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1. Introduction 
One of thc central issucs in vision is how to reprcscnt and use knowlcdgc relevant to undcrstanding thc imagc. 

Partly bccausc vision is so difficult. and partly bccausc ckcn thc chcapcst solutions can still bc so uscful. npproachcs to 
vision problcms have had a tcndcncy to bc ad hoc and hcunstic. Itcccntlq, howcvcr. nck thrusts in coinputcr vision arc 
emerging. most notably in the Image Understanding community, that try to pursue morc systcmatic and computational 
approaches. [ l ]  

This article attempts to introduce such new Image Understanding approachcs to vision. I t  f i n t  prcscnts thc 
author's view of structure of vision: what typcs of information must bc dealt with and what lcvcls of knowlcdgc are 
involved in transforming one type of information into another. Then. rcprcscntativc rcsearch progress in Imagc 
Undcrstanding is reviewed which addresses use and rcprcscntation of knowlcdgc in vision. Specifically. wc will discuss: 

e Formali7~tion of physical knowledge into computational forms 

e Use of 3D models 

e Construction of scciic descriptions from images 

e Organization and control of vision systems 

2. Structure of Vision 
I x t  us considcr what vision really is. Vision involves visual scnsing and intcrprctation. Visual scnsing is a 

projrclion of a physical cnvironmcnt into a form of rcprcscntation callcd itnagrs Projcction can vary from ~Iic  most 
ordinary picturc takcn by camcras to activc scnsing such as by lascr rangc findcrs. Imagcs can also rangc from a 
singlc-point light flux mc;rsurcmcnt to 3-dirncnsional rangc data. 'l'hcn vision is dcfincd 11s ii prtrcss of undcrstanding 
thc cnvironmcnt througli the projcctcd imdgcs. or in short inverse projection. 

l'hc vision prtrcss must involvc various typcs of inhrmation. Figurc 1 is a schcmatic diagram showing onc 
possihlc dichotomy of such typcs and thcir primiiry rclntionships. [I41 'l'hc gcncrnl idca is as follows: givcn ;in iinagc, 
CUCS (pfc'lrrrr doftrofn cur.$ or .xcrnc rfor)min cum) arc cxtractcd: thcsc arc thcii uwd to ;ICCCSS thc f t i o d d  ol the Lisk world 
and to iii\tiinti.iic i t :  thc itw(/n/iu/rd r,/odr/ is vcrilicd by projccting i t  back to the picturc Ictcl (/M /urc f f / / ~ r / t r ~ , / , f / / l ~ t / )  

and by matching it with thc input imagc. 'l'his positivc fccdhck loop is thc basic drivc in thc analysis prircss. 

Scvcral points should bc notcd about this mtdcl. First of all, thcrc is a n  important distinction hctwccn thc picturc 
domain and thc sccnc domain. I n  short. a pie/urc is a projcction of a sccw. Thus thc picturc domain cucs arc thc 
fcaturcs ohscrvcd in thc picturc. such as linc scgmcnts. homogcncous rcyons. intensity gradients. ctc. 'l'hc sccnc 
domain cucs arc thc fcdturcs which arc thc causc of the picttirc domain ciics. such as cdgc configuratioiis. surfacc 
orientations. rcflcchiiccs. volumcs ctc. 'l'his distinction prcvciits oiic froin conliising rc:iturch in the picturc domain 
wi th  thosc i n  the scciic doinain. For cxainplc. Ihc "ahovc" or "iidjxciit" rclationrhip hctwccn rcgionh in tlic picturc 
docs not necessarily corrcspond to the "on" or "ncxt-to" relation bctwccn objects. Though the most basic and 
important Scene domain cues are spatial three-dimcnsional (3-D) configurations, thcrc arc other important ones, such 
as rcflcctanccs and lighting conditions. Thc modcl contains the gcncric descriptions of the task world. It can be 
thought of as containing information about the gcncric shapcs of objccts and rclations among thcm. Notc that gcncnc 
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Figure I :  A modcl o f  vision process. Itoughly spcaking. thc right hiilf of thc cycle corrcsponds to the 
top- dati-driven. bottom-up. 

down. vcrification phase of \ision. 
hypothcsis-gcncration phi~sc. and thc lcft half to Lhc modcl-driven. 

modcls arc to bc reprcscntcd in terms of sccnc domain cues. Thc instantiatcd modcl is the spccific situation being 
dcpictcd in the picturc: the specific objccts. their sizes, their placcmcnt, etc. I h c  picturc intcrprctation is a projection 
(an anticipatcd picturc) of the instantiatcd modcl undcr thc spccific conditions (view direction. lighting conditions, 
ctc.). I t  givcs an  cxplanation of the imagc by the descriptions such as what lincs and rcgions of what propcrtics should 
:ippc.ir in the image. what sct of lincs or rcfions constitute the objects. and so on.  A n  example of this typc of 
in fo rmat ion  is ;in image scgmcntcd into rcgions \r i th  scmantic labels attachcd to cach. It is diffcrcnt from an Itnagp 
H h i c h  I\ o n l y  a collcction of image fcaturcs. such as color and intcnsity. 

The model of Figure 1 in\ol\es thrcc levcls of knoxlcdge - -  signal. physical. and semantic. Kot~g l l ly  speaking. the 
sign,il Icicl in lo l ies manipulating imagc fcaturcs as 2-D patterns, thc phgsical 1:ccl in\ol\cs bridjiing Lhc picturc and 
x c n e  domains so that magc fcdtures can be interpreted as xcnc  features, and thc semanuc Ic\cl involves working in 
thc sccnc domain to cxploit the task world constraints. 

Thc diffcrcncc among these lcvels can be illustrated by thc following cxamplc. Suppose that a histogram of the 
grag lc\cIs of an imagc shows a clear bimodality. The valuc at the valley is often sclcctcd as a good thrcshold. This is 
based on the signal Irwi knowledge that in such a case often two sourccs of monomodal distribution arc prcscnt. 
~Ilicreforc. a thre<hold valuc at that kallcy will give a good splitting of the image. We are also aswming that a 
salt-and-pcppcr imagc (which can produce the same histogram) is rare. This signal-lcvcl histograming tcchniquc is 
actually bdscd on ph~sicnl  l e w l  knowlcdge. We know that two surfaces, whose reflectivity charactcristics arc diffcrcnt 
from c x h  othcr but constant within cach. or uhich have different oricntations. can produce t w o  regions in the image 
whose fray lc\els arc different but rclativclg constant nithin each. Why is it significant to cxtract those surfaccs for 
undcr.;t,inding thc irnagc? Ikcausc we knou that surfaces with different rcflectancc or oricntations arc the swiantirally 
mc;iningful uni& which constitute the Objccu; in our world. 

As another example. thc extraction of straight lincs by detecting suddcn changcs of intensity on the signal lcvel is 
justificd by KhC phqsicA-lc\cl ohscrvation that such intensity changcs arc cauwd b) suddcn change of oricntations 
(convexity and concavity). distancc (trclusion). illuminauon (shadow). and rcflcctancc (matcrial change), dll of which 
arc u w ~ i l l ~  importnnt clucs in thc scmantic analysis of the sccnc content. 

