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REPRESENTABLE IDEMPOTENT COMMUTATIVE
RESIDUATED LATTICES

J. G. RAFTERY

Abstract. It is proved that the variety of representable idempotent commuta-
tive residuated lattices is locally finite. The n-generated subdirectly irreducible
algebras in this variety are shown to have at most 3n+1 elements each. A con-
structive characterization of the subdirectly irreducible algebras is provided,
with some applications. The main result implies that every finitely based ex-
tension of positive relevance logic containing the mingle and Gödel-Dummett
axioms has a solvable deducibility problem.

1. Introduction

A lattice-ordered commutative monoid is an algebra 〈A; ·,∧,∨, e〉 made up of a
commutative monoid 〈A; ·, e〉 and a lattice 〈A;∧,∨〉, where the lattice order ≤ is
preserved by the functions x �→ a · x, for every a ∈ A. A structure of this kind is said
to be residuated provided that for each pair a, b ∈ A, there is a largest c ∈ A such
that a · c ≤ b. The largest c with this property is then denoted by a → b and the
binary operation → is called residuation. In this case the algebra 〈A; ·,→,∧,∨, e〉
is called a commutative residuated lattice, or briefly a CRL. It follows that every
CRL satisfies

z ≤ x → y ⇐⇒ x · z ≤ y.

A CRL need not be integral; i.e., its monoid identity e need not be its greatest
element. Lattice-ordered abelian groups are examples of nonintegral CRLs in which
x → y = x−1 · y. They are representable in the sense that they may be embedded
into direct products of totally ordered algebras of the same kind.

In a CRL, if x ≤ e, then clearly x · x ≤ x. Therefore, an integral CRL satisfies
the square increasing law x ≤ x · x only if it is idempotent, i.e., satisfies x ≈ x · x.
In an idempotent integral CRL, · and ∧ coincide, so → is just relative pseudo-
complementation. The representable CRLs with these properties are the relative
Stone algebras of [5].

In relevance logic and in classical linear logic, the connective of co-tenability
¬(p → ¬q) is distinct from conjunction p ∧ q. In Anderson and Belnap’s sys-
tem R, as defined in [3], co-tenability is modeled after the monoid operations of
distributive square increasing CRLs with an involution, i.e., de Morgan monoids.
Here, residuation models the connective of relevant implication. The idempotent
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4406 J. G. RAFTERY

de Morgan monoids are called Sugihara monoids. These algebras are representable,
and not generally integral. They model the system RM t, which is the extension
of R by the mingle axiom � p → (p → p).

Of the properties discussed above, the following three will be central to this pa-
per: a CRL is said to be

• linear if its lattice reduct is totally ordered ;
• representable if it embeds in a direct product of linear CRLs ;
• idempotent if it satisfies x · x ≈ x.

The class of all representable idempotent CRLs—briefly RICRLs—is a finitely ax-
iomatized variety.

The main result of this paper establishes that the variety of all RICRLs is locally
finite (Theorem 18) and, in particular, that an n–generated subdirectly irreducible
RICRL has at most 3n+1 elements (Theorem 17). This explains simultaneously the
phenomenon of local finiteness in relative Stone algebras and the same phenomenon
in Sugihara monoids. A constructive characterization of the subdirectly irreducible
RICRLs will be provided (Theorem 20). It implies that any such algebra is, roughly
speaking, an amalgam of a Sugihara monoid and a family of relative Stone algebras
(Theorem 21). The result allows us to establish a finite equational basis for the
positive Sugihara monoids, i.e., the subalgebras of the involution-free reducts of
Sugihara monoids. It also allows us to prove that RICRLs and Sugihara monoids
satisfy the same universal sentences in the language of lattice-ordered monoids.

The negation-less fragment of the relevant logic R is denoted as R+. Theorem 18
implies that the quasi-equational theory of any finitely axiomatized quasivariety of
RICRLs is decidable. These quasi-equational theories coincide, up to invertible
translation, with the finitely based extensions of R+ that contain both the mingle
axiom and the Gödel-Dummett axiom � (p → q) ∨ (q → p). Consequently, any
such extension of R+ is decidable; in fact, it has a solvable deducibility problem.
There are infinitely many axiomatic extensions of this kind that are weaker than
the negation-less fragment of RM t as well as that of the Gödel-Dummett logic LC.

For background in universal algebras, see [14]. For general information about
CRLs, see [24, 43], for relevance logic [2, 3], for linear logic [4, 41], and for sub-
structural logics in general, [22, 36, 37, 39]. Further references can be found in the
bibliographies of [12, 13, 25].

2. Algebraic preliminaries

The universe of an algebra A will usually be denoted as A. We shall make stan-
dard use, as in [14], of the class operator symbols I, H, S, P, PS and PU. They stand,
respectively, for closure under isomorphic and homomorphic images, subalgebras,
direct and subdirect products, and ultraproducts. Given a class X of similar alge-
bras, we use Q(X) and V(X) to denote, respectively, the quasivariety ISPPU(X) and
the variety HSP(X) generated by X. The class of all subdirectly irreducible algebras
in X will be denoted by XSI.

An algebra is said to be n-generated if it has a generating set with at most
n elements. A variety or quasivariety of algebras is said to be locally finite if
each of its finitely generated members is a finite algebra. A variety is finitely
generated if it has the form V(X) for some finite set X consisting of finite algebras.
Every finitely generated variety is locally finite, but not conversely. A finitely
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axiomatized and locally finite quasivariety K of finite type must have a decidable
quasi-equational theory, because both its valid quasi-identities and its finite models
may be enumerated mechanically. In this case, moreover, every finitely axiomatized
subquasivariety of K has a decidable quasi-equational theory, because local finiteness
is obviously a hereditary property. In this respect local finiteness is strictly stronger
than the finite embeddability property (FEP), which has been exploited for similar
purposes in [12, 13, 42]. The FEP asks only that every finite subset of an algebra
in K can be extended to a finite algebra in K in such a way that partial operations
are preserved. It is not a hereditary property.

The following well-known result is a standard tool for proving local finiteness in
varieties that are not finitely generated. We shall need to rely on it, so we recall
the proof for the sake of completeness.

Theorem 1. Let V be a variety of finite type. Suppose there exists a fixed integer-
valued function f such that, for each nonnegative integer n, it is the case that every
n-generated subdirectly irreducible algebra in V has at most f(n) elements. Then
V is locally finite.

Proof. For each positive integer m, there are only finitely many distinct isomor-
phism classes of m-element subdirectly irreducible algebras in V, because the type
of V is finite. Let S(m) be a transversal of these isomorphism classes, i.e., S(m)
consists of just one m-element subdirectly irreducible algebra from each isomor-
phism class. So S(m) is a finite set. Now let A ∈ V be an algebra that is generated
by an n-element subset X of A. Every homomorphic image of A is n-generated, so,
by assumption, every subdirectly irreducible homomorphic image of A has at most
f(n) elements. Thus A may be represented as a subdirect product of algebras in
U(n) :=

⋃
m≤f(n) S(m), by Birkhoff’s subdirect decomposition theorem. But every

homomorphism with domain A is completely determined by its restriction to X,
and there are only finitely many distinct functions from X into algebras in the finite
set U(n). Therefore, we may represent A as an irredundant subdirect product of
algebras Ai ∈ U(n), i ∈ I, for some finite index set I. Since A embeds in

∏
i∈I Ai,

we have |A | ≤ |
∏

i∈I Ai | ≤
∏

i∈I f(n) = f(n)| I |, so A is a finite algebra. �

Of course the converse of this result is true as well, since every n-generated
algebra in a variety V is a homomorphic image of the free n-generated algebra in
V, which is unique up to isomorphism.

