
Representation and Control in IxTeT, a Temporal Planner

Malik Ghallab Herv~ Laruelle
LAAS-CNRS

7, avenue du Colonel-Roche
31077 Toulouse Cedex - France
maiik@laas.fr laruelle@laas.fr

Abstract

This paper presents a temporal planner, called IxTeT.
It focuses on the representation and control issues,
arguing for a compromise between the expressiveness
and the ei~ciency of the search. The representation re-
lies on a point-based reified logic, associated to mldti-
valued domain attributes. Hieraxchical planning oper-
ators ot~er an expressive description, with parallelism,
durations, effects and conditions at various moments
of the action. Time in the input scenario enables to
take into account predicted forthcoming events and
to plan in a dynamic world. A compilation procedure
checks the consistency of the operators specified by the
user. The control relies on the use of causal-links, A,
algorithm, and an extended least-commitment strat-
egy. It uses two important procedures, called C~feasi-
bility" and "satisfiability =, dealing respectively with
goal decomposition and conflict resolution:

Introduction

This paper describes a planning system, called IxTeT,
which is intended to be a task-level planner for a robot.
We consider a robot as a programmable machine. Its
planning system relies as much as possible on specific
representations and modules. But at the task-level, it
is also a compromise between what is explicitly given
by the programmer and what is found by the machine,
at preprocessing time and on-line. This trade-off re-
quires a balance between the expressiveness of the rep-
resentation and the efficiency of the on-line domain-
specific and general search algorithms used.

In IxTeT time is specifically represented and dealt
with, in planning operators and in domain scensrii,
from which planning starts. Time in planning op-
erators is needed to generalize partial order to con-
current action plans, and to express actions with ef-
fects and conditions occuring at various moments of
their duration. Time in domain scenarii enables to
take into account predicted forthcoming events and to
plan in a dynamic world. The knowledge represen-
tation in IxTeT has other interesting features: multi-
valued domain attributes temporally qualified into in-
stantaneous events and persistent assertions; an ontol-
ogy, relevant for planning, which classifies attributes

as rigid or flezible, contingent or confrollable; a hier-
archy of tasks as planning operators; constraints on
domain variables handled specifically. Preprocessing
techniques are extensively used in Ix’reT at compile-
time to check planning operators and input scenarii
for consistency and to translate them into more ex-
plicit and efficient representations. Causal links orga-
nize the search in the space of partial plans which is
controlled by efficient search algorithms and carefully
chosen heuristics.

Some of these IxTeT features are original, others
are borrowed from the most advanced contributions to
planning. The state of the art is indeed fairly mature.
The algorithmic bases of planning have been well clar-
ified in [3land [14]. Work in deductive planning has
shed light on the difficulty of tackling issues such as
the ramification and qualification problems, and rea-
soning about change with uncomplete information [2]
[4]. Temporal aspects in planning have been worked
on by numerous authors along different lines [17] [6] [1]
[16]. But there are very few systems, like O-PLAN[5]
and SIPE[19], that aim at integrating into an effective
compromise powerful representation and efficient algo-
rithms. The ambition of IxTeT is to be one of those as
a temporal planner.

The Timelogic temporal planner [1] relies on the in-
terval algebra, as does TLP [16], whereas for complex-
ity reasons IxTeT uses the time-point and restricted
interval algebra. The TMM of FOB, BIN[6] also uses
time-points as primitives, but the approach of IxTeT
for managing the network of temporal constraints is
more efficient. Our representation for planning opera-
tors appears to be more effective than that of Timelogic
for expressing complex tasks and for simplifying plan-
ning through programming. Another planner, TRIP-
TIC [10], uses temporal tasks described by intervals
without domain variables. Some of the above sys-
tems propose to integrate powerful constructs, such as
a truth maintenance module for handling persistence
[7], that we have not retained in IxTeT because of their
computational cost.

The rest of the paper describes the proposed repre-
sentation (section 2), then the control implemented

GHALLAB 61

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

IxTeT (section 7. Acomplex example il lustrates th e
performances of the system.