I t  is ,io/ mcant that the analysis should always follow the routcs shown in Figurc 1.  In  fact. onc can combine 
sc\cr;iJ stcps i n t o  onc. or prccompilc ncccssnry knowlcdgc ahout somc cntitics into ii prtrc\\ing prtrcdurc. so that 
tIi(iw entities arc not explicitly trcatcd. Houc\cr. thc rncaning and limitations of many mcthods can hc illustr,itcd by 
considcring what tqpcs of knowledge drc incorpordcd into tlicm. according In this paradigm. 

Notice t1i;it csscntiiil difficultics in vision iirc in  crossing thc houndary hctwccn the \ccnc and picturc domains 
frciin picture lo scciic: it 1'1 mihiguous. thirs ;iddition;il constr;iints arc to bc used. Cicncr,ilit\. of \ i s i on  dcpciid\ on how 
to dci i \ c  ,ind I I ~ C  iiccc\s:ir! conztr'iinls. 
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3. Converting Physical Level of Knowledge into Computational Constraints 
Historically, there are several annoying image phenomena which often cause vision programs to fail in image 

analysis: they include deformed shape due to slanted views, shadings due to curved surfaces and lighting, and textural 
patterns. and shadow. That may be still m e  in most applications, but it has begun to be understood that these are rich 
sources of information about object shape. An interresting class of theories have been developed to handle these 
sourccs. They arc all for relating picture domain cues with scene domain cues so that they can be used in recovering 
3-dimensional scene features from images. This section will briefly introduce such theories which allow computational 
usage of constraints from image intensity and geometry in order to exploit 2D-shape, shading, texture. and shadow in 
the image. 

Sincc wc will use grndtcnl space [32] [20] throughout the section as a convenient tool to represent surface 
oncntations. let us first dcfine it. Our coordinate system x-y-z is placed so that the optical axis is the z axis and the 
image plane is the x-y plane. (See Figure 2.) Consider a surface, 

- 7  = f(x.y) (1) 

planes: -z = px + qy + c + point: (p,q) 
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The gradient space is defined by (p.@ where 

That is, p and q arc the rate of changc in depth on the surfacc along the x and y dircction. Wc can casily SCC that 
(p.q.1) has the direction of thc surfacc normal. 

Gradicnts arc constant over a planar surfacc, and thc gradicnt (p.q) corrcsponds to a sct of parallcl plancs: 

(3) -z = px + q y  + c 

where c is arbitrary. Throughout this section we will assume orthographic projection for simplicity rather than 
pcrspcctive projcction. 

Undcr orthographic projcction. the gradients of plancs and the image linc on rhc image haw an intcrcsting 
rclationship. Rcfcrring to Figure 3. Ict two plancs PI and P, intcrscct in thc spacc and let thc intcrscction cdgc be 
dcpictcd as a linc / in the image. ‘l‘hcn thc linc in thc gradient space connccting thc corrcsponding gradicnts G ,  =(p,,q,) 
IS perpendicular to the linc /. This can bcc sccn in the following way. Thc normals of thc two surfaccs havc dircctions 
n ,  =(p, ,q , . l )  and n =(p2.qTl). Thcir cross product n lxnz  rcprcscnts thc dircction of thc intcncction cdgc in thc space. 
Sincc wc assumc orthographic projcction the dircction of thc linc 1 in thc image is givcn by thc x and y componcnts of 
this cross product: I.c.. (q,-q,, p2-p,).  ‘ h i s  vcctor is obviously pcrpcndicular to thc vcctor G , - G 2  = (p,-p,, 
q,-q,) which connccts C ,  and G,. Morcovcr if thc intcrscction cdgc is convcx vicwcd from Lhc vicwcr. then the 
positional ordcr ofGl  and G ,  is the samc as the rcgions in the picture corrcsponding to P, and P,: if concavc. the ordcr 
is rcvcrscd. 

gradient space 
if L is + 

G G2 ‘ 

P 

Figure 3: Properties of dual lines. If two plancs mcct and the intcrscction linc is projcctcd as a picture line 
L. then the gradicnts of the two plancs are on a gradient-space line which is pcrpcndicular to L 
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3.1. Image Intensity 

3.1 .l. Shading 
Grcy-level shading has been neglected or even thrown out in most robotics vision. though it is well known that it 

gives information on surface curvature. This is partly due to the dominance of binary imagc processing for fast 
proccssing and partly due to lack of adcquatc theory and techniques for cxploiting shading information. llorn [9] did a 
pioneering work in shape-from-shading theory. Figurc 4 shows a simple modcl of imaging: it consists of a point light 
source, a surface patch, and a viewer. In general the intcnsity in the image corresponding to thc surface patch is a 
complex hnction of illumination position, surface material, surface position. surface orientation, vicwcr position, ctc. 
Let us assume. for simplicity, a Lambcrtian surface (ie. perfectly uniform d i f i se  reflection) and a parallcl incident light 
(ie. a distancc point source). The obscrvcd intcnsity I wliich corresponds to the surfacc patch is given by, 

I = r,, p C O S ( I I  (4) 

where I,, is the intensity of the incident light, p the reflectance of the surface, and I the incident anglc which is made by 
the incident light and the surface normal. 

In ordcr for this cquation to be usable in vision. we nccd to convcrt it into the imaging coordinate framc. This 
can be done by using thc gradicnt spacc. 'I'he surfacc normal of the patch is n=(p,q.l) and thc dircction bcctor of the 
illumination is cxprcsscd ass=(p,, qs, 1). Sincccos(i)=n-s/(n((s(, 

In this way. thc obscrvcd intcnsity I(x.y) at an imagc point (x,y) is cxprcsscd as a function R(p.q) of thc surface 
oricntation (p,q) of thc corrcsponding surface point. Figurc 5 shows thc loci of cqual-intcnsity gradicnts I((p.q)= 1. for 
thc case (ps,qs,l)=(0.7.0.3.1); i.c.. thc light coincs from slightly above and right of thc vicwing anglc. Figurc 5 is callcd 
a rcflcctancc map. 

It is worthwhile to notc thc significance of thc rcprcscntation likc thc rcflcctancc map (or cquation (5))as 
comparcd with cquation (4) . Fkyation (4) rcprcscnts thc physical rulc in imaging as vicwcd from a third pcrson who 
obscrvcs thc imaging proccss. In contrast. cquation (5 ) .  though rcprcscnting lhc samc rulc. is in thc vicwcr's ctwrdinatc 
framc. 'lhis is csscntial for using thc rulc to intcrprct the imagcs bccausc thc imagcs arc rccordcd in that cwrdinate 
framc. 

SOURCE 

VIEWER 

-37 

Figure 4: A simple rcflection and imaging model 
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Figure 5: A reflectance map for a Lambeman surface illuminated by parallel flux of light from the direction 
(0.7.0.3, 1). 

' lhc rcflcctance maps can be used in a few ways. One is for shapc-from-shading: ghcn an imagc of an objcct. 
computc thc shape of thc objcct using thc shading information. This can be accomplished by assigning to cach pixcl 
0.J) in the imagc a gradient (p  .q ). 'Ihe reflectance map alone docs not give enough constraints to uniqiicl!, dctcrminc 
thc gradient at each point: i.c.. R : I -+ (p.q) is not  a unique function. Here we nccd additional constriiiiits. Ikcuchi 
and Ilorn [lZ] dcmonstratcd a numerical shape from shading by assuming surface smoothncss. They obtaincd the 
solution by mrnimi/ing the following. 

