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Sepsis is a systemic inflammatory syndrome (SIRS) caused by acute microbial infection, and it has an extremely high mortality rate.
Tumor necrosis factor-α (TNF-α)-induced necroptosis contributes to the pathophysiology of sepsis, so inhibiting necroptosis might
be expected to improve clinical outcomes in septic patients. Here we predicted candidate drugs for treating sepsis in silico by
combining genes differentially expressed in septic patients and controls combined with interrogation of the Library of Integrated
Network-based Cellular Signatures (LINCS) L1000 perturbation database. Sixteen candidate drugs were screened out through
bioinformatics analysis, and the top candidate linifanib was validated in cellular and mouse models of TNF-α-induced necroptosis.
Cell viability was measured using a luminescent ATP assay, while the effects of linifanib on necroptosis were investigated by
western blotting, immunoprecipitation, and RIPK1 kinase assays. Linifanib effectively protected cells from necroptosis and rescued
SIRS mice from TNF-α-induced shock and death. In vitro, linifanib directly suppressed RIPK1 kinase activity. In vivo, linifanib
effectively reduced overexpressed IL-6, a marker of sepsis severity, in the lungs of SIRS mice. Our preclinical evidence using an
integrated in silico and experimental drug repositioning approach supports the potential clinical utility of linifanib in septic patients.
Further clinical validation is now warranted.
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INTRODUCTION
Sepsis is a systemic inflammatory syndrome (SIRS) caused by
acute microbial infection. It is a serious, life-threatening illness
with a 30–50% mortality rate despite antibiotic treatment [1–3].
Given this high morbidity and mortality, the global Surviving
Sepsis Campaign was initiated to help improve the treatment of
sepsis and septic shock [4], recognizing an acute need for new and
more effective therapeutic agents [5].
When sepsis progresses to septic shock, the consequent

cytokine “storms” and SIRS injure multiple organs. At least some
of the pathobiology of sepsis is driven by necroptosis, usually
initiated in a TNF-α-dependent manner, which initiates down-
stream signaling cascades driving the production of proinflam-
matory cytokines [6, 7]. Therefore, blocking TNF-α-induced
necroptosis might be a useful approach to mitigating massive
cytokine release, preventing severe sepsis and, consequently,
improving clinical outcomes [8]. However, no inhibitors of
necroptosis are currently in clinical use [9].
Here we sought to employ a systematic drug repositioning

[10, 11] bioinformatics approach to identify existing FDA-
approved drugs that might also be useful to treat sepsis [12].
We propose a new approach to identify therapies to treat sepsis
from existing small molecule agents by first investigating
differences in gene expression and functional pathways in
circulating nucleated cells in patients with and without sepsis.
Our approach comprehensively considers genome-wide expres-
sion profiles in sepsis and, using pattern matching, identifies drugs

that reverse these changes in gene expression. We validate our
top candidate drug in a TNF-induced necroptosis model in vitro
and the TNF-α-induced SIRS mouse model in vivo. Our study
shows that a drug repositioning strategy using bioinformatic
predictions combined with experimental validation is a robust way
to discover new management strategies for sepsis.

RESULTS
Overview of the drug repositioning strategy
Three sepsis-related datasets were identified in the GEO database,
which were subjected to bioinformatics analysis to determine
differentially expressed genes (DEGs): (i) related to the pathogen-
esis of sepsis by comparing healthy subjects and patients with
sepsis; and (ii) related to patient mortality by comparing survivors
and non-survivors of sepsis. Signaling pathways related to sepsis
were identified from the literature. Finally, according to the genes
expressed in sepsis-related pathways and the induced gene
expression profiles in human cell lines treated with small molecules
and drugs in the L1000 library, a pattern matching method was
designed based on the Kolmogorov–Smirnov test. For each sepsis-
related dataset, treatment scores were calculated for all drugs in
the L1000 library, and the drugs were sorted. The top 60 drugs in
the three datasets were crosschecked in the Comparative
Toxicogenomics Database (CTD), and 16 drugs previously unre-
lated to sepsis or without information in the database were
deemed top candidate drugs predicted to treat sepsis (Fig. 1).
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Identification of sepsis-related gene expression profiles
We performed differential gene expression analysis from sepsis
patients in the GSE69528, GSE46955, and GSE54514 datasets. With
a P-value set to <0.05 and | log2FC | of 0.7, we identified 7771,
6237, and 5564 DEGs from the GSE69528, GSE46955, and
GSE54514 datasets, respectively (Supplementary Tables 4–6) and
a set of DEGs overlapping in the three datasets (Fig. 2A). Volcano
plots of up- and downregulated genes are shown in Fig. 2B, and
the heatmaps of the top 100 DEGs in the three datasets are shown
in Fig. 2C.