Representation

Formalism
Time For algorithmic complexity reasons our time-
map manager relies on time-points as the elementary
primitives [8]. We consider time as a linearly ordered
discrete set of instants. Intervals and relations of the
restricted interval algebra, equivalent to the time-point
algebra [18] can also be represented at the user level.
They are translated internally into time-point con-
straints (we will not develop that issue here). We can
handle the usual symbolic constraints of the time-
point algebra (i.e. before, simultaneous, after and their
disjunctions), as well as numerical constraints. The
later are expressed as pairs of real numbers [I-, I+]
corresponding to lower bounds and upper bounds on
the temporal distance between two points. Disjunc-
tions of such constraints are not allowed. IxTeT main-
tains the consistency of the time-map through two sep-
arate networks for the two types of constraints. Al-
gorithms have been fine-tuned for the specific needs
of a planner, where there are usually fewer numerical
constraints than that symbolic constraints. The later
can be maintained with inexpensive linear the average
complexity procedures [8].

Domain Attributes The world is described by a set
of multi-valued domain attributes. Each attribute
is a k-ary mapping from a finite domain into a finite
range; both sets are explicitly declared. Multi-valued
attributes are more expressive than binary relations:
domain constraints such as the non ubiquity of objects
are naturally handled by mapping over unique values.
Attributes belong to the following ontology:

¯ rigid attributes (or atemporal): who~e value does
not change over times, they express a structural re-
lationship between their arguments, e.g.
Is-key-of(key} e {doorl, doors,...}.

¯ flexible attributes (or fluents), whose vahw may
change; they are either

- controllable attributes : their change of value
can be planned for, but thcy may also change inde-
pendently of the planning system,
e.g. Position(object) G {room1, room,. }, or

- contingent attributes : their change is not
controlled by the planner , e.g.
Sun-light(location) E {day, night}.

Expected changes in flexible attributes, contingent
as well as controllable, that may affect the planned ac-
tivity are assumed to be known and given as input.
We restrict ourselves to flexible attributes that are ho-
mogeneous, or "liquid" in the sense of [15], i.e. whose
persistent value over an interval is inherited over subin-
tervals (upward and downward}. We do not consider
continuous change or processes.

62 REVIEWED PAPERS

Events and Assertions We rely on a reified
logic formalism [15] where fiuents are temporally
qualified by predicates such as Hold and Event.
Hold(art(z1,...) :v, (tl.t2)) asserts the persistence of
the value of attribute att(zl,...) to v, Vt :tl _< t < t2.
Event(art(z1,...) : (vl.v2), states that an instanta-
neous change of value of att(zl) from vl to v2 took
place at time t. By definition the value at time t is v2;
this avoids the problem of undefined value at the tran-
sition point. The formal definition of the semantics of
Hold is easily given with respect to an interpretation
and a meaning function. This function sets a unique
value at a given time point to each possible instance of
each attribute. Predicate Event can be defined by:

de]
Event(art(z1): (T)1 .l:2) , t)

3t~Bt2 : (h < t < t2) A fIold(att(z~,...) : vl,(tl.t))
^Hold(art(z1,...) : v2, (t.t2)) ^ (vl :fi

Literals in our representation are :

¯ temporal propositions: Event or Hold predicates
qualifying flexible attributes over domain constants
and variables, through temporal constants and vari-
ables,

¯ value predicate for rigid attributes over domain con-
stants and variables (noted att(xl,...) = v),

¯ unary and binary instantiation constraints over do-
main constants and variables, of the form (xi
Xj), (Zi ¢ Zj), or(zi fi nite subset), an

¯ temporal constraints, symbolic (time-point and/or
restricted interval algebra relations) or tmmerical,
over temporal constants and variables.

All variables are universally quantified. Conjunc-
tions of such literals are called indexed time tables
(acronym for IxTeT). In such a table, temporal con-
straints are gathered into the time-map; instantiation
constraints into a variable binding network, which
also manages rigid attributes. In this later network,
equality constraints are propagated by transitive clo-
sure; the other constraints are propagated by an arc-
consistency procedure. A temporal or instantiation
constraint is said to be necessary in an IxTeT if it
is entailed by the explicit constraints in the table, it is
a possible constraint if the IxTeT does not entail its
opposite.

