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Abstract

Representations of solid models were initially formulated partially in response to the need to support automation for

numerically controlled machining processes. The assumed equivalence between shape, topology, and material prop-

erties of manufactured components and their computer representations led to the practice of modeling and simulating

the behavior of physical parts before manufacture. In particular, representations of shape and material properties are

treated in distinct nominal models for most unit manufacturing processes. Additively manufactured parts usually ex-

hibit deviations from their nominal geometry in the form of stair-stepping artifacts and topological irregularities in

the vicinity of small features. Furthermore, structural properties of additively manufactured parts have experimen-

tally been shown to be dependent on the build orientation defining the cross sections where material is accumulated.

Therefore geometric models of additively manufactured parts cannot be decoupled from the manufacturing process

plan.

In this paper we show that as-manufactured shapes may be represented in terms of the convolution operation to cap-

ture the additive deposition of material, measure the conformance to nominal geometry in terms of overlap volume,

and model uncertainties involved in material flow and process control. We then demonstrate a novel interoperable

approach to physical analysis on as-manufactured part geometry represented as a collection of machine-specific cross

sections augmented with boundary conditions defined on the nominal geometry. The analysis only relies on fundamen-

tal queries of point membership classification and distance to boundary and therefore does not involve the overhead of

model preparation required in approaches such as finite element analysis. Results are shown for non-trivial geometries

to validate the proposed approach.
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1. Introduction

1.1. As-manufactured models

Transformation of raw materials into a fabricated

product relies on a sequence of unit manufacturing pro-

cesses[8]. All unit manufacturing processes are inher-

ently imprecise but are instrumented and controlled to

minimize the deviation between nominal design models

and their physical counterparts. Nominal models pro-

vide the foundation for computer representation, analy-

sis, planning, and automation for traditional unit man-
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ufacturing processes such as casting, machining, weld-

ing etc. Fabricated parts are then characterized in terms

of variations of nominal models of shape and material

structure through distinct process and application spe-

cific notions of equivalence. For example, the formal-

ism of geometric dimensioning and tolerancing [27] is

used to determine shape equivalence between perfect

form nominal models and imperfect manufactured parts

in terms of tolerance zones defined according to pre-

scribed inspection procedures. Similarly, nominal mod-

els to simulate mechanical behavior of fabricated parts

assume homogeneous and isotropic bulk material prop-

erties that are considered equivalent to material prop-

erties of manufactured parts, although the manufactur-
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ing process can induce material transformations due to

phase change, deformation, and microstructure modifi-

cation.

Conceptually, the diagram in Figure 1 illustrates

the workflow for mechanical performance prediction,

where shape is nominally defined in a CAD system us-

ing solid model representations and mechanical perfor-

mance is predicted by a CAE system through nominal

models for structural analysis (arrow 3). The predicted

performance is expected to be equivalent with the re-

sults of physical testing on fabricated parts (arrow 1

followed by arrow 2), and with the results of structural

analysis on a representation of the process plan depen-

dent as-manufactured model (arrow 4 followed by ar-

row 5) that captures manufacturing imperfections and

material transformations due to fabrication.

Figure 1: In traditional manufacturing processes, structural analysis

on the nominal CAD model (arrow 3) predicts mechanical perfor-

mance that closely matches physical testing on the manufactured part

(arrow 1 followed by arrow 2). This is not true for additive manufac-

turing. In additive manufacturing, mechanical performance depends

on the manufacturing process plan; arrow 4 followed by arrow 5 is not

the same as arrow 3. For accurate mechanical performance prediction,

structural analysis must be performed on the process plan dependent

as-built model

As-manufactured models are often not constructed

for traditional unit manufacturing processes due to the

observed consistency in mechanical performance be-

tween simulation in CAD/CAE systems and physical

testing. However, in additive manufacturing experimen-

tal evidence has shown the performance of fabricated

parts to be highly sensitive to a combination of machine

resolutions, material, manufacturing strategy, and pro-

cess specific parameters such as cooling rates and dis-

tortions due to phase change [3, 9, 29]. Downstream

analysis cannot be performed directly on CAD models

and accurate predictive capability of simulation tools

for additive manufacturing will rely on the ability to

model the effect of these inter-dependent process pa-

rameters on part structure, prior to manufacture. We ar-

gue that as-manufactured models are therefore required

to support automation for additive manufacturing in ap-

plications such as mechanical analysis, metrology, in-

spection, and process planning seen in product lifecycle

management.

A typical additive manufacturing process is driven

by the controlled planar translation of a print head in

stacked layers that determines the spatial accumulation

of material. Depending on the process, the print head ei-

ther deposits material (in Fused Deposition Modeling),

cures powder by applying a focused laser or ultravio-

let beam (in Selective Laser Sintering and Stereolithog-

raphy), sprays liquid binding onto particles (in Inkjet

printing), or applies some combination of such meth-

ods.

Representation of additively manufactured parts

should account for process limitations and machine im-

precision. For example, since most additive manu-

facturing processes build three-dimensional shapes by

accumulating material laid out in sectional layers the

manufactured parts will exhibit some degree of stair-

stepping depending on printer resolution along the build

direction. Printer resolution in the plane determines the

size of features that may be manufactured (see Figure

2). Printer ‘tool-paths’ also typically restrict the motion

of the print head to within the boundary of the part’s

cross section, resulting in rounding off sharp corners.

Material deposition is usually irregular and depends on

the curvature of the tool path. Therefore the geometry

and topology of the as-manufactured model is largely

driven by these process constraints. Additionally the

uncertainty associated with the manufacturing process

such as errors in locating a position to deposit material

or the irregular flow of material from within a neighbor-

hood of a printed location contribute to the variation ob-

served between designed and manufactured parts. The

resulting material properties of the fabricated part are

therefore anisotropic and dependent on the build orien-

tation.

