspondence

Katy	E.	Klymus,	U.S.	Geological	Survey,	
Columbia	Environmental	Research	Center,	
4200	New	Haven	Rd.,	Columbia,	MO	65201,	
USA.
Email:	kklymus@usgs.gov

Funding information

Animal	and	Plant	Health	Inspection	Service;	
U.S.	Geological	Survey;	Innovate	BC,	Grant/
Award	Number:	#IGN071717	

Abstract

Background: Environmental	DNA	(eDNA)	analysis	is	increasingly	being	used	to	detect	
the	presence	and	relative	abundance	of	rare	species,	especially	invasive	or	imperiled	
aquatic	species.	The	rapid	progress	in	the	eDNA	field	has	resulted	in	numerous	stud‐

ies	 impacting	 conservation	 and	management	 actions.	However,	 standardization	of	
eDNA	methods	and	reporting	across	the	field	is	yet	to	be	fully	established,	with	one	
area	being	the	calculation	and	 interpretation	of	assay	 limit	of	detection	 (LOD)	and	
limit	of	quantification	(LOQ).
Aims: Here,	we	propose	establishing	consistent	methods	for	determining	and	report‐
ing	of	LOD	and	LOQ	for	single‐species	quantitative	PCR	(qPCR)	eDNA	studies.
Materials & Methods/ Results: We	utilize	datasets	from	multiple	cooperating	labo‐

ratories	to	demonstrate	both	a	discrete	threshold	approach	and	a	curve‐fitting	mod‐

eling	 approach	 for	 determining	 LODs	 and	 LOQs	 for	 eDNA	qPCR	 assays.	We	 also	
provide	details	of	an	R	script	developed	and	applied	for	the	modeling	method.
Discussion/Conclusions: Ultimately,	standardization	of	how	LOD	and	LOQ	are	de‐

termined,	 interpreted,	and	reported	for	eDNA	assays	will	allow	for	more	 informed	
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1  | INTRODUC TION

Environmental	 DNA	 (eDNA)	 studies	 commonly	 use	 quantitative	
real‐time	 polymerase	 chain	 reaction	 (qPCR)	 for	 the	 detection	 of	
low	 levels	of	 target	 species'	eDNA	found	 in	complex	environmen‐

tal	samples	(e.g.,	water,	soil,	or	air).	Detection	of	low‐concentration	
DNA	by	qPCR	and	 the	 specificity	of	 the	 technique	provide	a	high	
level	of	confidence	 that	DNA	from	the	 target	has	been	 identified.	
Currently,	eDNA	techniques	are	in	the	process	of	becoming	a	part	
of	the	standard	fishery	and	wildlife	management	toolkit	for	popula‐
tion	detection,	assessment,	and	monitoring	 (Bohmann	et	al.,	2014;	
Goldberg,	 Sepulveda,	 Ray,	 Baumgardt,	 &	 Waits,	 2013;	 Hunter	 et	
al.,	2015;	Piaggio	et	al.,	2014;	Rees	et	al.,	2014).	Because	erroneous	
detection	or	nondetection	of	 a	 target	organism	can	 lead	 to	 costly	
management	actions	or	ecological	and	economic	impacts,	accurate	
eDNA	detection	and	appropriate	interpretation	of	results	are	critical	
(Goldberg	et	 al.,	 2016;	Hunter	et	 al.,	 2017).	 Likewise,	understand‐

ing	the	quantitative	precision	of	eDNA	assays	is	paramount	because	
qPCR	measurements	are	being	used	to	assess	target	species	abun‐

dances	(Yates	et	al.,	2019).	Robust	quality	control	metrics	and	clear	
reporting	of	those	metrics	and	the	methodologies	used	to	determine	
them	are	required	to	ensure	that	results	are	comparable	across	stud‐

ies	and	can	be	defensibly	interpreted	(Bustin	et	al.,	2009).
Since	 its	development	 in	the	1990s	 (Higuchi	et	al.,	1992;	Kubista	

et	al.,	2006;	Wittwer	et	al.,	1997),	qPCR	has	become	widely	used	for	
detection	of	nucleic	acids	in	many	fields,	including	clinical	studies,	fo‐

rensics,	 water	 quality	 monitoring,	 gene	 expression,	 and	 genetically	
modified	 organism	 product	 identification	 (Borchardt	 et	 al.,	 2017;	
Di	 Domenico,	 Di	 Giuseppe,	 Wicochea	 Rodriguez,	 &	 Camma,	 2017;	
Rasmussen	&	Morrissey,	 2008;	 Russell	 et	 al.,	 2013;	 Scholtens	 et	 al.,	
2017).	Motivated	by	the	absence	of	standardization	in	fields	employ‐
ing	 the	 qPCR	method,	 Bustin	 et	 al.	 (2009)	 developed	 the	 minimum	
information	 for	publication	of	quantitative	 real‐time	PCR	experiment	
(MIQE)	guidelines	to	improve	assay	reliability,	data	interpretation,	and	
laboratory	transparency.	The	MIQE	recommendations	are	widely	cited,	
and	application‐specific	adaptations	and	guides	have	been	published	
(Bustin	et	al.,	2010;	Dooms,	Chango,	Barbour,	Pouillart,	&	Abdel	Nour,	
2013;	Edmunds,	McIntyre,	 Luckenbach,	Baldwin,	&	 Incardona,	2014;	
Huggett	et	al.,	2013;	Johnson,	Bibby,	Wong,	Agrawal,	&	Bustin,	2012;	
Taylor	&	Mrkusich,	2014).	The	MIQE	guidelines	are	a	good	reference	for	
the	eDNA	community	to	use	in	developing	and	using	qPCR	assays.	In	
particular,	the	guidelines	address	the	testing	and	reporting	of	an	assay's	
efficiency,	 linear	dynamic	range,	and	precision,	which	are	parameters	
critical	 to	 well‐performing	 eDNA	 qPCR	 assays.	 However,	 the	MIQE	

guidelines	also	include	recommendations	that	are	irrelevant	for	eDNA	
applications,	such	as	gene	expression,	while	lacking	guidance	on	other	
topics	pertinent	to	the	analysis	of	environmental	samples.

