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Abstract— This paper faces the problem of searching in un-
structured peer-to-peer (P2P) networks. It introduces a novel
paradigm of self-organized dynamic overlays whose topology
adapts to the traffic on the network. The proposed mechanism
has been proved to drive the system to an optimal topology
when the network is in very high or in very low conditions.
In this paper we present DANTE, a P2P system that uses this
adaptation mechanism along with random walks for resource
location. Simulation results show how DANTE achieves a better
search performance than other P2P unstructured solutions. We
have also developed a real implementation of DANTE. Using it we
have checked the validity of our initial hypotheses, demonstrating
that the expected behaviour is obtained in the executions of this
implementation.

I. INTRODUCTION

Peer-to-peer (P2P) systems have obtained great popularity
during the last few years. The best known and most widely
used application of P2P technology is the sharing of contents.
This application was first explored by Napster [1], which
grew extremely fast captivating thousands of users worldwide
and raising an increasing interest in the scientific community.
Other P2P solutions have appeared incorporating new ideas,
like Gnutella [2], where, unlike Napster, no central server is
present and search is done in a totally decentralized manner,
or Kazaa [3], where several nodes act as superpeers, with
different behavior and mission than the rest of participants.

The basic idea of P2P systems is that all peers are, at the
same time, clients and servers, that is, they offer resources to
other nodes and use resources from other nodes. P2P systems
represent a new and powerful paradigm that differs from the
traditional client-server architecture where each participant
has a specific role. This paradigm has brought the necessity
for novel solutions to deal with some of its limitations.
More specifically, the research community has devoted many
efforts to develop new and efficient techniques for the loca-
tion of resources. Traditional location solutions, like using a
centralized directory (Napster) or flooding (Gnutella), have
shown serious drawbacks: vulnerability, lack of scalability, etc.
Trying to solve those problems, researchers have proposed new
searching mechanisms based on random walks or structured
networks.

In this paper, we propose a search technique that combines
search by random walks with a self-adapting topology mech-
anism. Networks where nodes change their connections, and
hence the overlay topology, to adapt to changes on network
conditions (such as traffic load) are said to have a Dynamic
Adaptable Network Topology. In our solution, which we have
called DANTE1 the network topology evolves between a
starlike and a random like one as the load varies. Note that
previous results [4] prove that, assuming that each node knows
its neighbors resources, the starlike topologies are optimal (in
terms of search time) for non-congested systems and random-
graph-like systems are optimal for high loads. For intermediate
loads, hubs (nodes that have many more incoming connections
than the average) appear. Hubs have a wide knowledge about
the network contents, but are not central (not all nodes are
connected to them), for this reason, they allow solving queries
in a few hops without becoming as congested as central nodes.

The basis of the topology adaptation mechanism proposed
here was introduced in [5], where an analytical evaluation is
performed assuming that searchs follow shortest paths among
nodes. Our proposal uses random walks in searchs, so peers
do not need global knowledge about the network topology.
Besides, in this paper we improve this mechanism proposing a
more accurate congestion computation method that is suitable
to be used in a real scenario. We also empirically demonstrate
the validity of the theoretical hypotheses in [5] by developing
a real working implementation of the system. Finally, we
have created a simulation software that allowed us to compare
the performance of our system with other unstructured P2P
networks. Summing up, we show here the feasibility of our
resource location proposal for real P2P systems.

This paper is organized as follows. In Section II we outline
some solutions for resource search in P2P networks, describing
the advantages of random walks on unstructured networks. In
Section III we discuss Dynamic Adaptable Network Topologies
and how they are combined with random walks to build an
effective search solution. Other solutions with an approach
similar to ours are also discussed. Section IV introduces

1From Dynamic Adaptable Network TopologiEs.



the reconnection mechanism that is the basis of DANTE.
An analysis of how to predict load on nodes depending on
network conditions in done in Section V. That analysis was
used to design the simulations presented in Section VI, where
DANTE is compared with other P2P solutions. Finally, the
results obtained from the execution, under different setups, of a
functional DANTE implementation are commented in Section
VIII.

II. LOCATION OF RESOURCES IN P2P NETWORKS

If we look into the mechanism used to locate resources, P2P
systems may be classified into two categories:
• Centralized. A central repository stores an index of all

resources available in the network, with the location
of those resources (which nodes hold them). All nodes
register their resources and address their searchs to this
repository.

• Distributed. There is no central repository. Queries are
forwarded through the network.

Clearly, distributed systems are closer to the idea of P2P.
They are less vulnerable to attacks or censorship, and have
better scalability, since the P2P system tasks are shared
among all network participants. Decentralized systems may
be classified again by the way new resources are located in
the network:
• Unstructured networks. The placement of resources is

not related with the network topology. Nodes are also
added in a non regular way. Examples are Gnutella [2]
and Kazaa [3].

• Structured networks. Resources are placed at precise
locations. The location for every resource is computed by
a hash function. Search is done by means of a distributed
hash table (DHT). Examples are Chord [6], Pastry [7],
Tapestry [8], CAN [9] and Kademlia [10].

A. Drawbacks of structured P2P networks

Several structured networks proposals have been developed
by the research community. On these networks location of
resources is deterministic, computed by some mechanism
based on Dynamic Hash Tables. Resources are typically found
in only O(log(n)) hops (being n the network size), and are
always found if they are present in the network.

