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Abstract

A transfer line is a tandem production system, i.e., a

series of machines separated by buffers. Material flows from

outside the system to the first machine, then to the first buf-

fer, then to the second machine, the second buffer, and so forth.
In some earlier models, buffers are finite, machines are unreli-
able and the times that parts spend being processed at machines

are equal at all machines. In this paper, a method is provided

to extend a decomposition method to large systems in which ma-

chines are allowed to take different lengths of time performing
operations on parts. Numerical and simulation results are pro-
vided.
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1 Introduction

Purpose of paper

Consider the tandem production system of Figure 1, a

series of machines separated by buffers. Material flows from
outside the system to the first machine, then to the first buf-

fer, then to the second machine, the second buffer, and so forth.

Finally it reaches the last machine and exits the system. It is

important to know the production rate of such a system as well as

the average amount of material in each of the buffers.

In Buzacott (1967a and b) and Gershwin and Schick (1983)

a model is described in which buffers are finite, machines are
unreliable (in that they fail and are repaired at random times),

and the times that parts spend being processed at machines are

equal at all machines. An approximate analysis method for long

lines is provided in Gershwin [1983) which is based on a decom-

position technique. In this paper, a method is provided to

extend this method to systems in which machines are allowed to

take different lengths of time performing operations on parts.

This method is not a new algorithm; rather it is a way of

representing machines of different speeds. This new representa-

tion allows the use of the earlier decomposition algorithm for

this larger class of systems.

Review of previous work

The purpose of this paper is to extend the transfer line

model introduced by Buzacott (1967a and b) and analyzed by Ger-

shwin and Schick (1983) and Gershwin (1983) to transfer lines
with machines that have different speeds. Other models have

been developed, such as those of Buzacott (1972), Gershwin and

Berman [1981), Gershwin and Schick (1980), and Wijngaard (1971).
However, they have only been successfully applied to two-machine
lines.

In this paper, a new representation of a machine is

described. A single machine is represented as two of Buzacott's

machines, separated by a buffer of capacity 0. One of the ma-

chines captures the unreliability behavior of the original ma-
chine; the other represents the processing time. The advantage

of this representation is that it can make use of the efficient

decomposition algorithm of Gershwin [1983).

The fundamental idea behind this work is the recognition
that there are two time scales operating in this system: the part

production process, and the failure/repair process. [The emp-

tying and filling of buffers operates at the same time scale as
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the failure/repair process.) This permits convenient approxima-

tions. Because many parts are produced between failure and
repair events, the details of the part production process are not
important. Consequently, this approach may be applicable to a

wide variety of production (service) processes.

Other approximation techniques for machines with different

speeds are due to Altiok (1982), Suri and Diehl (1983), and
Takahashi et al. (1980). These methods do not explicitly recog-

nize this time scale decomposition.

Outline

Section 2 describes the two-machine representation of a

single machine with arbitrary processing time. In Section 3,

numerical results are presented. Exact analyses of two-machine
lines with exponentially distributed processing times are com-

pared with the approximate results provided by the present repre-

sentation and the decomposition algorithm. The close agreement

indicates that for the class of systems studied, certain details

of the models are not important, and that the approximations used
here are adequate for many purposes.

Simulation results and comparisons for longer systems are
presented in Section 4. Again the close agreement is encoura-

ging. Section 5 concludes.

This paper does not provide analytic proof that the

method works. It does not give guaranteed bounds on the perfor-

mance measures of interest. Instead it provides intuitive justi-

fication, suggestive evidence, and hope that such results can be
found.
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2 Method

The Buzacott Model

The most basic model of a transfer line is that of Buza-
cott (1967a, 1967b). This model captures the disruptions of

otherwise orderly flow due to random machine failures and

repairs, and it demonstrates the effects of finite buffers.

In Buzacott's model of a transfer line, workpieces move
from station to station at fixed time intervals. The machines at
the stations are assumed to have fixed, equal processing times,
and it is convenient to call that processing time the time unit.
Each machine can be in two states: operational and under

repair (or failed). In addition, a machine can be

blocked or starved, i.e. the buffer immediately down-
stream can be full or the buffer upstream can be empty, respec-
tively. When a machine is blocked or starved, it cannot operate,
even if it is operational. Therefore, it cannot fail.