One	 topic	 essential	 to	 eDNA	 studies	 is	 assay	 performance	 at	
low	 target	 DNA	 concentrations.	 However,	 robust	 assessments	 of	
parameters	associated	with	low‐concentration	detection	by	a	qPCR	
assay	are	often	omitted	or	poorly	described	in	studies.	This	may	be	
due	to	confusion	in	how	to	define	parameters	such	as	the	limits	of	
detection	 (LOD)	and	quantification	 (LOQ)	 for	qPCR	studies.	 Some	
of	 the	 earliest	 efforts	 to	 standardize	measurement	 and	 reporting	
of	 low‐quantity	 analytes	were	 developed	 for	 analytical	 chemistry,	
and	the	definitions	given	for	LOD	and	LOQ	have	become	the	con‐

vention	(Currie,	1999).	However,	these	conventional	definitions	do	
not	fit	qPCR	data	as	they	require	a	linear	response	between	the	an‐

alyte	and	 the	 signal	of	 response	and	 they	assume	a	 level	of	back‐
ground	noise	in	blank	samples	(i.e.,	the	limit	of	the	blank	[LOB])	from	
which	the	analyte	must	be	distinguished	(Armbruster	&	Pry,	2008).	
Data	from	qPCR	analyses	do	not	meet	these	assumptions	because	
the	 response	 is	not	 linear	 and	negative	 samples	do	not	produce	a	
signal	 distinguishable	 from	background	 signal	 of	 the	 thermocycler	
(Forootan	et	al.,	2017;	Hunter	et	al.,	2017).	Therefore,	LOD	and	LOQ	
require	 different	 definitions	 and	 interpretation	 for	 qPCR.	 From	 a	
qPCR	perspective,	LOD	can	be	defined	as	the	lowest	concentration	
of	target	analyte	that	can	be	detected	with	a	defined	level	of	con‐

fidence,	with	a	95%	detection	rate	as	the	standard	confidence	level	
(Burd,	2010;	Burns	&	Valdivia,	2007;	Bustin	et	al.,	2009;	CLSI,	2012;	
Forootan	et	al.,	2017;	Furlan,	Gleeson,	Hardy,	&	Duncan,	2016;	Wolk	
&	Marlowe,	2011).	This	is	accomplished	by	running	a	large	number	
of	replicate	standard	curves	including	low‐concentration	standards	
and	determining	 the	 lowest	 standard	 concentration	 at	which	95%	
of	the	replicates	produce	positive	amplification	of	the	target	DNA.

The	 LOD	 is	 based	 on	 detection/nondetection	 criteria	 and	 de‐

scribes	an	assay's	ability	to	detect	the	target	sequence	at	low	levels.	
In	contrast,	measurement	of	concentration	is	addressed	by	the	LOQ,	
which	reflects	the	assay's	capacity	to	precisely	quantify	copy	num‐

ber.	The	LOQ	plays	a	critical	role	when	studies	attempt	to	determine	
predictive	 relationships	 between	 eDNA	 concentration	 and	 target	
species	biomass	or	relative	abundance.	The	Clinical	and	Laboratory	
Standards	Institute	(CLSI)	defines	LOQ	as	the	lowest	amount	of	ana‐
lyte	in	a	sample	that	can	be	quantitatively	determined	with	a	stated	
precision,	 under	 stated	 experimental	 conditions	 (2012).	 For	 qPCR	
assays,	precision	can	be	assessed	using	the	coefficient	of	variation	
(CV)	of	 the	measured	 concentrations	of	 standards	 (Kubista,	 2014;	
Taylor,	1987).	The	concentration	of	 target	DNA	at	an	assay's	LOQ	

interpretation	of	assay	results,	more	meaningful	interlaboratory	comparisons	of	ex‐
periments,	and	enhanced	capacity	for	assessing	the	relative	technical	quality	and	per‐
formance	of	different	eDNA	qPCR	assays.

K E Y W O R D S

assay	optimization,	eDNA,	qPCR,	standardization
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may	be	greater	than	or	equal	to	the	concentration	identified	as	the	
LOD	 but	 cannot	 be	 less	 than	 the	 LOD	 (Armbruster	 &	 Pry,	 2008;	
Kralik	&	Ricchi,	2017).

The	 ability	 to	 detect	 and	 quantify	 low	 target	DNA	 concentra‐
tions	is	essential	to	eDNA	work,	but	the	eDNA	field	lacks	clear	defi‐
nitions	for	assay	LOD	and	LOQ.	Currently,	these	metrics	are	applied	
inconsistently	in	assay	development,	and	eDNA	studies	rarely	report	
these	parameters	and	the	methods	used	to	measure	them.	This	lack	
of	clarity	in	defining	LOD	and	LOQ	can	be	problematic	as	described	
in	 a	 study	on	microbial	 source	 tracking	 (Stewart	 et	 al.,	 2013).	The	
Stewart	et	al.	 (2013)	interlaboratory	study	comparing	qPCR	assays	
showed	 that	 differing	 concepts	 and	 definitions	 of	 LOD/LOQ	 pro‐

duced	 inconsistent	data	analysis	and	reporting.	For	example,	 labo‐

ratories	obtained	the	same	result	for	a	given	sample	(e.g.,	detection)	
but	 reported	 it	 differently	 based	 on	 their	 LOD	 (e.g.,	 detection	 or	
nondetection),	 producing	 a	 false	 discrepancy.	 Because	 presence/
absence	is	crucial	for	studies	of	invasive	and	imperiled	species,	the	
reporting	conventions	stemming	from	LOD	and	LOQ	must	be	clear	
and	consistent.

As	the	field	moves	forward,	it	is	becoming	increasingly	import‐
ant	that	we	be	able	to	analyze	samples	consistently	across	labora‐
tories.	This	requires	not	only	standardization	of	reporting	on	assay	
conditions	(as	per	the	standard	MIQE;	Bustin	et	al.,	2009)	but	also	
confirming	that	the	results	are	comparable	or	improved	across	lab‐

oratories	 as	 the	 application	 of	 DNA	 analytical	 methods	 can	 vary	
(e.g.,	types	of	thermocyclers,	enzymes,	and	reagents)	and	new	tech‐

nologies	become	available.	Indeed,	there	is	an	acknowledged	need	
for	 introducing	eDNA	standard	practice	 (Helbing	&	Hobbs,	2019).	
Our	goal	is	to	help	establish	standard	LOD	and	LOQ	definitions	and	
guidelines	 to	 improve	 communication,	 inform	 data	 interpretation,	
and	facilitate	cross‐study	comparisons,	all	of	which	support	conser‐
vation	and	management	decisions.	In	addition,	by	determining	their	
assay's	LOD	and	LOQ	as	defined	here,	practitioners	will	be	able	to	
optimize	the	quantitative	precision	of	their	assay	and	better	under‐
stand	its	capabilities	and	limits.	We	present	a	simple	method	based	
on	 discrete	 thresholds	 for	 determining	 the	 LOD	 and	 LOQ	 for	 an	
eDNA	qPCR	assay,	which	should	be	performed	on	each	assay	being	
validated	for	use	or	adopted	by	a	new	laboratory.	Alternatively,	cal‐
culations	to	determine	LOD	and	LOQ	based	on	curve	fitting	can	be	
performed	by	an	R	script	also	provided	here.	We	present	the	results	
from	an	interlaboratory	and	cross	assay	assessment	utilizing	these	
methods	and	address	ways	to	improve	the	accuracy	and	precision	of	
eDNA	qPCR	assays.	Finally,	we	provide	guidance	on	reporting	LOD	
and	LOQ	for	eDNA	studies	and	some	of	the	unique	considerations	
required	within	this	context.

