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1. Introduction

One of the central issues in vision is how to reprcsent and use knowlcdge relevant to understanding the imagc.
Partly bccausc vision is so difficult. and partly becausc even the cheapest solutions can still be so useful. npproachcs to
vision problems have had a tcndency to be ad Aoc and heuristic. Recently, howcever. new thrusts in computer vision arc
emerging. most notably in the Image Understanding community, that try to pursue morc systcmatic and computational
approaches. f1]

This article attempts to introduce such new Image Understanding approachcs to vision. It first presents the
author's view of structure of vision: what typcs of information must bc dealt with and what Icvcls of knowlcdgc are
involved in transforming one type of information into another. Then, representative rescarch progress in Image
Undcrstanding is reviewed which addresses use and rcpresentation of knowlcdgc in vision. Specifically. we will discuss:

e Formatization of physical knowledge into computational forms
e Use of 3D models
e Construction of scciic descriptions from images

e Organization and control of vision systems

2. Structure of Vision

let us consider what vision really is. Vision involves visual scnsing and intcrpretation.  Visual scnsing is a
projection of a physical cnvironment into a form of rcprescntation called inages  Projection can vary from the most
ordinary picturc takcn by cameras to active scnsing such as by lascr rangc finders. Images can also rangc from a
single-point light flux measurement to 3-dirncnsional rangc data. 'T'hen vision is dcfincd as « process of understanding
the cnvironment througli the projccted images. or in short inverse projection.

I'hc vision process must involve various types of information. Figurc 1 is a schematic diagram showing one
possihlc dichotomy of such typcs and thcir primary relationships. [14] 'I'hc general idca is as follows: given an image,
cucs (picture domain cues OF scene domain cues) arc extracted: thesc arc then used to aceess the model of the task world
and to instantiate it: the instantiated model is verified by projecting it back to the picturc tevel (picture interpretation)
and by matching it with the input imagc. 'I'his positive feedback loop isthe basic drive in the analysis process.

Scvcral points should be notcd about this mtdcl. First of all, there is an important distinction hctween the picturc
domain and the scene domain. In short. a picture is a projcction of a scene. ‘Thus the picturc domain cucs arc the
fcaturcs observed in the picturc. such as linc scgments. homogencous regtons, intensity gradients, cte. 'I'hc scenc
domain cucs arc the features which arc the cause of the picture domain cucs. such as cdgce configurations, surfacc
orientations, reflectances, volumes cte. 'T'his distinction prevciits oiic from confusing features in the picturc domain
with those in the scene domain. For example, the "above™ or “adjacent” refationship hetween regions in the picturc
does not necessarily corrcspond to the "on™ or "next-to" relation bctwecen objects. Though the most basic and
important Scene domain cues are spatial three-dimensional (3-D) configurations, thcre arc other important ones, such
as rcflectances and lighting conditions. The modcl contains the generic descriptions of the task world. It can be
thought of as containing information about the gencric shapces of objccts and rclations among them. Notc that genenc
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Figure I: A modcl of vision process. Roughly spcaking. the right half of the cycle corrcsponds to the
data-driven, bottom-up.  hypothesis-generation phase, and the Icft half to the modct-driven,  top-
down. verification phasc of vision.

MopeLs

modcls arc to bc represented in terms of scenc domain cues. The instantiatcd modcl is the spccific situation being
depicted in the picturc: the specific objccts. their sizes, their placcment, etc. The picturc intcrprctation is a projection
(an anticipated picturc) of the instantiated modcl under the spccific conditions (view direction. lighting conditions,
ctc.). It gives an explanation of the imagc by the descriptions such as what lincs and rcgions of what propcrtics should
appear 1n the image. what set of lincs or regions constitute the objects. and so on. An example of this typc of
information is an image secgmented into rcgions with scmantic labels attached 0 cach. It is diffcrent from an image
which 15 only a collection of image fcaturcs. such as color and intcnsity.