Suppose A is an algebra and O a subset of the signature of A. The O–reduct
of A is the algebra with the same universe as A whose basic operations are just
the interpretations in A of the operation symbols in O. The subalgebras of this
O–reduct are then called the O–subreducts of A. The class of all O–subreducts of
algebras in a fixed quasivariety Q is itself a quasivariety (see [28, p. 216]). Clearly,
this quasivariety is locally finite if Q is.

An algebra is called a lattice expansion if it has a reduct that is a lattice. Recall
that lattices are congruence distributive and that congruence distributivity is a
Mal’cev condition. It follows that every variety consisting of lattice expansions is
congruence distributive. We shall need to use ‘Jónsson’s Lemma’ and one of its
consequences. We recall the following statements.
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Theorem 2 (Jónsson [26], or see [14, Thm. IV.6.10]).
(i) If X is any subclass of a congruence distributive variety, then

(V(X))SI ⊆ HSPU(X), whence V(X) = IPSHSPU(X).

(ii) For any two subvarieties M and N of a congruence distributive variety,

(V(M ∪ N))SI = MSI ∪ NSI.

3. Basic properties of CRLs

The class of all CRLs was defined in the introduction, and it is a variety. When
only one CRL A is under discussion, its operations and identity will always be
denoted by ·,→,∧,∨ and e. If a ∈ A, we define

a0 := e and an+1 := an · a for all nonnegative integers n.

In any CRL, the term function x → y is order preserving in its second argument
and order reversing in its first, as a consequence of the definition of residuation.
For typographical reasons, we shall frequently employ the following abbreviation in
the context of CRLs:

Definition 1. |x | := x → x.

In the sequel, formal inequations α ≤ β will often be referred to as ‘identities’,
because they can be taken to abbreviate equations α ≈ α ∧ β. We list some
well-known identities and quasi-identities that hold in all CRLs.

(1) x ≈ e → x ≈ |x | → x ≈ x · |x |
(2) e ≤ |x | ≈ ||x ||
(3) e ≤ x ⇐⇒ |x | ≤ x
(4) x ≤ y ⇐⇒ e ≤ x → y ⇐⇒ |x → y | ≤ x → y
(5) x → (y → z) ≈ (y · x) → z, in particular:
(6) x → (x → y) ≈ x2 → y and x → |x | ≈ x2 → x
(7) x → (y → z) ≈ y → (x → z)
(8) x ≤ (x → y) → y
(9) ((x → y) → y) → y ≈ x → y

(10) |x | → y ≤ y
(11) (x ∨ y) · z ≈ (x · z) ∨ (y · z)

Because CRLs are lattice expansions, the variety of all CRLs is congruence distribu-
tive. It is also congruence permutable and has the congruence extension property
(see [1, 19]). Recall that a CRL is said to be integral if its identity e is its greatest
element, and square increasing if it satisfies x ≤ x2. It is square decreasing if it
satisfies x2 ≤ x. The subdirectly irreducible CRLs are characterized in the next
lemma, a proof of which can be found for instance in [10]. (Stronger results of this
kind will appear in [34].)

Lemma 3.
(i) A CRL A is subdirectly irreducible iff there exists an element b ∈ A such

that (I) b < e, and (II) whenever a ∈ A with a < e, then there is a positive
integer n for which an ≤ b. In particular :

(ii) A square increasing CRL A is subdirectly irreducible iff {x ∈ A : x < e}
has a greatest element.
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The variety of square increasing CRLs has equationally definable principal con-
gruences (EDPC) in the sense of [8]; this was pointed out in [1]. We shall not
discuss EDPC in detail here, since we shall rely only on the following two facts
about it. First, it follows immediately from the definition that EDPC persists in
subvarieties. Secondly, the following finite basis theorem for varieties with EDPC
was proved by Blok and Pigozzi.

Theorem 4 ([8]). In a finitely axiomatized variety with EDPC, any subclass axiom-
atized by a finite number of positive universal sentences generates a finitely axiom-
atized subvariety.

Representable CRLs were defined in the introduction, and they are obviously
always distributive. Every representable CRL is in fact a subdirect product of linear
CRLs, because the class of linear CRLs is obviously closed under subalgebras.

A finite equational basis for the variety of all CRLs can be found in [24]. It
is observed in [24] that the representable CRLs also form a variety. The proof
amounts to showing that this class coincides with the variety V generated by all
linear CRLs. Furthermore, it is shown in [24] that the variety of representable
CRLs is axiomatized, relative to the variety of all CRLs, by the identity 1

(12) e ≤ (x → y) ∨ (y → x).

Definition 2. We denote by RICRL the class of all representable idempotent CRLs,
or briefly, all RICRLs.

By the preceding remarks, RICRL is also a finitely axiomatized variety.

Definition 3. A unary operation ¬ on a CRL A = 〈A; ·,→,∧,∨, e〉 is called an
involution if for all a, b ∈ A,

¬¬a = a and a → ¬b = b → ¬a.

In this case the {¬}–expansion A¬ = 〈A; ·,→,∧,∨,¬, e〉 of A is called an involutive
CRL. We also call A the CRL–reduct or the {¬}–free reduct of A¬.

Every involutive CRL satisfies

¬x ≈ x → ¬e.

Thus, an involutive CRL A¬ and its {¬}–free reduct A have the same congruences.
So A¬ is subdirectly irreducible iff A is. Note that if we define f : = ¬e, then
involutive CRLs satisfy

(13) (x → f) → f ≈ x.

Up to term equivalence, the involutive CRLs may be characterized as the expansions
of CRLs A by a distinguished element f ∈ A satisfying (13). For in any such
expansion, if we define ¬x := x → f , then the algebra satisfies

x → ¬y = x → (y → f) = y → (x → f) = y → ¬x,

as a consequence of (7).
Every involutive CRL satisfies

x · y ≈ ¬(x → ¬y) and x → y ≈ ¬(x ·¬y),

1In [24], another identity, e ∧ (x ∨ y) ≈ (e ∧ x) ∨ (e ∧ y), is included in the axiomatization.
But this axiom can be shown to hold in all CRLs that satisfy (12).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4410 J. G. RAFTERY

as well as de Morgan’s laws for ¬,∧,∨. The operation ¬ is therefore a lattice
anti-isomorphism between the lattice reduct of an involutive CRL and its dual.

An involutive CRL is said to be idempotent, distributive or linear (respectively)
if its CRL–reduct has the indicated property. It is said to be representable if it is
a subdirect product of linear involutive CRLs or, equivalently, if its CRL–reduct is
representable.

The MV–algebras of Chang [15] are examples of representable integral (hence
square decreasing) involutive CRLs that need not be idempotent. Up to term
equivalence, the involution-free subreducts of MV-algebras are just the Wajsberg
hoops of [7]. The varieties of MV-algebras and of Wajsberg hoops are not locally
finite, but it follows from the theory in [7] that every locally finite variety of MV-
algebras or of Wajsberg hoops is finitely generated.

4. Brouwerian lattices and relative Stone algebras

The class of relative Stone algebras and the class of positive Sugihara monoids
are two well-understood locally finite varieties of RICRLs that are not finitely gen-
erated. These two varieties are incomparable in their extent. Eventually we shall
obtain a constructive characterization of all subdirectly irreducible RICRLs (The-
orem 20), and it will be helpful to view this as a simultaneous generalization of
simpler structure theorems for these subvarieties. Therefore, in this section and
the next, we recall descriptions of the subdirectly irreducible algebras in the sub-
varieties.

Definition 4. An integral idempotent CRL is called a Brouwerian lattice. A
representable Brouwerian lattice is called a relative Stone algebra. The class of all
relative Stone algebras is denoted by RSA.

Recall from the introduction that every integral CRL is square decreasing; hence
every integral square increasing CRL is idempotent and therefore a Brouwerian
lattice. Note that RSA is just the class of all integral members of RICRL.