2  | MATERIAL S AND METHODS

Seven	 independent	 laboratories	 participated	 in	 an	 interlaboratory	
comparison	of	LOD	and	LOQ	for	eDNA	assays	for	a	variety	of	spe‐

cies.	Each	laboratory	performed	a	series	of	replicate	standard	curves	
(totaling	20–96	 replicates	 per	 standard	 concentration)	 for	 each	of	

their	tested	assays;	a	total	of	36	assays	were	tested	(Appendix	S1).	
All	standard	curves	were	created	using	templates	derived	from	syn‐

thetic	double‐stranded	DNA	of	the	target	region,	except	one	assay	
which	used	a	nonlinearized	plasmid	standard.	Each	laboratory	also	
included	both	positive	and	negative	controls.

Data	from	the	replicate	standard	curves	were	evaluated	as	the	
binary,	 qualitative	outcome	 for	 LOD	 (detection/nondetection)	 and	
as	the	CV	for	LOQ.	The	CV	was	calculated	for	each	standard	by	the	
equation	derived	by	Forootan	et	al.	(2017):

where	E	is	the	qPCR	efficiency	and	SD(C
q
)	is	the	standard	deviation	

of	replicate	C
q
	values.	We	determined	the	LOD	and	LOQ	using	both	

a	discrete	threshold	method	and	a	model	fitting	approach.
To	determine	LOD	and	LOQ	for	an	assay,	 standard	concentra‐

tions	must	span	both	parameters.	For	LOD,	they	must	also	include	a	
mix	of	positive	and	negative	replicates.	The	accuracy	and	precision	
of	 LOD	 and	 LOQ	 calculations	 increase	 with	 replication;	 however,	
there	 is	not	a	definitive	 level	of	 replication,	and	 recommendations	
vary	 (e.g.,	CLSI,	2012;	Kubista,	2014;	Wolk	&	Marlowe,	2011).	We	
relied	on	data	available	from	routine	standard	curve	analysis	by	the	
seven	laboratories,	and	therefore,	standard	curve	replicates	varied	
among	laboratories	and	assays.

2.1 | Discrete threshold methods

The	discrete	threshold	approach	identifies	the	lowest	concentration	
meeting	 the	 LOD	or	 LOQ	 criterion,	 and	 values	 for	 LOD	and	 LOQ	
are	restricted	to	the	standard	concentrations	included	in	the	curve.	
The	LOD	was	the	lowest	standard	concentration	of	template	DNA	
that	 produced	 at	 least	 95%	 positive	 replicates.	 The	 LOQ	was	 the	
lowest	 standard	concentration	 that	could	be	quantified	with	a	CV	
value	below	35%.	There	is	currently	no	standardized	maximum	CV	
for	qPCR	LOQs,	but	studies	have	utilized	LOQ	threshold	CV	values	
ranging	 from	 25%	 to	 35%	 (Forootan	 et	 al.,	 2017;	 Kralik	 &	 Ricchi,	
2017).

2.2 | Curve‐fitting methods

We	also	determined	the	LOD	and	LOQ	for	each	assay	using	curve‐
fitting	methods.	Curve‐fitting	methods	can	provide	more	accurate	
determination	of	LOD	and	LOQ	because	less	bias	results	from	the	
particular	 standard	 concentrations	 being	 tested.	 To	 determine	
the	 LOD,	 qualitative,	 binary	 detection	 results	 for	 the	 standards	
were	fit	to	a	sigmoidal	curve	using	the	drc	package	in	R	(Ritz,	Baty,	
Streibig,	 &	 Gerhard,	 2015).	We	 fit	 sigmoidal	 models	 with	 all	 15	
available	logarithmic	functions	and	selected	the	best	fitting	model	
based	on	log	likelihood	values,	Akaike's	information	criterion,	lack	
of	 fit,	 and	 residual	variance	using	 the	mselect	 function	 from	the	
drc	package	in	R	(Ritz	et	al.,	2015).	We	also	fit	a	linear	model	in	R	
with	the	formula	LOD	~	Assay	+	FunctionType	+	NumberParamet

CVln=

√

(

1+E
)(SD(Cq))

2
∗ln(1+E)

−1
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TA B L E  1  Limits	of	detection	(LOD)	and	limits	of	quantification	(LOQ),	in	copies	per	reaction	Number	indicates	the	sequential	assay	
number	that	is	used	in	all	figures