Planning Operators

A hierarchy of operators, called tasks, is defined. A
task is composed of: (i) a ,set of required conditions
described by assertions on controllable or contingent
attributes; (ii) a set ofsubtasks; (iii) a set of effects,
addition to those of the subtasks, described by events
on controllable attributes; (iv) a set of temporal and
instantiation constraints: binding variables of the task.
This flexible representation enables the description of
concurrent actions as well as combined and/or context

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

dependent effects into a task. It does not however al-
low recursion or other complex control structure into a
task. Notice that the planner itself is not hierarchical,
e.g. as ABTWEAK[12].

Tasks are deterministic operators, without ramifica-
tion effects. We assume that all attributes which are
not explicitly modified by a task or its subtask stay un-
changed after the application of this operator, unless
specified in the input scenario as a predicted change.

Task LOAD-ROBOT{
Hold(Position(?robot):?room, (?start. ?end));
Hold(Light(?room):lit, (?start. ?end));
Hold(Occup(?robot):busy, (?start. ?end);
Hold(Occup(?arm):busy, (?tl. ?t2);

Task GRASP(?obj, ?arm, ?room)(?start, ?t
Task UNGRASP(?obj, ?arm, ?robot)(?t2, Tend);

Event(Occup(?roboO:(free. busy), ?start):
Event(Occup(?mbot):(busy. free), Tend);

?tl _< ?t2;
Tend - ?start in [1.0,2.0];
?robot e ROBOTS:
Is_arm_off?arm): ?robot;}

Figure 1: Description of the task LOAD-ROBOT

A task LOAD-ROBOT is presented in figure 1.
It is important to notice the difference between our
required conditions and "preconditions" in the usual
state operators. For example, Event(Occup(?robot)
(free.busy), ?start) expresses an effect, the robot be-
ing busy, but it also implies the condition requiring
that the robot is free before the instant "?start". This
is only true for an event. An assertion may not need
to be established by an additional event. For example,
assertion Hold(Occup(?robot) : busy, (?start.?end)) is
established by an event of the task itself, and it only
ensures the persistence of the fact Occup(?robot) : busy
during the task interval.

Our representation improves over a temporal rep-
resentation where operators have a simple duration.
First, the possibilities of establishments are en-
larged. Indeed, a task can establish an assertion,
which persists only during the task, but not before
nor after. For example, if a task TI requires thc con-
dition Hold(Position(?obj) :?arm,(t.t’)), this condi-
tion can be established by the task LOAD-ROBOT,
through the effects defned in the subtasks GRASP
and UNGRASP. Task are breakable, unless a con-
trary constraint is specified: between its .subtasks the
planner may insert other subtasks. For example, if the
assertion Hoid(Occup(?arm) : taken,(?tl.?t2)) is re-
moved from the task LOAD-ROBOT, another task

may use the arm between the two subtasks. In some
cases such an insertion of other tasks may be needed
to make a task feasible.

Initial Plan ~init

Input data, noted 7~init, is a scenario which describes
the initial state, expected change in the world and re-
quired goals. We assume a complete information on
the value of attributes at the initial time point. Ex-
pected contingent events are inserted into 7~in~t. They
must be consistent, i.e., events on the same domain
attribute should he totally ordered with values com-
patible with this order. Variables are not allowed as
arguments of contingent attributes.

Finally, the user can specify some assertions and
events, temporally constrained, on controllable at-
tributes. Some of them, which stay "pending" and
need to be explained, are the goals of ~init. We assume
that no other change occurs on controllable attributes
except those given by the user and planned for.

Consistency Criterion

A partial plan ~ is possibly inconsistent if the same
attribute may take two different values at the same
time. In that case it contains conflicts that need to be
solved. A conflict is either:
(a) c=(Hold(att(zl,..., zk) : vl, (tl.

Event(att(yx,..., y~): (v2. v~), t2)),
such-that P does not contain one of the constraints
constr(,) = {(t2 < tx); (t2 = andvi = v2)

(t~ ~t2);(~l ¢ Yl);.-.;CZk ¢ Yk)}.
or

(b) (tl.tl)),
yk): tg)),

such-that ~ does not contain one of the constraints
constr(b) = {(t~ __~ tl); i ~ t2); (l I = I /2);

Each constraint of constr, named a resolver, if
added to the partial plan ~ solves the conflict. A
conflict is solvable if one of its resolver constraints is
consistent with the current constraints of 9. Hence:

Consistency Criterion: A partial plan ~ is con-
sistent iff:
(1) The temporal network is consistent,
(2) The variable bounding network is consistent, and
(3) Every conflict in ~ is solvable.