Brouwerian lattices are in fact just the {⊥}–free subreducts of Heyting alge-
bras. In these algebras the operations · and ∧ coincide, and → is relative pseudo-
complementation. Since · distributes over ∨ in every CRL, it follows that Brouw-
erian lattices are distributive, although they need not be representable. Clearly,
the variety RSA is axiomatized, relative to Brouwerian lattices, by the identity
(x → y) ∨ (y → x) ≈ e. It is well known that the variety of all Brouwerian lattices
is not locally finite (see the remarks after Corollary 19).

Example 1. Every chain 〈A;∧,∨〉 with a top element e becomes a Brouwerian
lattice—in fact a relative Stone algebra 〈A;∧,→,∧,∨, e〉 with the same lattice order
≤ if we define, for a, b ∈ A, that a → b = e whenever a ≤ b, and a → b = b otherwise.
By Lemma 3(ii), this algebra is subdirectly irreducible iff e has a subcover, i.e., iff
〈A;∧,∨〉 has a co-atom.

Conversely, since · and ∧ must coincide in Brouwerian lattices, and since every
subdirectly irreducible representable CRL is linear, every subdirectly irreducible
algebra in RSA arises from a chain with a co-atom in the manner described above.

It follows in particular that an n-generated subdirectly irreducible relative Stone
algebra has at most n+1 elements—the generators and e. Since this bound depends
only on the number of generators, we infer from Theorem 1 that the variety RSA
is locally finite.
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5. Sugihara monoids and their subreducts

Definition 5. An idempotent distributive involutive CRL is called a Sugihara
monoid. The class of all Sugihara monoids will be denoted by SM. 2

Evidently SM is a variety and we shall see presently that it consists of repre-
sentable algebras. The following four examples of linear Sugihara monoids turn out
to be canonical.

Example 2. Let Z denote the set of all integers and ≤ the conventional total order
of Z. Consider also the nonstandard total order � of Z defined by

. . . ≺ −3 ≺ 3 ≺ −2 ≺ 2 ≺ −1 ≺ 1 ≺ 0 ,

i.e., numbers are ordered by descending absolute value, but two numbers with the
same absolute value are put in the conventional order. Let · denote the binary
minimum operation on Z with respect to �, so · is associative, commutative and
idempotent, with identity 0. It is easy to see that 〈Z; ·,∧,∨, 0〉 is a lattice-ordered
monoid, where ∧ and ∨ are the conventional minimum and maximum operations.
We can characterize · without reference to � as follows:

x · y =

⎧⎨
⎩

x ∧ y if |x | = | y |,
y if |x | < | y |,
x if | y | < |x |.

Also, 〈Z; ·,∧,∨, 0〉 is residuated. Its residual operation → can be characterized by

(14) x → y =
{

(−x) ∨ y if x ≤ y,
(−x) ∧ y if x �≤ y,

where −x denotes the usual additive inverse of x. Now Z¬ = 〈Z; ·,→,∧,∨,−, 0〉
is a Sugihara monoid. Observe that in Z¬, the term function of x → x is the
conventional absolute value function, so the notation |x | from Definition 1 is not
ambiguous.

Example 3. The subset Z \ {0} of Z is closed under all operations of Z¬ except
for the nullary operation 0, and in fact

Z¬ \ {0} = 〈Z \ {0}; ·,→,∧,∨,−, 1〉
is a Sugihara monoid. Note that 1 is the identity element of this algebra.

Example 4. For each nonnegative integer m, the set

Z2m+1 = {−m, −m + 1, . . . , −1, 0, 1, . . . , m − 1, m}
is the universe of a subalgebra Z¬

2m+1 of Z¬, so Z¬
2m+1 is also a Sugihara monoid.

Example 5. For each positive integer m, the set

Z2m = {−m, −m + 1, . . . , −1, 1, . . . , m − 1, m}
is the universe of a subalgebra Z¬

2m of Z¬ \ {0}, so Z¬
2m is a Sugihara monoid.

By Lemma 3(ii), all the algebras defined in Examples 2–5 are subdirectly irre-
ducible, except for the trivial Z¬

1 . The following partial converse of this statement
is due to Dunn. It was inspired by an earlier result of Meyer [29].

2The ‘Sugihara algebras’ studied for instance in [17, 2, 6, 11] may be characterized as the
{e}–free subreducts of Sugihara monoids, but these algebras shall not concern us here. The name
comes from [40].
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Theorem 5 ([2, pp. 422-423]; see [17] also).
(i) Sugihara monoids are representable.
(ii) Up to isomorphism, the finite subdirectly irreducible Sugihara monoids are

just the algebras Z¬
n , n > 1.

More exactly, Dunn proved in [2] that any subdirectly irreducible Sugihara
monoid is linear and satisfies (14). Taking into account that · is definable in terms
of ¬ and →, we can deduce that every n-generated subdirectly irreducible Sugihara
monoid has at most 2n + 2 elements—the generators and their involutive images,
e and ¬e. So by Theorem 1, the variety of Sugihara monoids is locally finite.

Definition 6. A CRL is called a positive Sugihara monoid, or a PSM if it can be
embedded into (the CRL–reduct of) some Sugihara monoid. The class of all such
algebras will be denoted by PSM.

In other words, PSMs are just the {·,→,∧,∨, e}–subreducts of Sugihara monoids.
In [35] it is proved that the class PSM is a variety. It is locally finite, since SM is
locally finite. In Section 9 we shall establish an equational basis for PSM (Theo-
rem 23).

Definition 7. The CRL–reduct 〈Z; ·,→,∧,∨, 0〉 of the Sugihara monoid Z¬ (see
Example 2) will be denoted by Z. Similarly, Z \ {0} and Zn shall denote the
CRL–reducts of Z¬ \ {0} and of Z¬

n , n > 0, respectively.

The next result is a consequence of Theorem 5 and local finiteness. Again, a
proof can be found in [35].

Corollary 6. Up to isomorphism, the finite subdirectly irreducible positive Sugihara
monoids are just the algebras Zn, n > 1.

Note in particular that positive Sugihara monoids are also representable, i.e.,
PSM ⊆ RICRL.

The subvarieties RSA and PSM of RICRL are incomparable in their extent, since
Z3 ∈ PSM is not integral, while the linear relative Stone algebra constructed from
a three-element chain as in Example 1 is subdirectly irreducible but it is not among
the algebras Zn, n > 1. In fact, RSA∩PSM is just the variety of (dual) generalized
Boolean algebras of [5], which is generated by Z2. Galatos [21] has shown that Z2

and Z3 generate the only two minimal varieties of idempotent CRLs.
We have seen that every subdirectly irreducible n-generated algebra in RSA or

in PSM has at most 2n + 2 elements. So, if the varietal join of RSA and PSM
were equal to RICRL, then RICRL would be locally finite, in view of the congruence
distributivity of CRLs and Theorems 2(ii) and 1. The next example shows, however,
that RICRL is strictly more inclusive than this join.

Example 6. Let E = {– 3, 0, 1, 2, 3} and note that E is a subuniverse of the
{·,∧,∨, e}–reduct of Z (where e = 0). If a, b ∈ E, then a · – 3 ≤ 3 · – 3 = – 3 ≤ b, so
there is always a greatest c ∈ E such that a · c ≤ b. The lattice-ordered commutative
monoid 〈E; ·,∧,∨, 0〉 is therefore residuated. Let → denote its residuation opera-
tion, which differs from that of Z, e.g., we now have 2 → 1 = – 3 �= (−2) ∧ 1. Then
E = 〈E; ·,→,∧,∨, 0〉 ∈ RICRL and E is subdirectly irreducible, by Lemma 3(ii).

Let V denote the join HSP(RSA ∪ PSM) of the varieties RSA and PSM. Since V
is congruence distributive, Theorem 2(ii) gives

VSI = RSASI ∪ PSMSI.
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Obviously, E /∈ RSASI, as E is not integral. Also |E | = 5 but E �∼= Z5, since the
identity is an atom of E but not of Z5. By Corollary 6, Z5 is the only 5-element
subdirectly irreducible PSM (up to isomorphism), so E /∈ PSMSI. This shows that
E /∈ VSI. Because E is subdirectly irreducible, it follows that E /∈ V. Thus, V is a
proper subvariety of RICRL.