In the present version, operational machines have a fixed
probability of failing during every time unit the are operating,
and a fixed probability of repair during every time unit they are
in the failed state.

Let 01i indicate the repair state of machine i. If

0!i = 1, the machine is operational; if X0i 0, it is

under repair. When machine i is under repair, it has

probability r i of becoming operational during each time unit.

That is,

prob [ oti(t+l)=l I O(t)=O ] ri.

The repair process is geometric with mean 1/ri .

When machine i is operational and neither starved nor

blocked, it has probability pi of failing. That is,

prob [ oa[t+l)=O rnl(t)>0olt 1(t)=l,i nr[t)<N ] = Pi'

Measured in working time (i.e., during which the machine
is neither starved nor blocked], the failure process is geometric

with mean /pi.

The amount of material in a buffer at any time is n,
O 5 n < N. A buffer gains or loses at most one piece
during a time unit. One piece is inserted into the buffer if the
upstream machine is operational and neither starved nor blocked.

One piece is removed if the downstream machine is operational and
neither starved nor blocked. A buffer may fill up only after an
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operation is complete. Work on the next piece may not begin

until the buffer is no longer full.

By convention, repairs and failures are assumed to occur at

the beginnings of time units, and changes in buffer levels take
place at the end of the time units. (Buzacott followed the

opposite convention.) When a failure takes place, the part is

considered not to have been affected by the partial operation,

and the next operation after the repair has the same probability

of failure as any other operation. When Machines i and i+l are
neither starved nor blocked,

nirt+l) = ni[t) + ai(t+l) - ai+,[t+l).

The state of the system is

s = (nl1 .... nkk-l' tYl' *... IkOl

P e r f o r mance Measures

The production rate [throughput, flow rate, or line

efficiency) of machine Mi, in parts per time unit, is

E i = prob [ oli = 1, ni_ 1 > O, ni < Ni ).

Flow is conserved, so all E i are equal. The average

level of buffer i is

ni = E n i prob (Is)

Two-Machine Representation

Figure 2 displays a machine with repair rate r (repairs/

time unit), failure rate p (failures/time unit) and processing

rate 1 ([parts/time unit). In this paper we assume that r and p

are very small compared with t. That is, during the time be-
tween failures and repairs, there is enough time for many part

operations to take place. This assumption is required because we
represent the operation process by a different random process.

If many operations take place between repair and failure events,
the details of the operation process are less important than

those of the repair and failure processes.

Figure 2 also shows a two-machine line segment. In this
segment, both machines correspond to Buzacott's two-parameter
model, so they have unit processing rate. That is, the system
operates on discrete parts, and each machine requires the same

amount of time for its operation. We use this time as the time
unit.
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The machines have repair rates r I and r 2 , respective-

ly. More precisely, the probability of repair of one of these

machines during a unit time interval in which it is down is rl

or r 2 . They have failure rates P1 and P2. The objective is

to choose r 1, pi, r 2 , P2 so that the pair of two-parame-

ter machines emulates the single three-parameter machine.

The order is not important, but we assume that the first

machine represents the processing behavior of the original ma-

chine and that the second represents its repair-failure behavior.

The first machine fails and gets repaired very quickly, and the

second fails and gets repaired just as frequently as the original

machine.

To determine the parameters of the first machine, let T

be a number on the order of 1/p or 1/r (whichever is smaller).

During a period of length T, the expected number of parts the

first machine produces is

rl
1-T

and we choose rl and P1 so that this is equal to [IT. If

both rl and P1 are large compared to 1/T (i.e., if repairs

and failures of the first machine are frequent), then the actual

number of these events will be close to the expected value. This

is desirable because in the original machine, the expected number

of parts produced is equal to ST. In fact the actual number of

parts produced by the original machine is close to VIT because

many parts are produced in an interval of length T.

The parameters of the second machine are obtained by

observing that it is responsible for long-term disruptions of

flow. Its parameters are selected so that the mean time between

long-term failures of the two-machine system and mean time to

repair the long-term failures are equal to the corresponding

quantities of the single original machine.

Note that since there are only three parameters in that

machine, there can be no more than three independent equations

for the four parameters of the pair of machines.

The relationship between the original three-parameter

machine and the pair of two-parameter machines is determined by

the following considerations:
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1. When either of the two-parameter machines is stopped, the

line consisting of the pair of them is stopped.

