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Abstract. Let q be a prime power not divisible by 3. We show that the number of 
points (or rank-1 fiats) in a combinatorial geometry (or simple matroid) of rank n 
representable over GF(3) and GF(q) is at most n 2. When q is odd, this bound is 
sharp and is attained by the Dowling geometries over the cyclic group of order 2. 

1. Introduction 

Our  starting point  is the classical theorem about the number  of  points in a regular 
combinatorial  geometry due to Heller [7] (see also [1] and [12]). Since a geometry 
is regular if and only if  it is binary and representable over a field o f  characteristic 
not equal to 2 (see [2] or  use Tutte 's  forbidden-minor  characterization o f  regular 
geometries [16, p. 169]), we can state Heller 's theorem as follows: Let G be a 
binary geometry of  rank n which is representable over a field of  characteristic not 
equal to 2. Then the number of  points (or rank-1 fiats) in G is at most n(n + 1)/2. 

In  this paper  we prove an analogue of  this theorem for ternary geometries.  

(1.1) Theorem. Let G be a ternary geometry of  rank n which is representable over 
af ie ld of  characteristic p, where p is not equal to 3. Then the number of  points in 
G is at most n 2. 

We remark that the hypothesis  in (1.I) is equivalent to: G is representable 
over GF(3)  and GF(q) ,  where q is a prime power not divisible by 3. This follows 
from two results o f  Rado.  The first [14, p. 308] states that a finite geometry is 
representable over a field K if and only if it is representable over a finite algebraic 
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extension of  the prime f i e ldo f  K. The second [14, p. 309] states that if a finite 
geometry G is representable over a field of  characteristic 0, then, for all sufficiently 
large primes p, G is representable over some field of  characteristic p. 

When p is not 2, the upper  bound in (1.1) is sharp and is attained by the 
Dowling geometry Qn (GF(3) ×) over the multiplicative group GF(3) × of the field 
GF(3): in fact, except when the rank is 3, a geometry having the maximum 
number  of  points must be a ternary Dowling geometry. We shall prove this in 
Part l I  of  this series [10]. The Dowling geometry Q~(GF(3) ×) is the lattice of  
flats of  the cycle geometry of the full signed expansion of  the complete graph 
on n vertices. Thus, it is also the lattice of  signed partial partitions on a set of  
size n. See [4] and [20] for details. 

The proof  of  (1.1) is elementary and occupies Sections 2 and 3. Several 
applications are given in Section 4. Our notation and terminology are for the 
most part standard (see [17] and [18]) and so we need only note less familiar 
usages. The characteristic set of a geometry G is the set of  characteristics of  fields 
over which G is representable (see p. 160 of  [8]). The size JG I of  a geometry G 
is the number  of  points (or rank-1 flats) in (3. A line (or rank-2 flat) E in G is 
said to be long if  / contains at least three points. 

Let G be a matroid on the set S and U c_ S. The deletion G\ U is the matroid 
on the set S \  U whose rank function is given by rG\u(T)= rG(T) for T c S \  U. 
The contraction G/U is the matroid on the set S \  U whose rank function is given 
by r c / u ( T ) = r c ( T w U ) - r c ( U )  for Tc_S\U. When U consists of  a single 
element to, we shall denote the contraction by G/to. A matroid M is a minor of 
the matroid G if M can be obtained from G by a sequence of  deletions or 
contractions. 

I f  G is a geometry and to is a point in G, the circuits of  G/to are the minimal 
subsets in the collection {C: C is a circuit of  G not containing oJ} u {C\{to}: C 
is a circuit of  G containing to}. Thus, if C is a circuit in G/to, either C or C w {to} 
is a circuit of  G. The simplification of  G/to is the geometry, also denoted by 
G/to, on the set of  lines incident on to whose lattice of  flats is the upper  interval 
[to, 1]. When G is a set of  points in projective space, contractions can be 
represented by projections. More precisely, choose a hyperplane x in projective 
space not containing to. The geometry G/to can be represented by the projection 
of  the point set G from to onto the hyperplane x: that is, G/to can be represented 
by the set of  points in x of  the form [ ^ x ,  where t is a line in G incident on to. 
The difference ] G I -  IG/tol will be referred to informally as the number  of  points 
" 'destroyed" when to is contracted. Because all the points on a long line / incident 
on to are identified as one point (namely E) in G/to, we have 