1.2. Novelty and Contributions

This paper formulates new representations of ad-

ditively manufactured parts by simulating the layered

manufacturing process, and presents a novel interoper-

able solution for mechanical analysis with the new rep-

resentation. Specifically, the paper makes the following

contributions.

1. As-manufactured models are represented as the ac-

cumulation of infinitesimal material deposited at

each translated print head position. Mathemati-

cally the process is described as a convolution that

captures the extent of overlap of the printed shape
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Figure 2: The effect of printer resolutions on small features in a Selec-

tive Laser Sintering process [26]. Small holes tend to get washed over

when printing with wall thicknesses greater than the hole diameter,

leading to topological changes with respect to the nominal model.

with the nominal geometry. We show a totally or-

dered variational class of as-manufactured models

as a function of this overlap.

2. Process uncertainty due to positioning error as well

as due to material flow from locations in a neigh-

borhood of a position is formulated as a probabilis-

tic membership classification of material within

the as-manufactured model. The combined uncer-

tainty is also shown to be a convolution of proba-

bility density functions of the individual uncertain-

ties.

3. We discuss approaches to compute convolution

and show that in special but useful cases, con-

volution can be implemented in terms of pla-

nar morphological operations to represent the as-

manufactured model as a stack of slices deter-

mined by printer resolution.

4. The as-manufactured model represented as a stack

of slices is sent directly along with boundary con-

ditions as the input to a physical analysis rou-

tine. A three dimensional representation of the as-

manufactured model, for example as a mesh, is not

required to perform the analysis.

1.3. Outline

In Section 2 we discuss the construction and rep-

resentation of as-manufactured models using convolu-

tions. In 2.1.1 we demonstrate that convolution can be

used to model the motion of material repeatably de-

posited at every location of the print head and the re-

sulting swept volume. In 2.1.2 we show the convo-

lution also models uncertainties in material deposition

arising from imprecise location of the print head as well

as irregular material flow. The as-manufactured mod-

els are defined as sub-level sets of the various convolu-

tions, and examples are shown to illustrate the effects of

resolution dependence and process uncertainty on as-

manufactured models. In Section 2.2 we discuss var-

ious strategies to implement as-manufactured models

in terms of convolution and show a special but impor-

tant case where planar morphological operations can be

used to characterize deviations between manufactured

and nominal geometry. In Section 3, the output of these

computations are used as the input to an analysis routine

in an interoperable manner to predict physical behavior

on the as-manufactured part. The combination of the

novel geometric representation and interoperable phys-

ical analysis is a first step towards creating new models

for product lifecycle management with additively man-

ufactured parts.

2. Representation of manufactured models

Geometric variations between designed and manufac-

tured parts will occur due to several factors such as ma-

chine resolution, build orientation, thermal physics of

the manufacturing process that can lead to distortion and

roughness, post processing operations such as finishing

and the removal of support material (which influence

part design as seen in Figure 3), or air-gaps due to large

step-over sizes in tool paths.

Figure 3: A design modification to compensate for the large amount

of support structure required in the original shape [4]

The process and machine specific deviation of ad-

ditively manufactured shapes with respect to their

nominal geometry, as well as the resulting complex

anisotropic material behavior imply the design model

may be a poor surrogate for the manufactured model.

4



Therefore we devise new representations of additively

as-manufactured shapes that are reflective of the man-

ufacturing process constraints and compatible with

downstream applications in product lifecycle manage-

ment. Specifically, we construct representations of as-

manufactured models as a function of the (uncertain)

motion of of a print head, seen for example in ma-

terial fusion (laser sintering) and extrusion (fused de-

position modeling) techniques. Additive manufactur-

ing techniques such as sheet lamination and light ac-

tivated polymerization (for example using array based

digital light processing) are not included in this model.

Anisotropic material properties are included as a func-

tion of the build direction for structural analysis on as-

manufactured models in Section 3.

2.1. Incorporating process variation

Given a shape S to be printed, and the smallest three

dimensional volume F printable by the moving head,

the boundary of S defines the spatial limits up to which

the motion of the print head is constrained. For the

purposes of this paper we assume F may be modeled

as a sphere (to model a melt pool or droplets of mate-

rial), cylinder (to model the flattened layers in an FDM

process), or any possibly irregular shape that can be as-

sumed to feasibly represent the minimum volume de-

posited by incremental motion of the print head. In a

layered manufacturing process, the motion of the print

head is usually a planar translation and material is accu-

mulated at every position over the course of a tool-path.

Currently in additive manufacturing process planning

the shape F of the deposited material is not considered,

and therefore the deviation from the design model is un-

predictable. As mentioned earlier, in practice the mate-

rial deposited at every position will vary slightly due to

manufacturing uncertainties and/or due to the physics

of local material accumulation, and exact characteriza-

tion of such variation is quite difficult. However, empir-

ical models of material deposition can be constructed

through experimentation [7, 2, 16] or through thermal

physics analysis decoupled from manufacturing uncer-

tainties [12, 22, 30, 19]. These local material models

may then be used to define the shape F used directly to

construct the representations proposed in this paper.

In this Section we will provide a single mathematical

framework that formally characterizes as-manufactured

models as a function of the nominal geometry and the

model defining material distribution at a spatial loca-

tion. The feasible translational motions of the print head

are modeled to simulate the material deposition and

construct as-manufactured models, and subsequently

models for uncertainty are included into this descrip-

tion.

2.1.1. Repeatable material deposition

Initially let us assume that manufacturing error is

negligible and that the machine repeatably deposits the

same amount of material F at every position. For any

set X ∈ R
n we define X−1 as the reflection of X about

the origin, i.e. every x ∈ X is mapped to −x ∈ X−1.