'I 'I] 

E = 2 Ell = I{ Nj) - R(PllqJ) l2 + A ' {  (P,,- +(q,- 4 1 ( 6 )  

1 1  i j  
'l'hc fir<[ tcnn in E,, Corresponds to the difference between the observed and expcctcd intensities. Ihc  w o n d  term 
;cpproxirnatcs the I-aplacian of the surfacc orientation and thus provides index of non-smoothness. I n  ordcr to solvc 
this ininirni/iition \IC further need boundary conditions: certain places in the imdgc whcrc the sur f~cc  or icn t~t io i i s  arc 
known. The surfacc orientations of thmc pixclq ;it the 
occluding a m o u r s  are known bccausc rhc surfacc normal there is perpcndicular to the line of sight ( I  d k k )  and Lhc 
occluding contour projcctcd onto the image. Using all thcsc constraints 3D shape recovery from a grc)-Ic\cl imagc was 
dcmoiistrated. 

Occluding contours pro\ idc such boundary conditions. 

Aiiothcr usc of the rcflcctance map is photometric stereo [3S]. Multiple images of an objcct are taken by the 
camcra at one position. but Hith different lighting directions. At  each pixcl position. each image pro\ idcs constraints 
o n  wrfdcc orientation according to the rcflcctancc map. which corresponds to that lighting condition. 'l'hrcc or more 
im;igcs can dctcrminc the surface orientations uniquely. l'his method eliminates the $0 called correspondcncc problcm 
in stcrco. bccausc the imagcs arc taken from a single position and thus are rcgistcred. It suggests use of dynamic clever 
control in lighting to inspcct surface texture and anornalics in such applications as soldering and casting inspection. 

'lhc rcflcction propcrtics of rnatcrials arc complicated. and rather than analytical forms. thcy arc oficn rncasured 
in forms such as the bidirectional rcflcctancc distribution function (HIIIIF) or goniophotomeuic rncasuremcnt. lhcrc 
haic bccn dmclopcd compuwtional prnccdures to con\ert such data into rcflecrancc maps [lo] [30]. 'l'hcsc tcchniques 
mdkc i t  possible to appl) the reflectance map method to robotics tasks, because the cnvironmcnts dre usually 
constraincd and surfacc propcrtics arc known or measurable. 
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Figure 6: A stripc region around an cdgc. in which columns of intensity curves are taken for correlation. 

3.1.2. Classification of Edge Types 

sccnc cdgcs. 'lhc most rcprcscnwtive types are: 
We h a c  notcd that so called image edges (discontinuity of image intensity) can correspond to many typcs of 

Discontinuous Sccnc Fcaturc 

Convcx/Concave Surfacc orientation (Continuous distance) 

Occluding Ilistancc (Iliffcrcnt surfaces) 

C ~ s t  Shadow Illumination (Same surfacc) 

Sclf Shadow Illumination dcrivativc 

Pattcm licflcctance 

Ifwc c m  cl;i\\ify cdgcj in thc i m q c  into ihcsc typcs. it will makc it far casicr to analyic thc 3-dimcnsional shapes 
of objcck froin the iin,igc. For cxmplc.  the ohjcct shape can he found from tmluding houndiirics without hcing 
co~)fiiscd hk non-shape rclatcd edges: and stcrco matching would be much casicr becausc the cdgc typcs tell what kind 
ofdiffcrcnt appcarancc should be cxpcctcd on cithcr side of an cdgc in making corrcspondence. 

Ini t ia l ly .  use of cdgc profiles [Y] or intensity dcrivati\cs near thc cdgc [ 3 ]  xns suggcstcd for cdge cl,i\sific,ition 
h,i\cd on considcration of micro structures near thc cdgc. Rcccntly Fisclilcr and Witkin 171 studied an intcresting 
incthod tu  dctcct occluding boiindarics and cast shad()& cdgcs in thc imagc. Considcr strip rcgions .\long ;in cdgc as 
\houri in Figure 6 m d  tikc columns of intcnsity cuncs  ukcn parallel with the cdgc along i ts  Icngth. A scqucncc of 
lincar rcgi-cscions is performed hctxcen cach pair of consccutivc intcnsity cur\cs. As a rcsult a norrnali/cd corrclation 
coefficient is obtaincd. togethcr with additive and multiplicatiic rcgrcssion tcrms. cach as a function of thc location 
across the cdgc. ,In txcluding boundary is indicated by a sharp notch in an otherwise high correlation at the nominal 
edge I ~ c a t i ~ n .  A cdst shadow boundary is indicated by high corrclation maintaincd across the cdgc with a sharp spike 
or notch in the ,iddiuvc and multiplicati\,c rcgrcssion term due to transition bctween shadow and nonshadow sidcs. 

Jusrification of this method is givcn by the following simplified arguments. At the occluding boundary wc are 
looking at dimerent surfaccs on cach side. Thus thc image properties across it should not be corrclatcd. At thc shadow 
boundary. illumination changes but the surface i s  the same. Thus image intensitics across it should be corrclatcd with 
change only in cithcr magnitudc or scale. This classification mcthod rests on the principle that the coherence in the 
imagc intcnsity reflects the real cohcrence in thc scene. 
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3.2. Geometry 

constraints can be extracted. 
Geometry is another important physical level of knowledge which governs the vision process and from which 

3.2.1. 2D Shape 
Two dimensional shapcs of rcgions (i.c.. projcction of surfaces) in the image convey information about the 

thrcc-dimensional shape of an object in the sccnc. This is illustrated by such simple drawings in Figurc 7. Figurcs 7(a) 
and (b) are topologically the samc and thc slight diffcrcnce in the 2D shape of the lower two rcgions results in different 
perceptions "cube" and "trapezoidal block". In fact, even such simplc figurcs as Figurcs 7 (c) and (d) alrcady invokc 
the pcrccption of surface oncntations. Certain gcomctrical propcrtics should be the source of that pcrccption. 'rhcse 
phenomena may havc bccn oftcn studicd in thcir psychological aspects. but until recently very little has bccn 
formulated in a manner usable for machine vision. 

Kanadc [IS] dcmonstratcd a systcmatic method to rccovcr 3-dimensional shapcs from a single view by mapping 
image propcrtics into shape constraints. TIC 211 shapc property of Figure 7 (c) and (d) is onc of the propcrtics he 
studicd. It was named skewed symr17rrg: bccausc thcy arc intcrprctcd as symmctric figurcs vicwcd obliqucly. In  othcr 
word, whcrcas in the usual symmctry rcflcctivc corrcspondcnccs arc found along thc dircction pcrpcndicular to the 
symrnctry axis, in thc skcwcd syrnmctry it is is found along thc dircction not ncccssarily pcrpcndicular to thc axis, but 
a t  a fixcd anglc to it. Formally. such shapcs can bc dcfincd as 2-11 Affinc transforms of rcal symmctrics. 

'l'hcrc arc a good body of psychological cxpcrimcnts which suggcsts that human obscrvcrs can pcrccivc surfacc 
oricntations from figurcs with this propcny. This IS probably bccausc such qualitativc syrnmctry in thc imdgc is oftcn 
duc to rcal symmctry in the sccnc. 