Detection of sepsis pathway signatures
After searching sepsis-related literature in biomedical databases,
17 signaling pathways related to the pathogenesis of sepsis or
important for the prognosis of sepsis patients were identified
(Supplementary Table 1). These pathways may contain key
pathogenic genes in sepsis, so we regarded them as feature
pathways of sepsis. Disease signatures were constructed based on
the DEGs derived from the three datasets and 17 signaling
pathways (see gene IDs and logFC in Supplementary Tables 7–9).
After integrating the logFC of DEGs in the three datasets with the
genes in each pathway, calculating an average logFC for all genes
due to pathway upregulation or downregulation and calculating
the average logFC of the pathways corresponding to the three
datasets (Supplementary Table 1), the TNF signaling pathway was
identified as most upregulated in sepsis.

Selection of potential sepsis drugs through the CTD
benchmark
The CTD provides information on the relationship between genes,
compounds, and diseases [13], and we used the CTD to query the
association between compounds and sepsis. The drug lists related
to the three datasets GSE46955, GSE69528, and GSE54514 were
sorted, and the top 60 drugs were selected and verified in the
CTD. Drugs were divided into four categories: those associated
with sepsis, those not in the CTD, no disease data for the
compound, and not associated with sepsis. If the drug was related
to sepsis in the CTD, other studies have reported a relationship
between the drug and sepsis pathogenesis. Since the purpose of
this study was to find new drugs with therapeutic effects in sepsis,
we regarded all other drugs except those related to sepsis in the

CTD as new candidates for sepsis. Using this approach, the top 60
drugs related to the three datasets were identified (Supplemen-
tary Table 2).
Sixteen candidate drugs were included in two or three drug

lists: Y-39983, CHIR-99021, WH-4-025, brivanib, XMD-1150, CGP-
60474, saracatinib, enzastaurin, withaferin-a, AT-7519, linifanib,
asenapine, nintedanib, AS-601245, GSK-1059615, and OSI-027.
Three were previously reported to have anti-sepsis effects: CGP-
60474 [14], AT-7519 [15], and Y-3998 [16], eleven drugs had not
yet been reported, and no information was available for two drugs
(WH-4-025, XMD-1150). Finally, we obtained the overlap of
candidate drugs (Fig. 3).

Experimental validation of potentially anti-sepsis drugs
in vitro
Necroptosis plays a significant role in the pathophysiology of SIRS
and sepsis. Receptor-interacting serine/threonine-protein kinase 1
(RIPK1) regulates RIPK3-MLKL-driven systemic inflammation, and
RIPK1 kinase inhibitors have shown promise in alleviating or
preventing a SIRS response. We found significantly higher
expression of RIPK1, RIPK3, and MLKL in the peripheral blood
nucleated cells of sepsis patients than controls (Fig. 4A).
To further explore the potential novel therapeutic targets

identified by our bioinformatics predictions, we performed
phenotypic screening for inhibitors of TNF-α-induced necroptosis
in FADD-deficient Jurkat cells. FADD-deficient Jurkat cells were
pretreated with or without the top 11 candidate compounds
(10 μM, 30min) and then stimulated with 50 ng/ml TNF-α for 24 h
or left untreated [17]. Nec-1 was used as a positive control to
monitor RIPK1 kinase dependency in the induced necroptosis [18].
Cell viability was determined using the ATP-based CellTiter-Glo®

Luminescent Assay (Promega, Madison, WI). Measurements were
normalized to untreated control cells (100%) (Fig. 4B). One of the
top 11 candidate drugs (linifanib) effectively protected cells from
necroptosis (Fig. 4C–E).
We next performed dose-response experiments to quantita-

tively assess the inhibitory potency of linifanib according to the
half maximal inhibitory concentration (IC50), which was 114.2 µM
in FADD-deficient Jurkat cells (Fig. 4F) and 51.3 µM in mouse
embryonic fibroblasts (MEFs) (Fig. 4G). The half maximal effective
concentration (EC50) for inhibiting necroptosis was 5.13 μM in

Fig. 1 Experimental design. For virtual screening of sepsis drugs, sepsis-related signaling pathways and datasets were retrieved from a public
database. DEGs were extracted from sepsis-related microarray data from GEO. Sepsis-related gene expression data and gene expression
profiles in the L1000 database were used to calculate therapeutic scores to obtain top candidate compounds. In experimental validation, FDA-
approved drug linifanib was shown to have therapeutic effects in cellular and animal models of necroptosis.
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human FADD-deficient Jurkat cells (Fig. 4H) and 0.14 µM in MEFs
(Fig. 4I). Taken together, these data demonstrate that linifanib
efficiently blocked TNF-α-induced necroptosis in both human and
murine cells and is a potent necroptosis inhibitor.