l o t - l O I t o l  = 1 + E  ( I t1-2) ,  
t 

where the sum is over all long l i ne s / '  in O incident on to. 
We end this section by introducing the key notion in the proof  of  (1.1). A 

geometry G is said to be a cone if there exists a point to in G such that every 
other point in G is on a long line incident on w. The vertex to is called an apex 
of  G. 
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(1.2) Lemma. Let G be a cone with apex to and let a be a point in G not equal 

to to. Then the contraction G~ a (considered as a geometry) is a cone with apex to v a. 

Proof. Let b v a be a point in the geometry G / a  not equal to to v a. Since G is 
a cone, b v to is a long line in G and contains a third point c. The points b v a, 
to v a, and c v a are distinct and collinear in G / a  and hence, b v to v a is a long 
line in G / a. [] 

2. A Catalogue of Planar Ternary Geometries 

For easy reference we collect in this section all the information we need about 
planar (or rank-3) ternary geometries. 

Our first goal is to describe all the nonisomorphic planar ternary geometries 
G with nine points. The best way to do this is to consider the complement of  G 
jn the ternary projective plane PG(2, 3). Since PG(2, 3) contains thirteen points, 
the complement G c of  G contains four points. There are three cases. 

(2.1) I f  G c is a 4-point line, then G is isomorphic (by definition) to the ternary 
affine plane AG(2, 3). None of the lines in AG(2, 3) is a 4-point line. Since every 
point is on four 3-point lines and AG(2, 3) contains exactly nine points, AG(2, 3) 
is a cone in which every point is an apex. The characteristic set of  AG(2, 3) 
equals the union of  {0} and the set of  primes. An explicit representation over 
any field in which ~2+ ~+  1 = 0 has a solution can be obtained using the fact that 
the nine points ofinftexion o f a  nonsingular cubic curve in the complex projective 
plane form a geometry isomorphic to AG(2, 3) (see p. 163 of  [8]). 

(2.2) I f  G c is the union of  a 3-point line t and a point outside C, then G is 
isomorphic to the (ternary) Reid geometry R, shown in Fig. 1. The Reid geometry 
R is formed by taking the union of  two 4-point lines :~ and ~e2 and one 3-point 
line C3 such that their intersection C~ c~/2 c~/3 is a point to. Since the point to is 
on a long line with every other point in R, R is a cone with apex to. Note that 
the points (0, 1, 1) and (1, 1, 1) in R are also apexes. 

Fig. !. The Reid geometry. 
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(2.2.1) Lemma (Reid). The Reid geometry R has characteristic set {3}. 

Sketch o f  proof. Assign coordinates. If three points are collinear, then the 
determinant of  the vectors representing them is zero. The long lines in R yield 
a set of  algebraic equations in the coordinates from which we can deduce that 
3 equals 0. 

An alternate method is to observe that R is isomorphic to the geometry formed 
by eight of  the nine points of  inflexions of  a nonsingular cubic curve and a point 
at infinity. We can now use a variation on the argument given in [8, pp. 163-164] 
to deduce that 3 equals 0 in any field over which R is representable. [] 

Reid's work was unpublished; an account can be found in [6]. 

(2.3) G ¢ is a circuit of  size 4 in PG(2, 3). Since any two representations of a 
given ternary geometry over GF(3) are projectively equivalent (see [3] and [15]), 
we may take G c to be the set {(1, I, I), ( - 1 ,  1, 1), (1, -1 ,  1), (1, 1, -1)} consisting 
o f  all the three-dimensional vectors with all coordinates nonzero relative to the 
natural basis. Thus, G consists of  the vectors with exactly one or exactly two 
nonzero coordinates, that is, G is the ternary planar Dowling geometry Q3, or, 
to give it its full designation, Q3(GF(3) ×) (see [4]). The Dowling geometry Q3 
is not a cone. Since Q3 is representable over any field whose multiplicative group 
contains the cyclic group of  order 2 as a subgroup [4, p. 80], its characteristic 
set is the union of {0} and the set of odd primes. 