Despite their advantages, structured networks have failed so
far to gain wide acceptance on P2P systems. This is because
they present some drawbacks that prevent them to be deployed
on typical content sharing systems. These drawbacks are
enumerated (more or less exhaustively) in many P2P research
papers like [11], [12] and [13]. Some of them are described
here:
• DHT tables are expensive to maintain. When peers

enter or leave the network DHT tables must be rebuilt,
this implies some communication costs. If nodes move
often from-into the system, the communication overhead
becomes relevant.

• Resource popularity is unequally distributed. It has
been observed that content popularity can vary strongly

in content-sharing P2P networks [14]. The more popular
some resource is, the more searchs are done for that par-
ticular resource. Hence, nodes that are assigned popular
resources will support much more load than the rest of
peers. Besides, DHT tables do not take into account node
capacities when assigning resources, so it is easy that low
capacity nodes have to deal with high load: there is a lack
of ’fairness’ on the system. Load balancing mechanisms
have been developed to deal with this problem [15].

• Resources are naturally replicated. It can be expected
than, the most popular is some resource, the more peers
will download and cache it. That is, resource replication
is increased by resource popularity in a natural manner.
Then, it should be easier to find popular contents as
more nodes keep them, and load should be more fairly
balanced. But DHT fails in taking advantage of this, as
queries are addressed always to the particular node the
DHT table assigns the resource to.

• Typical searchs are by keyword, not by exact match.
Hash functions can only be applied on exact resource
identifiers, but users often only can search by keyword,
as they do not know the exact resource name, and/or
wish to know all resources that contain some keyword in
their name or content. It is possible to provide keyword
search on structured networks, typically using an inverted
index by keyword [16], but maintaining these indexes can
be expensive in terms of communication and processing
costs, as any term could be a keyword.

• Locality is destroyed. Data items locality (data from
the same site) can be used to improve searching and
browsing efficiency. But in a structured network that
locality is lost as resources from the same site are not
usually collocated (DHT ignores the resource ’origin’ to
compute its location). SkipNet [13] is a proposal of a P2P
structured network that preserves locality.

• Application level information is lost. Data used by
applications is often organized in a hierarchical fashion
inside a namespace. That is, the position inside the
hierarchy is relevant. But when translating the resource
name to a key that information is lost.

Many of those drawbacks are faced by different works like
the ones we cite above. But each one of these solutions seems
to deal with a specific limitation of structured networks. It
is unknown if these proposals can be combined, and if the
resulting system would be still efficient.

Unstructured networks do not present any of these draw-
backs, and the use of random walks can made them scalable
providing at the same time a reasonable guarantee of finding
resources under the proper conditions. Thus, we deem they
can be a suitable solution for future (and present) P2P systems
design.

B. Search in unstructured P2P networks

Unstructured networks are, nowadays, the most used for
content sharing. They are simple to manage and seem to
deal better with the organization overhead under high churn



rate of peers. On the other hand, structured networks are
more efficient locating resources and their search mechanisms
scale much better than the traditional techniques used by
unstructured networks like flooding or supernodes.

Three search methods are typically used on unstructured
networks. The first search mechanism is flooding, used by
Gnutella [2]. By wich each peer broadcasts its queries to all
its neighbors. If some neighbor has the resource, it replies
to the query source. If not, it forwards the query to all its
neighbors again. Search is limited by a TTL mechanism. The
main drawback of flooding is the lack of scalability (for a
deeper discussion on this topic see [17]). The second technique
uses the idea of supernodes: well-known nodes that store the
index of all other peers on the system. When some node enters
the system, it registers itself in a subset of all supernodes set.
During the node’s lifetime, all its searchs are addressed to
supernodes. It is used by Kazaa [3]. The scalability of this
system has yet to be analyzed, and is clearly more vulnerable
to attacks that a pure P2P system. Finally, the third search
mechanism is the use of random walks. In this case, nodes
forward each query to only one peer, chosen randomly among
its neighbors. These messages are typically called walkers.
The requesting node sends k ≥ 1 walkers. Each walker
will follow its own path. This mechanism introduces less
communication overhead compared with flooding, but it may
also take longer to solve queries. In [18] and [19] we can
find some comparisons of both techniques in different network
topologies and conditions, concluding that random walks seem
to be a promising technique suitable to solve the scalability
problems of flooding in unstructured networks. The cost to
pay is an increase on the search time for certain topologies.

III. DYNAMIC ADAPTABLE NETWORK OVERLAYS

Random walks seem to be the most feasible search tech-
nique for unstructured networks in the future. But it is well
known that the performance of this search technique is highly
dependent on the overlay structure of the system [5], [20],
[21]. The approach traditionally taken in the literature to model
this begins by assuming that nodes know their own resources
plus the ones held by their immediate neighbors. In this case,
if some peer becomes a central node (all participants are
connected to it) it will know all the resources present in the
whole system and will be able to correctly answer all queries.
In a starlike topology a few nodes become central and all
nodes in the system are connected only to them. Hence, all
searches are solved with at most one hop.

With this argument we understand that, in a non congested
scenario, the optimal topology is a highly polarized starlike
structure. However, this situation is inefficient if congestion
considerations become relevant, since the central node may
become overloaded. This is supported by the results in [19],
where it is shown that high-degree nodes (those having most
connections) support most of the shared load. Moreover, it
has been proved in [4] that the optimal network topology
is a homogeneous-isotropic one in the presence of severe
congestion.

We introduce in this paper a P2P system which implements
a reconnection technique that adapts the overlay network
topology to the load on the network. The resulting topology
tends to a starlike when congestion is small and to a random-
like when congestion becomes relevant. For intermediate
loads, some peers become hubs, that is, nodes that have much
more incoming connections than the average degree on the
P2P system. Hubs have a wide knowledge about the network
contents, but are not central (not all nodes are connected to
them), for this reason, they allow solving queries in few hops
without becoming as congested as central nodes.