Linifanib blocks necrosome formation by inhibiting RIPK1
phosphorylation
The protective effect of linifanib against TNF-α-induced necrop-
tosis was as potent as that of the well-established but
experimental RIPK1 inhibitor Nec-1 [19]. We next evaluated
whether linifanib inhibited necroptosis via RIPK1. FADD-deficient
Jurkat cells were pretreated with 4 μM linifanib or 25 μM Nec-1 for
30min followed by treatment with or without TNF-α for the
indicated time points. Linifanib selectively inhibited RIPK1 and
MLKL phosphorylation when necroptosis was induced by TNF-α in
FADD-deficient Jurkat cells (Fig. 5A). Similar results were also
obtained in murine MEFs (Fig. 5B). Thus, linifanib inhibits TNF-α-
induced phosphorylation of RIPK1 and MLKL.
TNF-α can rapidly activate TNFR1 upon binding, thereby

inducing recruitment of RIPK1 to TNFR1 to form a
TNFR1 signaling complex (TNF-RSC, or complex I) [7, 20, 21]. The
impact of linifanib on complex I formation was analyzed by
immunoprecipitation (IP) after stimulation with the anti-TNFR1
antibody FLAG-tagged TNF-α in MEFs [19, 22]. Recruitment of
RIPK1 into the TNF-RSC was largely blocked by linifanib in TNF-α-
stimulated MEFs.
We next conducted an in vitro kinase assay to further test the

potency of linifanib to directly inhibit RIPK1. Quantification of the
ADP-Glo kinase assay showed that linifanib suppressed recombi-
nant hRIPK1 [23] kinase activity (IC50= 0.67 μM) (Fig. 5D). Our
findings indicate that linifanib is as effective as the well-
established RIPK1 inhibitor Nec-1 in preventing necroptosis and
is a RIPK1 kinase inhibitor.

Linifanib protects mice from TNF-α-induced SIRS
To explore whether linifanib protects against inflammation in vivo,
we treated TNF‐induced SIRS mice with the drug [6]. Linifanib
(50 mg/kg) or Nec-1 (30 mg/kg) given by intragastric gavage
30min before i.v. injection of mTNF‐α protected mice from
hypothermia and death (Fig. 6A, B). Since interleukin 6 (IL-6) levels
in vivo correlate well with serum TNF‐α levels and the mortality
rate of patients with septic shock [24–26], we quantified IL-6 in the
lungs of SIRS mice. IL-6 expression significantly increased in the
lung tissue 6 h after receiving TNF‐α injection, and IL-6 over-
expression in SIRS mice was significantly suppressed by pretreat-
ment with linifanib (Fig. 6C). Thus, linifanib protects against TNF‐
induced SIRS in vivo.

DISCUSSION
Sepsis is a life-threatening illness occurring due to a severe and
systemic inflammatory response to infection [27]. The syndrome is
initially characterized by dysregulated inflammation, namely SIRS,
which can rapidly progress to severe sepsis and septic shock [28].
Sepsis is the most common cause of death in critically ill patients
in noncoronary intensive care units [29]. Necroptosis, a potent
proinflammatory mechanism triggered by TNF-α in response to
tissue injury and inflammation [30], plays a vital role in the
pathophysiology of systemic sepsis [6, 31]. Indeed, most informa-
tion regarding necroptosis has been derived from studies of TNF-
α-induced necroptosis [32–34]. Using bioinformatics analysis and a
drug repositioning strategy, we predicted a set of potential drug
candidates for sepsis and validated the effectiveness of one of
these drugs in vitro and in vivo models of TNF-α-induced
necroptosis. Our experimental validation found that the candidate
drug linifanib effectively inhibited necroptosis, SIRS, and related
tissue damage.

Fig. 2 Differential expression analysis of the GSE69528, GSE46955, and GSE54514 datasets. A Venn diagram showing the overlapping
DEGs in the three datasets. B Volcano plot shows significantly differentially expressed genes in the three datasets. Red and blue plots
represent upregulated and downregulated genes, respectively, with (|log2FC | >0.7 and P-value<0.05). Black plots represent the genes with no
significant difference. C Heatmap of the top 100 DEGs in three datasets. Each row represents a DEG, and each column represents a sample.
The color ratio indicates the relative level of DEG expression: blue, lower than reference expression; red, higher than reference expression.
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We developed a workflow to optimize our drug repositioning
strategy. First, we predicted therapeutic drugs by analyzing existing
gene expression datasets of patients with sepsis, which was an
efficient and cost-effective approach compared with traditional
experiments. Second, by analyzing the pathophysiological mechan-
isms underpinning sepsis, we established an effective experimental
verification system for the predicted drug candidates. Third, we used
the LINCS database containing an FDA-approved drug library, and in
doing so repurposed linifanib to inhibit necroptosis, related
inflammation, and SIRS. Since the safety evaluation of linifanib has
already been completed, clinical translation should be expedited.
Sepsis-induced acute lung injury remains the main cause of