A temporal proposition is said explained if there is
an event establisher and if there is no event clobberer
between the establisher and the proposition. This last
property is naturally expressed in our representation.

Explained temporal propositions:
An assertion Hold(att(Zl,...,zk) : v,(t.t’)) or an
event Event(att(zl,...,zh) : (v.v’),t) explained
iff:
(1) there is an event establisher Event’(art(y1 Yt) :

GHALLAB 63

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

(v". ve0t), re,t), such-that necessarily (ves~’= v), (te~t
t) and (Yl = zO,.--,(Yk = zt); and
(2) there exists an assertion Hold(at~(xl,...,xk)
v, (test. t)) between the establisher and the proposition.

If a proposition in a plan 7) checks only part (I)
of the definition and the establishment constraints are
only possible, this proposition is said to be establish-
able. The unexplained propositions of the current par-
tim plan 7) constitute the subgoals of the plan to be
solved. A resolver of an unexplained proposition is
the list: (Event(att(yl,...) : (v".vest), t,st),
(v., = v), (tes, < t), =

Notice that the procedure which checks the consis-
tence of a partial plan runs in polynomial time (O(n3)).
However it is not complete since the variable bind-
ing network is checked by arc consistency. Indeed, a
complete constraint propagation in this network could
be more costly than the planning search, which will
precisely reduce the complexity of this propagation by
adding equality constraints (through establishments).
A complete propagation is performed at the end, in or-
der to ensure that the found plan is really a solution.

The compilation procedure

This procedure checks the consistency of the input data
and makes it more explicit into efficient data struc-
tures. It transforms each task and the initial plan into
an IxTeT structure. Elementary tasks, without sub-
tasks, are compiled at first. Then tasks at the level
just above are compiled, replacing subtasks with their
corresponding IxTeT. This procedure is repeated un-
til the top level of the tasks hierarchy. Only tasks at
the highest level of the hierarchy and those explicitly
specified by the programmer, are used by the planner.
The others are considered as a programming facility.

The consistency of the temporal network and the
variable binding network of each task and of the initial
plan are checked. According to the consistency crite-
rion, the compilation procedure then checks that each
conflict is solvable.

Finally, the compilation procedure marks the unex-
plained temporal propositions of each IxTeT. They de-
fine the set of subgoals to be established, in the initial
plan or in a task, if it is inserted in a partial plan.

The planner will take as input the IxTeT of the ini-
tial plan, and will add to it constraints or tasks. Each
partial plan is itself expressed by an lxTeT structure.

Control

Starting from the initial plan 7)init, the search of a
solution consists in solving incrementally the conflicts
and subgoals, by adding tasks, temporal constraints or
instantiation constraints. At each step of the search,
the consistency of the partial plan is checked. If it
is not consistent the planner backtracks. The search
stops when a solution plan is reached, i.e. a plan 7)
such that :

64 REVIEWED PAPERS

(i) all assertions and events are explained; and
(ii) no conflict remains in 7).

The search tree is controlled by a. near-admissible
algorithm At. This algorithm provides a trade-off be-
tween the efficiency of the search and the quality of
the found solution plan. Causal-links are used to
avoid a too redundant search. The control relies on
an extended least commitment strategy, which en-
ables to choose conflicts or subgoals that have the most
"constrained" resolvers, heuristically evaluated. Two
procedures are used: feasibility, which computes and
evaluates potential solutions for subgoal establishment
in the partial plan 7); and satisfiability which com-
putes and evaluates conflict resolution in P.

The Global Search Procedure

GLOBAL_SEARCH
¯ SolutionPlans <---- 0, partial plan !P~-- Initial Plan;

WHILE(there is no solution plan Ips with fliPs)< Threshold)
and (pending nodes remain)

¯ 1. Subgoals with their resolvers e- FEASIBILITY(~.
¯ 2. Conflicts with their resolvers e-- SATISFIABILITY(~.

¯ 3. Choose the most constrained conflict or subgoal
(smallest K), with its set of rcsolvers

4. For each resolver r in ~..
¯ evaluate fliP+0<-- g(iP+r) + h(iP+r).
¯ Threshold <--
(I + £)X(the minimal value f of all the pending nodes).