A. Related work

There are other proposals in the literature of P2P systems
where network topology changes to adapt itself to the network
load. In all of them random walks are used as the search
mechanism. For example, Lv et al. [22] present a system
where a flow control mechanism avoids nodes to become
overloaded and changes the topology making messages to
flow toward nodes with higher capacity. To achieve this, every
node periodically tracks the messages it receives. If the node
is overloaded, it redirects the most active neighbor (the one
sending more queries) to another neighbor with higher spare
capacity. In this way, high-capacity nodes tend to have higher
degrees, and no node is overloaded. This solution, nonetheless,
requires every node to know the state of all its neighbors,
which introduces an important communication overhead. The
simulation results presented in that work do not take into
account this overhead. In any case, their results support the
idea of improving P2P networks efficiency taking advantage
of nodes heterogeneity as we do.

Chawathe et al. in [12] propose a system called Gia that
strives to avoid overloading any of the nodes by explicitly
accounting for their capacity constraints. Walkers are explicitly
forwarded to high-capacity nodes, which should be more able
to handle requests. An active flow control avoids overloading
hot spots: one node can send messages to some neighbor only
if it has notified the sender that it is willing to accept it.
Topology is also adapted in a continuous manner. Neverthe-
less, their mechanisms introduce more network overhead than
ours. In our system, when some node becomes overloaded,
their neighbors disconnect by their own, so no explicit flow
control is needed. Besides, in Gia nodes need to be aware
of the state (number of connections) of their neighbors. The
performance in a real scenario, where the added overhead
should be considered, is unknown.

Both solutions are interesting and show the potential of
using random walks on networks built by dynamic network
topologies. Nevertheless, our proposal simplifies the reconnec-
tion mechanism, does not require nodes to report their state to
their neighbors periodically, and tends to the optimal topology
for all load conditions. We have implemented a simulator of
the Gia system to compare its performance with the one of our
system. More information about the simulators, experiments
results and some comments can be found in Section VI.
This comparison is specially interesting as Gia creators have



already shown that their system performs better than flooding
or searching using supernode mechanisms (as in Kazaa).

IV. DANTE RECONNECTION MECHANISM

DANTE, the P2P system we propose, is based on the
creation of a dynamic adaptable overlay by means of a
mechanism based on the one presented in [5]. Nodes have
two kind of links: incoming and outgoing connections. A
connection from node N1 to node N2, N1 → N2, is said to be
an outgoing connection for N1 and an incoming connection for
N2. Messages can flow in any direction of the link. Nodes do
not change any incoming connection once it has been accepted,
they can only manage their outgoing connections. It is possible
to have a N1 → N2 connection and a N1 ← N2 connection
open at the same time.

The number of outgoing connections of each node is fixed.
Nodes manage those outgoing connections, changing them
using a particular algorithm. The interconnection topology
changes as nodes adapt periodically these outgoing connec-
tions. The algorithm used to choose which peers each node
connects to is based on an attachment kernel Πi, which
determines the probability of a particular node to be con-
nected/rewired to node Ni. The proposed kernel has the form

Πi ∝ kγi

i (1)

where ki denotes the number of links of node Ni and

γi =

{
2 if Ni is not congested
0 otherwise

(2)

If some node receives more queries that it can process, we
say that node is collapsed or congested. The algorithm tries
to make well connected nodes more attractive, so outgoing
connections will tend to point to those peers as they know
more about the network. But if some node gets collapsed,
then it stops being attractive, and neighbors will disconnect
from it quickly.

The rationale behind Equations 1 and 2 is explained as
follows. First, remark that we assume that each node knows
its resources and the resources of its one-hop neighbors. We
note that by taking a value of γi = 0 for all nodes, we
obtain a random topology (intuitively, all nodes have the same
probability of being chosen for a new connection [23]); in
turn, if the value of γi is strictly greater than 1, we obtain a
starlike (the more connections one node has, the more likely
it will be chosen by other nodes, finally building a starlike
topology [23]). Consequently, in [5] is established that the
value of γi will be either 2 if the node is not collapsed and 0
otherwise. Thus, the network will evolve towards a random-
like topology when the nodes become collapsed, or towards a
starlike topology otherwise. It is easy to realize that the value
of γi for not collapsed nodes has a strong impact on the way
topology evolves.

A. Congestion computation

Using traditional queuing theory [24] we say that some node
is collapsed when it recieves more requests than it can process.

The number of requests received by node Ni, λi is easy to
obtain. On the other hand, the node processing capacity, can
be more difficult to determine. There are two manners.

First option is to use a fixed Threshold as a node parameter.
If the number of received queries in a recent period is greater
than the node’s threshold, then that node is collapsed. This
threshold should be based on the node’s capacity, or the
capacity the node’s owner wants to devote to the P2P system.
We can use fixed thresholds to force the network to form
starlike or random topologies setting the proper threshold
on nodes: setting a small threshold will lead to a random
topology as no node can have many connections (as soon as
they get a few connections, and so a few queries, they would
become collapsed very quickly); setting a large threshold will
lead to a starlike topology (nodes are not collapsed although
they receive many queries, so they keep being attractive for
incoming connections). Let λi the number of queries received
by node Ni in the last time unit, and Thresholdi be that
node’s congestion threshold. Then we say that:

if λi > Thresholdi ⇒ Ni is congested (3)

The aproach described above was used in [5], but can be
unaccurate in some circunstances. First, the threshold must
correspond with the real node processing capacity. Second,
the load of some node also depends on the knowledge the
node has: the more the knowledge, the more time it will take
to locally search for some resource, this is, to process some
query. That knowledge depends on the number of connections:
the more connected some node is, the more knowledge it has.
Hence, well connected nodes will need more time to process
the same number of queries than loosely connected nodes.
Finally, the bandwith should also be considered, as forwarding
queries or sending results can be a time consuming task.