Given a build orientation, the maximal set of trans-

lations that constrain F to remain within S and at most

contact the boundary ∂S of S is given by the expression

S ⊖ F−1 where ⊖ represents the Minkowski difference

operator. Similarly the maximal set of translations that

constrain F to at least contact ∂S is given by the expres-

sion S ⊕ F−1 where ⊕ represents the Minkowski sum.

Tool paths defining print head motion are there-

fore planned as a set T of translations such that

S ⊖ F−1 ⊆ T ⊆ S ⊕ F−1. When a tool path T is

specified as a set of translations of the print head, the

as-manufactured model is then exactly the Minkowski

sum F⊕T . The resulting as-manufactured models in the

two limiting situations are therefore M0 = (S ⊖F−1)⊕F

and M1 = (S ⊕ F−1)⊕ F respectively. Clearly M0 ⊂ M1

and there exists a class [M] of shapes such that for each

as-manufactured model M in the class, M0 ⊂ M ⊂ M1.

Example: For an example of an as-manufactured

model, consider a slice as the intersection of a

plane translated along the build direction with the

appropriately oriented S . The restriction of a tool

path to the interior of (planar solids in) a slice can

still deposit material outside S when accumulated

along the build direction, often manifested as stair-

stepped features on manufactured parts (see Figure

7). The as-manufactured model is therefore con-

tained in M1 and contains M0. We demonstrate

computation of this as-manufactured model in Sec-

tion 2.2.3.

Remark: Note that a very similar approach can be

used to outline the maximal volume machinable by

a translating cutting tool removing material from

raw stock. For a part S and a cutting tool F the

maximal set of translations of the tool to avoid cut-

ting into the part [20] is S c⊖F−1. By the dual rela-

tionship between Minkowski sum and difference1

1A ⊕ B = (Ac ⊖ B)c
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this set of translations is (S ⊕ F−1)c, also realiz-

able as the complement of the translational config-

uration space obstacle seen in robot motion plan-

ning. The maximal machinable volume of the tool

is therefore (S ⊕ F−1)c ⊕ F. Intuitively the formu-

lations for determining as-manufactured models in

subtractive and additive manufacturing are dual to

each other restricting the motion of F on comple-

mentary partitions of the contact space ∂((S ⊕F−1))

which is the boundary of the configuration space

obstacle.

Elements of the class [M] of as-manufactured mod-

els defined by the translational motion of F over S are

partially ordered by set containment. There is a totally

ordered subclass of as-manufactured models which we

will characterize in this paper. For a non-empty X ⊂ R
n

define µ(X) as the Lebesgue measure, which is the stan-

dard volume measure for subsets of R
n. We observe

that for every overlap ranging from µ(F) at M0 to some

small ǫ > 0 at a close approximation of M1 (see Fig-

ure 4), there exists a maximal as-manufactured model

in [M] such that for any translation x ∈ R3 that deposits

material F at xF, we have µ(S ∩∗ xF) > λµ(F) where2

λ ∈ [ ǫ
µ(F)
, 1].

Figure 4: Overlap volume of a disk F with a rectangle S . The volume

of the disk is µ(F) and is the overlap when F is contained within S

(left). When the overlap volume is some small ǫ (right) F is almost

outside S .

To characterize the class [Mmax] of maximal as-

manufactured models as a function of λ, we use prop-

erties of the convolution of indicator functions as de-

scribed in Appendix A. Briefly, denoting convolution

of functions f , g as f ⋆ g, Equations 17 and 18 in the

Appendix describe the Minkowski sum A ⊕ B and dif-

ference A ⊖ B of sets A, B as terminal sub-level sets

Vα(1A ⋆ 1B), α = {0, µ(F)} of the convolution of (im-

plicitly represented) indicator functions 1A and 1B. In-

tuitively the convolution of indicator functions captures

the extent of overlap of the moving set B with the sta-

tionary set A. Detailed analysis of these relationships

may be found in [18, 21].

2∩∗ represents regularized set intersection

Therefore, it is possible to relate the translations of

the print head to the resulting overlap of F with S as a

fraction λ of µ(F). For λ ∈ [ ǫ
µ(F)
, 1], the maximal set Tλ

of translations that ensure an overlap of at least λµ(F) at

every translation of the print head is given by a sub-level

set of the convolution of indicator functions 1S and 1̃F

of S and F−1

Tλ = Vλµ(F)(1S ⋆ 1̃F) (1)

Intuitively, as we increase the overlap from F minimally

contacting S (λ = ǫ
µ(F)

and the overlap is ǫ) to enforcing

strict containment of F within S (λ = 1 and the overlap

is µ(F)) , the sub-level set of feasible translations Tλ of

F successively decreases. The corresponding maximal

as-manufactured models are defined by

M1−λ = Tλ ⊕ F (2)

such that for λ1 < λ2, M1−λ1
⊃ M1−λ2

. The class [Mmax]

whose elements are M1−λ is totally ordered by set

containment, and represents maximal as-manufactured

models for overlap at least λµ(F) at every translation of

the print head. Consistent with the analysis based on

Minkowski operations at the beginning of this section,

M1 (in the limit) represents the supremum of the [Mmax]

and M0 represents the infimum.

We now have a new implicit representation of a vari-

ational class [Mmax] of maximal as-manufactured mod-

els whose elements may be computed using convolu-

tion. Figure 5 shows several as-manufactured models

of a shape S of a mammoth, assuming a cylindrical F

that represents the infinitesimal amount of material de-

posited by a nozzle along a tool path. Observe that with

increasing measures of local overlap parameterized by

λ, important structural features of S such as the ribs or

toes are lost in the maximal as-manufactured models,

and topological changes (e.g. in the number of holes

or connected components) between nominal and maxi-

mal as-manufactured models may occur. For an over-

lap of λµ(F) the volume of excess material printed out-

side the nominal shape S is bounded by (1 − λ)µ(F) at

any translation of F. At a specific translation x ∈ Tλ,

the excess material may be determined explicitly as

µ(F) − (1S ⋆ 1̃F)(x).