2. The average times between repair and failure and between

failure and repair in the two systems should be the same.

3. The production rates of the two systems should be the same.

Machine 1 parameters

Assume that the time unit is such that 11 is a dimension-
less quantity that satisfies

0 < . < 1.

While the three-parameter machine is operational, it

produces material at rate pg. While the second machine of the
two-parameter pair is operational, the first machine--and thus

the two-machine system--produces material at rate

r1

rl+P1

Note that this result is based on the assumption that the first

machine undergoes many failures and repairs while the second

machine is up. Then, since Machine 1 represents the processing

time [1, we can choose

rl+p = 1 [(1)

Repair rate rz

Machine 2 represents the repair-failure behavior of the
original machine. The parameters of Machine 2 are chosen so that

it fails as frequently as the original machine, and takes just as
long, on the average, to repair. To determine the repair rate,
we have

r2 = r. (2)

The corresponding statement about the failure rate is not
valid. This is because p2 is the rate that Machine 2 fails

while it is not starved or blocked. However, it is frequently

starved by the first machine, so p2 • p. To calculate P2 ,

we must adjust it for the time that Machine I is down. Equation
(4) provides this adjustment.
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Flow rate equality

The rate of flow through the original machine is

[tr
r+p-

The rate of flow through the pair of two-parameter machines is

[Buzacott, 1967b)

1 + 1 + -1
rl r2

Consequently,

[~~ ~ ~~~~L ~~~~~r 1 ~~~(3)
r + p Pl P2rp p+ + 

r, r2

Failure rate p2rate

Equations (1), (t2, (3] together imply that

p
P2 = p (4)

This is satisfying because the only time that Machine 2

may fail is when Machine 1 is operational, which is a fraction 11

of the time. Thus, the probability of a failure of the second

machine is p2 1, which should be p, the failure rate of the

original three-parameter machine.

Magnitude condition: rl and Pl large

There are now three equations ((1), (2), and (4)) for

four parameters. A fourth condition comes from the assumption

that Machine 1 fails and is repaired much more often than Machine
2. Thus

rl, P1 >> r2 , P2 . S)

Numerical experience (reported in Section 3) seems to

indicate that a more precise condition is not necessary. That

is, as long as the three equations and condition (5) are satis-

fied, the precise values of r1 and p1 are not important.

The justification described below implies that if rl

and Pl are too small, the representation loses accuracy. How-

ever, numerical experience does not bear this out. The relation-

ship between these and other parameters and the accuracy of this

technique is a topic for future investigation.
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Justif ication

Figure 3 shows a typical buffer level trajectory for a
buffer following the single three-parameter machine [solid line),
and two corresponding trajectories for a buffer following the
two-machine system of Figure 2. The solid line represents a
scenario in which the buffer is empty at t=0, the machine is
operational at t=0, and later the machine fails. The dashed

lines correspond to cases in which the buffer starts empty,
Machines 1 and 2 start operational, and Machine 2 later fails.
While Machine 2 is working, Machine 1 fails and is repaired many
times.

The two-machine trajectories have been drawn to stay
close to the one-machine trajectory. This is consistent with the

choice of the rl, P 1 r 2 , P2 parameters, which satisfy

[1)-(3).

The two two-machine scenarios differ in the values of

rl and p1 . The dashed line that stays closer to the solid

line, in which events occur more frequently, corresponds to

larger values of r 1 and pi.

Figure 3 demonstrates that it is possible to choose
parameters of the two-machine system so that trajectories of two-

machine systems are close to those of single machines.

THis figure was hand-drawn to illustrate this method; it
was not generated by a simulation. To simplify the picture,
Figure 3 has been drawn as though the machines are producing
material continuously (such as in Wijngaard's [1971) or Gershwin

and Schick's [1980) models). A more accurate picture for dis-
crete material produced in fixed time would have replaced the

sloped lines by regular staircases. Irregular staircases would
have been more appropriate for the exponential processing time

model of Gershwin and Berman [1981). As long as repairs and
failures are much less frequent the rate at which material is

produced, ie,

r, p << jI,

this distinction is not important.

There are two time scales operating in this class of
systems. The shorter time scale is that of part production, in

which events occur at frequency It. The longer is that of repair
and failure of machines and emptying and filling of buffers.