We have improved the congestion computation method, in
order to better suit real systems. This method uses an adaptable
congestion computation mechanism. Each node keeps track of
the time to process queries received during the last period. Let
µi be the processing rate of node Ni, then we say that:

if λi ≥ ρµi ⇒ Ni is congested (4)

where we denote ρ ∈ [0, 1.0] as the Congestion acceptance
rate. This parameter represents how much load a node will
take before becoming a collapsed node. In queuing theory [24]
ρ is denoted as the occupation rate or service utilization. In
the next section we describe how µi should be computed.

B. Queries processing rate

To compute the queries processing rate, µi, as we said
before, is not enough to keep track of the time consumed in
searchs. Bandwidth must also be considered.

When some node receives a query (search message), it
checks if it knows the resource the query is referred to. We call



this checking the lookup task. If after this lookup the resource
has been found then a success message is sent to the query
origin peer. Otherwise, the search message TTL is decreased
and checked. If the TTL is 0, a ’search failed’ message is
sent to the origin peer, if not, then the search message is
forwarded to some randomly chosen neighbor. Whatever the
case, a message must be sent through the network. Depending
on the node’s upload bandwidth, this task can need more time
than the lookup task. Then, it may happen that the queries
bottleneck is not the lookup task, but the message sending
process. Let BWi be Ni’s bandwidth, and PS the packets
max size.

Then, we define MSPTi, the mean search processing time,
as:

MSPTi = max( PS/BWi , MLTi ) (5)

where MLTi is the mean lookup duration in node Ni. It
could be argued that MSPTi should be defined instead as
MSPTi = PS/BWi + MLTi. But in modern computers
we can assume that search processing and packet sending run
in a pipeline, so effective MSPTi is the one defined in Eq.
5.

Hence, we can define µi as:

µi = 1 / MSPTi (6)

Our simulation software computes µi as it has been de-
scribed here.

C. Candidates search

The reconnection algorithm is applied over a set of candi-
dates, that is a subset of all the peers in the network. The set of
candidates can be built using different techniques. If walkers
store the state of nodes they traverse, peers could use that
information to keep a cache of known peers as walkers cross
them. A Ping-Pong message mechanism like the one used in
Gnutella could also be used, but this would introduce some
communication overhead.

Finally, nodes could send special node search messages that
do not look for resources, but for peers. Those messages would
be sent before each reconnection is started. When the TTL
of the search reaches 0, a message with the information of
all nodes traversed is sent back to the node that originated
the search. With a high probability the message would have
traversed well connected nodes, that are the best candidates
to connect to. Besides, the communication overhead would be
small and constant. This is the solution we have chosen for
our system. In Section VII-D we will see that the P2P system
performance is not penalized when using it. In fact, we get
some surprising results.

V. ANALYSIS OF NODES LOAD FOR RANDOM AND
STARLIKE TOPOLOGIES

In this section we try to cuantify some of the characteristics
of P2P networks, mainly those referred to load on nodes. We
will use the results obtained here to design the simulations in
Section VII-A.

In the previous section we showed how µi should be com-
puted. Now we will see how λi can be predicted depending
on network conditions, this is, load and topology.

First, we compute how many queries each node will get
depending on the network topology. Then, we will particular-
ize our computations for the two extreme possible topologies:
random and starlike.

A. Load and processing capacity of nodes

Let l be the mean search path length. Let f be the query
generation rate for all nodes. Let n be the number of peers.
Then, we say that

Total Load on the Network = nfl (7)

Let δi be the degree of node Ni. Then:

Total Links on the System =

∑n
j=1 δj

2
(8)

So, we can define the load per link as:

Load per Link =
2nfl∑n
j=1 δj

(9)

Note that load per link refers to the number of messages that
traverse some link in both directions. So each node receives
Load per Link/2 messages per neighbor. Then, the toal load
for some node Ni is:

λi =
nfl∑n
j=1 δj

δi + f (10)

where the first operand is the load due to searchs that
traverse Ni, and the second operand refers to locally started
searchs.

B. Random topology

In a random topology we can assume that nodes degrees are
roughly the same for all nodes, ∀i δi ≈ δ. Then,

∑n
j=1 δj =

nδ. So, we can rewrite Eq. 10 as:

λi =
nfl

nδ
δ + f (11)

simplifying, this becomes:

λi = (l + 1)f (12)

To compute l, we can assume it to be the expected mean
of a geometric distribution. Let r be the resource replication
factor, as defined in [12]. This is computed as r = k/n, where
k is the number of nodes that have a particular resource (in our
simulations and experiments we will assume that all resources
have the same replication factor). Then, we can say that:

Pi = 1− (1− r)(δi+1) (13)

where Pi is the probability of finding the resource on node
Ni. However, there is something to note. The (δi+1) exponent
emerges from the fact that each node will check its own list of
resources plus the list of resources of its neighbors (remember
that each node knows the resources of neighbour peers).
Nonetheless, when some node Ni is processing a resource



search message, it will neither check its own list of resources
nor the sender’s. The reason is effiency, the sender would not
have forwarded the query in case Ni or the sender itself had
the resource in its local resources list, so it is not needed to
check those lists. Then, Eq. 13 only holds for locally started
searchs. When processing search messages Pi is defined by:

Pi = 1− (1− r)(δi−1) (14)

for simplicity reasons we will use Eq. 14. Thus, as ∀i δi ≈ δ,
we can say that ∀i Pi ≈ P , and hence we can define l as:

l =
1
P

=
1

1− (1− r)δ−1
(15)

C. Starlike topology

For this topology, we focus on load on central nodes. First,
we must be aware that central nodes do not forward any query.
This is because all nodes are connected to them, so they have
all the knowledge about resources present in the network, and
hence they do not need to forward searchs. Let z be the number
of central nodes. We can rewrite Eq. 7 as

Total Load on the Network = (n− z)fl (16)

we should also realize that there is not search traffic through
connections between central nodes. Besides, each peripheral
node is connected to all central nodes and only to them, and
search traffic trough these connections only moves in one
direction. Thus, we rewrite Eq. 9 as:

Load per Link =
(n− z)fl

(n− z)z
=

fl

z
(17)

finally, applying Eq. 10 we compute the load on central
nodes. Let Ni be a central node. Its degree δi is n− 1 as all
nodes are connected to it. But it will only receive searchs from
peripheral nodes, so we can assume its degree to be n − z.
Finally, all searchs will be solved in one hop2, so l = 1. Then,
we can define Ni’s load as:

λi =
(n− z)fl

(n− z)z
(n− z) + f =

fn

z
(18)

VI. SIMULATIONS CONFIGURATION

In this section we present some results obtained from the
simulations of DANTE, Gnutella and Gia. A simulator was
implemented for each system. All three simulators use two
common small libraries we developed: one for the simulation
of discrete events, and the other to implement concepts as
message, link and node (with a sendMessage primitive). All
the software was implemented in Java.

Simulations use the microsecond as the minimum unit of
time. All nodes in all three simulators are configured with a
given processing capacity, measured in operations performed
by microsecond, and an upload bandwith, measured in bits
by microsecond. Nodes performs tasks. A task can be the

2More precisely, l ≤ 1, as some queries started at no peripheral nodes
can be solved locally, without creating a new search message. Thus, l =
1− (1− r)z+1. But normally n � z and so l ≈ 1.

processing of an incoming message (a resource search mes-
sage, a connection message, etc.) or a locally started process
(a locally started search, a new reconnection process, etc.).
When performing any task the node is said to be busy. Any
other task started while the node is busy is enqueued until the
running task is over. Sometimes tasks require to send some
message to some other peer. That is also a time consuming
task. When the node has finished the present task, it looks
for any other pending task. Local tasks have priority over
incoming messages. If there are not pending local tasks, then
the messages queue is checked. Connection messages have
priority over search messages. Messages queues are FIFO,
except the search messages in Gia (see Section about VI-B
Gia below).

Hence, there are two different times we take into account:
processing time and packet sending time.

The processing time depends on the tasks being performed.
Tasks that are not searchs for resources are assumed to last one
unit of time. Searchs for resources, (that we called lookup task
in Section IV-B), take a time proportional to the number of
resources checked. Let Ci be the processing capacity of node
Ni. Then, a lookup where m resources are checked would
need m / Ci units of time in node Ni. If the resource is not
found, m will be the number of resources known by the node.
If the resource is found, m will be exactly the number of
resources compared until there was a match.

The packet sending time depends on the node’s upload
capacity and packet size. We set the message size to 1024
bits for all experiments.

To simulate network latency we make the following. Once a
message is sent, it is not delivered inmediately by the ’network
level’, it is delayed for a time, the same for all messages, that
can be configured for each experiment. This time is not related
with the node bandwidth. We have set this time to be 300
milliseconds for all experiments.

Searchs are started by each node with a frequency set as
a parameter of the experiments. When starting a new search,
nodes first check if the resource is known locally. If not, a
search message is built and forwarded to some neighbor.

Resources to be searched are chosen at random. Resources
are distributed with a certain replication factor, that determines
how many nodes hold some resource. For our simulations,
all nodes hold the same number of resources. The replication
factor is 1/n, that is, each resource is hold by only one node.

All simulations last three hours of virtual time. Searchs
started during the first 15 minutes of after the 75 minutes
of virtual time are not taken into account for statistics.

A. Gnutella simulator

In Gnutella simulations, a network is built at the beginning
of the simulation. Then, searchs are started by each node. A
TTL based mechanism bounds the searchs scope. When some
node receives a search message, it sends a reply to the search
origin if it knows the resource. If not, it forwards the search
to all its neighbors but the sender, unless the TTL has reached
0. Nodes keep a memory of the messages that already have



traversed them. If the same message arrives twice (or more
times) to some node, it is silently discarded.

Note that in Gnutella the bandwith becomes much more
important as a bound for query processing, as many more
messages are forwarded than in Gia and DANTE systems.

Network topology does not change during the experiment
after is set. For our experiments we use a random topology.

B. Gia simulator

Our Gia simulator implements the mechanisms described in
[12]:
• A flow control mechanism, where each node periodically

assigns flow-control tokens to its neighbors. Each token
represents a query that the node is willing to accept. To-
kens are distributed in proportion to neighbors capacities.
Also, whenever some node creates a new connection, or
disconnects from any neighbor, a new token reassignation
is performed by that node. If some node receives a search
from any neighbor that does not have tokens, that search
is discarded.