‘The model of Figure 1 involves three levels of knoxlcdge -- signal. physical. and semantic. Roughly speaking. the
signal level involves manipulating image fcaturcs as 2-D patterns, the physical level involves bridging the picturc and
scene domains so that image features can be interpreted as scene features, and the semanuc level involves working in
the scenc domain to exploit the task world constraints.

The diffcrcnce among these levels can be illustrated by the following cxample. Suppose that a histogram of the
gray levels of an imagc shows a clear bimodality. The value at the valley is often sclccted as a good threshold. This is
based on the signal /eve/ knowledge that in such a case often two sourccs of monomodal distribution arc present.
Therefore. a threshold value at that vaticy will give a good splitting of the image. We are also assuming that a
salt-and-pcpper image (which can produce the same histogram) is rare. This signal-level histograming tcchniquc is
actually based on physical level knowlcdge. We know that two surfaces, whose reflectivity characteristics arc diffcrent
from cach othcr but constant within cach. or which have different oricntations. can produce two regions in the image
whose fray levels arc different but relatively constant within each. Why B it significant to extract those surfaccs for
understanding the irage? Because we know that surfaces with different rcflectance or oricntations arc the semantically
mcaningful units which constitute the objects in our world.

As another example. the extraction of straight lincs by detecting suddcn changcs of intensity on the signal level is
justified by the physical-level observation that such intensity changes arc caused by suddcn change of oricntations
(convexity and concavity). distancc (occlusion). illumination (shadow). and rcflcctance (matcriat change), alt of which
arc usually importnnt clues in the scmantic analysis of the scene content.

It is nor meant that the analysis should always follow the routes shown in Figurc 1. In fact. one can combine
several steps to one, or precompilc nceessnry knowledge ahout some entitics into a processing procedure, so that
those enuties arc not explicitly trcatcd. However. the meaning and limitations of many methods can hc illustrated by
considcring what types of knowledge are incorporated into them, according to this paradigm.

Notice that essential difficultics in vision iirc in crossing the houndary hctween the scene and picture domains
from picture to scciic: it 1s ambiguous. thus additional constraints arc to be used. Generality of vision depends on how
to dertve and usc necessary constramts,
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3. Converting Physical Level of Knowledge into Computational Constraints
Historically, there are several annoying image phenomena which often cause vision programs to fail in image
analysis: they include deformed shape due to slanted views, shadings due to curved surfaces and lighting, and textural
patterns. and shadow. That may be still true in most applications, but it has begun to be understood that these are rich
sources of information about object shape. An intcresting class of theories have been developed to handle these
sourccs. They arc all for relating picture domain cues with scene domain cues so that they can be used in recovering
3-dimensional scene features from images. This section will briefly introduce such theories which allow computational

usage of constraints from image intensity and geometry in order to exploit 2D-shape, shading, texture. and shadow in
the image.

Sincc we will use gradienr space [32][20] throughout the section as a convenient tool to represent surface
oncntations. let us first define it. Our coordinate system x-y-z is placed so that the optical axis is the z axis and the
image plane is the x-v plane. (See Figure 2.) Consider a surface,
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Fieure 2 (a) Imaging geometny including the  object. the picture, and the viewer. (b) mapping of plancs to a
gradient.
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The gradient space is defined by (p,q) where
of _of

=—, = 2
L @

That is, p and q arc the ratc of changc in depth on the surfacc along the x and y dircction. Wc can casily sce that
(p.q.1) has the direction of the surfacc normal.

Gradicnts arc constant over a planar surfacc, and the gradicnt (p,q) corrcsponds to a sct of parallcl plancs:
_Z:px+qy+c 3)

where ¢ is arbitrary. Throughout this section we will assume orthographic projection for simplicity rather than
pcrspective projcction.