death in septic patients [35]. Necroptosis is activated in the lung
tissue of septic patients and is also caused by SARS-CoV-2 [36].
RIPK1 kinase plays a crucial role in mediating necroptosis upon
activation of TNFR1 by TNF-α [32]. Upon necrosome formation,
RIPK1 is activated and autophosphorylated, activating RIPK3, which
binds to and phosphorylates the pseudokinase MLKL, mediating
necroptosis in disease states [37, 38]. We found that the expression
of RIPK1, RIPK3, and MLKL was much higher in the peripheral blood
nucleated cells of septic patients than controls. This provides
further evidence that necroptosis plays a significant role in the
pathophysiology of sepsis and suggests that RIPK1-dependent
necroptosis may be a potential novel therapy target in sepsis.
Our data illustrate that Linifanib increases recruitment to

complex I and inhibits RIPK1. To validate the capacity of linifanib
to inhibit RIPK1, we used the ADP-Glo™ kinase assay to evaluate
the IC50 of linifanib. The ADP-Glo™ Kinase assay measures kinase
activity by quantifying ADP production during the kinase reaction.
The assay is well suited for measuring the effects of compounds
on the activity of many purified kinases. We found that linifanib

directly inhibited RIPK1 kinase activity in a dose-dependent
manner with an IC50 of 0.67 μM, seven-fold lower than that of
the necroptosis inhibitor Nec-1 as a positive control, so linifanib
either suppresses RIPK1 activation directly or indirectly with
excellent prospects for clinical application.
Necroptosis is characterized by marked cellular swelling, plasma

membrane rupture, and subsequent damage-associated molecular
pattern (DAMP) released after cellular disruption [39]. TNF-α-
induced necroptosis initiates downstream signaling cascades
driving the production of a series of proinflammatory cytokines,
including IL-6 [40]. Elevated concentrations of IL-6 trigger a
detrimental cytokine storm [41] in sepsis and are negatively
associated with poor clinical outcomes [42]. Endothelial cell
necroptosis may contribute to lethality both in SIRS and septic
patients [43]. Therefore, we used a murine SIRS model induced by a
tail vein injection of TNF-α to confirm that linifanib can effectively
rescue shock-related death and inhibit overexpression of IL-6 in the
damaged lung tissue of SIRS mice. These data provide a solid basis
for the clinical application of linifanib in the treatment of sepsis.
This study has limitations. First, despite recent research progress,

our understanding of SIRS pathogenesis is still incomplete. More
studies on the pathophysiological mechanisms of sepsis and
suitable validation systems for therapeutic targets of sepsis are
needed. Second, whether linifanib can inhibit sepsis-related
inflammatory responses and reduce mortality in patients still
needs to be proven in clinical trials. Linifanib is still an expensive,
patent-protected drug, limiting its current application to
investigator-initiated clinical trials and translational research. Lastly,
since the drug prediction is based on sepsis, linifanib requires
further validation in other authentic sepsis models such as LPS
treatment or cecal ligation and puncture in vivo.

Fig. 3 Overlap of three candidate drug lists. Venn diagram showing candidate drugs for sepsis obtained from the three datasets. Sixteen
drugs appeared in at least two results.
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In conclusion, linifanib inhibited RIPK1-dependent necroptosis
and attenuated SIRS-induced sepsis, providing the first preclinical
data supporting repurposing linifanib to reduce mortality from
sepsis.

EXPERIMENTAL VERIFICATION
Biological reagents
We used the following reagents: Flag-mTNF-α (ME15JA468, Sino
Biological, Beijing, China) was a gift from Professor Daichao Xu
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(Interdisciplinary Research Center on Biology and Chemistry,
Shanghai); recombinant murine/human TNF-α(Sino Biological,
50349-MNAE) and (Peprotech, 300-01A-100); Linifanib (Selleck
Chemicals, S1003, CAS# 796967-16-3); Pierce protease inhibitor
tablets (Thermo Fisher Scientific, A32965); z-VAD-fmk (Selleck
Chemicals, S7023); Smac mimetic (SM-164) (Beyotime Biotechnol-
ogy, SC0114-10 mM); Necrostatin-1 (Selleck Chemicals, S8037);
CellTiter-Glo Luminescent Cell Viability Assay (Promega, G7573);
FDA-approved chemical library (Selleck Chemicals, L1300); ANTI-
FLAG® M2 Affinity Gel (Sigma, A2220); ADP-Glo Kinase Assay
(V6930, Promega, Madison, WI); RIPK1 Kinase Enzyme System
(VA7591, Promega); Protein A/G ultra link resin (Thermo Fisher
Scientific, 53133); Pierce Protease Inhibitor Tablets (Thermo Fisher
Scientific, A32965). The antibodies used for western blotting were
obtained from commercial sources: anti-RIPK1 (BD Biosciences,
610459 and Cell Signaling Technology, 3493 S); anti-mouse
phosphoS166-RIPK1 (Cell Signaling Technology, Cat# 31122 S);
anti-mouse MLKL (Proteintech, 66675-1-Ig); anti-mouse-
phosphoS345-MLKL (Abcam, ab196436), anti-Tubulin (Proteintech,
66031-1-Ig); anti-TNFR1 (Proteintech, 21574-1-AP); anti-human
phospho-RIPK1 S166 (Cell Signaling Technology, Cat# 65746),
anti-human MLKL (Abcam, Cat# ab183770), and anti-human
phospho-MLKL (Abcam, Cat# ab187091).