Events take place at much lower frequency: r, p, or [IN.
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As long as the difference between the time scales is
great, the details of the production process are not important.
This is because many short-time-scale events take place between
long-time-scale events. The law of large numbers implies that
the distribution of the number of short-time-scale events (ie,
the amount of material produced) between long-time-scale events
is approximately independent of the distribution of the time
between short-time-scale events.

A reviewer has pointed out that this cannot be taken to
extremes: if there are no failures, the distribution of produc-
tion times is clearly important. A careful multiple-time-scale
analysis is required to resolve this issue.

Procedure

To use this representation on a transfer line consisting of
three-parameter machines and finite buffers, use the following
procedure:

1. Change the time unit so that the largest 1t is exactly 1.
That is, divide all r's, p's, and 11's by the largest [1.

2. Replace each machine with [1 less than 1 by two machines whose
parameters satisfy (1), (2), (4).

3. Analyze the resulting system by an algorithm such as that of
Gershwin (1983).

4. Convert production rate back to the original time scale.
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3 Numerical Results

This section compares numerical results generated from

the exponential two-machine model of Gershwin and Berman (1981),

the continuous two-machine model of Gershwin and Schick (1980),
and the deterministic k-machine technique of Gershwin (1983).

The exponential and continuous results were produced by solving

the appropriate equations analytically; the deterministic model

results came from an approximation technique. The parameters of

the exponential and continuous models were the same; the parame-
ters of the deterministic model were derived from them by the

procedure of the previous section.

By deterministic model, we mean the discrete-time,
discrete-material model described in Section 2.

Exponential Model

This is a continuous-time, discrete-material model in
which all three random processes of a machine are exponentially

distributed. The rates of failure, repair, and production are

pi, ri, and .li ,, respectively. An analytic solution for

two-machine lines is presented in Gershwin and Berman (1981), and

a decomposition approximation for longer lines appears in Choong

and Gershwin [1985).

Continuous Model

This is a continuous-time, continuous-material model in
which the production process is deterministic and the failure and

repair processes are exponentially distributed. During an inter-

val of length 6t in which machine i is operational and neither

starved nor blocked, the amount of material that is produced is

tiat. The rates of failure and repair are Pi and r i ,

respectively. An analytic solution for two-machine lines is

presented in Gershwin and Schick (1980).

Time Scales and Differences Among Models

While the first machine of these two-machine examples is

represented by a pair of machines in accordance with the proce-

dure of the previous section, the second is replaced by a Buza-

cott-type machine. This is justified by the difference in magni-

tude between processing times and failure and repair times.

First, it should be noted that the times between succes-

sive failure/repair events is either exponentially or geometric-
ally distributed, and that these distributions are close approxi-

mations of one another. Second, in discrete-material models,

many operations take place between successive failure/repair
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events. Consequently, the variance of the processing time is not

important, and the amount of material produced between these

events is nearly the same in all the models.

Note that this implies that the exponential and contin-

uous models are good approximations of one another when ri<<[i

and pi<<[i for all i and the buffers are large. These

models can only be used as approximations for the deterministic
model when [ i = 1. A comparison among all three models of

two-machine lines is shown in the Appendix.

Table 1. Case 1-1

Type rl Pi [1 1 N r2 p2 [2 Production Rate

exponential .01 .005 .75 2 .006 .005 1 .3071
continuous .01 .005 .75 2 .006 .005 1 .3551

rl P1 N1 r2 P2 N2 r3 P3 Production Rate

deterministic .3 .1 0 .01 .00667 2 .006 .005 .3529
deterministic .6 .2 0 .01 .00667 2 .006 .005 .3S29

Table 2. Case 1-2

Type r1 P1 II N r 2 P2 12 Production Rate

exponential .01 .005 .75 3 .006 .005 1 .3261
continuous .01 .005 .75 3 .006 .005 1 .3561

rl P1 NI r2 P2 N2 r3 p3 Production Rate

deterministic .3 .1 0 .01 .00667 3 .006 .005 .3547
deterministic .6 .2 0 .01 .00667 3 .006 .005 .3547
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Table 3. Case 1-3