63 
I 

Figure 7: (axb) Simplc line drawings: (a) "cube": (b) "trapezoidal block": (c)(c) skcwcd symmctry: (9 axes 
~ - -  - - 

of skcwcd symmctry of (2) 
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P 

Fipurc 8: Thc hypcrbola ofcq. (8) corrcsponding to Figurc 7(c). Thc axis of thc hypcrbola is thc biscctor of 
thc obtusc anglc madc by a and 8. Thc asymptotcs rnakc thc same anglc as thc acutc anglc rnadc by 
a and 8. 'lhc tips or vcrticcs C, and C.,, of thc hypcrbola rcprcscnt spccial oricntations with 
intcrcsting propcrtics. Bpccially. sincc thcy arc closcst to thc origin of thc gradicnt spacc. and sincc in 
gcncral the distancc 
slant G , and G.,,  corrcspond to thc lcast slantcd oricntations that can producc thc skcwcd symmctry 
in the picture from a rcal symmctry in thc scene. 

from the origin w a gradient (p,q) rcprcscnts thc magnitudc of the surface 

Now let us aswiatc  thc following assumption with this imagc propcrty: "A skrwrd symmetry dcpicrs (I real 
symmetry viewed from sume unknown view angle." Notc that thc convcrsc of this assumption is always truc in 
orthographic projcction. As shown in Figurc 7(c). a skcwcd syrnmctry dctincs two dircctions: Ict us call thcm a c  
skcwcd-symrnctry axis and thc skcwcd-transvcrsc axis, and dcnotc thcir dircctional anglcs in thc picturc by a and 8. 
respectively. Let G=(p.q) be the gradient of the plane which includes the skewed syrnmctry. In gcncral thc 2-1) unit 
vector e in the direction y is e=(cosy.siny). From (3). the 3-D vcctor corresponding to c on thc plane in the space is 
given as: 

u 7 =(cosy. siny. -(pcosy+qsiny)). (7) 

The assumption about the skcwcd symmetry demands that the two 3D vectors ua and u be pcrpcndicular in the 3D 
space: Le., their inner product vanishes, ua ' u  -0, or: P 

8 -  

cos(a-/?)+ (pcosa + qsinaXpcosb + qsinb) = 0. (8) 

By rotating the p-q coordinates by the amount A = (a+p) /2  into the p'-q' coordinates so that the new p'-q' axes 
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are the bisects of the anglc made by the skewed-symmetry and skewed- thc skewed-symmetry and skcwcd-transverse 
axes, it is easy to show that (8) represents a hypcrbola in the gradient spacc shown in Figurc 8. That is. the skcwed 
symmetry defined by a and B in the picture can be a projection of a real symmetry ifand only f i t s  surfacc gradient 
(p,q) is on this hyperbola. The skcwcd symmetry thus imposes a one-dimensional family of constraints on the 
underlying surface orientation. Figure 9 illustrates how this skewred symmetry constraint can be used to rccovcr the 
shapc of "cube" from the image. 

The same approach was extended to other properties: parallel lines, affine-transformable patterns. and textures 
[17]. We can summarize thc assumptions used in these cases: regular properrres observable rn /he piclure are no/ by 
aceiden/. but are projec/ions ofsome preferred correspondrng 3-0 properrips. Figure 10 lists instanccs of this principle of 
non-accidenial image regulunry. Note also that the principle used in classifying the edge types in the prci ious section is 
also the same effect: the cohcrcnce in the image reflects the real cohcrcnce. Since thc mapping from the picturc 
domain to the Scene domain is one-to-many (ambiguous), we nccd to rely on this type of general assumptions or 
task-specific constraints to rcsolvc the ambiguity. 

3.2.2. Shadow 
Shadow gives good clues on spatial relationship between objccts and surfdccs. Acrial photo intcrprctcrs makc 

much usc of it in figuring out. for cxamplc. the hcight of the objccts. Lowc and Ilinford [ l Y ]  dcmonstratcd the 
reconstructing of the shape of an airplanc by using shadow information. They first paircd shadow-making cdgcs and 
castcd-shadow cdgcs on thc ground by assuming the ground planc and thc sun anglc. Then thc hcight of thc airplane 
along the contour made of shadow-making cdgcs was cstimatcd. which gave the shapc of the airplanc. 

Shafcr and Kanadc [31] invcstigatcd a gcnerai and compact gradient-space rcprcscntation of gcomctrical 
constraints givcn by shadow. Figurc 11 shows a basic shadow prohlcm. I t  consists of thc parallel-light illumindtor I ,  
the shadow making (occluding) surfacc .So and thc shadow surfacc Ss. 'l'hc problems includcs S I X  paramctcrs to bc 
cornputcd: the gradicnt Go=(po.qo)of So, thc gradicnt of Cs=(ps. 4,) o f  S S  and thc dircction of illumin,ition (pl, ql). 

This problem can bc studicd by considcring two othcr surfaccs SI, and SI, (and thcir gradicnis GI, and C,,), 
cach of which includcs a pair of shadow making and castcd shadow cdgcs: for cxarnplc, t.,ol and dcfiiic .Sll. Notc 
r l iat SI, and SS makc a concavc cdge along Es!. and so do SI, and Sc along E,?. Now thrcc coiistriiints arc providcd 
from thc basic shadow problcm gcomctry: 1) ' l  hc anglc C;o-G,,-Gc. which comcs from thc anglc Eo,- 2 )  'l'hc anglc 

Pigurc9: (a) A lahclcd linc drawing: thc dottcd lincs show thc axes of skcwcd symrnctry. (b)  'lhc 
constraTnLs on thc griidicnts of thc thrcc surfaccs duc to thcir intcrconncction: ihc gradicntsTorm 
trianglc in the gradicnt spacc whosc shapc and oricntation should as shown. but thc Itration and the 
s i x  arc arbitrary. (c) 'l'hc hypcrholas shown corrcspond io thc skcwcd s)mmctrics of thc thrcc 
rcgions. 'l'hc prohlcm is thus how to placc Uic trianglc of (b), by mnsliiiion 'ind s.ilc changc. so that so 
that  cach vcrtcx is on thc corrcsponding hypcrbola. 'l'hc locations shown is pr<)\.cn t o  bc thc only 
position. dnd thc rcsulhnt shapc is a cubc. 

http://pr<)\.cn


181 

Go-G12-Gs, which comcs from the angle between Eo, and Es2; 3) 'lhe direction of the linc I.,,,", (conuining G I ,  and 
G , ] ) ,  which comcs from the dircction of E,, (line containing thc two vcrticcs Vo12 and V\,2) .  Wc would thcrcforc 
cxpcct that thrcc paramctcrs must bc givcn in advance. and the othcr thrcc can hc computed from thc gcornctry. 
Figurc 12 shows a construction for the case that the dircction of illumination (actually the rclaovc depth component of 
illumination vector - one parameter - is given) and the the orientation of shadow casted surface (GJ arc known. 

I h c  basic shadow gcomctry provides thrcc constraints, and thus thrce parameters havc to given by othcr means 
to solve the problcm. It I$ intercsting to compare this situation with the situation without shadows: an image which 
only depicts So and S, intcrsccting along Em. Here. there arc four paramctcrs (Go and G s )  to compute. and one 
constraint from the image (E,). so thrcc picccs of information arc still nccdcd in advance. With shadows, the Same 
numhcr o f  a priori paramctcrs drc nccdcd, but onc of them can be a dcscription of thc light sourcc position instcad of a 
dcscription of a surfxc oricntation. The gcomctrical significancc of shadows i s  that thcy a l l o w  information about the 
light source to be used to solve thc problem as a substitute for information about the surface orientations thcmsclves. 