Cells and cell culture
Mouse embryonic fibroblasts (MEFs) and FADD-deficient Jurkat
cells were kindly provided by Prof. Daichao Xu of Interdisciplinary
Research Center on Biology and Chemistry, CAS, Shanghai, China.
FADD-deficient Jurkat cells were cultured in RPMI 1640 medium
(Hyclone), MEFs were cultured in DMEM (Hyclone). The medium
was additionally supplemented with 10% FBS (Zhejiang Tianhang
Biotechnology), MEM (HyClone), NEAA (HyClone), and antibiotics
(100 U/ml penicillin and 100mg/ml streptomycin) (Gibco). All cell
lines were cultured in a humidified 5% CO2 atmosphere at 37 °C.

Necroptosis induction and cell viability analysis
For FADD-deficient Jurkat cells, necroptosis was induced by
human TNF-α (50 ng/ml) for 24 h. For MEF cells, necroptosis was
induced by pretreatment with Smac164 (200 nM) and Z‐VAD‐fmk
(20 μM) for 30 min, followed by mTNF‐α (25 ng/ml). The com-
pounds were incubated with the cells at the indicated concentra-
tions for 24 h. Cell viability was then examined by using the
CellTiter‐Glo Luminescent ATP Assay kit (Promega, G7573).
Luminescence or absorbance was recorded with a BioTek 312e
microplate reader (BioTek Instruments, Winooski, VT).

Animal experiments
All animal care and experimental procedures complied with the
National Institutes of Health guidelines (NIH publications Nos.
80–23, revised 1996) and under the approval of the Ethical
Committee of the China Three Gorges University Laboratory
Animal Center. For the TNF‐induced SIRS model, male C57BL/6 J

mice (8–10 weeks old) were purchased from Beijing Vital River
Laboratory Animal Technology Co., Ltd. (Beijing, China). Mice were
raised in an SPF facility with a pathogen‐free environment
(23 ± 2 °C and 55 ± 5% humidity) with a 12:12 h light/dark cycle
at the Three Gorges University Laboratory Animal Center. Mice
were administered Nec-1/linifanib or solvent CMC-Na by p.o.
gavage at the indicated doses 30min before i.v. injection of TNF-α
(5 μg). TNF-α was diluted in PBS and injected i.v. (5 µg/mouse) in a
volume of 200 μl. Body temperature was monitored with an
electric thermometer. Lung tissues were collected at the indicated
times after sacrificing the mice.

RNA extraction, reverse transcription, and real-time PCR
The mRNA levels of lung tissues from SIRS model mice were
analyzed at 6 h after injection of TNF-α (5 μg/mouse). Total lung
RNA was extracted with the FastPure Cell/Tissue Total RNA
Isolation Kit V2 (RC112-01, Vazyme) and reverse transcribed into
cDNA using HiScript III RT SuperMix (R323-01, Vazyme). Quanti-
tative real-time PCR was performed using ChamQ SYBR qPCR
Master Mix (Q311-02, Vazyme) and analyzed with CFX Manager
software from Bio–Rad CFX384. Relative gene expression was
normalized to 18 s rRNA and determined using the -ΔΔCT method.
Primers used for 18 s, forward:5′-AGTCCCTGCCCTTTGTACACA-3′,
reverse: 5′-CGATCCGAGGGCCTCACTA-3′; for IL-6, forward: 5′-
TACCACTCCCAACAGACCTG-3′, and reverse:5′-GGTACTCCAGAA-
GACCAGAGG - 3′.