Number Assay Modeled LOD Discrete LOD Modeled LOQ Discrete LOQ Lab

1 CID 51.0 192 184 1,920 CERC

2 CIDa NAb 15.6 15.6 15.6 CERC

3 MYPI6 260 250 260 NA CERC

4 MYPI6a 7.18 15.6 55 62.5 CERC

5 ELNU2 4.05 10 110 1,250 ERDC

6 MYPI2 4.92 10 50 50 ERDC

7 Hno 2.19 5 11 10 MNRF

8 D‐loop 2.81 10 6c 10c NWRC

9 AD‐BHC 6.33 10 9 10 UMESC

10 AD‐SVC 6.33 10 10 100 UMESC

11 Dre16s 22.5 100 839 1,000 UMESC

12 SS 2.80 10 27 100 UMESC

13 YPC 7.73 10 40 100 UMESC

14 eASMO9 5.74 20 50 100 UVIC

15 eASTR4 9.59 20 130 100 UVIC

16 eFISH1 22.1 20 128 500 UVIC

17 eLIPI1 4.49 4 62 20 UVIC

18 eMIDO1 2.69 4 49 100 UVIC

19 eMISA2 5.92 20 159 100 UVIC

20 eONKI4 6.82 20 370 500 UVIC

21 eRAAU1 6.86 20 44 100 UVIC

22 eRACA2 8.57 20 69 100 UVIC

23 eRALU2 6.29 20 32 100 UVIC

24 eRAPR2 5.92 20 39 20 UVIC

25 ACTM1 2.21 10 10 10 WGL

26 ACTM3 2.20 10 9 10 WGL

27 BHTM1 5.13 10 32 50 WGL

28 BHTM2 9.04 10 56 50 WGL

29 GCTM10 2.93 10 25 50 WGL

30 GCTM22 2.48 10 135 250 WGL

31 GCTM32 2.44 10 239c 250c WGL

32 Goby 3.60 10 12 100 WGL

33 SCTM4 2.96 10 20 50 WGL

34 SCTM5 2.77 10 13 50 WGL

35 BRK2 7.16 10 24 50 WSU

36 NZMS 7.60 10 24 50 WSU

Note: Assay	indicates	the	name	of	the	assay	tested.	Modeled	LOD	indicates	the	95%	limit	of	detection	for	a	single	replicate	as	determined	by	sigmoi‐
dal	modeling	using	our	generic	LOD/LOQ	calculator	script.	Discrete	LOD	indicates	the	lowest	standard	tested	with	95%	or	greater	positive	detec‐
tions	among	all	replicates	tested.	LOQ	indicates	the	limit	of	quantification	as	determined	by	using	our	generic	LOD/LOQ	calculator	script.	Laboratory	
indicates	where	the	testing	was	done:	CERC	=	U.S.	Geological	Survey—Columbia	Environmental	Research	Center,	ERDC	=	U.S.	Army	Corps	of	
Engineers—Engineer	Research	and	Development	Center,	MNRF	=	Ontario—Ministry	of	Natural	Resources	and	Forestry,	NWRC	=	U.S.	Department	
of	Agriculture	Animal	and	Plant	Health	Inspection	Service—National	Wildlife	Research	Center,	UMESC	=	U.S.	Geological	Survey—Upper	Midwest	
Environmental	Sciences	Center,	UVIC	=	University	of	Victoria,	British	Columbia,	WGL	=	U.S.	Fish	and	Wildlife	Service—Whitney	Genetics	Laboratory,	
WSU	=	Washington	State	University.
aSame	assay	as	above,	but	with	TE	and	tRNA	added	to	template	DNA	standards.	
bNot	solvable,	because	only	standards	with	100%	detection	were	tested.	
cPrecision	threshold	adjusted	to	0.783	CV	for	assay	8	and	0.512	CV	for	assay	31.	
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ers	to	evaluate	the	effect	of	choosing	different	logarithmic	func‐
tions	as	the	LOD	models.

Furthermore,	 we	 used	 the	 selected	 model	 to	 determine	 the	
effective	 LOD	 to	 assess	 how	 the	 LOD	 changes	 with	 increasing	
numbers	of	PCR	replicates	per	sample.	 If	a	given	concentration	of	
target	DNA	sequence	can	be	detected	in	a	single	qPCR	with	some	
probability	(p),	then	analyzing	that	sample	in	n	replicates	would	re‐

sult	 in	a	probability	of	detection	 in	at	 least	1	of	n	 replicates	given	
by	1	−	(1	−	p)n.	Seeking	to	achieve	95%	detection	probability	with	n 

replicates,	we	can	determine	the	required	single	reaction	probability	
by	 taking	 the	nth‐root	of	0.05	using:	p	=	1	−	0.05(1/n).	 Solving	 the	
sigmoidal	detection	model	for	this	adjusted	p	results	in	the	effective	
LOD,	or	the	concentration	that	can	be	detected	with	95%	probability	
when	analyzing	the	sample	with	n	replicates.

For	LOQ,	we	modeled	the	CVs	using	base	R	functions	for	expo‐

nential	 decay,	 linear,	 and	polynomial	models	 (R	Core	Team,	2019).	
We	then	selected	the	model	with	the	lowest	residual	standard	error	
and	visually	 confirmed	 that	 the	models	had	good	 fit	using	 the	gg‐
plot2	package	in	R	(Wickham,	2016).	We	used	a	threshold	of	35%	CV	
to	determine	LOQs,	except	in	one	case	where	variability	in	even	the	
highest	standards	yielded	CVs	above	35%.	 In	that	case	we	set	the	
threshold	at	1.5	times	the	lowest	CV	obtained	for	any	standard.	As	
accurate	quantification	 requires	 reliable	detection	 in	all	 replicates,	
we	also	stipulated	that	the	LOQ	could	not	be	lower	than	the	LOD.

As	part	of	this	study,	we	developed	an	R	script	that	will	read	user	
data	provided	in	a	comma‐separated	values	(*.csv)	format	and	analyze	
the	 LOD	 and	 LOQ	 using	 the	 curve‐fitting	modeling	 approach.	 The	
script	provides	some	data	suitability	checks	that	are	helpful	for	trou‐

bleshooting	 potential	 problems	 such	 as	 improperly	 formatted	 data,	
inadequate	range	of	standards	tested,	or	potential	outliers.	The	script	
also	automatically	generates	three	figures	that	are	useful	for	under‐
standing	and	evaluating	the	results:	a	calibration	curve,	a	plot	of	the	
LOD	model,	and	a	plot	of	the	LOQ	model.	This	generic	script	code	can	
be	 found	 at	 https	://github.com/cmerk	es/qPCR_LOD_Calc,	 and	 our	
additional	analysis	code	can	be	found	at	https	://github.com/cmerk	es/
LOD_Analysis.	The	data	used	in	this	study	are	available	at	https	://doi.
org/10.5066/P9AKHU1R

3  | RESULTS

3.1 | Interlaboratory results

The	36	assays	we	tested	had	LODs	ranging	from	4	to	250	copies	per	
reaction	for	the	discrete	threshold	methods,	while	using	the	curve‐
fitting	method,	 LODs	 ranged	 from	2.19	 to	260	 copies	per	 reaction	
(Table	1).	For	 the	LOQ,	 results	 from	the	discrete	 threshold	method	
ranged	from	10	to	1,920	copies	per	reaction,	whereas	LOQ	results	de‐

rived	from	the	curve‐fitting	method	ranged	between	6	and	839	copies	
per	reaction	(Table	1).	As	expected,	precision	(indicated	by	narrower	
confidence	 intervals)	 generally	 increased	with	 replication.	 Likewise,	
most	assays	followed	a	similar	trend	of	decreasing	effective	LOD	val‐
ues	as	the	number	of	replicates	increased	(Figure	1).	Moving	from	one	
analytical	replicate	to	eight,	our	assays	showed	a	mean	11.1‐fold	drop	

in	effective	LOD	(SD	=	9.24).	Assays	3,	5,	9,	10,	35,	and	36	exhibited	
less	than	a	3‐fold	reduction,	while	assays	16,	20,	and	28	stood	out	as	
they	showed	36‐,	32‐,	and	41‐fold	reductions,	respectively	(Figure	1).

3.2 | LOD and LOQ script output

Our	LOD/LOQ	calculator	script	generates	three	plots	and	a	number	
of	outputs.	An	example	of	the	three	plots	generated	for	the	BHTM1	
assay	 (assay	27)	 is	 in	Figure	2,	and	 the	LOD	and	LOQ	plots	 for	all	
assays	can	be	found	in	Figures	S1–S10.	The	calibration	curve	plots	
all	 points	 (Figure	 2a)	 for	 identifying	 potential	 outliers.	 This	 plot	 is	
for	diagnostic	purposes	only,	and	the	linear	regression	displayed	is	
not	used	in	any	LOD	or	LOQ	calculations.	The	LOD	plot	(Figure	2b)	
shows	the	relative	detection	rates	for	each	standard	as	well	as	the	
LOD	model	curve.	The	95%	LOD	is	 identified,	and	effective	LODs	
with	confidence	intervals	for	analyzing	samples	with	multiple	repli‐
cates	are	displayed.	The	logarithmic	function	that	was	used	to	deter‐
mine	the	LODs	is	shown	in	the	plot	subtitle	along	with	the	p‐value	
for	a	lack	of	fit	test	on	the	model.	The	LOQ	plot	(Figure	2c)	shows	the	
CV	of	C

q
	values	for	each	standard	as	well	as	the	curve	for	the	LOQ	

model.	The	LOQ	 is	 represented	by	a	gray	polygon	with	 the	upper	
limit	as	the	defined	precision	threshold	and	the	right	limit,	where	the	
polygon	intersects	the	curve,	as	the	calculated	LOQ.	The	LOD	is	also	
plotted	as	a	vertical	line	to	provide	a	visual	comparison	to	the	LOQ.