5.1 Choose the resolver r0 with the minimal f in
5.2 For the other r of R,
¯ put (iP+ r) in the set of pending nodes.

¯ 6.1 iP<-- P+ r0
¯ 6.2 If iPis solution then put iPin SolutionPlans and
¯ 6.3 If (iPis inconsistent) or (f(~ > Threshold),

¯ Backtrack to the pending node with the minimal f.
End WHILE.
¯ Return the solution in SolutionPlans with minimal f

Figure 2: The global search algorithm

This procedure is given in figure 2, and is defined from
A~ [9]. This algorithm performs a depth-first search
as long as the current partial plan is acceptable (step
5); when it is not acceptable, backtracking occurs ac-
cording to a best-first strategy (step 6). Acceptabil-
ity requires the consistence of the partial plan and an
evaluation above a threshold (defined at step 4), with

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

respect to the estimated best partial plan in the search
space.

The steps 1 and 2 of this algorithm determine con-
flicts and subgoals. Each conflict is computed with
its resolvers : the set constr(a) or constr(b) reduced
to the possible constraints. Each constraint is qual-
ified by a cost, proportional to the reduction of the
interval [I-, I+] for a temporal constraint, or to the
reduction of the domains of variables for an instanti-
ation constraint. Each subgoal is computed with its
resolvers : the set of possible establishers of ~, and
the new tasks which may establish it. Each establisher
and task is qualified by the sum of : (i) the costs of its
constraints, (ii) the cost of a causal-link proportional
to its time span, and (iii) a fixed user-defined cost
the tasks, and of the new subgoals entailed by these
tasks.

There are two non-deterministic steps in this pro-
cedure: at step 3, the choice of the next conflict or
subgoal to be solved, and at step 5.1, the choice of
a resolver. The former choice influences the order of
conflicts and subgoals resolution in the search tree. It
does not involve an expansion of the tree, and hence no
backtracking. It has been shown that the efficiency of
the planner depends notably of the order of subgoals
[11]. Here we take into account subgoals and conflicts.
For that, we extend the principle of least commitment,
which requires that a constraint or a task is inserted
only when it is necessary. When all conflicts and sub-
goals have several possible resolvers, we evaluate the
set of resolvers for each conflict or subgoal by a func-
tion K:

1
K

1 -l- co8~(resolver) -- CO8~min
resol~ers

where cost,nin is the resolver with the minimal cost.
The choice of the conflict or the subgoal with the min-
imal K corresponds to a resolver with the higher dif-
ference of cost between it and the next bests, hence it
reduces the chance of backtracking.

The estimate is f = g + h, where g is the cost from
the root ~)~,~t to the current partial plan ~P, and h is
a heuristic, which estimates the cost between ~ and
a solution plan. The cost function g is the sum of
the cost of constraints and tasks inserted in the ini-
tial plan, as previously defined. The heuristic h(~)
is the minimal cost of the constraints and tasks to be
added to 7> to solve all the conflicts and subgoals. This
heuristic is a lower bound since it does not take into
account the new conflicts and subgoals entailed by new
tasks. Therefore, the algorithm provides an c-optimal
solution. However, this lower bound heuristic has a
computational overhead and is not always the more
efficient. Note that costs taken into account are not
action execution costs, but only estimates computed
by the planning process.

When we decide to establish a subgoal by an event
in ~P or by a new task, the assertion Hold(art(z1,...)
v, (G,~.t)) is added at the step 6.1 as a causal-link, in
order to protect the establishment of the subgoal in all
the search sub-tree following this node.

The Feasibility Procedure

The establisher of a subgoal can be met by an event in
the partial plan P, or by a new task containing an event
which can explain it. If a subgoal requires a new task
-ie 7> contains no possible establisher-, the feasibility
procedure develops a tree of subgoal decomposition, in
order to estimate the tasks which may solve the sub-
goal. Indeed, a look-ahead is necessary for weighting
carefully the choice of a new task, since it may cause
new subgoals and many other conflicts.