Convolution is an attractive representation of mate-

rial deposition in layered manufacturing, for it mod-

els the manufacturing process defined by the transla-

tional motion of the print head for a chosen build ori-

entation. It is a real valued function that represents

the overlap of a ‘moving’ function 1F (shifted by trans-

lations in R
3) over a ‘stationary’ (unshifted) function
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Figure 5: As-manufactured models shown for a small cylindrical feature F with a shape S representing the skeleton of a woolly mammoth [1].

Reading clockwise from left, the nominal model is shown first. Subsequent images show λ = ǫ
µ(F)
, λ = 1

4
, λ = 3

4
respectively. The as-manufactured

models are shown in silver and the unincluded regions of the original part are shown in red. When λ = 1 (bottom left) F is constrained to remain

within S and the regions visible in red indicate regions of S where F cannot fit. For λ = 1
4
, 3

4
it is seen that the as-manufactured model contains

significant areas where material is deposited outside the original part boundary. λ = ǫ
µ(F)

represents the Minkowski sum of F and S . Indicator

functions of input solid models are sampled on a grid size of 2563 to compute the convolution.

1S such that the sub-level sets of this real valued func-

tion define all translations Tλ that restrict the permissi-

ble overlap of F with S to a pre-specified value λµ(F).

Tool paths Tλ∗ can be planned from the Tλ to construct

an as-manufactured model which is the sub level set

V0(1F ⋆ 1Tλ∗). From Figure 5 it can also be seen that

support material has to be planned separately for each

as-manufactured model.

Deviations between nominal and as-manufactured

models such as the rounding of sharp corners or stair-

stepping artifacts are unavoidable consequences of lay-

ered manufacturing. Additionally in many cases such as

those shown in Figure 2, topological inconsistencies oc-

cur when the as-manufactured shape is not homeomor-

phic to the nominal model. Homeomorphism is often

not preserved due to different types of overlap possible

between F and the nominal models S . For example,

consider the erosion S ⊖ (F)−1 in the as-manufactured

model (S ⊖ (F)−1) ⊕ F. The erosion removes fea-

tures such as bridges, walls, and protrusions where the

printed feature F does not fit. In such cases the as-

manufactured model is not homeomorphic to S . Given

closed regular sets S and Mλ, the failure of homeo-

morphism is due to the as-manufactured models hav-

ing different homotopy type with respect to the nominal

model. Informally, two sets with the same homotopy

type have one-one correspondence between connected

components, cycles, holes, etc [6]. Basic differences in

homotopy type may thus be determined by counting dif-

ferences in these structures between S and Mλ.

2.1.2. Uncertainty in location and material distribution

Convolution uses a representation of shape as an im-

plicit (indicator) function, therefore it is possible to de-

fine convolutions of shapes with any real valued func-

tion. Using this observation we now show that repre-

sentations of as-manufactured models may be extended

to include manufacturing uncertainty.

The as-manufactured models defined in Equation 2

are derived assuming the overlap volume of F with the

nominal geometry at every point in space is determinis-

tic because of repeatable deposition. In reality the pres-

ence of material at every point in space is not determin-

istic and material deposition is better modeled in terms

of a probability distribution due to the uncertainty of ex-

ecuting the prescribed tool path and the process depen-

dent physics of material accumulation (e.g. from a melt

pool in laser sintering or from molten plastic in fused

deposition modeling).

Consider material membership within the as-

manufactured model at a location z ∈ R
3 as an event

derived from two independent events

1. The print head moving as prescribed.

2. Material accumulating around the point of deposi-

tion or sintering.

The location of the print head is subject to positional

uncertainty, and material accumulation has inherent un-

certainty dependent on the physics of the material. No-

tice that the existence of material at a point in space

is more likely if the tool path traverses near this point

multiple times, for example in high curvature regions of

a tool path (see Figure 6). With this, we let X and Y

be independent continuous random variables with prob-

ability densities PX and PY that model the above phe-

nomena respectively. We are interested in the probabil-

ity density PX+Y that determines likelihood of material

membership inside the as-manufactured model.

It is well known [14] that the probability density for

Z = X+Y is given by the convolution of the individual

probability densities PX and PY.

PZ(z) =

∫ ∞

−∞

PX(z − y)PY(y)dy (3)

= PX ⋆ PY (4)

This is quite easy to verify; if Z = z when Y = y then

X = z − y. The probability density for this to occur
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is PX(z − y)PY(y) due to independence of the random

variables X,Y and to obtain the total probability den-

sity that Z = z we need to integrate over all possible

values of Y to get PZ(z). Note that if the controllers

defining the print head location can be independently

controlled in orthogonal axes of motion, then PX can be

specified as a joint probability density specified by the

product of the probability densities defining positional

uncertainties at each axis.

Figure 6: Level set of the convolution PZ ⋆ 1T of a bivariate normal

distribution with the indicator function of a path (left). The contour of

the level set is shown on the right. The path is defined as an indicator

function in an 800 × 600 image and the normal distribution is defined

with standard deviation of six pixels. The probability density function

is shown on the right with the level set corresponding to a probability

of 0.9

Tool paths Tλ∗ may now be planned within the space

Tλ as described in Section 2.1.1. Given a tool path

Tλ∗ ⊂ Tλ, the convolution PZ ⋆ 1Tλ∗ defines a zone

around each location on a tool path where material

is likely to exist with non-zero probability. Specify-

ing a threshold 0 < α < 1 to extract a sub-level set

Vα(PZ⋆1Tλ∗) that defines translations within which ma-

terial is likely to exist with probability at least α. These

translations may be coupled with measures of overlap

as defined in Section 2.1.1 to extract a larger variational

class of maximal as-manufactured models compared to

the class defined by the assumption of repeatable mate-

rial deposition.