Nevertheless, we shall proceed to prove that RICRL is locally finite. Our strat-
egy will be to show first that every subdirectly irreducible RICRL A satisfies
∀x ∀y ( x · y ≈ x or x · y ≈ y ). Thus any n–element subset of A is closed under
·. It is also closed under ∧ and ∨ because it is totally ordered. We shall then show
that by adding at most 2n + 1 additional elements, we get a subset closed under
→ as well. Thus we shall conclude that every subdirectly irreducible n–generated
RICRL has at most 3n + 1 elements. Again, because this finite bound depends on
n alone (and not on the choice of A), Theorem 1 will allow us to infer that RICRL
is locally finite. The next two sections contain the necessary preparations for this
strategy.

6. Square-tonic CRLs

Recall that a CRL is said to be square decreasing if it satisfies x2 ≤ x. We shall
frequently abbreviate x · y as xy.

Proposition 7. Let A be a square decreasing CRL and let x, y ∈ A.

(i) x ≤ |x | whence:
(ii) e ≤ x iff |x | = x.
(iii) xy ≤ x ∨ y, whence:
(iv) if e ≤ x ≤ y, then xy = y.
(v) x ≤ |x → e |.
(vi) |x | (|x | → e) = |x | → e.

Proof. From the square decreasing law xx ≤ x and the definition of residuation,
we infer x ≤ x → x ( = |x |), proving (i). Then (ii) follows from (i) and property
(3) of Section 3. For (iii), recall that · is order preserving in both arguments, so
xy ≤ (x ∨ y) (x ∨ y) ≤ x ∨ y (by the square decreasing law). Thus, in (iv), if
e ≤ x ≤ y, we have xy ≤ x ∨ y = y = ey ≤ xy, so xy = y.

(v) Every CRL satisfies x (x → e) ≤ e, by definition of residuation. This together
with associativity, commutativity and the square decreasing law gives

x ((x → e) x) = x2 (x → e) ≤ x (x → e) ≤ e.

Then by the definition of residuation, (x → e) x ≤ x → e. By residuation again,
x ≤ (x → e) → (x → e) = |x → e |.

(vi) Substituting |x | for x in (v), we get |x | ≤ (|x | → e) → (|x | → e).
Then by residuation and commutativity, |x | (|x | → e) ≤ |x | → e. For the reverse
inequality, we recall that e ≤ |x |, so

|x | → e = e (|x | → e) ≤ |x | (|x | → e),

as required. �

We now consider properties of square increasing CRLs, i.e., CRLs that satisfy
x ≤ x2.
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Proposition 8. Let A be a square increasing CRL and let x, y ∈ A.

(i) x ∧ y ≤ xy.
(ii) If x ≤ y ≤ e , then | y | ≤ |x | and xy = x.
(iii) If x ≤ e , then ||x | → e | ≤ |x |.
(iv) If A is linear and x, y ≤ e and |x | < | y | , then xy = y.

Proof. For (i), we use the square increasing law and the isotonicity of · in both
arguments to compute that x ∧ y ≤ (x ∧ y) (x ∧ y) ≤ xy.

(ii) Let x ≤ y ≤ e. Since e ≤ |x |, we have y ≤ |x |. By monotonicity properties
of → and (6),

y → y ≤ x → y ≤ x → |x | = x2 → x ≤ x → x

(where the last inequality relies on the square increasing law), i.e., | y | ≤ |x |. Also,
using (i), we compute that x = x ∧ y ≤ xy ≤ xe = x, so xy = x.

(iii) Let x ≤ e and define z : = |x | → e. We must show that | z | ≤ |x |.
Now |x |x = x (by (1) and commutativity), so |x |x ≤ e. By residuation,
x ≤ |x | → e, i.e., x ≤ z. Also, |x | → e ≤ e , by (10), so x ≤ z ≤ e. Then by
(ii), | z | ≤ |x |.

(iv) Let A be linear and assume that x, y ≤ e and |x | < | y |. By (ii), x �≤ y.
By linearity, therefore, y < x ≤ e. Then by (ii), xy = y. �
Corollary 9. Let A be a square increasing CRL and let e ≤ z ∈ A. Then {x ∈
A : x < e and |x | = z} is an interval of 〈A;≤〉.
Proof. Suppose x ≤ w ≤ y < e, with |x | = | y | = z. By Proposition 8(ii), we have
z = | y | ≤ |w | ≤ |x | = z, so |w | = z, as required. �

7. Idempotence

We derive some properties of idempotent CRLs, i.e., ones satisfying x2 ≈ x.

Proposition 10. Let A be an idempotent CRL and let x, y ∈ A.

(i) x → |x | = |x |.
(ii) If x ≤ y , then x ≤ xy ≤ y.
(iii) If y ≤ x and |x | ≤ | y | , then xy = y.
(iv) If |x | = | y | , then xy = x ∧ y.
(v) If x ≤ e , then ||x | → e | = |x |.

Proof. (i) By (6) and idempotence, x → |x | = x2 → x = x → x = |x |.
(ii) If x ≤ y , then, by Propositions 7(iii) and 8(i), x = x∧y ≤ xy ≤ x∨y = y.
(iii) Let y ≤ x and |x | ≤ | y |. By (ii), y ≤ yx. Also, by Proposition 7(i),

x ≤ |x | ≤ | y | = y → y, so yx ≤ y, by residuation. Therefore, yx = y, i.e.,
xy = y (by commutativity).

(iv) By Proposition 8(i), x ∧ y ≤ xy. By Proposition 7(i), z ≤ | z | for all
z ∈ A. So xy ≤ x | y | = x |x | = x, by (1). In view of commutativity, it follows
similarly that xy ≤ y. So xy ≤ x ∧ y; therefore xy = x ∧ y.

(v) follows from Propositions 7(v) (substitute |x | for x) and 8(iii). �
Every subdirectly irreducible RICRL is linear, so from this point onward, we

shall focus on properties of linear idempotent CRLs.

Proposition 11. Let A be a linear idempotent CRL and let x, y ∈ A. If x ≤ e ≤
y and |x | < | y | , then xy = y.
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Proof. Assume that x ≤ e ≤ y and |x | < | y |, so | y | = y, by Proposition 7(ii).
By Proposition 10(ii), xy ≤ y. We claim that xy �≤ e. Suppose, on the contrary,
that xy ≤ e. Then xy ≤ |x |, because e ≤ |x |. By residuation, y ≤ x → |x |.
By Proposition 10(i), x → |x | = |x | < | y | = y, so y < y, a contradiction.
Therefore, xy �≤ e, whence e < xy (by linearity). Now, by the isotonicity, asso-
ciativity and idempotence of ·,

y = ey ≤ (xy) y = xy2 = xy,

so xy = y. �
Theorem 12. Let A be an idempotent linear CRL and let x, y ∈ A.

(i) If |x | = | y | , then xy = x ∧ y ∈ {x, y}.
(ii) If |x | < | y | , then xy = y. Consequently :
(iii) A satisfies ∀x ∀y ( xy ≈ x or xy ≈ y ).

Proof. (i) follows from Proposition 10(iv), by linearity.
(ii) By Proposition 10(iii), we may assume without loss of generality that y �≤ x,

so let x < y. Now the result follows from Propositions 7(iv), 8(iv) and 11. Clearly,
(iii) follows from (i) and (ii). �

This accomplishes the first task in the strategy laid out at the end of Section 5
for proving local finiteness of RICRL. We begin the second task, which is to show
that any n–element subset of an idempotent linear CRL can be extended to a
(3n + 1)–element subalgebra. Theorem 12 and linearity show that we need only
concern ourselves with closure under →.