T_GO_TO._ROOM(?8-room, Room2.1, ?2-roboQ T_GAASP(Brloke, ?6-~oom, ’l~roibot)

Event(Po~lon~2-rol:~:l?3-room.Roon~. 1), r41 Ever~ PoenionObk~):(’lS-room.?2-r~o0. rs)

Figure 3: Tree of Subgoal Decompositioa

The subgoal decomposition consists in expand-
ing an AND/OR tree, where the nodes AND are
tasks, and the nodes OR are suhgoals. Figure
3 presents the decomposition tree of the subgoal
Hold(Position(Bricks) : Room2.1,(tl.t2)). The
decomposition begins with the search of the tasks
T1,..., Tn which establish the root node. Then, an es-
tahlisher for each unexplained temporal propositions
of each task ~ is searched for in the partial plan ~P. If
a proposition is establishable, it is not developed. If it
is not establishahle, it is developed in turn.

The expansion of the AND/OR tree, limited to a
fixed depth, is controlled by an AO° algorithm, which
always develops the sub-tree with minimal cost. The
cost of a task is the sum of its unexplained proposi-
tions. The cost of a subgoal is the minimal cost (as
defined above) of the children tasks or of events in
which establish it. A task cannot be an establisher if
one of its subgoal cannot be established : an infinite
cost is assigned to it.

This procedure provides only an estimate of the cost

GHALLAB 65

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Figure 4: Plan for two planetary exploration robots

of tasks. Indeed, the procedure corresponds to a look-
ahead where the conflicts between tasks are not con-
sidered. Hence, the more independent the tasks are,
the deeper the search can be developed, and the better
the estimate will be.

To perform this look-ahead, a particular temporal
propagation is tentatively computed along the decom-
position tree. Basically, it refers to the time-map of
the root node.

Experiments and Conclusion

This paper described a representation and algorithms
for a temporal planner. The representation of IxTeT
relies on a reified formalism, which naturally splits the
management of temporal constraints into a temporal
network from the management of the other formula.
Similarly, instantiation constraints are handled sepa-
rately in a "variable binding network". An ontology on
domain relations allows to specify different types of ex-
pected events, controllable or not by the planner. A hi-
erarchy of tasks increases the expressiveness of the rep-
resentation. A compilation procedure checks the con-
sistency of planning operators, and prepares the work
of the planner. On the control aspects, the proposed
A, algorithm performs a trade-off between the quality

of a solution and the complexity of the search. It re-
lies on causal-links to avoid redundancy and on least
commitment to reduce backtracking. Specific proce-
dures for goal decomposition and conflict resolution
have been defined. A resource management module
handling, in a separate network, various type of re-
sources required by tasks and their possible conflicts,
has been similarly added to IxTeT [13].

A first version of IxTeT -implemented in
CommonLisp- has been used for the task-level control
of a mobile robot HILARE. A demonstration has been
shown Advanced Mobile Robot EUREKA project. A
new version of IxTeT in C++ has also been applied to
a planetary exploration project. Here, visibility con-
straints between the rover and an orbiter, sun-light,
connection with the earth and energy constraints re-
quire the management of time.

Let us illustrate the performance of IxTeT through a
complex plan generated for this application. There are
4 exploration sites on Mars S1 to $4, connected along
a circle S1-$2-$3-$4-S1. Two identical robots R1 and
R2 are both initially located in S1. They are required
to get detailed views of $2 and $4, to send them to
an orbiter, and to collect samples from $3. Because of
energy constraints, robots travel only by day. Image

66 REVIEWED PAPERS

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

acquisition requires also daylight. Data transmission
needs the visibility with the target, orbiter or earth.
Collecting samples requires daylight and earth visibil-
ity, a detailed view of the site should be sent to earth
before starting this task. There are four elementary
tasks: going to site, collecting samples, getting data,
and sending data, each requires one third of a day.
There is one compound task: get and send data. Two
days are allocated for achieving this mission. Visibility
windows with earth have the same duration as a Mars
day and they start at mid-day. The orbiter remains
visible during 2/3rd of a day (see fig. 4; time-points
11,12,3,14,15 and 5).