Type rl P1 11 N r 2 P2 Production Rate

exponential .01 .005 .75 5 .006 .005 1 .3428
continuous .01 .005 .75 5 .006 .005 1 .3581

rl PI N1 r2 P2 N2 r3 P3 Production Rate

deterministic .3 .1 0 .01 .00667 5 .006 .005 .3570
deterministic .6 .2 0 .01 .00667 5 .006 .005 .3571

Table 4. Case 1-4

Type rl P1 N r 2 P2 12 Production Rate

exponential .01 .005 .75 10 .006 .005 1 .3563
continuous .01 .005 .75 10 .006 .005 1 .3629

r1 P1 N1 r2 P2 N2 r 3 P3 Production Rate

deterministic .003 .001 0 .01 .006667 10 .006 .005 .3589

deterministic .006 .002 0 .01 .006667 10 .006 .005 .3592

deterministic .03 .01 0 .01 .006667 10 .006 .005 .3606

deterministic .06 .02 0 .01 .006667 10 .006 .005 .3613

deterministic .3 .1 0 .01 .006667 10 .006 .005 .3625

deterministic .6 .2 0 .01 .006667 10 .006 .005 .3628

The two sets of cases are similar except that in the

first, V1I is .75 (compared to 112 = 1.) and the second,

11I is .9. The cases with the smaller value of 11t are shown

in Tables 1 - 6; the cases with the larger values of U11 are in

Tables 6 - 12. In both sets of cases, the buffer sizes are in-
creased from 2 to 1000. Except for the exponential systems with

small buffers (in which 11/N is not small compared with 11), the

agreement among all sets of models is striking, and is adequate

for all practical engineering purposes. Note that in the deter-

ministic cases, the values of r I and P1 do not seem to be

important.
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Table 2. Case 1-2

Type rl P1 111 N r2 P2 V2 Production Rate

exponential .01 .005 .75 100 .006 .005 1 .4110
continuous .01 .005 .75 100 .006 .005 1 .4136

rl P1 N1 r 2 P2 N2 r3 P3 Production Rate

deterministic .003 .001 0 .01 .006667 100 .006 .005 .4028

deterministic .3 .1 0 .01 .006667 100 .006 .005 .4219

deterministic .6 .2 0 .01 .006667 100 .006 .005 .4229

As the buffer sizes grow, the agreement between the

exponential and continuous models improves, although the determi-

nistic model shows no clear trend. The effect of the change in

,1 on the accuracy is also not evident.

A surprising observation is that the accuracy does not

fall off as rl and p1 decrease in the deterministic approxi-

mations. The justification in Section 2 requires that these

quantities be large, but evidently the results are not sensitive

to their magnitudes. A careful analysis is clearly required.

Table 6. Case 1-6

Type rl P I111 N r2 P2 112 Production Rate

exponential .01 .005 .75 1000 .006 .005 1 .4901
continuous .01 .005 .75 1000 .006 .005 1 .4904

rl P1 N1 r2 P2 N2 r 3 P. Production Rate

deterministic .003 .001 0 .01 .006667 1000 .006 .005 .4859

deterministic .3 .1 0 .01 .006667 1000 .006 .005 .4943

deterministic .6 .2 0 .01 .006667 1000 .006 .005 .4946
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Table 7. Case 2-1

Type rl P1 11 N r2 P 12 Production Rate

exponential .01 .005 .9 2 .006 .005 1 .3368
continuous .01 .005 .9 2 .006 .005 1 .4022

rl P1 N1 r 2 P2 N2 r3 P3 Production Rate

deterministic .9 .1 0 .01 .00S5555 2 .006 .005 .3999
deterministic .45 .05 0 .01 .005555 2 .006 .005 .3999

Table 8. Case 2-2

Type rl Pi 11 N r2 P2ll2 Production Rate

exponential .01 .005 .9 3 .006 .005 1 .3583
continuous .01 .005 .9 3 .006 .005 1 .4033

rl Pl N1 r 2 P2 N2 r3 p3 Production Rate

deterministic .9 .1 0 .01 .005555 3 .006 .005 .4017
deterministic .45 .05 0 .01 .005555 3 .006 .005 .4017