Proposition 13. Let A be an idempotent linear CRL and let x ∈ A. If x ≤ e,
then (|x| → e) → e = |x|.

Proof. Define y : = |x | → e, so y ≤ e, by (10). We must show that y → e = |x |.
By Propositions 10(v) and 7(vi), | y | = |x | and |x | y = y so, by commutativity,
y |x | = y ≤ e.

To establish that y → e = |x |, it is enough, by the definition of residuation,
to show that whenever z ∈ A with z �≤ |x | , then yz �≤ e. Suppose z is as
just described. By linearity, |x | < z, so e < z, whence z = | z | (see (2) and
Proposition 7(ii)). Now | y | = |x | < z = | z |, so by Theorem 12(ii), yz = z.
But e < z so yz �≤ e, as required. Thus, |x | = y → e. �

We may now characterize residuation in idempotent linear CRLs in a simple
manner. The next result should be compared with the characterization of → in the
Sugihara monoid Z¬, given in (14).

Theorem 14. Let A be an idempotent linear CRL and let x, y ∈ A.

(i) If x ≤ y , then x → y = |x | ∨ y.
(ii) If x > y , then x → y = (x → e) ∧ y.

Proof. (i) Let x ≤ y. Then xy ≤ y, by idempotence. By (11) and (1),

x (|x | ∨ y) = x |x | ∨ xy = x ∨ xy ≤ y.

If z ∈ A and z �≤ |x | ∨ y , then |x | ∨ y < z (by linearity) so y < z and
e ≤ |x | < z, whence | z | = z. Thus, |x | < | z |. Then by Theorem 12(ii),
xz = z �≤ y. This shows that |x | ∨ y is the largest z ∈ A such that xz ≤ y, i.e.,
|x | ∨ y = x → y.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4416 J. G. RAFTERY

(ii) Let x > y. Since A is linear and · preserves order,

x ((x → e) ∧ y) = x (x → e) ∧ xy.

First we shall show that x (x → e) ∧ xy ≤ y. Suppose this is not the case. Then
by linearity, x (x → e) ∧ xy > y, so

(15) x (x → e) > y and xy > y.

From xy > y and Theorem 12, we infer that xy = x and that | y | < |x |. It
follows that we cannot have y < x ≤ e (see Proposition 8(ii)), so e < x, whence
x = |x |. Because xy = x �≤ e, the definition of residuation gives y �≤ x → e, so
x → e < y < x. We also have y < x (x → e) ≤ e (from (15)), so y < e.

We cannot have x < |x → e |, because Theorem 12(ii) would then yield
x (x → e) = x → e < y, a contradiction. So |x → e | ≤ x. By Proposition 7(v),
x = |x → e |. Now by Theorem 12(i), x (x → e) = x ∧ (x → e) = x → e < y, a
contradiction. This shows that x ((x → e) ∧ y) ≤ y.

Now suppose z ∈ A with xz ≤ y. If we can show that z ≤ (x → e) ∧ y, it will
follow that (x → e) ∧ y = x → y, by definition of residuation. We proceed to do
this.

Since xz ≤ y, we have xz �= x, so xz = z, by Theorem 12(iii), so z ≤ y.
It remains only to show that z ≤ x → e, i.e., that xz ≤ e, i.e., that z ≤ e.
Suppose, on the contrary, that z �≤ e. By linearity, e < z. Then e < x, because
z ≤ y < x. So | z | = z and |x | = x. In particular, | z | < |x |, so by
Theorem 12(ii), xz = x, a contradiction. Thus, z ≤ x → e, which completes the
proof of (ii). �

Definition 8. We define unary terms α(x) := |x | and β(x) := x → e.

Note that all CRLs satisfy αα(x) ≈ α(x) and βββ(x) ≈ β(x), by (1) and (9).
Theorem 14 simplifies our task in the following way:

Corollary 15. Let W be a subset of an idempotent linear CRL A. If e ∈ W and
W is closed under α and β, then W is a subuniverse of A.

Proof. This follows from linearity and Theorems 12(iii) and 14. �

When employing this corollary, we will need to consider terms such as αβ(x)
and βα(x). The next result will help us to deal with these.

Corollary 16. Let A be an idempotent linear CRL and let e ≤ y ∈ A. Then:
(i) (y → e) → e = | y → e | ;
(ii) | y → e | → e = y → e .

Proof. We have y → e ≤ e → e = e. Now:
(i) (y → e) → e = | y → e | ∨ e (by Theorem 14(i)) = | y → e |, so:
(ii) | y → e | → e = ((y → e) → e) → e = y → e (by (9)). �

8. The main results

In an algebra A, the subalgebra generated by a subset X of A will be denoted
by SgA(X).

Theorem 17. Let A be an n–generated subdirectly irreducible RICRL, where n is
finite. Then |A | ≤ 3n + 1.
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xi

|xi | → e

yj → e

e

yj

| yj → e |

|xi |

Figure 1. Example of W in the 2-generated case where X =
{xi, yj} and yj < |xi |

Proof. Clearly A is an idempotent linear CRL. Let X ⊆ A with |X | ≤ n, such
that SgA(X) = A. Without loss of generality, assume that e /∈ X. Let

X = {x0, . . . , xm−1} ∪ {y0, . . . , yr−1},
where xi < e < yj for all i < m and all j < r, so m + r ≤ n. Define

W := {e} ∪ X ∪ {|xi | : i < m} ∪ {|xi | → e : i < m}
∪ {yj → e : j < r} ∪ {| yj → e | : j < r}.

Then |W | ≤ 1+n+2m+2r ≤ 3n+1. (See Figure 1.) Now W is closed under
α and β (see Definition 8), because α is idempotent over A and | e | = e → e = e
and

xi → e = |xi | ∨ e = |xi | (Theorem 14(i))
| yj | = yj (Proposition 7(ii))
||xi | → e | = |xi | (Proposition 10(v))
(|xi | → e) → e = |xi | (Proposition 13)
(yj → e) → e = | yj → e | (Corollary 16(i))
| yj → e | → e = yj → e (Corollary 16(ii)).

Since {e} ∪ X ⊆ W , it follows from Corollary 15 that

W = SgA(W ) ⊇ SgA(X) = A,

so A = W , whence |A | ≤ 3n + 1. �
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As the next example shows, the bound in Theorem 17 is attained when n = 1,
so we cannot replace ≤ by < in its statement.

Example 7. Recall the algebra E of Example 6. The subalgebra C of E with
universe C = {– 3, 0, 2, 3} is generated by {2}. It is an idempotent linear CRL
that is subdirectly irreducible, by Lemma 3(ii), so it is a 1–generated member of
RICRLSI, and |C | = 4 = 3 · 1 + 1.

From Theorems 1 and 17, we conclude:

Theorem 18. The variety RICRL is locally finite.

Corollary 19. Every finitely axiomatized subquasivariety of RICRL has a decidable
quasi-equational theory.

It seems that within the context of CRLs, we cannot generalize Theorem 18
by relaxing its hypotheses in any natural way. In particular, ‘representable’ can-
not be weakened to ‘distributive’, as the idempotent distributive CRLs include all
Brouwerian lattices and this subvariety is not locally finite. Indeed, Rieger [38] and
Nishimura [33] showed independently that the free 1–generated Heyting algebra is
infinite. Its {⊥}–free reduct is therefore an infinite 2–generated Brouwerian lattice.
See [5, Ch. IX] for the details. Also, we cannot weaken ‘idempotent’ to ‘square
decreasing’ nor to ‘square increasing’. To see this, note that the infinite naturally
ordered additive monoid of nonpositive integers is square decreasing, residuated,
representable and generated as a CRL by {−1}, while the infinite conventionally
ordered multiplicative monoid on {0} ∪ {2n : n ∈ ω} ∪ {∞}, with 0 ·∞ = ∞ · 0 = 0
and x ·∞ = ∞ · x = ∞ for x �= 0, is square increasing, residuated, representable
and generated as a CRL by {2}. Finally, we cannot weaken ‘idempotent’ to ‘satis-
fying x2 ≈ x3’, as there are infinite representable integral CRLs with this property
that are finitely generated; this follows from an argument of Dyrda [18] concerning
BCK–algebras.