In	addition	to	the	three	plots	shown	 in	Figure	2,	 the	LOD/LOQ	
calculator	script	also	generates	four	output	files.	The	first	output	is	
a	text	document	titled	“Analysis	Log”	that	documents	notes	from	the	
script	including	a	time	stamp	of	when	the	analysis	was	started,	notes	

F I G U R E  1  Effective	limits	of	detection	with	increasing	
analytical	replicates.	The	effective	LOD	is	shown	on	the	y‐axis	
for	the	number	of	analytical	replicates	on	the	x‐axis.	Each	assay	is	
represented	by	a	different	color,	and	lines	are	drawn	between	for	
readability.	Assay	numbers	are	listed	in	Table	1

https://github.com/cmerkes/qPCR_LOD_Calc
https://github.com/cmerkes/LOD_Analysis
https://github.com/cmerkes/LOD_Analysis
https://doi.org/10.5066/P9AKHU1R
https://doi.org/10.5066/P9AKHU1R
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about	any	data	abnormalities	detected	for	the	user	to	review,	a	note	
if	any	potential	outliers	were	detected,	standards	that	may	not	be	in‐

cluded	in	the	calibration	curve	regression,	a	summary	of	the	raw	data,	
the	 lowest	 standards	with	 95%	 or	 greater	 actual	 detection,	model	
exceptions	 that	may	have	occurred,	and	a	description	of	 the	head‐

ings	for	the	second	output.	The	second	output	is	a	comma‐separated	
values	(*.csv)	file	titled	“Assay	Summary”	that	contains	the	calibration	
curve	regression	information,	the	lowest	standard	analyzed	with	95%	
or	greater	detections,	the	LOD,	the	LOQ,	and	effective	LODs	for	anal‐
ysis	with	multiple	replicates.	The	third	output	titled	“LOD	Confint”	is	
the	95%	confidence	interval	 information	for	the	LOD	and	effective	
LODs.	The	fourth	output	is	the	raw	data	for	any	suspected	outliers	
and	is	named	“Potential	Outliers.”	Potential	outliers	are	flagged	if	the	
C

q
	value	is	less	than	90%	or	greater	than	110%	of	the	median	C

q
	value	

for	that	standard.	These	are	flagged	for	closer	scrutiny	by	the	user,	
but	the	script	does	not	remove	any	data	points	before	completing	its	
analysis.	The	user	must	 review	the	potential	outliers	and	reanalyze	
the	data	if	outliers	are	removed.

3.3 | Logarithmic functions/model selection

The	15	logarithmic	functions	that	were	evaluated	to	calculate	the	
LOD	 produced	 slightly	 different	 results	 ranging	 from	 1.07‐fold	
to	8.72‐fold	changes	between	highest	and	 lowest	modeled	LODs	
(Figure	3,	Tables	S1–S4).	The	Asymptotic	Regression	function	with	
three	parameters	and	the	Weibull	type	II	function	with	two	or	four	
parameters	fit	our	data	the	best	and	were	selected	most	frequently	
by	the	LOD/LOQ	calculator	script	(Figures	S1–S5).	The	lowest	LODs	
overall	were	generated	by	these	two	functions,	but	they	were	not	
significantly	different	from	each	other	(p	=	.868).	Log‐logistic	and	
Michaelis–Menten	functions	resulted	in	slightly	higher	LODs	over‐
all,	but	 the	difference	was	not	significant	 (p > .211 and p	>	 .088,	
respectively).	 Weibull	 type	 I	 functions	 resulted	 in	 significantly	
higher	 LODs	 overall	 compared	 to	 other	 function	 types	 (p	 <	 .01),	
except	Michaelis–Menten	where	the	difference	was	not	significant	
(p	=	.108).	We	found	that	increasing	the	number	of	parameters	in‐

cluded	in	the	model	lowered	the	LODs	overall	(p	=	.0186).

F I G U R E  2  Demonstration	of	figures	automatically	generated	by	LOD/LOQ	calculator	script.	(A)	Calibration	curve	plot	with	C
q
	value	

on	the	y‐axis	and	standard	concentration	on	the	x‐axis.	Points	drawn	with	black	circles	are	the	middle	2	quartiles	of	standards	with	≥50%	
detection	and	are	included	in	the	linear	regression	calculations.	Points	drawn	with	blue	pluses	(+)	are	outside	the	middle	2	quartiles	or	for	
standards	with	<50%	detection	and	are	not	included	in	the	linear	regression	calculations.	(B)	LOD	plot	with	detection	probability	on	the	
y‐axis	and	standard	concentrations	on	the	x‐axis.	Points	are	drawn	with	open	circles	for	the	detection	rates	of	each	standard	tested,	and	
the	line	represents	the	LOD	model.	Colored	points	with	95%	confidence	intervals	are	drawn	to	represent	the	LOD	and	effective	LODs	for	
multiple	replicate	analyses.	Logarithmic	function	used	and	lack	of	fit	test	results	are	shown	in	the	subtitle.	(C)	LOQ	plot	with	CV	on	the	y‐

axis	and	standard	concentrations	on	the	x‐axis.	Points	are	drawn	for	the	CVs	of	each	standard	tested.	The	vertical	red	line	is	at	the	LOD	for	
reference.	The	blue	line	represents	the	LOQ	model.	The	LOQ	is	represented	by	a	gray	rectangle	with	the	upper	limit	as	the	defined	precision	
threshold	(0.35	CV	for	this	study	except	as	noted)	and	the	right	limit	as	the	calculated	LOQ	(where	it	hits	the	curve)
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Five	of	the	logarithmic	functions	were	not	able	to	fit	all	of	our	data	
sets.	Of	36	assays	tested,	Weibull	type	II	and	Asymptotic	Regression	
functions	solved	models	for	35,	Log‐Logistic	and	Michaelis–Menten	
functions	solved	models	for	24,	and	Weibull	type	I	functions	solved	
models	 for	 21.	 In	 addition	 to	 conforming	 to	 the	 common	practice	
of	selecting	the	best	model	for	fitting	a	data	set	(Akaike,	1973),	this	
was	also	a	consideration	for	testing	multiple	models	for	each	data	set	
instead	of	choosing	one	model	to	fit	them	all.