Table 9. Case 2-3

Type rl P1 1 N r 2 [12 Production Rate

exponential .01 .005 .9 5 .006 .005 1 .3781
continuous .01 .005 .9 5 .006 .005 1 .4053

rl Pl N1 r 2 P2 N2 r3 P3 Production Rate

deterministic .9 .1 0 .01 .005555 5 .006 .005 .4042
deterministic .45 .05 0 .01 .005555 5 .006 .005 .4041
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Table 10. Case 2-4

Type rl p1 II, N r 2 P2 112 Production Rate

exponential .01 .005 .9 10 .006 .005 1 .3959

continuous .01 .005 .9 10 .006 .005 1 .4099

rl Pl NI r2 P2 N2 r3 P3 Production Rate

deterministic .9 .1 0 .01 .005555 10 .006 .005 .4102

deterministic .45 .05 0 .01 .005555 10 .006 .005 .4098

Table 11. Case 2-5

Type rl P1 C11 N r2 P2 1l2 Production Rate

exponential .01 .005 .9 100 .006 .005 1 .4534

continuous .01 .005 .9 100 .006 .005 1 .4575

rl Pl N1 r2 P2 N2 r3 P3 Production Rate

deterministic .9 .1 0 .01 .005555 100 .006 .005 .4722

deterministic .45 .05 0 .01 .005555 100 .006 .005 .4715

Table 12. Case 2-6

Type rl Pi 1 N r 2 P2 [12 Production Rate

exponential .01 .005 .9 1000 .006 .005 1 .5354

continuous .01 .005 .9 1000 .006 .005 1 .5359

rl P1 N1 r2 P2 N2 r3 P3 Production Rate

deterministic .9 .1 0 .01 .005555 1000 .006 .005 .5417

deterministic .45 .05 0 .01 .005555 1000 .006 .005 .5413
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Table 13 shows how the accuracy of the method is affected

by the relationship among r and p and [L. When r1 and P1 of

the exponential and continuous lines are small [Case 1) the three

models yield similar results. As they increase, the differences

among the models grow. Note that the continuous and determinis-

tic models remain closer than they are to the exponential.

Table 13. Variation of r and p.

Case Type r, P1i l 1 N r 2 P2 l12 Production Rate

1 exponential .01 .005 .9 10 .006 .005 1 .3959

2 exponential .1 .05 .9 10 .06 .05 1 .4297

3 exponential .2 .1 .9 10 .12 .1 1 .4511

4 exponential .4 .2 .9 10 .24 .2 1 .4731

1 continuous .01 .005 .9 10 .006 .005 1 .4099
2 continuous .1 .05 .9 10 .06 .05 1 .4575
3 continuous .2 .1 .9 10 .12 .1 1 .4847
4 continuous .4 .2 .9 10 .24 .2 1 .5114

r, P1 N I r2 P2 N2 r3 P3 Production Rate

1 deterministic .9 .1 0 .01 .005555 10 .006 .005 .4102
2 deterministic .9 .1 0 .1 .055555 10 .006 .005 .4644
3 deterministic .9 .1 0 .2 .111111 10 .006 .005 .4878
4 deterministic .9 .1 0 .4 .222222 10 .006 .005 .5170
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4 Simulation results

This section presents a set of simulation results that

demonstrate how well this method works for larger systems. Table

14 contains the parameters of two lines whose performances are

compared. Both lines are deterministic; for each machine, the

repair and failure distributions are distributed geometrically

and the processing time is constant. (The distributions of these
times in actual systems varies, depending on the whether opera-

tions are manual or automated, whether there is one or more

operator per machine, whether machines are repaired on-line, or

replaced by spares and repaired off-line, and other consider-

ations.) Line 1 has one machine (Machine 3) whose processing

rate (pt) differs from those of the others. In Line 2, that

machine has been transformed into machines 3 and 4 according to

the procedure of Section 2.