The following constructive characterization of RICRLSI is implicit in the above.
It will allow us to view any algebra in this class as, roughly speaking, an amalgam
of a Sugihara monoid and a family of relative Stone algebras.

Theorem 20. Let A = 〈A; ·,→,∧,∨, e〉 be an algebra of type 〈2, 2, 2, 2, 0〉 whose
{∧,∨}–reduct is a totally ordered lattice 〈A;≤〉. The following conditions are equiv-
alent :

(I) A is a subdirectly irreducible idempotent linear CRL, i.e., A ∈ RICRLSI ;
(II) There exists a chain 〈Y ;≤Y 〉 with least element e and, for each y ∈ Y,

there exists a (possibly empty) chain 〈Ay;≤y〉 such that Y, Ay, Az (y �= z ∈ Y ) are
mutually disjoint and

(i) A = Y ∪
(⋃

y∈Y Ay

)
and ≤ extends ≤Y ∪

(⋃
y∈Y ≤y

)
;

(ii) if y, z, w ∈ Y and y <Y z and ay ∈ Ay and az ∈ Az, then az < ay < w ;
(iii) if y ∈ Y and Ay �= ∅, then Ay has a greatest element, denoted by y′;
(iv) if y ∈ Y and Ay = ∅, then {z ∈ Y : y < z and Az �= ∅} has a least

element, denoted by ↑ y ;
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�
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�

� z = ↑ y = z∗ = z′ ∗ = −(z′) = | z′ |

y = y∗ (with Ay = ∅)

w = w∗ = w′ ∗ = −(w′) = |w′ |

e = e∗ = −(e′) = e′ ∗ = | e′ |

e′ = −e

w′ = −w

z′ = −z = −y

Ae

Aw

Az

Figure 2. Example of A ∈ RICRLSI illustrating Theorem 20, with
Ae �= ∅

and if we define unary functions ∗ and − on A by

{
y∗ = y if y ∈ Y
a∗

y = y if y ∈ Y, ay ∈ Ay

⎧⎪⎪⎨
⎪⎪⎩

−e = e if Ae = ∅
−x = (↑ x)′ if e �= x ∈ Y, Ax = ∅
−x = x′ if x ∈ Y, Ax �= ∅
−x = x∗ if x /∈ Y ,

then for any u, v ∈ A,

(v) u · v =

⎧⎨
⎩

u ∧ v if u∗ = v∗,
v if u∗ < v∗,
u if v∗ < u∗,

(vi) u → v =
{

u∗ ∨ v if u ≤ v,
(−u) ∧ v if u > v .

(Condition (II) ends here.)

In this case, we must have u∗ = u → u and −u = u → −e for all u ∈ A, and if
Ae �= ∅, then −e is the subcover of e.

Proof. (I) ⇒ (II). Assume (I) and define

Y = {a ∈ A : e ≤ a}.
Let ≤Y be the restriction of ≤ to Y . For each y ∈ Y , define

Ay := {c ∈ A : c < e and | c | = y}
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and let ≤y be the restriction of ≤ to Ay. By (2) and Proposition 7(ii), A is the
disjoint union of Y and the sets Ay, so (i) holds. By Corollary 9, each Ay is an
interval of 〈A;≤〉, and (ii) follows from Proposition 8(ii).

Since A is subdirectly irreducible and square increasing, e has a subcover in
〈A;≤〉, by Lemma 3(ii). Let b denote this subcover of e.

To verify (iii), consider any y ∈ Y . Suppose Ay �= ∅, so y = |x | for some x < e,
i.e., for some x ∈ Ay.

Consider first the case y = e. We claim that b belongs to Ae, in which case b is
obviously the greatest element of Ae. Certainly, b < e. Since x < e, we have x ≤ b,
so, by Proposition 8(ii), | b | ≤ |x | = e, because x ∈ Ae. It follows that | b | = e,
i.e., b ∈ Ae, as required.

Now consider the case where y �= e, i.e., e < y. In this case e �≤ y → e, by (4), so
y → e < e, by linearity. Also, | y → e | = y, by Proposition 10(v), so y → e ∈ Ay.
To see that y → e is the greatest element of Ay, suppose c ∈ Ay. Then c < e < y
and | c | = y = | y |. By Theorem 12(i), yc = y ∧ c = c; hence yc < e, so c ≤ y → e,
as required. This completes the proof of (iii).

To prove (iv), suppose Ay = ∅.
Again we consider first the case y = e. Since Ae = ∅, we have | b | /∈ Ae, i.e.,

| b | > e. Also A| b | �= ∅, because b ∈ A| b |. We claim that

| b | = min≤ {z ∈ Y : e < z and Az �= ∅}.

To see this, suppose | b | > c > e. If w ∈ Ac, then w < e, so w ≤ b. Then by
Proposition 8(ii), | b | ≤ |w | = c, a contradiction. Thus, Ac = ∅, which vindicates
the previous claim.

Now consider the case y �= e, i.e., y > e. As in the proof of (iii), it follows
from linearity that y → e < e. We have | y → e | ∈ Y and y → e ∈ A| y→e | and
y ≤ | y → e | (Proposition 7(v)). We cannot have y = | y → e |, because this would
yield the contradiction y → e ∈ Ay = ∅. Therefore, y < | y → e |. We claim that

| y → e | = min≤ {z ∈ Y : y < z and Az �= ∅}.

To see this, let y < z < | y → e | and suppose that Az �= ∅, say w ∈ Az. Then w < e
and |w | = z > y = | y |, so yw = w < e, by Theorem 12(ii). Now w ≤ y → e < e,
so | y → e | ≤ |w |, by Proposition 8(ii), i.e., | y → e | ≤ z, a contradiction. Thus
Az = ∅ and the claim is true.

This completes the proof of (iv). The remaining claims follow from Theorems 12
and 14.

(II) ⇒ (I). Assume (II). Let � be the total order of A such that

if u, v ∈ A and u∗ < v∗, then v ≺ u ;
if u, v ∈ A and u∗ = v∗, then [ u � v iff u ≤ v ] .

Then · is the minimum operation of 〈A;�〉, by (v), so · is associative, commutative
and idempotent on A, and e is the identity for ·. It follows from (v) that · is
order preserving in both coordinates with respect to ≤, so 〈A; ·,∧,∨, e〉 is a (linear)
lattice-ordered monoid. If Ae �= ∅, then, by (iii), e has a subcover, viz. e′. If
Ae = ∅, then (↑ e)′ is a subcover of e. It follows from (v), (vi) and the definitions
that 〈A; ·,≤〉 is residuated by →, so A is an idempotent linear CRL, which is
subdirectly irreducible, by Lemma 3(ii). �
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Note that the subdirectly irreducible relative Stone algebras are exactly the
algebras A as in Theorem 20 that have Y = {e} and A = Ae ∪ {e}. In a subdirectly
irreducible positive Sugihara monoid A, we have |Ay | = 1 for all y ∈ Y , except that
Ae may be empty. These observations have the following approximate ‘converse’:

Theorem 21. Let A be a subdirectly irreducible idempotent linear CRL. Let Y =
{y ∈ A : e ≤ y} and for each y ∈ Y, let Ay = {c ∈ A : c < e and | c | = y}. Let −
be defined as in Theorem 20.

(i) For each y ∈ Y, the set Ay ∪ {y} is a subuniverse of the {e}–free reduct of
A, and A(y) := 〈Ay ∪ {y}; ·,→,∧,∨, y〉 is a relative Stone algebra.