3.3. Texture 
Pcrccption of depth and surface from texture gradient has been studicd by psychologists. Recently, Kcndcr [18] 

dc\clopcd a vcry powerful computational paradigm for shape from texture. His central idca is a normnlizcd texture 
propcrty map (NI'PM). which is again for mapping image features (texture in this case) into scene properties. 

Let us show an example of NTPM for length. Suppose we have a texture pattern shown in Figurc 13. which i s  
madc of line segments with two orientations: the horizontal ones with length L, and the diagonal ones (45") with 
length I-,. Consider in general a line segment in the image whose direction is of angle y with the x axis and whose 
lcngth is 1. I f  that line se-gmcnt i s  on a plane whose gradient is (p. q), what is the real length of the 3-dimcnsional line in 
h e  scene? From (7). l u  is the corresponding 3D vector, and its 3D length is 

1.cy.0 = I 1u1 = I \/I + (pcosy + qsiny)* ( 9 )  

l.(y.f) is the NTPM for a linc scgmcnt with slope y and length I .  As with thc rcflcctancc map. we can 
rcprcscnt (9) as a sct of contours in the gradicnt space, L[y.f)=I.. each corresponding to such [p.q)'s that thc 31) lincs 
which arc o n  the surface and which will be projcctcd onto the image as a linc of lcngth I and angle A arc of lcngth 
I.. Figure 14 shows the NI'PM for y=45'. In gcncral. the NTPM is a function of surface oricntations. and its value 
rcprcscnts a sccnc propcrty ( e g .  31) line length) that the scene constitucnt in that surface orientation should take if the 
obscr\cd imagc propcrty (cg. 21) linc Icngth) comcs from it. In other word, it rcprescnts deprujecird sccnc properties 
from image. 

P i c t u r e  Scene 

P a r a l l e l  i n  2D 
Skewed symmetry 

S i m i l a r  c o l o r  edge  p r o f i l e  
Matched T 

Aff i n e - t r a n s f o r m a b l e  p a t t e r n s  
G r a d i e n t  i n  

- - Spac ing  
- -Length  

- - D e n s i t y  

P a r a l l e l  i n  3D 
Symmetry 
S i m i l a r  p h y s i c a l  edge  p r o p e r t y  
I n t e r c e p t  i o n  
S i m i l a r  o r  c o n g r u e n t  p a t t e r n s  
R e g u l a r i t y  in  
Spac ing- -  
Leng th- -  
D e n s i t y - -  

Figure 10: Instances of the pnnciple of non-accidental image rcgularity. Notice that the rules arc mostly true -__ 
when going from the scene to the picture. but the other direction is heuristic. 
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Figure 11: Basic shadow problem: the suffixes are 
given to show the corrcspondenccs; for 
cxamplc. Eo, is a shadow making edge and 
ES, is a corresponding shadow edge. 

vs12 

ss 

v012, /d I 

VOSl 

Figure 12: The construction in the gradient space for computing Go proceeds as follows: 

1. Draw the line parallel to E,, through the origin. Plot the given G, (it should be on this line). Let k 
be the distance from the origin to GI Draw the line Lillum so that it is perpendicular to Fql, opposite 
to GI with respect to the origin and at the distance of l / k  from the origin. 

2. Plot Cs. which was given. Through this point, draw a line perpendicular to ES,. Where it intersects 
LIIIu, must be Gll. Through Gll, draw a line per perpendicular to Eol. Go must lie on this line. 

3. From Gs. draw a line perpkndicular to Es2. Where it intersects Llllum will be G12. From there, 
draw a line perpendicular to Eo2. Since Go must lie on this line. the intersection of this line with 
the final line from step (2) above must be Go. 
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Figure 13: A texturc imagc of linc scgmcnts. I t  is assumcd that all linc scgrncnts are on a planc surface and 

the their real length arc the samc. What oricntations are possible? 

0 

P 

Figure 14: A normalized texture propcny map for Icngth. 1445O.1).  
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In Figure 13. if we assumc that all thc linc scgmcnts are on the same planc and arc of the samc lcngth in the 
sp;icc, the possihlc oricntations of thc surfacc can be obtaincd by 

or  hy graphically intcrsccting the NTPM surfaccs. This is hypcrbola in thc gradient spacc. Though this is a wry simple 
cx,rinplc. dic s'iinc tcchniquc can hc uscd to cstimatc thc surfacc orientations of walls of buildings in outdoor scenes or 
trfmcchanical par& with tcxturcs. 

Wc can ohscrvc a striking similarity bctwccn thc casc of tcxturc and shading. Wc can makc thc corrcspondcncc 
bctwccn 

Sh;ldinc 'lcxturc 

pixcl tcxcl 
i i n q n g  set-up sccnc coii5titucnt 

Icllcil'lncc mql  S'W21 

In 1,ict. 
pcrfiiriiicJ I)! cismining surfkc s ~ ~ ~ o o t h n c ~ s  ,ind regularit) in thc ~ C X ~ L I I C .  [l'] [ l l ]  

in h i p c  li.oin h id in f .  s h q c  rcco~cr) of a w r i e d  su r fkc  \rhich 11.1s a tcxturcd pittern o n  it ccin bc 

3.4. Remarks 
' I  he rcchniqiics and approaches in obtaining and rcprcscntlng constraints from the phhsical lcicl of knowlcdgc 

arc wF:csti\c to othcr arcas of robotics Hhich dcal with sensing and interpreting natural cnvir(inmcnts. I'hc key idca is 
to modcl the projcction process and repmcnt  i t  in a form that can be uscd for invcrsc projcction in conjunction with 
o t h e r  c o n w ~ i i n t s  inrolkcd in interprctntion. I t  is noteworthy that thc forward projection rules used in Scction 2 
(rcilcctioil or projcciii c gcomctn) arc simple and fairlq well understood. But tlicq arc oftcn so local or microscopic 
h i r  thcir dircct .ipplication may rcsult in gigantic unmanipulatibe cqiiations. hppropriatc r c p r c ~ c n t ~ t i o n ~ l  spaccs, 
such 3s gr.idicnt spacc. cnablc them to be applied in a macroscopic manner. 

4. 3D Model-Based Vision 
' I  hc thcorics prcscntcd in thc prcvious section cxtracc natural constrainth undcr reason,ible ph)sical. mostly Lisk 

independent assumptions. In this sense. those methods are modcl weak. Modcl-based vision attcmpts to use task- 
dcpcndcnt scmantic constraints. This idea is not new. In fact. ad hoc methods can be regarded as modcl bascd. Also 

dimcnsional rclationship among parts of objccts, rcprcscntcd as cithcr graphs or procedures. habe been uscd to do  
dircct tho-dimcnsion~l pdtcrn analksis such as facc rccognition. chcst X-ray analysis and region sc~mcnraiion of aerial 
photos. Hut  xhat wc aim at is 31) model-based vision which can copc with difficultics due to raricitions of object 
shdpcs and vicw angles. Although such pcrfcct systems are probably still far auay. we can scc important progress. 