The next goal is to describe all the nonisomorphic planar ternary geometries 
with 10 points. There are two such geometries. 

(2.4) If  G c is a 3-point line, then G is isomorphic to the geometry R ÷ obtained 
by adding a fourth point to the line E3 in the Reid geometry R. Note that R + 
does not contain Q3 as a subgeometry. 

(2.5) If G ¢ consists of  three independent points, then G is isomorphic to the 
geometry Q~" obtained by adding one point, say, (I,  1, 1), to the Dowling 
geometry Qa- Note that Q~" contains R as a subgeometry. 

Summarizing the results in this section we have 

(2.6) Proposition 

(a) Let G be a planar ternary geometry with at least nine points. I f  G is a cone, 
then G contains AG(2, 3) or R. I f  G is a cone and contains a 4-point line 
as a subgeometry, then G contains R. 

(b) Let G be a planar ternary geometry with at least ten points. Then 
G contains R. 
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3. Cones 

Our proof  of  (1.1) rests on the following theorem. 

(3.1) Theorem. Let M be a ternary geometry satisfying the following property: 

M contains a point to such that [MI -IM/tol >- 2 rank(M).  (*) 

Then M contains the Reid geometry R as a minor. 

Proof. Let G be a minor of  M with minimum rank and size satisfying (*) with 
the point to. Since G has minimum size, every point in G is contained in a long 
line incident on to (otherwise, we can obtain a smaller minor by deleting any 
point incident on a 2-point line with to). Thus, G is a cone with apex to. 

(3.1.1) Lemma. The matroid G/to obtained by contracting to in G is connected. 

Proof Suppose not. Let G/to = NI@ N2 be a nontrivial separation of the  matroid 
G/to. Let n be the rank of G and let ni be the rank of  N~ in G/to. Observe that 

r( N iu{ to} )=  n, + l 

and 

nt + n2 = r ank(G/w)  = n - 1. 

Let rni be the number of  points destroyed in Ni u {to} when to is contracted. 
We claim that for at least one i, i = 1 say, m~ >-2n~+2. (To see this, observe that 
because Nj and N2 are disjoint and a total o f  at least 2n points are destroyed 
when to is contracted, 

( m l -  1 ) + ( m  2 - -  1 ) q "  1 >--2n. 

Ifm~_<2n~+l f o r i = l  a n d i = 2 ,  then 

2 n + l < - m l + m 2  < - 2 ( n ~ + n 2 ) + 2 = 2 ( n - 1 ) + 2 = 2 n ,  

a contradiction.) Thus, at least 2 rank(G\N2)  points are destroyed in the deletion 
G \ N 2  when to is contracted, contradicting the assumption that G has minimum 
size. [] 

(3.1.2) Lemma. Suppose that there are at least two 4.point lines incident on to. 
Then G contains R as a minor. 
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Proof Let /1  and t2 be two 4-point lines incident on to. For each line di, let pi 
be a point on /~  not equal to to. Since G/to is connected, there exists a circuit 
in G/to containing pl and P2 (see, for example,  p. 108 of [18]). We conclude that 
either (a) there exists a circuit {to, p~, P2, a3, a 4 , . - - ,  ak} in G containing pt ,  P2, 
and to, or (b) there exists a circuit {pt,  P2, aa, a4 . . . . .  ak} containing p~ and ,o2, 
but not to. 

Suppose (a) holds. In the contraction G / { a 4 , . . . ,  ak}, the points to, pt ,  P2, a3 
remain distinct and form a set of  rank 3. Hence, a3 lies on the plane [~ v/2  
spanned by the l i ne s / t  a n d / 2 .  As to v a3 is a long line in G, it remains a long 
line in G / { a 4 , . . . ,  ak}. Thus, the plane E~ v dE contains a third long line, and 
hence, contains R as a subgeometry. 