4  | DISCUSSION

4.1 | Defining and measuring LOD and LOQ

Our	goal	was	to	clarify	definitions	of	LOD	and	LOQ	within	the	con‐

text	of	qPCR	assays	for	eDNA	and	provide	simple,	consistent	meth‐

ods	for	measuring	these	parameters	for	eDNA	single‐species	assays.	
With	LOD,	we	address	 the	question	 “How	many	 target	DNA	cop‐

ies	per	reaction	can	one	reliably	detect	with	95%	confidence?”	and	
with	LOQ	“How	few	target	DNA	copies	per	reaction	can	one	reliably	
quantify	with	a	defined	precision?”	These	questions	form	the	basis	

for	asking	larger	ecological	questions	as	well	as	provide	the	precision	
required	to	infer	occupancy	and	density	from	an	eDNA	data	set.

Here,	we	defined	the	LOD	as	the	lowest	concentration	at	which	
we	get	95%	detection	 and	 LOQ	as	 the	 lowest	 standard	 concentra‐
tion	with	a	CV	value	below	35%.	These	parameters	were	measured	
by	 running	multiple	 replicate	 standard	curves	of	 an	assay	and	 then	
applying	a	95%	detection	level	or	CV	calculation.	We	recommend	that	
future	studies	describing	the	development	of	qPCR‐based	eDNA	as‐
says	adopt	these	definitions	and	report	these	parameters.	 It	should	
be	noted	that	the	LOD	and	LOQ	of	an	assay	should	be	determined	
after	the	assay	has	been	optimized	for	annealing	temperature,	prim‐

ers/probe	concentrations,	etc.	as	 these	changes	will	affect	 the	PCR	
efficiency	as	well	as	detection	and	quantification	limits.	When	trans‐
ferring	an	assay	to	a	new	laboratory,	the	LOD	should	be	quantified	to	
confirm	similarity	to	the	assay's	published	LOD	before	use	to	confirm	
that	any	changes	in	laboratory	equipment,	reagents,	probe	chemistry,	
or	pipetting	precision	are	not	negatively	affecting	results.

The	measurement	of	LOD	and	LOQ,	using	either	the	discrete	
threshold	method	or	the	curve‐fitting	modeling	method,	is	a	sim‐

ple	and	straightforward	procedure.	The	discrete	threshold	method	

F I G U R E  3  Limits	of	detection	by	logarithmic	function	used.	The	different	logarithmic	functions	tested	are	on	the	x‐axis	denoted	by	
type	and	number	of	parameters	(XX.#).	AR	=	Asymptotic	Regression,	LL	=	Log‐Logistic,	MM	=	Michaelis–Menten,	W1	=	Weibull	type	I,	
W2	=	Weibull	type	2.	The	3u	number	of	parameters	for	LL.3u	indicates	a	3	parameter	function	with	the	upper	limit	set	at	1,	whereas	the	rest	
of	the	3	parameter	functions	set	the	lower	limit	at	0	instead.	Limit	of	detection	as	determined	is	on	the	y‐axis	in	copies	per	reaction.	Each	
assay	tested	is	represented	by	a	different	color,	and	lines	are	drawn	between	to	help	identify	shifts	from	1	function	to	the	next.	Missing	
points	for	a	given	assay‐function	combination	indicate	that	the	model	could	not	be	solved	for	that	data	and	function	combination.	Assay	
numbers	are	listed	in	Table	1
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produces	useful	results;	however,	modeling	the	data	to	determine	
LOD	 and	 LOQ	 is	 a	 considerable	 improvement	 because	 rigorous	
testing	 of	 a	 large	 number	 of	 DNA	 concentrations	 is	 impractical	
and	the	selected	standards	analyzed	can	have	a	substantial	subjec‐
tive	influence	on	the	outcome.	Furthermore,	using	models	allows	
for	 the	calculation	of	confidence	 intervals	around	effective	LOD	
estimates.	 Various	model	 forms	 can	 be	 applied	 to	 the	 sigmoidal	
data	 typically	produced	 for	LOD	experiments,	and	our	approach	
was	to	evaluate	multiple	models	and	select	the	best	for	each	 in‐

dividual	data	set.	Previously	published	LOD	methods	use	probit‐
based	approaches	(CLSI,	2012;	Stokdyk,	Firnstahl,	Spencer,	Burch,	
&	Borchardt,	2016;	Wolk	&	Marlowe,	2011),	but	broadening	 the	
available	models	ensures	that	the	selected	model	fits	the	data	best	
and	uses	the	full	range	of	data.

4.2 | Application of the LOD/LOQ calculator

Our	R	script	facilitates	the	calculation	of	LOD	and	LOQ	and	includes	
the	flexibility	of	researcher	inputs	and	decisions	in	several	ways.	The	
precision	threshold	is	a	user‐defined	setting	in	the	LOD/LOQ	calcu‐

lator	script.	We	set	our	precision	threshold	at	35%	CV	for	determin‐

ing	LOQ	(except	as	noted	in	Table	1),	but	we	do	not	recommend	a	
standardized	maximum	CV	for	qPCR	LOQs.	Instead,	we	suggest	that	
researchers	evaluate	the	decline	in	precision	(i.e.,	increase	in	the	CV)	
across	standards,	as	this	will	vary	depending	on	assay	and	laboratory	
conditions	(e.g.,	standard	curve	material)	and	report	their	precision	
threshold	and	LOQ.	For	example,	one	of	the	high	copy	standards	in	
assay	31	(Figure	S10)	was	above	our	precision	threshold	for	deter‐
mining	LOQ.	However,	there	was	reasonably	stable	precision	for	at	
least	four	standards	tested,	so	we	adjusted	our	precision	threshold	
to	more	accurately	estimate	the	LOQ	where	consistent	precision	be‐

gins	to	decline.	In	this	way,	visualization	of	the	data	informs	selection	
of	the	CV	threshold,	and	it	also	supports	selection	of	the	best	model.

Additionally,	we	encourage	eDNA	researchers	to	visualize	their	
results	to	verify	model	selection	because	poorly	fit	models	can	pro‐

duce	inaccurate	results.	For	example,	 in	assay	23	some	fluctuation	
was	being	modeled	that	does	not	exist	in	the	data	(Figure	S8,	bottom	
panels).	This	resulted	in	the	LOQ	being	mistakenly	estimated	at	over	
4,000	copies	per	reaction	with	3	lower	standards	consistently	show‐

ing	greater	precision	than	our	35%	CV	threshold	(bottom‐left,	Figure	
S8).	 Adjusting	 the	 LOQ	model	 to	 a	 7th‐order	 polynomial	 reduced	
the	noise	to	fit	within	our	precision	threshold,	and	the	model	more	
accurately	 estimated	 the	 LOQ	where	 precision	 begins	 to	 decline.	
Visualization	of	data	 can	 reveal	other	 issues	as	well.	 For	example,	
in	our	36	data	sets	there	was	typically	a	drastic	decline	in	precision	
as	concentration	decreased	(Figures	S6–S10),	but	in	some	cases	the	
lowest	copy	standard	had	greater	precision	than	higher‐copy	stan‐

dards	(Assays	1,	3,	and	24	Figures	S6	and	S8).	This	feature	is	an	ar‐
tifact	of	 successful	 amplification	 in	 fewer	 replicates,	which	means	
the	CV	is	calculated	from	fewer	values	(Forootan	et	al.,	2017),	and	
this	important	detail	could	only	be	discerned	through	careful	visual	
evaluation	of	the	plotted	results.