Under orthographic projcction. the gradients of plancs and the image linc on the image have an intcresting
relationship.  Referring to Figure 3, Iet two plancs P and P, intersect in the spacc and let the intcrscction cdge be
depicted as a linc /in the image. Then the linc in the gradient space connecting the corresponding gradicnts G,=(p,9)
Is perpendicular to the linc /. This can bee scen in the following way. The normals of the two surfaccs have dircctions
n,=(p,.q,.1}and n=(p,.q,.1). Their cross product n,xn, rcprescnts the dircction of the intersection cdge in the space.
Since we assume orthographic projcction the dircction of the linc 7 in the image is given by the x and y components of
this cross product: 1.c., (Q,=Q, Py~ Py ‘This vcctor is obviously pcrpendicular to the vector G -G, = (P, =Py
q,—q,) which connects G] and G,. Morcovcr if the interscction cdgce is convex viewed from the viewer, then the
positional ordcr of G, and G, is the samc as the rcgions in the picture corrcsponding to P, and P,: if concavc. the order
is reverscd.

picture plane

gradient space

Figure 3: Properties of dual lines. If two plancs meet and the intcrscetion  linc is projected as a picture line
L. then the gradicnts of the two plancs are on a gradient-space line which is pcrpendicular to L
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3.1. Image Intensity

3.1 _ IShading

Grey-level shading has been neglected or even thrown out in most robotics vision. though it is well known that it
gives information on surface curvature. This is partly due to the dominance of binary imagc processing for fast
proccssing and partly due to lack of adcquatc theory and techniques for cxploiting shading information. tiorn [9] did a
pioneering work in shape-from-shading theory. Figurc 4 shows a simple modcl of imaging: it consists of a point light
source, a surface patch, and a viewer. In general the intcnsity in the image corresponding to the surface patch is a
complex function of illumination position, surface material, surface position. surface orientation, vicwcr position, ctc.
Let us assume. for simplicity, a Lambcrtian surface (ie. perfectly uniform diffuse reflection) and a parallcl incident light
(ie, a distancc point source). The obscrved intensity | which corresponds to the surfacc patch is given by,

| =1, p cos() Gy

where Iy is the intensity of the incident light, p the reflectance of the surface, and 1 the incident anglc which is made by
the incident light and the surface normal.

In ordcr for this cquation to be usable in vision. we nced to convert it into the imaging coordinate framc. This
can be done by using the gradicnt spacc. The surfacc normal of the patch is n=(p.,q,1) and the dircction vector of the
illumination is cxpresscd ass=(p, q, 1). Since cos( fy=n-s/|nlls|,

103 =1, p® P+ g + D/Vp24a2+1Vp2+a241 = R(p.a) )

In this way. the obscrved intensity /(x.y) at an imagc point (x.y) is cxpresscd as a function R(p.q) of the surface
oricntation (p.q) of the corrcsponding surface point. Figurc 5 shows the Toci of cqual-intensity gradicnts R(p.q) =/, for
the case(ps‘qs‘1)=(0.7‘0.3‘1); i.c., the light comes from slightly above and right of the viewing anglc. Figurc 5 is callcd
a rcflcctance map.

It is worthwhile to note the significance of the rcpresentation like the reflectance map (or cquation (5)) as
comparcd with cquation (4) . Fquation (4) rcpresents the physical rulc in imaging as viewed from a third person who
obscrves the imaging process. In contrast. cquation (5). though rcpresenting the same rulc. is in the viewer's coordinate
framc. 'T'his is essential for using the rulc to interpret the images becausc the imagces arc recorded in that coordinate
framc.

SOURCE

\\ l//

~ g

NORMAL :O:
A TR

VIEWER

15

Figure 4: A simple reflection and imaging model
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Figure 5: A reflectance map for a Lambertian surface illuminated by parallel flux of light from the direction
(0.7.0.3, 1).

The rcflcctance maps can be used in a few ways. One is for shapc-from-shading: given an imagc of an objcct.
compute the shape of the objcct using the shading information. This can be accomplished by assigning to cach pixcl
(1,j} in the imagc a gradient (p,q) ‘T'he reflectance map alone docs not give enough constraints to uniquely determine
the gradient at each point: i.c. R~ ': 7 — (p.q) is not aunique function. Here we nccd additional constraints.  Ikcuchi
and Horn [12] dcmonstratcd a numecrical shape from shading by assuming surface smoothness. They obtaincd the
solution by minimizing the following.