As a simple example, consider the positional uncer-

tainty along the axes of the print head controller to be

defined by normal distributions such that the resulting

multivariate distribution PX is a normal distribution3. If

the material distribution PY is modeled as a normal dis-

tribution, we see that the convolution PZ is also a nor-

mal distribution. Figure 6 (left) shows a path defined

as an indicator function that is convolved with a normal

distribution (with standard deviation of six pixels) to ex-

tract the sub level set (right) defined by a probability

greater than 0.9. It may be seen that increasing the prob-

ability leads to a smaller sub-level set. Furthermore, it

is also evident that the regions of high curvature on the

path are more likely to have material deposited from ad-

3The convolution of two normal distributions results in a normal

distribution

jacent locations, as is the case with additive manufactur-

ing.

The implicit representation of geometry in terms of

indicator functions allows direct convolution with prob-

ability density functions, thus unifying the formulation

of as-manufactured models with manufacturing uncer-

tainty using a single operation.

2.2. Computing as-manufactured models

2.2.1. Fourier Transforms

Convolution is a fundamental operation applied in

several disciplines including signal and image process-

ing, numerical methods, computer vision, statistics, and

so on. When input data is a sampled function such as

a signal or image, convolution is typically implemented

in terms of the Fast Fourier Transform (FFT) used in

conjunction with the convolution theorem. If n is the

size of the grid to which functions are sampled, the con-

volution can be computed with complexity O(n log(n)).

Denoting the Fourier transform of a function f as F( f )

and the inverse Fourier transform as F−1, the convolu-

tion theorem simply states

f ⋆ g = F−1(F( f ) · F(g)) (5)

The examples in Figure 5 were computed using this

approach. In many cases computing a boundary rep-

resentation in terms of the implicit representation us-

ing isosurface extraction is more convenient than al-

gorithms involving boundary evaluation, e.g. for level

sets of convolutions with probability density functions.

However, the implementation is always limited by the

grid resolution used to sample the FFT, in which case

indicator functions are represented as binary voxeliza-

tions. Therefore we may run into difficulties of memory

overflow if very fine resolutions are chosen to capture

small features (e.g. holes, thin walls) that can cause

topological differences, also observed by [28]. In such

cases we must look for alternative strategies to compute

and evaluate as-manufactured models.

2.2.2. Relationship to cross sectional convolution

Consider the situation when the feature F can be rep-

resented as a linear extrusion of a cross section X over

translations Y, for example when F = X⊕Y is a cylinder

and X is a disk and Y is a linear trajectory. In this special

case we have 1F = 1X ⋆ 1Y and 1̃F = 1̃X ⋆ 1̃Y . Observe

from Equation 15 that (1S ⋆ 1̃X)(q) = µ(S ∩∗ Xq) is the

overlap of the cross section X with S .4

4Note that in practice the sets X and Y should be defined as three

dimensional sets (i.e. with some minimal thickness) to avoid integra-

tion on zero measure sets.
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Figure 7: A bracket designed for additive manufacturing (left) and the as-manufactured model constructed by simulating stair-stepping and impre-

cision within a layer

Therefore given the overlap volume of F with S at

any location p ∈ R
3 it is possible to obtain the overlap

of the cross section X of F with S by computing the

convolution 1S ⋆ 1̃X(p). Furthermore, the overlap of X

with S is equivalent to the overlap of X with a slice of

S (assuming X and the slice have minimal thickness).

We now discuss how this relationship will help us rep-

resent as-manufactured models using planar offsetting

operations as opposed to sampling a three dimensional

Fourier transform.

2.2.3. Extruding as-manufactured slices

Consider the special case where the cross section X of

the minimal three dimensional printed feature F is mod-

eled as a disk. There are two reasons this special case is

important. First in the case of many layered manufac-

turing processes the print head depositing material has

an approximately circular cross section. For example

in FDM the nozzle depositing molten filament typically

has a circular cross section, and in laser melting, the fo-

cused beam is assumed to have circular section to create

a uniform melt pool. Also, if we assume normal distri-

butions for the uncertainties in the position and material

deposition the level sets of the combined normal density

function will be circles.

Given a slice S ′ of S , and the cross section X of F,

we note that restricting the print head to the interior of

the slice S ′ implies the convolution 1S ⋆ 1̃X(p) at ev-

ery feasible translation p has an overlap µ(X) and the

maximal area covered by sweeping X inside S ′ is the

morphological opening

O(S ′, X) = (S ′ ⊖ X−1) ⊕ X (6)

=
⋃
{X + t : X + t ⊂ S ′, t ∈ R2} (7)

The printer specific representation of as-manufactured

slices O(S ′, X) may then be used to plan tool paths in

contrast to current practice of simply using the slice S ′

to generate tool paths. We note that slicing in general is

an inherently lossy process that cannot measure three di-

mensional overlap without computing the three dimen-

sional convolution 1S ⋆ 1̃X ⋆ 1̃Y , and containment of

X within S ′ does not necessarily imply containment of

F within S . However there are advantages to adopting

this representation more than just directly modeling the

machine specific layered manufacturing process.

As shown in [20], assuming openings with disks al-

lows a characterization of S ′ in terms of local size, de-

fined as the distance of the boundary of S ′ to its medial

axis. The complement of the opening O(S ′, kX) by a

disk kX, k > 1 will outline the regions of S ′ with thin

walls that are printable but are below the recommended

thickness kX for the printed material (often learned

by experimentation). The two openings O(S ′, X) and

O(S ′, kX) allow a partition of each slice called the print-

ability map that consists of three disjoint sets

1. S ′ − O(S , X) represents regions that cannot be

reached by the translating disk X, and therefore

represents regions smaller than the smallest print-

able feature. Toolpaths that locate the print head

in these regions will result in unplanned material

accumulation.