A n  carly atrcmpt in model-based vision (61 used a prcdctcrmincd set of models with fixed shapcs to \alidate the 
h!pothcsiicd rcco_enition rcsulr. Givcn an impcrfcct linc drawing. thc systcm cxtractcd features dnd dccidcd what 
(ihjCct5 ;ippc,ircd in w h a t  anglcs in the scene, then gcncratcd a linc drawing anticipdtcd if thc recognition rCSult was 
corrcct. I t  was comparcd with the mpuL iind if thcy wcrc close the rccognition result was correct. othcr#isc other 
po\\ihilltics wcrc pursued. 

3-dirncnsional shapc modcls can be also uscd to predict 2-dimcnsional appcaranccs of objects bcforchand under 
\arioii\ lighting conditions. Then intcrprctation consists of mostly verification (i'er/jicai/on umm). , In  cxamplc chown 
in I-igurc IS is cspeciall! inrcrcsting hccausc the appc,iranccs of s~ubir posturcs of ii part arc compiitcd from its 
?-diincri\ional gcomctric rnodcl. 1341 First. the cnnvcx hull of thc ohjcct is obtaincd, and cach of its surfaces is tcstcd 
~ h c r h c r  i t  probides a st,ihlc support of thc&jcct. 

A general model-based vision systcm should habc variable or gcncric modcls of objccts and intcrprcr an input 
irn.igc :I\ r/ismnc~rsof thc scncric model (rccall Figure 1) to rccogniic the spccific objccts (e.$. swc. .;li:ipc) which appcar 
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in a spccific manner (c.g. oricnration, distance). Thc basic difficulty hcrc is thc diffcrcncc in thc coordinate framcs 
uscd in thc gcncric modcls and in the rcprcscntation obtaincd from images. ‘l’hc gcncric mcdcls arc (and should be) 
dncribed by viewcr-indcpcndcnt rcprcscntations, whcrcas thc imagc fcaturcs and surfacc rcprcscntation obtaincd 
from imagn arc vicwcr-dcpcndcnt. Somchow the two types of rcprcscntations must bc madc compatiblc. Most of thc 
previous systcms did this cithcr by quickly hypolhcsizing the paramctcrs from a vcry small sct of imagc fcaturcs or by 
gcncrating 2-dimcnsional appcaranccs so that thcy could work totally in the picturc domain. Iioth wcrc possiblc 
bccausc the shapcs wcrc fixcd and lirnitcd. 

What is nccdcd is a morc systcmatic way to acccss thc mtdcl and to rcnson ahout thc piiramctcrs. ’l’hc 
ACRONYM systcm at Stanford [4] uses invariant and pseudo-invariant fcaturcs which arc prcdictcd from the given 
object models. In ACRONYM. an objcct is modeled by its subparts and thcir affixmcnt (spatial rclationships). 
Volume primitives to rcprcscnt subparts arc gcncralizcd cones: A gcncraliicd cone is a volume swcpt by moving a 
cross scction along a 3-dimcnsional curve (callcd a spinc). Whcn a cross scction is a round disc and it is movcd along a 
straight linc with its size varying linearly, a ordinary conc is gcncratcd. Parameters that spccify thc gcncrnlizcd cones 
and thcir aftixment are given not only by spccific values but also by free variables with which rangc and mutual 
constraints can be associated. In this way one can rcprcscnt gcncric objcct modcls which a l l o w  varixions in sire and 
shape. The imagc fcaturcs that ACRONYM uses arc ribbons (two dimensional stripc) and cllipscs, which can provide 
an approximation as thc projcction of the straight spinc and lhc circular cross scction. rcspcctivcly, of the 
corresponding generalized cylindcr. 

Figure 15: Anticipating the appearances of a parts in stable positions. @ 3D modcl of a pan: (b) convex 
convex hull; (c) computed stable positions; (d) silhouettes of stable postures vicwed from overhead. 
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Figure 16: An example of analysis by ACRONYM: 
(5) Line segments for the input image; (b) 
instances of class models of Roeing-747a and 
L-lOlls;(c) ribbon description: (d) an 
L-1011 located. 
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One important idea is to predict from the model invariant and pseudo-invariant features of an object. which will 
be invariantly observable in the image over the modclcd range of variations. They include parallclism, collinearity, and 
the length ratio and anglcs between spines. (Hcrc we sce an application of the principle of non-accidcntal regularity.) 
Ihcy provide a coarse filter for hypothesizing possible objects. For hypothesized objects, the unknown parameters 
(variations of object shape and distance and orientations of the object) are estimated by the algebraic constraints 
obtained by associating the observation (such as length and angle in the image) with the anticipated range of its value. 

Figure 16 shows an example scene: (a) is the line segmented image extracted from input. (b) shows the instances 
of modcls of a Boeing-747 and an L-1011; after extracting ribbons (shown in (c)) from the line segment image, an 
1.-1011 was identified as shown in (d). This dcduction is not based on the size of the image, but on the relationships 
between the subparts, such as wingspan-to-fuselage-length. 

5. Construction of Scene Description 
'The goal of thc visual process is to construct ~e description of the environment which is sensed by visual 

methods: it must be recognized that this is different from classifying parts of an image, detecting the objcct cxistence 
or scgmcnting the imagcs. The diffcrcncc is most easily understood in the scenario of robot navigation where 
classification or detection is not enough to plan actions of the robot: it must have a 3D description of its environment. 

At CMU. Kanade and Hcrman [16] arc dcvcloping a system callcd Incrcmcntal 3D Mosaic. which builds a scene 
description from a scqucncc of (stcrco) imagcs. It is currently applicd to an urban scene for building a 3-dimcnsional 
model of the targct area from low-altitude aerial photos. A single pair of stereo photos can give only partial 
information on thc scene: only limitcd portions are visible in both images and the stcrco system cannot be perfect 
anyway. 'lhc information must be incrcmcntally accumulatcd into a consistent dcscription as ncw imagcs arc available. 
'Ihc information on thc portions of the sccnc which bccomc visible should be added. and the information on the 
prcviously known portion should be uscd to improve the description. either by correcting crrors or by incrcasing the 
confidcncc and precision. 

Figurc 17 shows a typical sequcncc. Wc havc a stcrco pair of imagcs (Figurc 17(a)). Lincs and junctions are 
extracted from thcm (Figurcs 17(b)). 'lhcn. junctions and lines are matchcd. 'l'hcy arc mostly corncrs and cdgcs of 
buildings. Hcrc we usc the fact that buildings arc mostly block-shaped, and thcy havc (gravitational) vertical cdgcs. 
'lhis illows onc to hypothcsi/.c thc changes of junction appcaranccs along the cpipolar linc of stcrco. and to cope with 
thc difficulty in matching wide-anglc stcrco imagcs with large disparity jumps. such as urban scencs. Wc can compute 
thc 3-dimensional locations of the matchcd junctions and lincs, thus forming wircframcs. Figurc 17(c) shows their 
pcnpcctivc vicw. 

'l'hc wircframc rcprcscntntion docs not yct identify surfaccs. l h c  ncxt stcp is to pcrform reasoning on surfhccs. 
'I'his ih donc by assigning plinar surficcs so that an cncloscd object is ohtaincd with Ihc wirc(i.,iiiics iis cdgcs. 'l'hc 
proccss is similar to obtaining solid objects from wircframcs [21], but wc assume that our wircframcs arc not always 
complete. Figurc 17(d) shows a pcrspcctive vicw of the constructed blocks objccn. Once we haw such a dcscription, 
we can crop imagc patches from original imagcs to know the normalizcd appcaranccs of surfaccs (c.g. window 
patterns). A natural looking display can be generated for the scene viewed from any angle by appropriately 
transforming such appcaranccs according to surface oricntations. Figure 17(e) is an cxamplc. Notice that parts of 
surfaccs which wcrc not visible in thc original imagcs are displaycd distinctively as such (i.c. rcd color). 