Because	visualization	of	 the	data	 is	 important,	we	wrote	our	
LOD/	LOQ	calculator	script	to	plot	the	data	even	if	LOD	or	LOQ	
models	 cannot	be	determined	 (Assay	2,	 Figures	S1	and	S6).	 It	 is	
commonly	 accepted	 that	 qPCR	 does	 not	 have	 highly	 accurate	
quantifications	 at	 extremely	 low	 template	 concentrations,	 so	 it	
may	 not	 be	 intuitive	 for	 an	 eDNA	 researcher	 to	 test	 concentra‐
tions	as	 low	as	necessary	for	accurate	calculations.	For	example,	
in	 Assay	 2,	 we	 did	 not	 test	 standards	 below	 15.625	 copies	 per	
reaction.	At	the	lowest	concentration	tested,	we	observed	100%	
detection	and	quantified	copy	number	with	greater	precision	than	
the	35%	CV	 threshold	we	 set	 for	determining	LOQ.	These	plots	
can	demonstrate	to	the	researcher	that	their	assay	is	performing	
better	 than	 expected	 and	 suggests	 additional	 lower‐copy	 stan‐

dards	should	be	analyzed.
Determining	an	assay's	LOD	and	LOQ	provides	an	opportunity	

for	assay	optimization,	laboratory	improvements,	and	field	survey	
design	 improvements.	 For	 instance,	 we	 identified	 two	 assays	 (1	
and	3)	that	had	high	LOD	and	LOQs	relative	to	assays	run	in	other	
laboratories.	 This	 laboratory	 reran	 those	 assays	 using	 TE	 buffer	
and	 tRNA	 in	 their	 standards	 (now	Assays	2	and	4),	and	 the	LOD	
and	 LOQs	 dropped	 to	 values	 similar	 to	 those	 observed	 in	 other	
laboratories.	We	hypothesize	 that	 the	 original	 standard	working	
stock,	 which	 had	 been	 diluted	 in	 nuclease‐free	water,	 degraded	
or	 adsorbed	 onto	 the	 plastic	 tubes,	 making	 the	 true	 standard	
concentrations	 in	 the	 qPCRs	 less	 than	 the	 nominal	 concentra‐
tions,	which	were	based	on	the	measured	absorbance	of	the	con‐

centrated	stock	solution.	The	addition	of	TE	and	tRNA	may	have	
stabilized	the	standard	stocks	and	dilution	series	and	allowed	the	
concentrations	in	the	reactions	to	remain	closer	to	nominal	(Green	
&	 Sambrook,	 2012;	 Stürzenbaum,	 1999;	Wang,	 Xioa,	Mindrinos,	
&	Davis,	2002).	Thus,	we	recommend	the	use	of	stabilizers	 in	all	
DNA	standard	solutions,	except	to	the	initial	stock	whose	concen‐

tration	will	 be	measured	 (Bustin	 et	 al.,	 2009).	 Further,	 low‐copy	
standards	have	 the	potential	 to	 lose	 a	 larger	proportion	of	 their	
DNA	 copies	 to	 nonspecific	 adsorption	 on	 plastic	 of	 the	 vials	 or	
pipette	tips.	The	use	of	tRNA	in	standard	dilutions	alleviates	this	
problem	by	competing	with	 the	 template	DNA	for	adsorption	 to	
surfaces,	 leaving	more	 of	 the	 template	 in	 solution	 and	 available	
for	amplification.	Adsorption	can	be	further	reduced	by	the	use	of	
low	retention	tubes	and	pipet	tips,	and	consistent	performance	is	
aided	by	creation	of	fresh	standard	dilutions	at	least	weekly.

Finally,	our	 script	provides	 information	on	 the	effective	LOD	
which	can	be	useful	for	designing	an	eDNA	study	or	survey.	The	
number	of	 field	and	technical	 replicates	can	have	a	direct	effect	
on	 the	 ability	 to	 detect	 DNA	 in	 the	 field,	 and	 on	 the	 ability	 to	
accurately	 calculate	 detection	 probabilities	 (Hunter	 et	 al.,	 2015;	
Erickson	et	al.,	2019).	As	demonstrated	in	our	study,	the	number	
of	replicate	amplifications	affects	the	lowest	target	concentration	
one	can	reliably	detect	(Figure	3).	In	this	way,	determining	LOD	is	a	
useful	tool	for	helping	researchers	choose	an	appropriate	balance	
between	field	replicates,	volume	of	water	per	sample,	and	techni‐
cal	replicates.
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4.3 | Interpreting the LOD and LOQ

An	 important	 distinction	 between	 PCR‐based	 measurements	 of	
eDNA	and	most	other	analytical	chemistry	techniques	is	that	de‐

tections	below	the	LOD	should	not	simply	be	considered	“noise.”	
There	is	not	a	signal	response	(i.e.,	C

q
	value)	for	truly	negative	sam‐

ples	(“noise”),	so	even	low‐concentration	detections	are	meaning‐

ful.	With	eDNA	studies,	 for	 example,	 detections	of	 target	 eDNA	
at	copy	numbers	below	those	of	the	LOD	may	be	expected	due	to	
the	rarity	of	target	species.	Such	detections	may	still	be	true	posi‐
tives	and	are	too	important	to	disregard	(Ellison,	English,	Burns,	&	
Keer,	2006;	Hunter	et	al.,	2017;	Kralik	&	Ricchi,	2017).	The	obser‐
vation	of	eDNA	detections	below	the	LOD	concentration	indicates	
that	 there	 is	 less	 than	 the	 desired	 confidence	 level	 of	 detecting	
the	 target	sequence	when	 it	 is	present	at	 that	 low	concentration	
(Figure	4).	This	is	generally	different	from	a	chemical	analyte	where	
presence	at	concentrations	below	the	LOD	can	often	be	ignored.	
For	eDNA	analyses,	LOD	is	used	as	a	measuring	stick	for	compar‐
ing	results	across	different	assays	or	results	from	the	same	assay	
but	different	sampling	locations	or	sample	processing	laboratories.	
Given	the	LOD	is	based	on	the	probability	of	detection,	detection	
rates	 for	 samples	below	 the	LOD	are	 informative	and	detections	
below	the	LOD	could	be	considered	true	positives	given	the	criteria	
below	(Ellison,	English,	Burns,	&	Keer,	2006;	Hunter	et	al.,	2017).	
For	accurate	qPCR	detections	to	occur,	we	suggest	that	detections	
be	made	at	no	more	than	40	cycles,	the	curve	morphology	needs	
to	be	uniform,	and	negative	template	controls	show	no	amplifica‐
tion	(also	see	Bustin	et	al.,	2009).	Quantitative	PCR	runs	with	evi‐
dence	of	contamination	in	the	no‐template	PCR	controls	should	be	
repeated.