• Biased random walks. Searchs are forwarded to those
nodes with highest capacity. Besides, each node remem-
bers to which neighbor it has forwarded each query. If
the query arrives again to the node, it will be forwarded
to a different neighbor.

• Topology adaptation protocol. The time between recon-
nections for each node depends on its Satisfaction level.
Connections are made by a three-way handshake, where
each node decides if it accepts the other as a neighbor.
The number of neighbors is bounded by two params,
min nbrs and max nbrs. When accepting a new neighbor,
another connection may be drop.

All these mechanisms are implemented following the al-
gorithms explained by Gia creators. But our implementation
differs from what is described in [12] in some points:
• In [12] searchs are supposed to send keep-alives messages

to the origin node as they traverse the network. This is
done because of the assumption that peers can fail and
so searchs can be lost. As we do not simulate nodes
failures in our simulations, this messages are useless, so
we decided not to penalize Gia introducing them.

• Nodes need to know their neighbors state periodically.
We assume that this information can be included inside
the messages for tokens assignations. Again, this frees
Gia from unneeded communication overhead.

• Gia creators assume that ’client capacity is a quantity that
represents the number of queries that the client can handle
per second’. Instead of setting it as a fixed number in
nodes configuration, we compute it dinamically for each
node depending on its processing capacity, bandwidth
and knowledge (the more knowledge some node has, the
slower can process queries so the lesser capacity it is
assigned to it).

• Gia paper stablishes that nodes keep a cache of known
nodes that is updated by Ping-Pong messages. For our
experiments with Gia we assume global knowledge, so

all nodes are candidates in each reconnection. Ping-Pong
messages are not used.

• Token allocation asignment is based on Start-time Fair
Queuing [25] (SFQ), where each peer is assigned a
weight equal to its capacity. In their simulator Gia
creators use SFQ to assign tokens one by one to each
node neighbors. In our simulator this would make Gia
performance to sink due to communication overhead.
Instead, we send tokens assignations periodically, and
enqueue searchs in Gia nodes using SFQ. As before, each
node is assigned a weight equal to its capacity. We think
this is loyal to the Gia creators original idea.

We would like to add that, although Gia creators let us
their simulator code, that has been very useful to clarify some
concepts about Gia, our software differs deeply from theirs
as it makes what we think more reallistic assumptions about
processing and communication costs.

C. DANTE simulator

Our DANTE simulator implements the reconnection mech-
anism described in Section IV. Congestion is computed by a
fixed threshold or dinamically, depending on the experiment
configuration. Candidates for reconnections are determined by
glogal knowledge or using nodes search messages. Again,
this depends on the experiment configuration. Our system
uses ’real’ random walks, in the sense that we do not ad-
dress searchs to highly connected nodes nor remember where
searchs are forwarded to. Nodes only avoid, when possible, to
forward the search message to the node that sent it.

VII. SIMULATIONS RESULTS

Here we will present and comment some results we have
obtained with our simulations.

A. Flooding against random walks

First, we execute some experiments with relatively few
nodes to compare the gnutella search results against GIA and
DANTE random walks based searchs. Note that experiments
with more nodes when using flooding would increase expo-
nentially network traffic and so the mean search times. That
is, experiments with more nodes would lead to worse results
for Gnutella.

This set of experiments is run with 100 nodes. TTL is set
to 100 for DANTE and GIA, to 4 for Gnutella. Each node
in Gnutella stablishes 3 connections. For DANTE, each node
manages 3 outgoing connections. In Gia the minimum number
of neighbors will be set to 3, the maximum to 6, so Gia and
DANTE have the same number of links.

For these experiments, all nodes have the same processing
capacity, 1 operation per unit of time. That is, exactly one
resource is checked per unit of time when processing some
search. Nodes also have the same number of resources: 5000.
All nodes have 5000 resources. Replication factor is set to 1,
so each resource is located only in one node.

DANTE has been executed using fixed thresholds: 0 to force
a random topology, 1000000 to force a starlike topology, and
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100 to make the topology dependent on the load. DANTE
has also been executed with adaptable thresholds, using two
different Congestion Acceptance Rates (ρ): 0.7 and 1.0.

Our goal was to compare the simulations results when the
nodes performance is bounded by their processing capacity or
their upload bandwidth (see Eq. 6), for random and starlike
topologies. As the processing capacity is fixed, we compute
the corresponding bandwidth BW for each case (all nodes will
have the same bandwidth, ∀i BWi = BW ). These bandwidths
have been computed using the Eqs. 4, 6, 12 and 18 defined in
Sections IV-B and V. The resulting bandwidths are:

• BW = 0.002 bits/microsecond. This bandwidth makes
the communication the bottleneck for random topologies.

• BW = 0.01 bits/microsecond. This bandwidth makes the
queries processing the bottleneck for random topologies.

• BW = 0.02 bits/microsecond. This bandwidth makes the
communication the bottleneck for starlike topologies.

• BW = 0.1 bits/microsecond. This bandwidth makes the
queries processing the bottleneck for starlike topologies.

Finally, each experiment was executed with a different load,
measured in units of time (microseconds) between resources
searchs. The loads used are: one search per node every 50, 25,
20, 15, 10, 5, and 2 seconds.

The results are shown in Figs. 1, 2, 3 and 4.
For high loads, it seems that the mean search times decrease

in some cases (see Gnutella in Fig. 1), or at least they remain
constant. Of course, it is not so. Those results are due to the
high congestion on the network, that makes that only brief
searchs, those with low TTL, can finish within the frame
of time we use for our statistics. This fact is confirmed by
experiments logs.