Western blotting analysis
Cells were lysed in 1% NP-40 buffer for total lysis (1% Nonidet P-
40, 50 mM Tris Base (pH 7.5), 150mM NaCl, 1 mM PMSF, 1 mM
NaF/Na3VO4, Pierce Protease Inhibitor Tablets). All cell lysis buffers
were supplemented with 1% NP-40 buffer to the same
concentration and were then added to 5x loading buffer (10%
SDS, 40% glycerol, 25% 1M Tris-HCl (pH 6.8), 0.005% bromophe-
nol blue, 25% β-mercaptoethanol) with denaturation at 95 °C for
5 min. Cell lysates were separated on SDS‐PAGE gels with running
buffer and subsequently transferred onto immobilon-NC transfer
membranes (NC membrane, HATF00010, Millipore) or 0.45 μM
polyvinylidene difluoride membranes (PVDF membrane,
MXHVWP124, Millipore). Membranes were blocked in 5% skimmed
milk in Tris-buffered saline (TBS) containing 0.1% Tween 20 before
overnight incubation with specific primary antibodies at 4 °C. All
listed primary antibodies were used at 1:1000 dilution. The
membranes were then washed and incubated with the appro-
priate HRP-conjugated secondary antibodies (1031-05 and 4050-
05, SouthernBiotech), developed immunoreactivity (G2014-50ML,
Servicebio), and imaged using a Tanon-4800 (Tanon Science &
Technology Co., Ltd.).

Immunoprecipitation
For immunoprecipitation (IP) of complex I, MEFs were lysed with
1% NP-40 buffer (1% Nonidet P-40, 50 mM Tris Base (pH 7.5),

Fig. 4 Validation of candidate drug by cellular assay identifies linifanib as a necroptotic inhibitor. A Boxplots for the focused genes (RIPK1,
RIPK3 and MLKL) of necroptosis pathway in three sepsis datasets. B Schematic overview of the drug screening workflow. C Identification of
necroptosis inhibitors using candidate drugs predicted with the LINCS and CTD databases for sepsis treatment based on bioinformatics.
FADD-deficient Jurkat cells were pretreated with each compound (10 µM) for 30min and then stimulated with human TNF-α (50 ng/ml)
overnight to induce necroptosis. Cell viability was analyzed by ATP assay and normalized to untreated control cells (DMSO= 100). Nec-1
(25 µM) was used as a positive control. Cell viability was detected in FADD-deficient Jurkat cells (D) and MEF cells (E) that were pretreated with
linifanib (10 µM) for 30min in the presence or absence of 25 µM Nec-1 and then stimulated with 50 ng/ml human TNF-α or TSZ: TNF‐α (25 ng/
ml) plus Smac mimetic (200 nM) and z‐VAD‐fmk (20 μM) for 24 h. Dose-dependent protection of linifanib (0.05 µM–100 µM) in (F) FADD-
deficient Jurkat cells and (G) MEF cells. Cell viability was determined by dose-dependent protection of linifanib against TNF-α-induced
necroptosis in (H)FADD-deficient Jurkat cells treated with various concentrations of linifanib (0.01 µM–20 µM) for 30min followed by
stimulation with human TNF-α (50 ng/ml) for 24 h, while (I) MEF cells were preincubated with linifanib (concentrations as indicated) for 30min
with 25 ng/ml mTNF-α (T) together with 200 nM Smac mimetic (S) and 20 μM caspase inhibitor z-VAD (Z) -fmk for 24 h. Cell viability was
assessed using a luminescence-based readout for ATP (CellTiter Glo). Data represent mean value ±S.D. of two independent experiments and
normalized to untreated control. ***p < 0.01, and ****p < 0.0001.
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150mM NaCl, 1 mM PMSF, 1 mM NaF/Na3VO4 and Pierce Protease
Inhibitor). Complex I was purified by IP using Anti-Flag® M2
Affinity Gel (20 µl). The IP protein was rotated overnight at 4 °C.
The beads were washed three times with ice-cold 1% NP-40 buffer
and the IP protein rotated overnight at 4 °C. After incubation with
cell lysates, beads were washed with ice-cold 1% NP-40 buffer and
eluted by directly adding 2x loading buffer (4% SDS, 20% glycerol,
10% 1M Tris-HCl (pH 6.8), 0.005% bromophenol blue, 10%
β-mercaptoethanol). Samples were incubated at 95 °C for 5 min
and analyzed by immunoblotting (antibodies used as indicated).

In vitro kinase assays
We followed the protocol of the RIPK1 Kinase Enzyme System
(Promega, Cat# VA7591) and ADP-Glo™ Kinase Assay (Promega,
Cat# V6930) to detect the inhibition of RIPK1 kinase activity by
linifanib.

Data and statistical analysis
Results are presented as means ± SEM. Data were analyzed using
GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA).
Statistical analyses used were the t-test or 1- or 2-way ANOVA
for two or more than two groups, respectively. The log-rank test
was performed for Kaplan-Meier survival curve analysis.

MATERIALS AND METHODS
Drug prediction
Data collection. Datasets associated with sepsis were retrieved and
downloaded from the Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) database using a keyword of “sepsis”, organ-
ism “Homo sapiens”, and study type “expression profiling by array”. The
GSE69528 [44], GSE46955 [45], and GSE54514 [46] datasets were retrieved
(Supplementary Table 3) and used to analyze differentially expressed genes.