(ii) ASug : = {e,−e} ∪
⋃
{{y,−y} : y ∈ Y and |Ay | = 1} is a subuniverse

of A which is closed under −, and ASug : = 〈ASug; ·,→,∧,∨,−, e〉 is a
Sugihara monoid. Consequently :

(iii) If |Ay | ≤ 1 for all y ∈ Y, and Ay �= ∅ for all y �= e, then A is a positive
Sugihara monoid and the {−}–expansion of A is a Sugihara monoid.

Proof. It follows easily from Theorem 20(v),(vi) that Ay ∪{y} and ASug are closed
under the operations in question, and that y is an identity for · on Ay ∪ {y}. Since
y dominates all elements of Ay, the algebra A(y) is an integral linear idempotent
CRL, i.e., a relative Stone algebra, proving (i). Theorem 20 also shows that −−a =
a and a → −e = −a for all a ∈ ASug. So, by the remarks following Definition 3
in Section 3, ASug is an involutive CRL, and since it is idempotent and linear, it
is a Sugihara monoid. Under the assumptions of (iii), we have A = ASug, so (iii)
follows from (ii). �

Thus every subdirectly irreducible algebra in RICRL may be viewed as a union of
relative Stone algebras A(y), y ∈ Y , indexed by the positive cone Y of a Sugihara
monoid ASug. Some of the relative Stone algebras A(y) may be trivial (with
universe {y}). The Sugihara monoid ASug may also be trivial, in which case A
itself is a relative Stone algebra, and in a PSM, each of the relative Stone algebras
is a generalized Boolean algebra on two elements, except that A(e) may be trivial.

9. Applications

Since the variety of positive Sugihara monoids, PSM, is strictly contained in
RICRL, it is of interest to distinguish these classes axiomatically. We shall axiom-
atize PSM equationally, using Theorem 21. We take advantage of the following
observation of Meyer and Parks [32].

Proposition 22 ([32]). Every Sugihara monoid satisfies

(16) [ (((x → y) → y) → x) → z ] · [ (((y → x) → x) → y) → z ] ≤ z.

Consequently, every positive Sugihara monoid satisfies this law. We prove that
within RICRL, the converse is also true.

Theorem 23. A representable idempotent CRL is a positive Sugihara monoid iff
it satisfies (16). 3

3Meyer and Parks’ results and arguments in [32] make Theorem 23 a natural conjecture, but
they do not show it to be true. See [11] for a discussion of this point and for axiomatizations of
other subreducts of Sugihara monoids.
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Proof. By Birkhoff’s subdirect decomposition theorem, it suffices to show that any
subdirectly irreducible algebra in RICRL that satisfies (16) belongs to PSM. Let
A ∈ RICRLSI, so A is a linear idempotent CRL, and assume that A satisfies (16).
Let Y = {a ∈ A : e ≤ a} and for each y ∈ Y, let

Ay = {c ∈ A : c < e and | c | = y}.

Let y ∈ Y . By Theorem 21(iii), it is enough to show that |Ay | ≤ 1 and that Ay �= ∅
unless y = e.

We show first that |Ay | ≤ 1. Suppose, on the contrary, that c, d ∈ Ay with
c �= d, say c < d. Then, in the notation of Theorem 20, we have

c < d ≤ y′ = −y < e and y = c∗ = d∗ = −c = −d = | c | = | d |.

By part (vi) of the same theorem,

c → d = c∗ ∨ d = y ∨ d = y,

y → d = (−y) ∧ d = d,

d → c = (−d) ∧ c = y ∧ c = c.

So if we define a = ((c → d) → d) → c and b = ((d → c) → c) → d, then

a = (y → d) → c = d → c = c and b = (c → c) → d = y → d = d.

Now (16) gives (a → d) · (b → d) ≤ d. But

(a → d) · (b → d) = (c → d) · (d → d) = y · y = y �≤ d.

This contradiction shows that |Ay | ≤ 1.
It remains only to show that Ay �= ∅, unless y = e. So let e < y and suppose

Ay = ∅. Then

e < y < ↑ y = (−y)∗ and − y = − ↑ y = (↑ y)′ < e,

since A ↑y �= ∅. Using Theorem 20(vi) again, we observe that

(−y) → e = (−y)∗ ∨ e = (↑ y) ∨ e = ↑ y.

Define a = ((e → y) → y) → e and b = ((y → e) → e) → y. Then

a = (y → y) → e = y → e = (−y) ∧ e = −y,

and
b = ((−y) → e) → y = (↑ y) → y = (− ↑ y) ∧ y = −y.

By (16), (a → e) · (b → e) ≤ e. But

(a → e) · (b → e) = ((−y) → e)2 = (−y) → e = ↑ y �≤ e.

From this contradiction we infer that Ay �= ∅ unless y = e, as required. �

The identity (16) therefore captures exactly the lingering effect of involution on
distributive idempotent CRLs. This identity fails in the algebra E in Example 6,
i.e., E cannot be embedded into an idempotent distributive CRL with an involu-
tion. In contrast, every CRL that is square increasing (or square decreasing) and
distributive may be embedded into an involutive algebra with just the same prop-
erties; see [23] and its references. The next result shows that the lingering effect of
involutions on RICRLs is limited to their residuation properties.
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Theorem 24. Let A = 〈A; ·,→,∧,∨, e〉 be an RICRL. Then the lattice-ordered
monoid 〈A; ·,∧,∨, e〉 can be embedded into the corresponding reduct of a Sugihara
monoid.

Proof. Recall that every algebra embeds into an ultraproduct of finitely generated
subalgebras of itself. In view of this, and Birkhoff’s subdirect decomposition theo-
rem, it is enough to prove the present result in the case where A is finitely generated
and subdirectly irreducible (hence finite and linear). In discussing A, we adopt the
notation of Theorem 20 and its proof. We want to replace the operation − by
an involution ¬, by adding extra elements where necessary. Therefore we extend
〈A;≤〉 to a longer chain 〈B;≤〉 as follows. Whenever y ∈ Y and |Ay | �= ∅, insert a
copy {¬z : z ∈ Ay \ {y′}} of the dual of 〈Ay \ {y′};≤〉 above y and below all upper
bounds of y; also define ¬(y′) = y, ¬y = y′ and ¬¬z = z for all z ∈ Ay. Whenever
y ∈ Y and Ay = ∅, add a new element ¬y above (↑ y)′ and below all upper bounds
of (↑ y)′; also define ¬¬y = y, so the unary function ¬ is defined on all of B. We
introduce a new ‘absolute value function’ [ ] on B by defining [y] = y if e ≤ y and
[y] = ¬y, otherwise.

Recall the definition of the total order � on A in the proof of Theorem 20
((II) ⇒ (I)). Similarly, we define a total order � on B by

if u, v ∈ A and [u] < [v], then v � u ;
if u, v ∈ A and [u] = [v], then ( u � v iff u ≤ v ) .

It can be verified that the restriction of � to A × A is just �. So the minimum
operation of � on B is an extension of the operation · of A, which we shall also
denote by ·. As in the proof of Theorem 20, 〈B; ·, e,≤〉 is a lattice-ordered commu-
tative idempotent monoid which is residuated and involutive, i.e., it is the reduct
of a (linear) Sugihara monoid B. �

Thus, the lattice-ordered monoid reducts of RICRLs and those of involutive
RICRLs cannot be distinguished by any universal laws. More precisely:

Corollary 25. RICRL and SM satisfy the same universal first-order sentences in
the signature {·,∧,∨, e}.

Corollary 25 would become false if we by replaced RICRL by the larger variety
of distributive idempotent CRLs. To see this, note that the identity

(17) (x ∧ y) · z ≈ (x · z) ∧ (y · z)

holds in all linear CRLs, because there x ∧ y takes the value of x or that of y,
and · preserves the order. Therefore, (17) is satisfied in RICRL. But it is not
satisfied in all idempotent distributive CRLs. Indeed, the four-element distributive
lattice on {0, a, e, 1} generated by incomparable atoms a and e is the lattice reduct
of an idempotent CRL with identity e, in which a · 1 = 1 and 0 · 1 = 0. (All
other relations are forced.) In this CRL, we have (a ∧ e) · 1 = 0 · 1 = 0, while
(a · 1) ∧ (e · 1) = 1 ∧ 1 = 1.