Suppose (b) holds. I f  the point a3 remains distinct from to in G/{a4 . . . .  , ak}, 
then, as in (a), the plane l1 v C2 contains R as a subgeometry. I f  to and 
a3 are identified, consider the sequence of contractions: G/{ak}, 
G/{ak, ak-1} , . . . ,  G/{a4 . . . . .  ak}. Then for some i - -4 ,  {to, a3, a~} is a circuit in 
G/{a~+l , . . . ,  ak}. Hence, there exists a circuit C containing to contained in 
{to, a3, a ~ , . . . ,  ak}. Eliminating a3 from the circuits C and {Pl,P2, a3, a 4 , . . . ,  ak}, 
we obtain a circuit D containing to. In addition to to, the new circuit D contains 
both Pl and P2 (otherwise, we can eliminate to from D and {to, a3, a t , . . . ,  ak} to 
obtain a circuit which is a proper  subset of  {p~, P2, a3 . . . .  , Ok}). Thus,  (a) holds, 
and hence, G contains R as a minor. [] 

By (3.1.2) we may now assume that there exists at most one 4-point line 
incident on to. Suppose first that there is exactly one 4-point line incident on to. 
Because exactly one point other than to is destroyed on each 3-point line incident 
on to when to is contracted and the number  of  points destroyed is at least 2n, 
the number  of  3-point lines incident on to is at least 2 n - 3 .  Thus, G contains 
at least 4n - 2  points. Similarly, if no 4-point line is incident on to, G contains 
at least 4 n -  1 points. In either case, G contains at least 4 n -  2 points. Thus, to 
finish the p roof  of  (3.1), it suffices to prove the following lemma. 

(3.2) Lemma. Let G be a ternary geometry satisfying: 

G is a cone and I G I -  4 r a n k ( G ) - 2 .  ( t )  

Then G contains R as a minor. 

Proof Let H be a minor o f  G with minimum rank satisfying ( t )  and let to be 
an apex of  H. Since a ternary geometry of  rank 2 contains at most four points, 
r ank(H)  -> 3. Because H has minimum rank, the contraction H / p  does not satisfy 
( t )  for any point p in H. From this and (1.2), we conclude that 

O.2.1) Contraction by any point p in H\to destroys at least five points. 

Let a be a point in H\ to .  By (3.2.1) there exists a long line E incident on a 
not containing to. Let a, b, c he three distinct points on E. (There may be a fourth 
point o n / . )  Consider the plane II  spanned by to, a, and c. As to is an apex, there 
exist three other points a ' ,  b' ,  c' on II. See Fig. 2. 
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a b c 

Fig. 2 

(3.2.2) I f  there exists a 4-point line ~ in the plane H not containing to, then II 
contains R as a subgeometry. 

Proof. Let el, e2, es, e4 be the points on the 4-point line ~'. As to is an apex, 
there exist at least three points on each of the lines to v ei. Thus, [l'I[ -> 9. As II is 
a cone and contains a 4-point line, YI contains R by (2.6). [] 

A point p in II is said to be inner if all the points destroyed in H when p is 
contracted lie on H, p is said to be outer otherwise. 

(3.2.3) Let p be an inner point on 1I. Then, either H contains R as a minor, or, 
to v p is a 4-point line. 

Proof. We distinguish two cases. 

Case I. H /p  is a 3-point line. By (3.2.1) there are at least seven points distinct 
from p in II. However, p is incident on three lines. Thus, one of these lines/~ is 
a 4-point line. If  ~ is incident on to, then to v p is a 4-point line. I f  E is not incident 
on to, then YI contains R by (3.2.2). 

Case 2. H / p  is a 4-point line. By (3.2.1) IHI -  III/pl-> 5 and hence [HI->9. Since 
H is a cone with apex w, YI contains AG(2, 3) or R by (2.6). We need only 
consider the case when H is isomorphic to AG(2, 3). 

(3.2.4) The set H\to does not form a connected component o f  the matroid H/to. 

Proof Suppose that II \ to is a connected component  of  H/w.  Let N be the 
set-theoretic complement  of  H \ w  in H and r be the rank function in H. Note 
that as IHt>-9, N is nonempty and r (N)  > - 1. Then, 

[ r ( N ) -  1] + [ r ( H ) -  1] = rank(H/w)  = rank(H)  - 1. 