Identification of differentially expressed genes (DEGs). DEG analysis was
conducted using limma (v3.46.0) in R (version x64 4.0.3). Gene expression
data were log2 transformed and processed in R. To ensure sufficient
overlapping genes after intersecting DEGs and signaling pathway genes to
construct disease signatures, we used a P-value <0.05 to screen DEGs. The
heatmaps of the top 100 DEGs were produced using the pheatmap
package (v1.0.12) in R.

Identification of signaling pathways. To identify the key pathogenic
signaling pathways associated with sepsis, we searched the PubMed
database using the keyword “sepsis” and identified signaling pathways
closely related to the pathogenesis of sepsis from the literature.

Perturbation response signatures. The Library of Integrated Network-Based
Cellular Signatures (LINCS) is a library cataloging the functional genomics and
drug metabolomics of human cell lines treated with small molecules and

Fig. 5 Linifanib prevents RIPK1-mediated cell death and is a RIPK1 kinase inhibitor. A FADD-deficient Jurkat cells were pretreated with
linifanib (10 µM), Nec-1 (25 µM) or DMSO for 30min followed by stimulation with hTNF-α (50 ng/mL) for the indicated time. The expression levels
and activation status (phosphorylation) of the indicated necrosome members p-RIPK1S166 and p-MLKLS345 were analyzed by western blotting
using the indicated specific antibodies. Data shown are representative of two independent experiments. BMEFs cells were pretreated with DMSO,
linifanib (5 µM), Nec-1 (25 µM) plus Smac mimetic (200 nM) and z-VAD-fmk (20 µM) followed by stimulation with mTNF-α (25 ng/mL) for the
indicated durations. C TNF-α-induced complex I immunoprecipitation (IP) of MEFs cells treated in the absence or presence of linifanib (0.31 µM)
with Flag-mTNF-α (100 ng/ml) for the indicated time points, followed by anti-Flag beads and western blotting analysis using the indicated
antibodies. Lysates pre-IP (input) were also analyzed by western blotting using the indicated antibodies. D In vitro ADP-Glo™ kinase assays using
recombinant human RIPK1 protein (200 nM). Recombinant hRIPK1 was incubated with linifanib and Nec-1 at the indicated concentrations. Data
represent mean value ±S.D. of two independent experiments.
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quantification of multilevel cell responses before and after treatment [47]. The
LINCS L1000 library exploits correlations between gene expression; using small
molecules to treat human cell lines, they identified 978 genes as genome-wide
markers in 384-well plates based on large-scale statistical analysis. The
expression of other genes can then be calculated by measuring the expression
of marker genes. Changes in the nearly 1000 genes adopted by L1000
represent approximately 80% of gene change information in humans [48].
Drug perturbation genesets in LINCS can be divided into three groups: (1)

landmark space, containing 978 landmark genes based on probe fluorescence
intensity data measured experimentally, scaled, and standardized after
calculation with the control group; (2) all inferred genes, containing 978
landmark genes and 11,350 genes whose expression data are inferred, totaling
12,328 genes; and (3) best inferred genes, which contain 978 landmark genes
and 9196 high-fidelity inferred genes from 11,350 inferred genes, totaling
10174 genes used in drug prediction.
To identify potential therapeutic drugs for sepsis, we obtained the gene

expression profiles perturbed by small molecule compounds from the LINCS
L1000 level 5 dataset. The perturbation data of each small molecule
compound included the gene expression data of different cell lines after
different doses and treatment times.

Kolmogorov–Smirnov test. The Kolmogorov–Smirnov test (KS test) is a
nonparametric test based on a cumulative distribution function to test
whether an empirical distribution conforms to a theoretical distribution or
to compare whether there is a significant difference between two
empirical distributions [49, 50].
X1, X2,…, Xm, Y1, Y2,…, Yn are two independent random samples, and the

distribution functions are Fm(t) and Gn(t), which can be defined as:

Fm tð Þ ¼ 1
m

Pm

i¼1
I �1;t½ � Xið Þ ; (1)

Gn tð Þ ¼ 1
n

Pn

i¼1
I �1;t½ � Yið Þ; (2)

where m and n denote the number of samples in the two groups, t
denotes any real number, and I �1;t½ �ðXiÞ and I �1;t½ �ðYiÞ are defined as:

I �1;t½ � Xið Þ ¼ 1; Xi � t

0; Xi > t

�

; (3)

I �1;t½ � Yið Þ ¼ 1; Yi � t

0; Yi > t

�

: (4)

The KS test is defined as:

Dm;n ¼ supt Fm tð Þ � Gn tð Þj j; (5)

where supt is the supremum of distance.
The KS test quantifies the distance between the empirical distribution

functions of two groups of samples. The null hypothesis H0 states that the

two data distributions are consistent or the data conform to the theoretical
distribution. When the actual observed value Dm,n is greater than the
critical value, then H0 is rejected; otherwise, H0 is accepted.