2. O(S ′, X) − O(S ′, kX) represents regions reachable

by the translating disk X but not by a larger disk

kX. The radius of kX represents the minimum rec-

ommended local size for the material used to print

the part.

3. O(S ′, kX) represents the subset of S ′ that is reach-

able by all translating disks larger than, and includ-

ing kX.

Assuming circular cross sections has the added benefit

of simplifying computations. The opening of a set by

a disk can be expressed as a composition of an inward

and outward polygon offset that will automatically cap-

ture rounded corners, as well as erode (via Minkowski

difference) thin regions of the model. Therefore, given

a set of oriented loops that define a valid polygon, stan-

dard offset and subtraction operations can be efficiently

9



Figure 8: Printability map for a single layer of the model shown in

Figure 7(left). Colored regions represent disjoint partitions of the

printability map. Red: regions with local size below smallest printable

feature. Yellow: regions with local size greater the smallest printable

feature but below recommended thickness. Green: Local size greater

than recommended thickness

and robustly computed in the plane to represent the ma-

terial deposited at every slice during additive manufac-

turing.

Given a build orientation, the number of printed slices

is determined in terms of the printer resolution along the

build direction. A representation of the part as manufac-

tured may then be obtained by computing the printabil-

ity map at each slice S ′
i

and accumulating the openings

O(S ′
i
, X). The bonding between layers is modeled by

extruding the O(S ′
i
, X) by a one parameter family E of

translations along the build orientation such that the ex-

tent of the translation is limited by the printer resolution.

Thus the as-manufactured solid model is the regularized

union ⋃

i

(O(S ′i , X) ⊕ E) (8)

Figure 7(right) shows a reconstruction of the as-

manufactured model given the bracket shown in Fig-

ure 7(left) . The stair stepping effect of layered man-

ufacturing is evident from the representation. Figure 8

shows the printability map for one slice of the nomi-

nal model of the bracket. Figure 9 shows a represen-

tation of extruded as-manufactured slices for the nomi-

nal model shown in Figure 5 that highlight the printable

region O(S ′, X) − O(S ′, kX) below recommended local

size when printed with ABS plastic on a Makerbot.

3. Structural Simulation of As-Manufactured Mod-

els

3.1. Query-based approach to interoperability

The as-manufactured representations defined by

Equations 2 and 8 are implicit but informationally com-

plete [25], in the usual sense that they support unam-

biguous point membership classification and neighbor-

hood queries against the design model M. In principle,

these representations could be evaluated and converted

Figure 9: As manufactured model on a Makerbot Replicator com-

puted for a mammoth where features below recommended local size

for ABS plastic are highlighted in yellow

to an explicit boundary representation, but we choose

not to do so for several reasons. It should be apparent

that explicit representation of M as a collection of slices

is an order of magnitude more complex than that of S ,

because it accounts for individual manufacturing opera-

tions, features, and imperfections. Unioning boundaries

of adjacent solid slices O(S ′
i
, X)⊕E is likely to be prob-

lematic due to numerical errors and robustness issues.

Instead, we will show that as-manufactured model de-

fined as a collection of O(S ′
i
, X) can be used directly in

variety of downstream applications using query-based

approach to interoperability advocated in [13].

Two essential ingredients are required to implement a

query-based approach: a formal semantics that defines

the notion of equivalence between the models and/or

systems that are required to interoperate, and a set of

queries that interpret those semantics operationally in

terms of computable mathematical functions. A hierar-

chy of geometric and topological queries that are suffi-

cient for most applications is proposed in [13].

For example, in the simplest case of interchange-

able solid models, a solid S is a closed regular subset

of three-dimensional Euclidean space that may be ab-

stracted as a set of {qp} of point membership tests; each

test qp returns a value of in, on, out, depending whether

point point p belong to interior, boundary, or comple-

ment of S respectively. The set of point queries may

be infinite or correspond to a finite cover of S . Two

solids X and Y are identical if every query qp returns the

same answer with with respect to X and Y. Of course,

in practice no two solids are identical, but two solids

may be deemed interchangeable if they are equivalent

in some application-dependent sense to a nominal refer-

ence solid S . In this case, the equivalence is established

by applying the equivalence test to the queries. Ref-
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erence [13] gives specific examples of query-based in-

teroperability for several applications, including shape

approximation, reconstruction, geometric dimensioning

and tolerancing, and CAD/analysis integration.

We now apply the concept of query-based inter-

changeability to as-manufactured model M. Based

on the discussion in Section 2.1, we assume an as-

manufactured model M is related to nominal model S

through the correspondence of its shape and material

properties. In particular, it is reasonable to assume that

there exists a map h such that M = h(S ), where h is a

homotopy equivalence5 and the Hausdorff distance be-

tween M and S is bounded by the Hausdorff distance

between S and S ⊕ F. Clearly, map h is not unique,

but in all cases, h will also map the queries against S

to queries against M. Thus, classification qp for every

point p ∈ S will match that of qh(p) for the correspond-

ing point h(p) ∈ M. Similarly, if dp returns the distance

from p to boundary ∂S , then dh(p) returns the distance to

the boundary ∂M, and we know that the two distances

differ at most by the Hausdorff distance between M and

S . Finally, we observe that existence of map h may be

sufficient for designing interchangeable or interoperable

queries; h needs to be constructed explicitly only when

explicit application-specific correspondence between M

and S is required.