Hence, r ( N ) =  r a n k ( H ) - 2 .  Since I NI = I H [ -  8, 

I NI -> [4 rank(H)  - 2] - 8 = 4 r ( N )  - 2. 

Since to is an apex of  N, the subgeometry N satisfies ( t) ,  contradicting the 
assumption that H has minimum rank. [] 



90 J .P.S .  Kung 

Let s be a point not in II but in the same connected component  of  17\to in 
H/to. There exists a circuit in H/to containing s and a point in 17\o>. Among 
such circuits, choose one, C, of  minimum size. Let dl ,  d 2 , . . . ,  dk be the points 
in C not in the plane 1I and consider the sequence of  contractions 

Hl{d~}, H/{d~, d2} , . . . ,  Hl{d~, d2 . . . .  , dk}. 

Suppose that the point s remains distinct from any of  the points in H in 
H/{d l ,  d 2 , . . . ,  dk}. Then, (C \ {d l ,  d2 . . . .  , dk})u {to} is dependent and s is in 
the closure of  17 in H/{d~, d2 . . . .  , dk}. Thus, II  contains at least ten points and 
contains R by (2.6). 

Now suppose that s is identified with a point t in 17 in H/{d~, d 2 , - . . ,  dk}. 
Then, for some i-< k in the sequence of contractions, {s, t, di} is a circuit in 
H/{d~ . . . .  , di-i}. From this we conclude that s v t is a long line not containing 
to; otherwise, {to, s, t, d l , . . . ,  di-a} is dependent,  contradicting the choice of  C. 
Consider the plane Y. spanned by to, s, and t. As to is an apex in H / { d l , . . . ,  di_~}, 
there exists a point s '  on the line to v s and a point d'i on the line to v di. 

(3.2.5) At  least one of  the contractions E/  s or Y./ s' is a 4-point line. 

Proof. Let t' be a third point on the long line to v t. Suppose X/s  and X/s '  are 
3-point lines, then the sets {s, d~, t'}, {s', di, t'}, and {s', dl, t} are cotlinear and 
X contains the Fano plane as a subgeometry. However, the Fano plane has 
characteristic set {2} (see p. 533 of [19]), a contradiction. [] 

By (3.2.5) and the fact that all the lines in AG(2,3)  contain exactly 
three points, contraction by s or s' projects a tenth point onto the plane H in 
H / { d ~ , . . . ,  di-1}. Hence, by (2.6), H contains R as a minor. This completes the 
proof  of  (3.2.3). [] 

Using (3.2.3) we can dispose of the case: Two of the points a, b, c in H, a and 
c, say, are inner Applying (3.2.3) to a and c, we conclude that either I I  contains 
R, or, both to v a and to v c are 4-point lines. But if the latter holds, H contains R. 

We can now assume: Two of the points in II, a and c, say, are outer. Let t~ 
and Ec be long lines incident on a and c not contained in the plane H. Let a, e, 
f be three points o n / ~  and let X = to v a vf .  As to is an apex in H, we conclude 
that there are points e '  and f '  distinct from to, e, or f, on the long lines to v e and 
tovf .  

(3.2.6) I f  II,  fa, and Cc are in general position, that is, II v t ,  v C has rank 5, then 
H contains R as minor 

Proof. Applying (3.2.5) to the points f and f '  in X, we conclude that X/f, say, 
is a 4-point line. Hence, in H/f ,  the line to v a contains a fourth point projected 
by f from X onto H. Since H v ~¢a v ~ec has rank 5, • is still a line outside II  in 
H/f .  Applying the preceding argument to t'c in H/ f ,  we obtain a fourth point 
on tc. We conclude that H contains R as a minor. [] 
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By (3.2.6) we can now assume: 11 v t~ v lc has rank 4. 
We first consider  the case: The point b is inner. By (3.2.3) we can assume that 

to v b is a 4-point  line. By (3.2.6), to v a is a 4-point line in, say, H / f .  Thus, the 
plane II in the contract ion H / f  contains R as a subgeometry.  