Calculation of therapeutic scores. We used DEGs in sepsis-related path-
ways to construct disease signatures and DEGs from drug action to
construct drug signatures. The differential expression values of genes in
sepsis-related pathways were from log-fold changes (logFC) after
differential expression analysis of sepsis-related datasets, and the
differential expression of genes under the action of drugs came from
the L1000 library. Based on the KS test statistics, these disease and drug
signatures were used to design a pattern matching method to calculate
treatment scores for different drugs for sepsis.
For sepsis-related signaling pathway C and drug-induced gene

expression profile D, the treatment scores of the upregulated geneset
and downregulated geneset of pathway C relative to drug-induced gene
expression profile D were calculated.
First, we took the intersection of genes upregulated or downregulated in

sepsis-related pathways and genes changing after drug perturbation and
recorded this gene set as H. Genes induced by drugs were arranged
according to their differential expression from large to small, and genes in
H were arranged from large to small according to this differential
expression value. Using the KS test statistic, a and b are defined as:

a ¼
N

max

i ¼ 1

P
N � Q

M

� �
; (6)

b ¼
N

max

i ¼ 1

Q
M � P�1

N

� �
; (7)

where N is the total number of genes in the H gene set, M is the total
number of genes whose expression value changes after drug perturbation,
P is the position of current gene g in gene set H, and Q is the position of
gene g in the gene list under drug perturbation.
Therefore, the treatment score of the upregulated or downregulated

geneset in pathway C is calculated as

Scoreup=down ¼
a; a>b

�b; a � b

�

: (8)

The treatment score of the drug for sepsis-related signaling pathway C is
calculated as

Scorec;d ¼
Scorec;dup � Scorec;ddown; Score

c;d
up � Scorec;ddown<0

0; Scorec;dup � Scorec;ddown � 0

(

; (9)

where c denotes the sepsis-related signaling pathway and d denotes
the drug.

Fig. 6 Linifanib protects mice against SIRS induced by TNF-α. Ten-week-old male C57BL/6 J mice were pretreated with or without linifanib
(50mg·kg-1 gavage) or Nec-1 (30mg·kg-1 gavage) for 30min, and then SIRS was induced with mTNFα (5 μg/ mice i.v.). Control mice received
an equal amount of vehicle before mTNF-α challenge. A The survival curve and B the mouse body temperatures (means ± SEM) of linifanib-
treated mice (n= 10 for each group), Nec-1-treated mice (n= 10 for each group), and vehicle control mice (n= 10 per group) are shown. The
results are presented as the mean value ±S.D. **p < 0.01, ****p < 0.0001. C After SIRS induction for 6 h, the IL-6 levels of lung tissues were
determined by real-time PCR. Results represent the mean±S.D. from six mice. **p < 0.01, significantly different from vehicle control group.
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There are four possible effects of drugs on a sepsis-related signaling
pathway. In the first case, the change in gene expression after drug
perturbation is opposite to that in sepsis, so this drug has the potential to
treat sepsis; in this case, Scorec,d<0. In the second case, genes whose
expression decreases in sepsis but increase or decreases under drug
perturbation, the use of the drug in sepsis will return the expression of
some genes to normal but others will decrease. In the third case, genes
with increased expression in sepsis but the expression of some genes
increases and others decreases after drug perturbation, so use of the drug
in sepsis will cause the expression of some genes to return to normal but
the expression of other genes will continue to increase. In the fourth case,
the expression of genes increases or decreases in sepsis and in response to
the drug, indicating that the effect of the drug and sepsis on gene
expression changes is consistent and the drug may aggravate the severity
of sepsis; in this case, Scorec,d>0.
In the first and fourth cases, Scorec;dup � Scorec;ddown<0. After screening drugs

that met these two conditions, drugs meeting the first condition were
further screened according to Scorec,d<0. The greater the absolute value of
Scorec,d, the more obvious the drug effect.
After calculating the drug score for each pathway, treatment scores were

obtained by treating different cell lines with a drug, calculating the mean value
of the score, and using its absolute value as the treatment score for the drug.
The average score of each drug in all pathways was calculated for each

sepsis-related dataset. Only results with a score <0 were retained and sorted
according to the absolute value of the score from large to small, including only
drugs with potential therapeutic effects on sepsis. Finally, top 60 drugs
overlapping in the three datasets were used to determine the final
candidate drugs.

DATA AVAILABILITY
The authors declare that all data generated and analysed during the current study
are available at https://github.com/ykykyky/KS_Rcode.
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