Limit	 of	 quantification	 plays	 a	 critical	 role	 when	 attempting	
to	 determine	 predictive	 relationships	 between	 estimated	 target	

eDNA	concentration	or	flux	and	target	species	biomass	or	numbers.	
Estimated	eDNA	concentrations	below	an	LOQ	should	be	evaluated	
qualitatively,	as	detections	and	nondetections.	Robust	and	realistic	
interpretation	 of	 eDNA	 data	 can	 have	 important	 implications	 for	
eDNA	monitoring	programs,	 and	 it	 is	 critical	 that	 results	 be	 accu‐

rately	 communicated	 to	 wildlife	 managers,	 who	 can	 then	 decide	
whether	such	positive	eDNA	detections	warrant	further	investiga‐
tion	in	the	field.

4.4 | Reporting LOD and LOQ

To	 facilitate	 the	 evaluation	 of	 eDNA	 assays	 and	 their	 results,	 the	
LOD	and	 LOQ	must	 be	 interpreted	 properly	 and	 easily,	which	 re‐

quires	 a	 clear	 explanation	 and	 complete	 reporting.	At	 a	minimum,	
along	with	other	parameters	 identified	by	Bustin	et	al.	 (2009)	and	
Goldberg	et	al.	(2016),	we	suggest	that	the	reported	LOD	and	LOQ	
values	are	accompanied	by

1.	 The	 concentration	 range	 and	 number	 of	 replicate	 standards	
per	 concentration	 used	 for	 calculating	 LOD	 and	 LOQ,

2.	 The	determination	approach	used	(i.e.,	either	the	discrete	thresh‐

old	or	curve‐fitting	modeling	method)	and,
3.	 The	specific	criteria	for	LOD	probability	of	detection	(e.g.,	95%)	
and	LOQ	precision	(e.g.,	35%	CV)	that	were	applied.

In	addition,	given	the	diversity	of	LOD	and	LOQ	concepts,	we	also	
suggest	specifying	the	definitions	that	underlay	LOD	and	LOQ	to	
avoid	misinterpretation	or	misuse	(e.g.,	censoring	positive	results	
below	 the	 LOD).	 For	 qPCR‐based	eDNA	 studies,	 clear	 and	 com‐

plete	 descriptions	 of	 LOD	 and	 LOQ	 constitute	 only	 one	 part	 of	
methodological	 documentation	 that	 should	 also	 include	 primer	
design,	sample	collection,	laboratory	processing,	and	experimental	

F I G U R E  4  Conceptual	diagram	of	interpretation	of	limit	of	detection	(LOD)	and	limit	of	quantification	(LOQ)	in	most	analytical	chemistry	
applications	compared	to	quantitative	eDNA	assays.	For	most	analytical	chemistry	applications,	data	above	the	LOQ	are	reported	as	
quantitative	data,	data	between	the	LOQ	and	LOD	are	reported	as	qualitative	or	semi‐quantitative	data,	and	data	below	the	LOD	are	
reported	as	nondetects.	For	eDNA	analysis,	data	above	the	LOQ	are	reported	as	quantitative	data,	and	data	below	the	LOQ	or	below	the	
LOD	are	reported	as	qualitative	data.	For	eDNA	assays,	the	interpretation	of	the	LOD	is	that	below	this	concentration,	there	is	less	than	a	
95%	chance	of	detecting	the	target	DNA	sequence	even	if	it	is	present	at	this	low	concentration
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design	(Bustin	et	al.,	2009;	Mize	et	al.,	2019;	Strickland	&	Roberts,	
2018;	Wilcox	 et	 al.,	 2013,	 2015).	 Additional	 details	 required	 for	
thorough	 descriptions	 of	 assays	 include	 the	 sequence	 and	 form	
of	the	standard	template,	efficiency	of	the	amplification,	and	the	
modeling	function	and	software	used	to	compute	the	concentra‐
tion	values	and	report	assay	parameters	 (readers	are	directed	to	
Bustin	et	al.	(2009)	and	Goldberg	et	al.	(2016)).	It	should	be	noted	
our	methods	are	 specific	 for	assessing	 the	LOD	and	LOQ	of	 the	
assay	in	ideal	conditions	and	are	intended	to	provide	baseline	data	
of	an	assay's	capabilities.	The	sensitivity	of	markers	within	actual	
environmental	samples	can	be	tested	using	in	situ	validation	trials	
with	known	amounts	of	eDNA	spiked	into	“samples”	of	the	same	
or	surrogate	environmental	matrices	(Goldberg	et	al.,	2016;	Guan	
et	al.,	2019).	 Internal	positive	controls	should	be	used	with	envi‐
ronmental	samples	to	assess	inhibitor	compounds	that	will	affect	
marker	sensitivity	(Goldberg	et	al.,	2016;	Wilson,	Wozney,	&	Smith,	
2016).	As	the	field	of	eDNA	grows,	standardization	of	laboratory	
methods,	 assay	 development,	 and	 data	 analysis	will	 continue	 to	
evolve	(Dorazio	&	Erickson,	2018;	Goldberg	et	al.,	2016;	Helbing	&	
Hobbs,	2019).	Following	such	standard	reporting	should	facilitate	
easier	 implementation	of	assays	across	 laboratories,	allow	better	
interpretation	of	results	by	managers	making	decisions	about	re‐

source	 allocation	when	positive	 eDNA	 results	 are	 reported,	 and	
overall	provide	clear	evaluation	of	assay	performance.

5  | CONCLUSION

Management	decisions	are	 likely	to	be	 increasingly	made	using	re‐

sults	 from	 eDNA	 surveys;	 thus,	 data	 generated	 by	 eDNA	 studies	
must	be	reliable,	defendable,	and	executed	with	high‐quality	assur‐
ance	 standards.	 Environmental	 DNA	 assay	 development,	 testing,	
and	 validation	 are	 critical	 steps	 in	 the	 process,	 and	 clear	 defini‐
tions	 of	 assay	 performance	 are	 needed	 in	 the	 eDNA	 community.	
Reporting	assay	quality	metrics	of	performance	in	 ideal	conditions	
with	 known	 concentrations	 is	 a	 first	 step	 in	 any	 eDNA	 study	 and	
must	 be	 followed	 by	 additional	 demonstration	 of	 the	 assay	 using	
field	 samples.	Understanding	assay	 limits	provides	a	 solid	base	on	
which	to	build	the	rest	of	the	eDNA	survey	protocols.	We	describe	
a	cohesive	set	of	definitions	and	determination	methods	that	can	be	
applied	to	eDNA	studies,	and	the	definitions	and	approaches	in	turn	
guide	the	interpretation	and	use	of	these	metrics.	Clear	reporting	of	
these	and	other	qPCR	performance	metrics	facilitates	the	evaluation	
and	comparison	of	qPCR	data	across	studies	and	provides	resource	
managers	with	a	sound	basis	for	decision‐making.
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