Using the same argument  we conclude that if a', b', or c' is inner, then H 
contains R as a minor. Thus,  we can assume: All the points a, b, c, a', b', c' are 
outer. Let r be one  o f  the points b, c, a ' ,  b', or  c'. Let l ,  be a long line incident 
on r not  conta ined in the plane rl. By (3.2.6) we can assume that 17 v gQ v gc 
contains g~. Represent the points in 1-Iv t ,  v t~c in three-dimensional  ternary 
projective space. The line gr intersects the plane X at a point  p in PG(3, 3) which 
may or  may not be in H. 

Suppose first that the point  p is not in /4 .  As E contains at least seven points 
and p is incident on at most  four  lines in E, there exist two points  e and e '  in 
H such that p, e, e'  are coll inear and the line p v e does not contain to. Further, 
at least one o f  the points,  e', say, is not  on the line to v a. Contract ing e' we 
obtain a 4-point  line r v  e not incident on to on the plane II in H / e ' .  By (3.2.2) 
H contains R as a minor. 

We have now arrived at the last case: All the lines gr, where r = b, a', b', c', 
intersect the plane Y at a point in H. By (3.2.5) applied to a and a '  in rI, one o f  
the contract ions I I /a  or I I /a '  is a 4-point line. I f  I I /a '  is a 4-point line but I I /a  
is not, relabel the points a, b, c, a ' ,  b', c' in the following way. Since II contains 
at least seven points,  a '  is on  a 3-point line g not containing to. Relabel a '  by a 
and relabel the two points on E by b and c. Now label the remaining points by 
a ' ,  b', c'  in accordance  with Fig. 2. 

(3.2.7) Either [~,/ a[ = 3  or H contains R as a minor. 

Proof Suppose  lY#al--4. Since lII/at = 4 ,  the plane co v • in H / a  contains two 
4-point lines incident on to, namely,  the projections o f  II  and 5"., as well as a long 
line tec not  incident on to. As to is an apex in H / a  by (1.2), to v tc contains R as 
a subgeometry.  []  

By (3.2.7) we can assume that every point on E is contained in a 3-point line 
incident on a. Relabeling the points in Y- if necessary, let f be the intersection 
o f  the line lc with the plane Y. and let f '  be another  point  on the long line to v f  
By (3.2.5) at least one o f  E l f  or Y~/f' is a 4-point line. 

Let 5~' be the plane to v /c .  Applying (3.2.5) to the points f a n d f '  on the plane 
E'  we conclude  that at least one o f  E ' / f  or Z ' / f '  is a 4-point line. If  both Y. / f  
and Y. ' / f  or, both Y~/f' and E ' / f '  are 4-point lines, then, by the argument  in 
(3.2.7), H contains R as a minor. Thus, we may assume (after relabeling) that 
tX/ f l  = 3, lX ' / f l  = 4, IX/f'I = 4, and IX'/f'l = 3. 

Consider  the plane Ca v E,.. It contains, besides a, c, and f a point  e on the 
line Co, a point  g on the line t'c, and the point b. 

(3.2.8) Either the points e, b, g are collinear, or H contains R as a minor 

Proof I f  e, b, g are not collinear, then contraction by e projects a fourth point 
g onto the line a v c. By (3.2.2) H / e  contains R as a subgeometry.  []  
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a 

Fig. 3. Assigning coordinates. 

By (3.2.8) we can assume that e, b, g are collinear: thus, the plane /o v /c  is 
isomorphic to the cycle geometry M(K4) of  the complete graph on four vertices. 
Note also that because to is an apex, there is a third point e '  on to v e and a third 
point g '  on to v g. 

To finish, we assign coordinates in GF(3) to the points in the rank-4 sub- 
geometry to v a v c v f  as shown in Fig. 3. The assignment is done in the following 
way. First assign coordinates to the points in the plane II. There are two possible 
choices for the point a ' .  Next, assign coordinates to the plane a v f v  c. The 
remaining coordinates are determined by the coordinates that have already been 
assigned. From Fig. 3 we see that, depending on our choice for a ' ,  contraction 
by c or c '  projects an extra point onto the line to v a and the line to vf.  Thus, 
H / c  or H / c '  contains R as a subgeometry. 

An alternate way to handle the final case is to use the argument in Case 2 of  
(3.2.3) to project an extra point onto Fly 6, v /c .  We have presented the 
configuration proof  in detail because we shall need it to prove (5.1). 