By Figs. 1 and 2 we see that Gnutella gets worse (in orders
of magnitude) mean search times. In Fig. 3 gnutella achieves
a lesser mean time for the lower load than GIA and DANTE
with 0 fixed threshold, both networks of random topology. The
other networks, that have a starlike topology for that load, still
perform better. For the next load Gnutella searchs get slower
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again.
Finally we analyze Fig. 4. First we should realize the

configuration of this experiment sets the best possible con-
ditions for Gnutella: few nodes and a high bandwidth totally
devoted to resource searchs. Here gnutella performs relatively
well for low loads, and yet worse that centralized networks:
DANTE networks with big threshold or adaptable congestion
computation with congestion acceptance rate of 1.

Then, it seems clear that random walks outperform severely
the Gnutella network, even when conditions are optimal for
the flooding search technique. In real world networks, with
thousands of nodes and the available bandwidth shared with
other kinds of traffic on the net, Gnutella would get much
worse results. Practically all finished searchs were successful
in all experiments for DANTE, Gia and Gnutella, so Gnutella
has not provided any advantage in success rate either.

The comparison between Gia, DANTE with fixed thresholds
and DANTE with adaptable thresholds is developed in the next
sections.

B. DANTE and Gia

There are two main differences between DANTE and Gia:
• Gia uses an explicit flow control mechanism to avoid

overloading peers. DANTE simply avoids (and changes)
connections to congested peers. It could be argued that
DANTE does not avoid nodes to get collapsed, only reacts
to that situation. Nonetheless, note that the definitions
of congestion given in Section IV-A allow to configure
a limit on congestion that prevent nodes to devote all
its capacity to searchs processing. This can be done
by setting the appropiate fixed threshold or Congestion
Acceptante Rate.

• Gia nodes try to set as many connections as possible, until
the max ngbrs bound is reached, and with peers with the
highest capacity. Then, Gia advocates could reason that
setting a higher bound would improve performance. But
then, it would be enough in DANTE to also increase
the number of outgoing connections for each node to
max ngbrs/2. Thus, the mean degree of both networks
would be the same for high query loads, where DANTE
tends to form a random topology, so Gia topology would
not be an advantage. Also note that for starlike topologies
the number of central nodes is exactly the number of
outgoing connections for each node, so for lower query
rates DANTE would get better results as there would be
more hubs or central nodes to share the load. Hence,
increasing the number of connections can be a higher
help for DANTE than for Gia.

Figs. 1, 2, 3 and 4 can be used to compare Gia and DANTE
results. As expected, with low load (where central or well-
connected nodes appear in DANTE), our system performs
much better than Gia. As load increases, the difference be-
comes smaller but DANTE with adaptable thresholds performs
generally as well, at least, as Gia. We think that the continous
DANTE topology adaption, and the overhead due to tokens
assignation in Gia justify this differences. Another advantage

TABLE I
CAPACITIES AND UPLOAD BANDWIDTHS DISTRIBUTION FOR SIMS. WITH

1000 NODES

Capacity level Percentage of nodes

1x 20%
10x 45%

100x 30%
1000x 4.9%

10000x 0.1%
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Fig. 5. Search times for DANTE, fixed and adaptable thresholds

of DANTE is its simplicity compared with Gia. For example,
it does not use explicit flow control, nor require nodes to know
their neighbors state.

C. Fixed and adaptable thresholds in DANTE

As it is said before, one of the main contributions of these
paper is that not only shows the feasibility of the reconnection
mechanism introduced in [5], but it also depures and improves
it by adding an adaptable congestion computation technique
more suitable to real networks. By results of first simulations
it seems apparent that search performance is quite similar
when using this congestion computation method and when
using a fixed threshold of 100. This is mainly becacuse all
nodes have the same processing capacity and bandwidth. Here
some simulations are analyzed to show how the new method
suits much better in networks where nodes capacities and
bandwidths vary.

These simulations were run with 1000 nodes. These nodes
were configured with different capacities and bandwidths,
following a distribution similar to the one used in [12], that
derives from measured bandwidth distributions of Gnutella
nodes reported in [26]. The distribution is shown in Table
I. Capacity level 1x means a processing capacity of 0.1
operations per unit of time and an upload bandwidth of 0.1
bits.

In Fig. 5 we can observe that simulations for fixed thresh-
olds behave in a very rare way. Also, their performance has
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become extremely poor. The reason is that using a fixed thresh-
old for node congestion computation makes the algorithm to
assign connections regardless of the real capacities of nodes.
Then, nodes with poor capacities can become well connected
nodes although other peers, with more capacity, would be more
able to handle incoming requests. As there are many more low
capacity nodes than high capacity nodes in the system, we can
be sure this will happen continually.

D. Node search cost

As it is explained in Section IV-C, DANTE nodes use
random walks to locate candidates each time they wish to
change their outgoing connections. When the node search TTL
reaches 0, a message is sent to the origin node, with the list
of all nodes traversed. Then the node applies the algorithm
described in Section IV to choose to which nodes it must
connect to, using the nodes in the list as candidates.

The previous simulations assumed some kind of global
knowledge: all nodes knew all other nodes congestion state
and so no search for candidates was performed. But in real
conditions global knowledge is seldom available, so we need
to analyze if searchs for cancidates would penalize DANTE
performance.