3.2. Query-based formulation of structural simulation

Here we only deal with the most common case of lin-

ear static analysis based on simple linear elastic model,

but the approach generalizes to other types of analysis

in a straightforward manner. Our formulation follows a

more detailed derivation in [10] and [13].

The boundary of a three-dimensional solid domain

Ω is partitioned into three subsets: Γu where the dis-

placements are prescribed (most commonly fixed), Γt

where the loads (or “tractions”) T are applied, and the

free boundary. The solid Ω is also subject to the body

(gravity) force F. The forces, as well as the resulting

displacements u are vector valued quantities, for exam-

ple u = (ux, uy, uz)
T , while both strain ǫ and stress σ are

second order tensor quantities represented by 3 × 3 ma-

trices.

Following the usual arguments, a weak discretized

form of elasticity problem can be written as a system

5S and M may often not be homeomorphic due to manufacturing

imperfections such as missed features, covered holes, and others de-

scribed in Sections 2.1 and 2.2

of equations[10]:

−

n∑

i=1

Ci

∫

Ω

BT [ηi]DB[η j]dΩ

︸                    ︷︷                    ︸
stiffness coefficient

= −

∫

Ω

η jFdΩ

︸        ︷︷        ︸
load due to body force

+

∫

Ω

BT [η j]DB[u∗]dΩ

︸                    ︷︷                    ︸
load due to applied displacements

−

∫

Γt

η jTdΓt.

︸       ︷︷       ︸
load due to applied loads

(9)

Here we assume that the displacement u has a general

form of

u =

n∑

i=1

Ciηi + u
∗. (10)

Note that the values of displacements u on the bound-

ary Γu correspond to the fixed boundary conditions, νi
are test basis functions, and vector valued coefficients

Ci are yet to be determined. Following the widely

used notation in Finite Element Analysis (FEA) liter-

ature, we will use B to denote the matrix of derivatives,

also known as the strain-displacement matrix, so that

ǫ = B[u], and D for the stress-strain matrix so that

σ = Dǫ.

Figure 10: Illustration of query-based structural simulation on a uni-

form non-conforming grid of B-splines

Implementation of this formulation requires that the

basis functions ηi vanish on portions of the boundary Γu

where the displacements are prescribed. This is usually

achieved by converting domain Ω into a mesh of finite

elements, creating an interoperabilty bottleneck, partic-

ularly in the case of as-manufactured model M that is

represented implicitly. Instead, following the classical

Kantorovich method [15], choose

ηi = (ωx, ωy, ωz)Tχi, (11)

where ω1, ω2 and ω3 measure (smoothed) distances

to the fixed boundaries in x, y and z coordinate direc-

tions respectively, and choose basis functions χi to be
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Figure 11: Structural simulation of nominal model (left) and as-manufactured model (right) of the mammoth skeleton under gravity: displacements

are shown as a scalar field. Regions close to the spine are highlighted for comparison between the two models.

trivariate B-splines on a uniform grid whose supports

completely cover Ω (see Figure 10). The individual

displacements on the boundaries Γu may be combined

using inverse distance interpolation [23] into a single

global vector-valued function u
∗.

The above formulation of linear static analysis re-

quires assembling the system of linear equations (9) by

directly computing volume and surface integrals over

supports of basis functionsχi. Using adaptive geometric

integration[17], computation of integrals reduces to re-

peated sampling and evaluation of basis functionsχi and

their derivatives, material properties D, body forces F as

well as given boundary conditions Γu and Γt at quadra-

ture points either in interior or on the boundary of the

solid domain Ω. In addition, two geometric queries are

required: point membership test qp to determine which

quadrature points lie within domain Ω and distance to

boundary dp query to evaluate functions ηi per equation

11. Some of the above computations may be imple-

mented more efficiently using more advanced queries,

for example, Box/Solid intersection and Ray/Solid in-

tersections, but all of such computations may be imple-

mented in terms of point and distance computations[25].

Solving the linear system and substituting the com-

puted values of the vector-valued coefficients Ci into

the assumed expression (10) of u produces an approxi-

mate solution u(x) to the differential equation satisfying

the specified boundary conditions. For additional de-

tails describing implementation of the query-based ap-

proach in commercial Scan&Solve system, the reader is

referred to [10].

Figure 10 shows the nominal model S of the mam-

moth represented as a triangulated mesh, with an over-

laid integration grid. The simulation problem models

the effect of gravity on the skeletal structure of the mam-

moth with fixed base. The result of integration produces

the displacement field shown rendered on the nominal

geometry. We now demonstrate how the same frame-

work will be used to query as-manufactured models to

compute the solution to linear static analysis without

constructing the boundary or a mesh of the three dimen-

sional solid model of M.

3.3. Querying As-Manufactured Models

When solid domain Ω is a nominal solid S repre-

sented by its boundary, application of the above struc-

tural simulation is straightforward: boundary conditions

Γu and Γt are associated with portions of ∂S , mate-

rial properties D are given and are typically isotropic,

and point and distance queries are evaluated against the

given boundary representation of S .

Figure 12: Integration grid shown overlaid on a stack of as-

manufactured slices of the torus (left), and superimposed on the nom-

inal solid model (right)

We now apply the same query-based procedure to as-

manufactured model M that is represented implicitly by

a stack of slices per Equation 8 (also see Figure 12). We

assume that the as-manufactured model already passed
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the geometric equivalence test with respect to S , there-

fore it is also reasonable to assume that the map h will

induce the mapping of boundary conditions Γu and Γt

onto the portions of boundary ∂M. The exact mapping

will depend on the type of boundary conditions. For ex-

ample, it may be reasonable to restrain all points of ∂M

that are within prescribed Euclidean distance from Γu;

but the loads applied to Γt may be applied in a work-

equivalent sense only to some portions of ∂M because

some surface points of M may not be accessible. For

structural simulation under gravity, this mapping is par-

ticularly simple, since Γt = ∅ and Γu maps to the bottom

surface of the lowest slice in representation of M.