These constraints forbid a simple plan where each
robot goes to a site $2 or $4 in day 1 (interval [2,3])
and one of them goes to $3 and collects samples in
day 2 (interval [4,5]). IxTeT finds the complex plan
given in fig 4. Here robot R1 goes to $3 through a
free variable ?S@15 (to be instantiated as $2 or $4 at
execution time only). Path $1-?S~15 takes place be-
tween time-point [41,42], the next path to $3 between
[39,40]. R1 acquires a view of $3 [29,32] and sends it
by night to the earth [31,30]. During that time robot
R2 goes from $1 to $4 [23,24]. The next day R1 goes
from $3 to $2 [37,38], acquires and sends data of $2
to the orbiter[33,36,35,34], while R2 acquires data of
$4 [19,22], travels to $3 [27,28] while sending data of
$4 to the orbiter [21,20] at the same time, and then
collects samples on $3 [25,26].

To find this plan, the search develops 5319 nodes,
and backtracks 1278 times. It took 25 minutes on a
sun spare station 10. For less constrained situations,
the simpler plan given above develops 200 nodes, back-
tracks 25 times, and takes 1 rain.

Several extensions are currently being studied. Do-
main constraints, static or temporal formula, should be
added to the representation. They will permit partially
specified initial situations. They should also enable
to complete, at preprocessing time, planning opera-
tors through deduced effects (eventually conditional)
in order to have a partial but computable solution
to the ramification problem. At the control level, we
are working on a comparison and a characterization of
alternative heuristics and domain specific knowledge.
There is finally the need for a programming environ-
ment to help the user specify complex tasks that would
be efficient from the planning point of view.

References

[1] J.F. Allen, H.A. Kautz, R.N. Pelavin, and J.D.
Tenenberg. Reasoning about Plans. Morgan Kauf-
mann Pub., 1991.

[2] S. Biundo. Present-Day Deductive Planning. In
l~nd EWSP. Vadstena(Sweden), December 1993.

[3] D. Chapman. Planning for conjuncti+e goals. Art.
Int., 32:333-377, 1987.

[4] S.J.S. Cranefield. A Logical Framework for Practi-
cal Planning. In lOth ECAI, pages 633-637, 1992.

[5] K. Currie and A. Tare. O-plan: the open planning
architecture. Art. Int., 52:49-86, 1991.

[6] T. Dean, R.J. FIRBY, and D. Miller. Hierarchical
Planning Involving Deadlines, Travel Time and
Resources. In Comput. lntellig., pages 381-398,
1988.

[7] T. Dean and D. McDermott. Temporal Database
Management. Art. Int., 32:1-55,1987.

[8] M. Ghallab and A. Mounir Alaoui. Managing
Efficiently Temporal Relations Through Indexed
Spanning Trees. In 11th IJCAI, 1989.

[9] M. Ghallab and D.G. AUard. At: an efficient near
admissible heuristic search algorithm. In 8th IJ-
CAI, 1983.

[10] J. Hertzberg and E. Rutten. Temporal Planner
-- Nonlinear Planner + Time Map Manager. AI-
Communications, 6(1):18-26, March 1993.

[11] S. Kambhampati. On the utility of systematic-
ity: understanding tradeoffs between redundancy
and commitment in partial-ordering planning. In
Proceedings Spring Symposi~tm AAAI, 1993.

[12] C. Knob!ock, J. Tenenberg, and Q. Yang. Charac-
terizing Abstraction Hierarchies for Planning. In
9th AAAI, 1991.

[13] P. Laborie. Planifier avec des contraintes de
ressources (in french). Technical report, LAAS-
CNRS, Toulouse (France), 1994.

[14] D. McAllester and D. Rosenblitt. Systematic non-
linear planning. In Proceedings AAAI, 1991.

[15] Y. Shoham. Reasoning About Change. The MIT
Press, Cambridge, MA, 1988.

[16] E.P.K. Tsang. TLP: a Temporal Planner. In Ad-
vances in Artificial Intelligence. Hallam & Mellish
ed., 1987.

[17] S.A. Vere. Planning in time: Windows and du-
rations for activities and goals. IEEE Transac-
tions on Pattern Anal~/sis and Machine Intelli-
gence, 5(3), May 1983.

[18] M. Vilain and H. Kautz. Constraint propagation
algorithms for temporal reasoning. In 5th AAAI,
1986.

[19] D. E. Wilkins. Practical Planning. Morgan Kauf-
mann, San-Mateo, CA, 1988.

GHALLAB 67

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