As we observed in the introduction, we may infer from Corollary 19 that:

Theorem 26. Every finitely based extension of the positive relevant logic R+ con-
taining the mingle and Gödel-Dummett axioms has a solvable deducibility problem.

Recall that the mingle and Gödel-Dummett axioms are � p → (p → p) and
� (p → q) ∨ (q → p), respectively.
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The R of the present paper is the R t of [2], which was renamed R in [3]. So R
and its negation-less fragment R+ are formulated with the ‘Ackermann constant’
t, which corresponds to e. The most important feature of R is that its theorems
exclude the law of weakening p → (q → p). It is well known that R and R+ have a
common deduction theorem, viz., Γ, ϕ � ψ iff Γ � (ϕ ∧ t) → ψ. They may therefore
be identified for practical purposes with their sets of derivable rules, i.e., with the
deducibility relations of the formal systems that generate their sets of theorems. In
the case of R+, that formal system is set out for instance on page 40 of [30] and
its relation to R is justified by arguments in [31]. The traditional ‘logics over R+’
are the sets of theorems generated by axiomatic extensions of this formal system.

In Theorem 26, however, extensions need not be assumed axiomatic and the
strongest reading of the result is obtained by identifying them with the consequence
relations in the signature ·,→,∧,∨, t that contain all derivable rules of R+. We
understand by a ‘consequence relation’ any finitary and structural deductive system
in the sense, for instance, of [9].

To be more precise about ‘fragments’: a fragment of a consequence relation �
is just the set of all derivable rules of � that are formulated in a specified subset
of the signature. It is a consequence relation again, so the notion of axiomatiza-
tion is already defined for it; i.e., an axiomatization is any formal system whose
deducibility relation is the consequence relation under discussion.

Dunn’s results in [2] show that the class of de Morgan monoids, which is a variety,
is the equivalent algebraic semantics for R, in the sense of [9]. A formula ϕ is a
theorem of R iff the identity e ≤ ϕ holds in all de Morgan monoids, where of course
the latter abbreviates e ≈ e∧ϕ . Conversely, an equation α ≈ β is an identity of de
Morgan monoids iff the formula α ↔ β is a theorem of R, where p ↔ q abbreviates
(p → q) ∧ (q → p). These translations extend naturally to correspondences between
the derivable rules Γ � ϕ of R and the valid quasi-identities of de Morgan monoids.
The translations are mutually inverse, because p ��R t ↔ (t∧p), and de Morgan
monoids satisfy α ≈ β ⇐⇒ e ≤ α ↔ β.

In this situation, [9, Cor. 4.9, Thm. 2.17] shows that the logical extensions of the
algebraizable system must match the subquasivarieties of the equivalent algebraic
semantics in the same way, and axiomatic extensions must match subvarieties.
Also, finite axiomatizability is preserved and reflected. Finally, a fragment of an
algebraizable consequence relation � is itself algebraized by the matching subreduct
class of the equivalent algebraic semantics for �, provided that the connectives used
in the translations survive. This is [9, Cor. 2.12].

Since every square increasing distributive CRL may be embedded into a de Mor-
gan monoid (see [31] or [23]), the variety of square increasing distributive CRLs
is the equivalent algebraic semantics for R+, and the extension of R+ by mingle
and the Gödel-Dummett axiom is algebraized in the same way by RICRL. Further
extensions correspond similarly to the subquasivarieties of RICRL, and Theorem 26
therefore follows from Corollary 19.

In all of these correspondences, the failure of the weakening law manifests itself
in the fact that the algebras need not be integral, even when the mingle and Gödel-
Dummett axioms are added.

On the same grounds, Theorem 23 has the following logical interpretation, which
was previously a plausible hypothesis. Here ϕ → ψ → η abbreviates ϕ → (ψ → η).
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Proposition 27. The negation-less fragment of RM t is axiomatized, relative to
R+, by the mingle and Gödel-Dummett axioms together with the Meyer-Parks ax-
iom

� [ (((p → q) → q) → p) → r ] → [ (((q → p) → p) → q) → r ] → r.

The final result confirms that the hereditary character of Theorem 26 has genuine
applications. It shows that Theorem 26 applies to infinitely many axiomatic and
finitely based extensions of R+ that are strictly weaker than the negation-less
fragments of both RM t and the Gödel-Dummett logic LC of [16].

Theorem 28. There are infinitely many finitely axiomatized varieties of RICRLs
strictly containing the variety generated by all relative Stone algebras together with
all positive Sugihara monoids.

Proof. Let V denote the variety generated by RSA ∪ PSM.
We construct a sequence of subdirectly irreducible idempotent linear CRLs A3,

A4, . . . , using the notational conventions of Theorem 21. For each n > 2, the
positive cone Y n of the algebra An is a chain e = 0 < 1 < · · · < n, and An

n is
a singleton, so An(n) is a two-element algebra. But for m < n, the set An

m is
empty; hence An(m) is trivial and An

Sug
∼= Z¬

3 . In fact A3 is just the algebra E of
Example 6. We note that each An is a simple algebra. By the congruence extension
property for CRLs, the nontrivial subalgebras of An are simple also.

For each n, let Kn be the class consisting of all the linear members of RSA ∪
PSM together with all algebras that can be embedded into An, i.e., we adjoin the
class IS(An). Note that S(An) is a finite set of finite algebras of finite type, so
embeddability into An can be expressed by a first-order sentence. Since linearity
is also a single first-order sentence

(18) ∀x ∀y ( x ≈ x ∧ y or y ≈ y ∧ x )

and since RSA and PSM are finitely axiomatized varieties, membership of Kn is
definable by a single first-order sentence as well.

It follows that Kn is closed under ultraproducts, and it is obviously closed under
subalgebras, as (18) is a universal sentence. Since (18) is also a positive sentence, it
persists under homomorphisms as well. Embeddability into An is trivially preserved
by homomorphisms, because every nontrivial subalgebra of An is simple. So, since
RSA and PSM are varieties, it follows that Kn is closed under homomorphic images.

We have shown that Kn is closed under the class operators H, S and PU, so it is
axiomatizable by a set of positive universal sentences. Since it is also axiomatized by
a single first-order sentence, the Compactness Theorem of first-order logic implies
that Kn can be axiomatized by finitely many positive universal sentences. Then,
since RICRL is finitely axiomatized and has EDPC, it follows from Theorem 4 that
the variety V(Kn) is also finitely axiomatized (by equations).

It is easy to see that when m < n, then Am embeds in An, so the varieties V(Kn)
form a chain. In Example 6 we showed that A3 does not belong to V. Suppose 2 <
m < n. Since Am is simple, Jónsson’s Lemma shows that the subdirectly irreducible
members of V(Km) are just the nontrivial subalgebras of Am together with certain
algebras in RSA ∪ PSM, and this class excludes the subdirectly irreducible algebra
An. Thus the varieties V(Kn) are distinct for different values of n; i.e., they form
an infinite chain of supervarieties of V within RICRL. �
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Remark. In the proof that V(Kn) is finitely axiomatized, the use of EDPC could be
eliminated. Baker’s Finite Basis Theorem [14, Cor. V.4.18] says that every finitely
generated congruence distributive variety of finite type is finitely axiomatized; this
applies to V(An). Since PSM and RSA are also finitely based, we can apply a
result of Galatos [20], which says that the join of finitely many finitely axiomatized
varieties of CRLs is still finitely axiomatized. (An arbitrary variety of CRLs need
not have EDPC.)
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