The only other required changes in the structural sim-

ulation procedure are representation specific implemen-

tation of point membership test qp and distance compu-

tation dp. Both are straightforward, but more efficient

implementations are possible. For example, we observe

that volumetric integration over thickened slices may be

performed more accurately and efficiently by integrat-

ing of the planar slices and simply multiplying the thick-

ness. Integration over a 2D slice is particularly efficient

if the slice is already triangulated; and so on.

Figure 11 shows a comparison between structural

simulation performed on a nominal model with approx-

imately 1e6 triangles (left) and the same simulation

performed on the as-manufactured model (right) repre-

sented as a stack of the slices O(S ′
i
, kX). The ability

to make comparisons between such distinct representa-

tions is enabled by the query based approach to interop-

erable structural simulation.

While the shape of M may be close to that of S , its

material properties are likely to differ significantly. It is

well known that structural properties of materials pro-

duced by layered manufacturing are usually orthotropic

and are substantially weaker in the build direction[3]

due to incomplete inter-layer bonding. Figure 13 shows

displacement results of query-based simulation on as-

manufactured part representations, taking into account

complete as-manufactured geometry and material prop-

erties. In Figure 13 the rear row of mammoths assumes

a 0.8 mm nozzle and therefore contains fewer details

than the front row modeled using a 0.1 mm nozzle.

From left to right, the material properties are isotropic

injection molded ABS (E=2300 MPa), averaged iso-

tropic as-printed ABS (E=1370 MPa), and homoge-

nized orthotropic ABS from as-printed ABS taking into

account the build direction with a [0 90 +45 -45] fill

pattern (E1=1391 MPa, E2=1653 MPa, E3=1073 MPa)

[5]. The model using the large nozzle and averaged

ABS exhibits the greatest deflection due to low material

stiffness and reduced geometric cross-section. Taking

into account the material orthotropy and a fine nozzle

yields 40% less deflection (front row, right column).

4. Conclusions

Experimental evidence has shown that as-

manufactured models differ both in geometry/topology

as well as material properties from nominal design.

We have shown that as-manufactured parts in additive

manufacturing may be efficiently represented using

convolution methods; such models may be used di-

rectly in downstream applications, such as analysis and

simulations using query-based interoperable solutions.

Specifically, the translational layered process may be

modeled using convolution to create a variational class

of as-manufactured models that may be parameterized

by overlap volume, and further demonstrated that

convolution can be used to characterize controller

uncertainty in the shape of the final model. The

proposed class of as-manufactured models captures

geometric and topological deviations from the nominal

model and can be used to evaluate manufacturing

plans. Efficient algorithms to compute as-manufactured

models, particularly as a stack of slices defined in

terms of the morphological opening, have been directly

used as the input to a query based structural simulation

routine.

Such an interoperable solution to structural simu-

lation is not possible using conventional FEA which

would require explicitly representing as-manufactured

geometry as a faceted boundary representation with or-

ders of magnitude more primitives than the nominal

model. The query-based approach replaces the need

for meshing by run-time queries that allow evaluat-

ing the weak form of Equation 9 on variety of geo-

metric representations without sacrificing rigor or ac-

curacy of the solution. The query based solution also

demonstrates the simplicity of incorporating anisotropic

material properties which are used to evaluate direc-

tion dependent as-manufactured models. Construct-

ing an optimized manufacturing process plan is be-

yond the scope of this paper, but the proposed repre-

sentation of as-manufactured models helps in captur-

ing important structural differences between nominal

and as-manufactured parts that could be used within a

manufacturing planning engine. We aim to use these

representations and query based approaches to study a

broader notion of equivalence between designed and as-

manufactured parts for product lifecycle applications in-

volving additive manufacturing.
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Figure 13: Structural simulation of as-manufactured models using 0.8 mm nozzle (back row) and 0.1 mm nozzle (front row). Left to right, the

assumed material models are: isotropic injection molded ABS (E=2300 MPa), averaged iso-tropic as-printed ABS (E=1370 MPa), and homoge-

nized orthotropic ABS from as-printed ABS taking into account the build direction with a [0 90 +45 -45] fill pattern (E1=1391 MPa, E2=1653

MPa, E3=1073 MPa) [5]. The color scale limits are identical across all models. As-manufactured models are represented as a stack of slices per

Equation 8
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A. Properties of convolution

From the correspondence between mathematical

morphology [24, 11] and convolution as described

in [18, 21], we recall the important properties and

definitions used in this paper.

1. The convolution of two functions in L1(Rn) is de-

fined as

( f ⋆ g)(x) =

∫
f (y)g(x − y)dy (12)

2. For P ⊂ R
n define the indicator function

1P(x) =

{
1 if x ∈ P

0 otherwise
(13)

1̃P = 1P−1 (14)

3. For any non-empty A, B ⊂ R
n

µ(A ∩∗ xB) = (1A ⋆ 1̃B)(x) (15)

Equation 15 expresses the volume of the (regular-

ized) set intersection A ∩∗ xB in terms of the con-

volution (1A ⋆ 1̃B)(x) of indicator functions [18],

which is used to derive the correspondence with

mathematical morphology.

4. For a function f defined on R
n and α > ǫ, define

the sub-level set

Vα( f ) = {x ∈ Rn | f (x) > α} (16)

5. The dual relationship of Minkowski sum and dif-

ference through de Morgan’s laws is then captured

in terms of sub-level sets of the convolution

A ⊕ B = V0(1A ⋆ 1B) (17)

A ⊖ B = Vµ(B)−ǫ(1A ⋆ 1B) (18)
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