This completes the p roof  of  (3.2) and (3.1). [] 

We can now use (3.1) to prove a stronger version of  (I.1). 

(3.3) Theorem. The number of  points in a ternary geometry o f  rank n not containing 
the Reid geometry R as a minor is at most n 2. This bound is sharp and is attained 
by the ternary Dowling geometries. 



Combinatorial Geometries Representable over GF(3) and GF(q). I 93 

Proof  We induct on the rank n of a ternary geometry G not containing R as 
a minor. If n-<3, then the theorem holds by (2.6). If n_>4, I G t - t G / a [ < _ 2 n - 1  
for any point a in G by (3.1). By induction, IG/ai<~ (n-  1) 2. Hence, I G [ -  < n 2. 
To prove the second assertion, observe that the Dowling geometries do not 
contain R as a minor. [] 

Since the Reid geometry is not representable over a field of characteristic not 
equal to 3, (1.1) follows immediately from (3.3). 

4. Applications 

The Reid geometry is an excluded minor (which is not necessarily minimal) for 
several minor-closed classes of geometries. One such class is the class of totally 
dyadic geometries defined independently by Lee [11] and Zaslavsky [21]. (Lee 
actually defined a more general notion, that of a "T-adic" geometry.) A geometry 
is said to be totally dyadic if it is representable over the rationals by a matrix 
all of  whose subdeterminants take values in the set {0, ±1, ±2, +22, +23 . . . .  }. 
Zaslavsky [21] has shown that the subgeometry obtained from R by deleting 
the apex to is not totally dyadic. Since ternary Dowling geometries are totally 
dyadic, (3.3) holds for a totally dyadic geometry. 

Let ~ ( p )  be the minor-closed class of geometries which are algebraic over a 
field of characteristic p (see p. 14 of [18] for a definition). Gordon [5] has shown 
that the ternary Reid geometry R is algebraic over a field if and only if that field 
has characteristic 3. Since ternary Dowling geometries are algebraic over any 
field (with no restriction on its characteristic), (3.3) holds for a ternary geometry 
in the class ~ ( p ) ,  where p is a prime not equal to 3. 

5. Two Technical Remarks 

We record here a technical lemma which will be used in [10]. 

(5.1) l.emma. Let G be a ternary geometry satisfying: G is a cone and [G] > - 
4 r a n k ( G ) - 3 .  Then G contains AG(2, 3) or R as a minor. 

Proof  We use the argument in the proof  of  (3.2). The only change needed is 
in (3.2.3), which is the only place where the hypothesis that I Gt-> 4 r a n k ( G ) - 2  
is used. By substituting " H  contains AG(2, 3) or R"  for " H  contains R"  in the 
conclusion of (3.2.3) and shortening the proof accordingly, we obtain a proof  
for (5.1). [] 

The second result is based on the observation that the hypothesis that the 
geometry is ternary in (3.3) is not really necessary. It suffices only to assume that 
the geometry does not contain U2.5, the 5-point line, or FT, the Fano plane, as 
minors. 
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(5.2) Theorem. The number of  points in a geometry of  rank n not containing/-]2.5, 
F7, or R as minors is at most n 2. This bound is sharp and is attained by the ternary 
Dowling geometries. 

To prove (5.2) we need to replace arguments in the proof of  (3.3) involving 
coordinates with synthetic incidence arguments. Although this is not difficult, 
parts of  the proof  become somewhat complicated. We shall not present the 
details. 

(5.2) extends a result of  Oxley [13, Theorem 3.1], which is in turn an extension 
of (1.1). 

6. Conclusion 

The idea in the proof  of (3.1) is to work inside a cone. In hindsight, we can see 
that this idea was implicit in Heller's paper [7]. Cones can be used in conjunction 
with long-line graphs (see [9]) to find bounds on the number of  points in other 
kinds of  geometries. For example, the number of  points in a geometry of  rank 
n representable over GF(p)  and GF(q) ,  where p and q are coprime prime powers, 

[ n +  l'~ 
is at most c k 2 ,~' where c is a constant depending on p and q. A proof  of this 

result will appear in a future paper. 
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