Table 14. Parameters for Simulation Runs

Line 1 Line 2

Five Machines Six Machines

i ri Pi Ji Ni i ri Pi Ni Ni

1 .05 .07 1 10
1 .05 .07 1 10 2 .05 07 1 10

2 .05 .07 1 10 3 .3 .3 1 0
3 .2 .05 .5 10 4 .2 1. 1 10

4 .05 .07 1 10 5 .05 .07 1 10

S .05 .07 1 6 .05 .07 1

Table 15 contains the results of a set of simulation runs

and approximate analytic evaluations (using the method of Ger-

shwin, 1983). Production rates and corresponding average buffer

levels (ii) are indicated. (Buffers 4 and S of Line 2

correspond to buffers 3 and 4 of Line 1.) Both lines were simu-

lated, but only Line 2 could be evaluated analytically. (Note

that buffer 3 in the simulation of Line 2 had a capacity of 2,

not 0, because that was the minimum buffer size allowed by the

simulation program.)
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All simulations were run for 100,000 time units (ie, the
time required for Machine 1, while not starved or blocked, to do
100,000 operations). The two simulations of Line 1 informally
indicate the magnitude of the variation of performance measures.
This is also demonstrated by a comparison of the simulation of
Line 2 with the decomposition approximation results.

The representation was motivated by the availabilty of an
approximation technique for analyzing a certain class of systems.
However, it only depends on different systems behaving in a
closely related way, and not at all on the approximation tech-

nique. Thus, we compare a simulation of Line 2 with the simula-
tions of Line 1.

The closeness of the simulations of Line 1 to the simula-
tion and approximate analysis of Line 2 indicate that the repre-
sentation technique works well.

Table 15. Results

P roductionRun Rate 1 n2 n3 (n4 ) n4 [n5 )

Line 1
simulation 1 .2308 6.742 5.757 4.270 2.977

simulation 2 .2295 6.711 5.644 4.129 3.159simulation 2

Line 2
simulation .2286 6.683 5.753 3.960 3.183simulation

Line 2
approximation .2306 7.175 6.146 4.580 3.065
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Similar results are demonstrated for another case in

Tables 16 and 17.

Table 16. Parameters for Simulation Runs

Line 3 Line 4

Six Machines Nine Machines

i ri Pi Wi iN i ri pi li Ni

1 .05 .07 1 10

1 .05 .07 1 3 2 1 10
3 .2 .1 I 10

2 .2 .05 .5 10 4 .05 .07 1 10

3 .05 .07 1 10 5 .3 .3 1 0

4 .2 .05 . 10 6 .2 .1 1 10
7 .05 .07 1 10

.05 .07 1 10 8 .3 .3 1 0
6 .2 .s05 .5 9 .2 1. 1

Table 17. Results

Production -
Rate nil f2 [(i 3) i3 (ii 4 ) fi4 (ii ] fi5 [(i7 )

Line 3
simulatio 2480 6.786 5.130 5.011 3.517 2.877

Line 3
simulation 2 .2444 6.729 5.081 4.785 3.200 2.720simulation 2

Line 4
simulation .2344 6.993 5.006 4.883 3.261 3.008simulation 1

Line 4
simulation 2 .2424 6.966 5.025 5.168 3.272 3.311

simulation 2 .2

Line 2
approximation .2550 6.935 5.326 5.255 3.645 3.340
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5 Conclusion

A new representation technique for modeling transfer lines

has been discussed. The technique was devised to facilitate the

analysis of lines with machines that have different processing

rates. Such machines are represented by pairs of machines with

equal processing rates, which allows the use of such analysis

tools as that of Gershwin [1983). Numerical and simulation expe-

rionoe suggest that the method ig effective, although analytic

results on bounds of the approximation are not yet available.
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Appendix: Comparisons Among Models

In this appendix, we compare the behavior of the determi-
nistic, exponential, and continuous two-machine models. A set of

cases was evaluated numerically, in which

r, = .01

P1 = .005

r2 = .006

P2= .005

and where N ranges from 2 to 1000. Production rate results are
in Table A.1. Average buffer levels appear in Table A.2.

Note how the three models are not close when N is small,
but that production rates and buffer levels are nearly indistin-

guishable when N is 1000.

Table A.1 Production Rates Table A.2 Average Buffer Levels

N Deterministic Exponential Continuous N Deterministic Exponential Continuous

2 .4003 .3534 .4300 2 1.200 1.118 1.144

3 .4296 .3760 .4308 3 1.715 1.688 1.719

5 .4311 .3969 .4322 5 2.862 2.831 2.869

10 .4346 .4159 .4357 10 5.746 5.695 5.761

100 .4785 .4731 .4788 100 61.04 60.12 61.15

1000 .5431 .5428 .5431 1000 805.9 798.0 805.6
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Figure 1. Transfer Line
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Buffer
Level

Figure 3. Justification for Representation