'l'his kind of description is uscful. for cxamplc. for planning the angles that the ncxt imagcs should takc: it is 
gcnerally bctter to cowr as much of thc "rcd" portions as possible to increase the knowledge of the target area. This 
scenario of 3DMosaic is applicable to robot navigation and to change detection in a scene. 

6. Organization and Control of Vision Systems 
A key attribute of an image-understanding system is the interaction between high-level knowlcdgc---object 

models---and low-lc\el knowledge--- image or scene features. While the general flow of information is bolkm-up, from 
pixcls to image features. to scene fcatures. to object labeling, many systems also have some it lopdown information 
flow from objcct modcls to image fcaturcs. In the face rccognition program by Kanadc [13]. for cxamplc. a model of 
che arrangemcnt and intcnsity characteristics of face components guides all of the low-level processing. After finding 
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Figure 17: 3D Mosaic: (a) lrnagcs of right and Ice vicws; (p) linc scgmcntq cxtractcd; (c) pcrspcctivc vicw of 
3-11 wircfrarncs which arc madc by edgcs obtaincd by stcrco matching: (6) planc-surfaccd modcls of 
buildings: ( c )  synthcsizcd imagc of  thc xcnc from thc anglc diffcrcnt from original angle. 
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Figure 17: (continued) 

the outline of the head, the program estimates the probable position of the eyes, and look for the dark spots that 
characterize the pupils in and around the predicted locations. When it fails in finding components with such 
characteristics, it goes back to the previous steps. assuming a certain error there, and try another possibilities. This 
model-driven processing can be both efficient and effective. However, programs that depend very much on high-level 
control of low-level processing tend to be too domain-dependent and respond poorly when viewing conditions change 
even slightly. In this section we will examine the organization and control of three different types of vision systems.The 
following descriptions focus on mechanisms for achieving cooperation and flow of control between low-level and 
high-level processing stages. 

6.1. Production System Organization for Outdoor Scene Analysis 
Ohta, Kanade and Sakai [27,26] developed a semantic region analysis system for outdoor scenes. Given a color 

image of outdoor scene, the system assigns semantic labels. such as tree and buildings. to regions. As shown in Figure 
18 the system consists of bottom-up part and top-down part. Initially the bottom-up part first segments the image into 
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Figure 18: Organiyation ofthc rcgion-bascd sccne analysis progrim by Ohta. Kanadc and Sakai 

homogcncous regions by an Ohlander-typc region scgmcntation mcthod [ZS]. 'I hc segmentation rcsult is dcscribcd as a 
patchcry data nctwork which storcs propcrtics of all the patches extracted. 

Then a plan is gcncratcd from it by sclccting regions by large arca. callcd kcypatchcs. hftcr merging small 
patches adjaccnt to kcypatchcs. the systcm tcntativcly assigns a sct of objcct labcls with corrcsponding cstimatcs of 
corrcctncss which arc computcd first from thc unary propcrtics of the kcypalchcs. such as s ix .  shapc. and color, and 
thcn from thc binary rclations bctwccn thcm. such as rclativc positions. 

Figurc 19 shows an cxamplc sccnc: (a) is an input color imagc. (b) is thc rcsult of prcliminary scgnicntation. and 
(c) is thc plan imagc. 'l'hc first plan obtaincd by using only thc unary propcrty rulcs is shown in Figurc 20(a). and 
Figurc 2qb) shows a rcviscd onc by by using thc binary rclations. 

'lhc top-down prtxcss thcn s o n s  symbolic intcrprctation of thc imagc by analyLing dctailcd structure of the 
s a n e  in thc contcxt givcn by thc plan. ('l'hc systcm still can changc thc intcrprcttitions in thc plan, in which case the 
bottom-up prtrcss is rc-activatcd.) 'l'hc analysis USCS a production systcrn organimtion with kni)wlcdgc of thc world 
(outdoor sccnc) rcprcscntcd as a sct of rulcs. F ~ c h  production rulc has a condition p;in and an istion p m .  'l'hc 
condition part is madc of fu/.iy prcdicatcs on propcriics of and rclations hctwccn region>,. 'I'hc iictioii p i r t  is a sct of 
actions to manipulate the database (patchcry network, plan, and scene description) to build thc Sccnc description. Fach 
action is dcscribcd as a form in Lisp. There are TO-DO and IF-DONE rules, corrcsponding to the antcccdcnt and 
consequent thcorcms of PLANNER. 

I h c  world model is dcscribcd as a network of ktzowledge blocks (KB)  which dcfinc the objects. matcrials. and 
concepts in thc givcn task world. I h c  production rules arc dicidcd into subsets according to thc rolcs they play in the 
analysis: For cxamplc. thc subsct for the Scene phasc analysis is storcd in the K B  S C E N E  and thc subsct to analyre 
thc "sky" is storcd in thc K B  SKY.  
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Control of the production system is handled by an agenda which registers all the executable rules (Le., whose 
condition parts are satisfied). The analysis iterates the following three steps: 

1. An executable action with the highest Score on the agenda is executed. A patch or a set of patches is 
interpreted and the database is modified. 

2. If a keypatch is interpreted in step 1. the control enten into the Scene phase. The production rules included 
in the K B  SCENE are activated to (re-)examine the keypatches not yet interpreted. The scene phase. in 
general. considers the overall structure of the Scene, such as the location of horizon and relationships 
among objects. 

3. Otherwise the control enters into the object phase Corresponding to the object as which the patch has been 
just interpreted in step 1. ‘The production rules in the corresponding KB are activated. This phase mainly 
analyze the local structure related to the particular object. 

Figure 21 shows how the plan is modified as the analysis proceeds: (a) when the horizon is determined, and (b) 
whcn the outline of the building is extracted. Figure 2l(c) shows the final labeled interpretation. 

( b )  r e s u l t  of p r e l i m i n a r y  . ( a )  d i g i t i z e d  i n p u t  s c e n e  
segmen ta t  i on  

Figure 19: An outdoor rccne: 

( c )  p l a n  image 



192 

Figure 20: I’lm I‘hc brightness shows the corrcctncss of thc assignmcnts: (5 )  by use of unary 
properties of rqion.;: (b)  - dftcr usinc, binary relations 
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Figure 22: Structure of a blackboard of thc systcm by Nagao, Matsuyama and lkcda 

6.2. Blackboard Arch i t ec tu re  for Interpret ing Mult iband Aerial Pho tographs  
Nagao, Matsuyama, and lkeda [24,25] devclopcd a systcm that interpreted a class of multiband acrial photos. 

Their image-intcrprctation systcm employs multiple. indcpcndcnt knowlcdgc sources that opcratc on a common, 
multilevel database. This database. or blackboard. is rcprcscntcd as shown in Figure 22. Thc abstraction lcvcls of 
image information are elemenfury region. cue region. objecf, and objecf carego?y. Modcls arc dcscribcd i n  tcrms of 
two-dimensional fcatures that can bc obscrvcd in irnagcs. In general. it is not possible to do Sccnc intcrprctation with 
two-dimcnsional models, but it is an acccptablc tcchniquc for acrial photography bccausc thc ~ I C W  angle is so 
constraincd that objcct shapcs change litt1.c and occlusion is not much of a problem. 