We have run some simulations with DANTE where nodes
do not have global knowledge and so they must perform
candidates searchs. Those searchs were performed using ran-
dom walks with a TTL of 100. These simulations were run
with 1000 nodes, with the same capacities and bandwidth
distribution described in previous section. The results are
shown in Fig. 6.

In Fig. 6 we compare DANTE search times when using
adaptable thresholds with global knowledge and ρ 0.7, 1.0 and
DANTE using adaptable thresholds without global kwnoledge
(and so performing random walks to look for candidate peers)
and ρ 0.7.

The results are somewhat surprising: DANTE performs
better without global knowledge. Nonetheless, the explanation
is simple. First, candidate lookups add little overhead to

the system. Second, when using random walks, the list of
candidates is bounded by the node search messages TTL, in
this case 100. Moreover, it is more likely that well connected
nodes appear in that list more often (and possibly many times)
that other peers [27]. Then, well connected nodes have to
compete with few loosely connected nodes, and so they will
be more easily chosen by the algorithm depicted in Section
IV. On the other hand, when using global knowledge, well
connected nodes must compete with all other nodes in the
system, so there is still some chance that nodes with low
degree are chosen. Thus, topology evolves slower to an optimal
state and so the system performance is penalized.

VIII. IMPLEMENTATION EXECUTION RESULTS

Along with the DANTE simulator we have developed, also
in Java, a functional system able to work as a real P2P system
that implements the DANTE reconnection mechanism. Both
the simulator and this real implementation are built following
the same design, with the same main components. We have
used this implementation to validate the results obtained with
the simulator and also those predicted in [5].

In this section we present some results of executing this
system with different fixed thresholds and loads. We have used
fixed thresholds because our main goal was to compare the
performance of different topologies under increasing loads.
As we mention in Section IV-A, fixed thresholds can force
the network to form a certain topology; very high thresholds
are used for starlike topologies and null thresholds are used for
random topologies. Intermediate thresholds make the topology
evolve as the load changes.

The experiments were executed in a cluster of seven PCs,
with 6 DANTE nodes running in each PC. Each node has
three outgoing connections, and reconnections are performed
every 30 seconds. In Fig. 10 the mean searchs times of these
experiments are shown.

First, we verify that as we vary the load on the network the
resulting topology evolves to adapt itself. From our executions
we have captured three topologies, shown in Figs. 7, 8 and 9.
The three topologies are obtained with the same fixed thresh-
old. We see that the network in Fig. 7, which corresponds to
a low load of 5 queries per node and minute, has a starlike
topology. Fig. 8 shows the same network with a middle load of
10 queries per node and minute. With this load, central nodes
get congested so the starlike topology moves to an intermediate
topology with hubs. Finally, Fig. 9 shows the network under
high load conditions, of 15 queries per node and minute. The
network has evolved to a random topology where no node has
many connections.

Now we analyze the mean search times obtained for differ-
ent loads and thresholds. The data shown in Fig. 10 seem to
be in accordance with what we would expect. For low loads,
starlike topologies (those with a high threshold) have better
performance than random topologies. Nonetheless, as the load
increases, random networks outperform all other topologies.
Clearly, this is because central nodes or hubs have become
overloaded.



Fig. 7. Topology with low load, starlike

Fig. 8. Topology with medium load

Fig. 9. Topology with high load, random
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It is worth to note the results for threshold 10. It has a good
performance, close to the best, for all loads except for load
6. That result was unexpected from the results in [5]. The
simulations have shown a similar behavior: some thresholds
achieve low search times except for certain middle loads, with
which they obtain quite bad results.

After observing node logs, we think the explanation of this
results are the continous sharp topology changes that happen
for those certain loads and thresholds. Our reconnection tech-
nique tries always to form starlike topologies when possible.
As some nodes get more connections, they become more
attractive for other peers that also try to connect to them. When
those nodes become overloaded, neighbors quickly disconnect.
For certain loads and thresholds, this can happen too often:
nodes become hubs very fast and so they receive many queries
that must be enqueued, but if their threshold is too low they
quickly get congested and then their neighbors disconnect. The
high search times appear because the node, when neighbors
disconnect from it, has already many search messages on its
queue, messages that it will be unable to answer as it has lost
almost all the knowledge it had. So, those messages will have
to traverse the node queue and then be forwarded, probably to
another hub that will also lose its connections in little time,
and so on.

A possible solution we will try next will be to maintain the
knowledge at a node even if its connections have changed.
This could be simply done with a cache that maintains the
freshest information available. A second technique, which
could be combined with the previous one, is to prevent massive
desconnections. For instante, the system could only allow one
disconnection at a time.

IX. CONCLUSIONS AND FUTURE WORK

We have introduced a new P2P system that combines
random walks with dinamyc topologies to improve resource
searchs efficiency. Our reconnection mechanism makes the
network to form an optimal topology depending on query load
conditions. This work successfully improves and evolves our



original idea introduced in [5]. It also compares our search
solution with other techniques and shows that it can be applied
to a real system that performs as it is expected.

Our experiments show how our solution outperforms the
flooding search technique by orders of magnitude. We have
also compared DANTE with Gia, that uses random walks
along with queries flow control and a different topology
adaptation mechanism. Our system seems to perform better
than Gia under almost all load conditions. Nonetheless, there
are some ideas in Gia that we would like to adapt to DANTE,
as the Satisfaction concept.

Further improvements to work on are: resource caches on
nodes, to keep the lists of resources of previous neighbors;
Bloom filters to compact the list of resources of neighbor
nodes; search redirection policies that could perform better
than random forwarding; search enqueuing policies other than
FIFO and better node search methods (like agents).
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