The first stcp of proccssing is to smooth the imagc. A nonscmantic scgmcntcr dcfincs a set of clcincntary 
rcgions-a sct of patches that arc homogcncous in multispectral propcrties. 

The next stcp is to cxtract cuc rcgions. Thc typcs of cuc rcgions arc largc homogcncous rcgions. shadow and 
shadow-causing rcgions. clongatcd rcgions, vcgctation rcgions. high-contrast rcgions. and high-contrast vcgctation 
rcgions. Fach typc of cuc rcgion triggcrs onc or morc objcct rccogniycrs. IXffcrcnt cuc rcgions may ovcrlap; for 
cxamplc. high-contrast vcgctation rcgions arc simply the intcrscction of high-contrast rcgions and vcgctation rcgions. 

Cuc rcgions arc cxtractcd by scrccning clcmcnkiry rcgions: for cxamplc. any patch with w r y  low intcnsity. 
particularly in rcd and infrarcd. is classificd as a shadow. An adjaccnt rcgion with an appropriatc boundary on thc 
sunward sidc is a shadow-makcr. Vcgctation rcgions havc a high ratio of  infrarcd to rcd: high-conlrast arcas arc 
aggrcgations of small clcmcntary rcgions. Shadow-making rcgions triggcr thc housc dctcctor. whilc high-contrast 
vcgctation rcgions arc likcly to hc considcrcd forcst. 

Fach elementary rcgion is represented by a node in the lowcst lcvcl of thc blackboard. Nodcc at highcr lcvcls 
rcprcscnt cue rcgions and objects; they arc linked to the clcmcntary rcgions they subsurnc. Furthcrinorc. a node can 
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have a dcpendcncy link to another node, indicating that its intcrprctation was aidcd by the prior intcrprctation of the 
a h e r  node. 

The property tablc shown in Figurc 22 stores the coordinate rangc. or boutitling recrnngle. of a rcgion and records 
whcthcr the rcgion is unanalyzed, recognized, irregularly shaped. or il rejecrcd. FJch rcgion has only onc cntry. which 
means that thcre can be only one objcct hypothesis for a rcgion. 'l'hc first intcrprctation of a rcgion is kept until a 
contradiction ariscs. '1'0 rcsolvc contradictions. thc systcrn dclctcs thc conflicting rcgion intcrprctdtion for xhich it is 
least ctrnfidcnt. I t  marks the rcgion as unanalyzcd. restarting thc intcrprctation of the rcgion; ohjcct hypothcscs that 
dcpcnd on thc dclctcd node arc thcmsclvef delcted. 

6.3. Schema-based System: VISIONS 
'l'hc Univcrsity of Maswchusctts' VISIONS systcrn [8] is pattcrncd aftcr rhc I IIARSAY--II spccch- 

understanding systcrn [SI. I n  VISIONS, hypothcscs are postcd and acccsscd on a bltrc~kbr~nrd by indcpcndcnt 
procedural knowledge sourceds; x'.S l'hcir activation and schcduling ‘ire under thc control of a ccntral cxccutl\'c. ' lhc 
systcrn has bccn tcstcd with outdoor sccncs. Figurc 23 outlines thc structurc of VISIONS. 

'Ihc blackboard in this systcm rcprcscnts a laycrcd dcxription of thc contcnts of ,in irnagc. 'l.hc loxcst Icvcls 
rcprcscnt regions, segrnan/s. and ver[ices: thcy form a structurc callcd an KSV graph. 

Prcproccssing skigcs arc shown in thc lcft half o f  Figurc 23.  'l'hcrc arc thrcc skigcz of inIorm,ition rcprc\ciil;ition. 
The first is the image itself, represented by a resolution pyramid (processing cone). 'I'hc sccond stage comprises 
separate edge and region analysis. The third stage is a merged reprcscntation of thc results of a corrclation hctwccn the 
edge analysis and region analysis. The reprcscntauonsat these low lcvcls arc of image charactcrisrics. rathcr than of 
Scene characteristics. 
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Representations D 

Region Feature 

Extraction 
Processinp 
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Feedback 

Black board 
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volumes Volume CIasses 
~ Surfaces Surface Classes 
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o m @  
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Figure 23: Overview of VISION systcm by Hanson and Riseman 
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Thc next two lcwls in the blackboard work with surfaces and volumes. At thcsc lc\cls. the sqstcm attcrnpts to 
reconstruct the thrcc-dirncnsional configuration of thc sccnc. The top two levcls work with rcprcscnutions of objccts 
and schcmas. At the objcct lcvcl, hypothcscs arc formed about what tlic objccts in thc sccnc n i u ~ t  hakc bccn to rcsult 
in the observed imagc. The schema level imposes constraints on the selection of objcct modcls. lhc rc  may be offrcc 
schcmas. airport schcrnas, and so on. Schcmas serve the same purpose as Minsky's framcs [23]. 

Thc blackboard model in Figure 23 illustratcs the distinction made in VISIONS bctwccn a priori models and 
imagc-specific models. though both may bc rcprcscntcd in the same manner. The a priori models arc storcd in 
long-fenn memory ( U ' M ) ,  while thc unagc-specific modcls arc storcd in shorl-lerni nicniol7~ (SJM ). Kccogni/.ing that 
thcy did not have adequate KSs to rnakc surface and volume hypotheses rcliably. the dcsigners of \'ISIONS 
compensated by rclying hcavily on top-down hypotheses represented by modcls in LTM. 8 y  projecting thcsc models 
into two dimcnsions. thcy construct RSV-level models ofobjccts, and thcsc arc matched to thc actual image. 

VISIONS chooses a KS by traversing a decision tree. I ts  niodel builder dccidcs to expand or to dcvclop a new 
hypothcsis for a model. To expand a model. the level focuser first decides which lcvei of the blackboard to work on. 
Then, that level is expandcd under the control of thc nodejiocuwr. the node expander. and thc node wrrjer. 'The focuser 
selects a node from thc blackboard to proccss further, the expander calls a KS. to create ncw hypotheses. and the 
verifier checks the results for satisfaction of constraints. 

6.4. Remarks 
Somc othcr interesting computer vision systems that interpret natural sccncs include: Shirai [33] (proccdural 

rcprescntation). Rubin 1291 (constraint network rcprcscntation) and Uallard. Brown and Feldinan [Z] (qucry-oricndcd 
analysis). 'lhc imagc/map databasc MAPS. being developed at CMU by McKcown (221. attcmpts to usc multi-lcvel 
multi-sourcc knowlcdgc (such as tcrrain map and cultural maps) for photo intcrprctation. 

7 .  Conclusion 

a morc capablc and gcncral vision systcm than current robotics vision. lhphasis  has bccn put on: 
We haw first discusscd a gcncral structure of vision. and thcn idcntified important arcas to work on for rcaliring 

* Computational aspects of vision 

0 Obtaining constraints from physical and scrnantic knowlcdge 

0 Multi-lcvcl rcprcscntations 

0 Usc of gcncric modcls 

0 Sccnc dcscriptions 

Control and information flow in thc vision system 
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