F=3 3k, =3 STU) - Ripya) P +A (=7 P +(ay— 4 )11 (6)
1] LI

The first tcnn in E,, Corresponds to the difference between the observed and expccted intensities. The sccond term
approximates the Laplacian of the surfacc orientation and thus provides index of non-smoothness. In ordcr to solve
this minimization we further need boundary conditions: certain places in the image where the surface orientations arc
known. Occluding contours providc such boundary conditions. The surfacc orientations of those pixels ;it the
occluding contours are known bccausc the surfacc normal there is perpendicular to the line of sight (+ axis) and the
occluding contour projccted onto the image. Using all thesc constraints 3D shape recovery from a grey-level imagc was
dcmoiistrated.

Another use of the rcflcctance map is photometric stereo[35]. Multiple images of an objcct are taken by the
camera at one position. but with different lighting directions. At each pixcl position. each image provides constraints
on surface orientation according to the rcflcctance map. which corresponds to that lighting condition. Three or more
images can determine the surface orientations uniquely. I'his method eliminates the so called correspondcncc problcm
in stcrco. becausc the imagcs arc taken from a single position and thus are registered. It suggests use of dynamic clever
control in lighting to inspect surface texture and anomalies in such applications as soldering and casting inspection.

‘the reflection propcrtics of materials arc complicated. and rather than analytical forms. they arc often measured
in forms such as the bidirectional rcflcctance distribution function (BRIJF) or goniophotometric measurement.  lhere
have been developed computational procedures to convert such data into rcflecrance maps [10] [30}. These techniques
make 1t possible to apply the reflectance map method to robotics tasks, because the environments are usually
constrained and surfacc propertics arc known or measurable.
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cdge

intensity curves

Figure 6: A stripe region around an cdgc. in which columns of intensity curvesare taken for correlation.

3.1.2. Classification of Edge Types
We have noted that so called image edges (discontinuity of image intensity) can correspond to many typcs of
scenc cdgces. The most represcnwtive types are:

Type Discontinuous Sccnc Fcaturc
Convex/Concave Surface orientation (Continuous distance)
Occluding Distance (Different surfaces)
Cast Shadow [lfumination (Same surfacc)
Sclf Shadow Illumination derivative
Pattern Reflectance

If we can classify edges in the image into ihesc typces. it will make it far casicr to analyze the 3-dimensional shapes
of objects from the image. For example, the ohjcct shape can be found from occluding boundaries without hcing
confused by non-shape related edges: and sterco matching would be much casicr because the cdgc typcs tell what kind
of different appcarance should be cxpccted on cither side of an cdge in making correspondence.

Initially. use of cdgc profiles {9] or intensity derivatives near the cdgc [3] was suggested for cdge classification
based on consideration of micro structures near the cdge. Recently Fischler and Witkin [7] studied an interesting
method to detect occluding boundarics and cast shadow cdges in the image. Consider strip rcgions along an cdge as
shown in Figure 6 and take columns of intensity curves taken parallel with the cdge along its length. A scquence of
tincar regresstons is performed between cach pair of consecutive intensity curves. As a result a normalized corrclation
coefficient is obtaincd. together with additive and multiplicative regression terms, cach as a function of the location
across the cdgc. An occluding boundary is indicated by a sharp notch in an otherwise high correlation at the nominal
edge location. A cast shadow boundary is indicated by high corrclation maintained across the cdgc with a sharp spike
or notch in the additive and multiplicative rcgression term due to transition between shadow and nonshadow sides.

Justification of this method is given by the following simplified arguments. At the occluding boundary we are
looking at different surfaccs on cach side. Thus the image properties across it should not be corrclatcd. At the shadow
boundary. illumination changes but the surface is the same. Thus image intensities across it should be corrclatcd with
change only in cithcr magnitudc or scale. This classification mcthod rests on the principle that the coherence in the
imagc intcnsity reflects the real coherence in the scene.
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3.2. Geometry
Geometry is another important physical level of knowledge which governs the vision process and from which
constraintscan be extracted.

3.2.1. 2D Shape

Two dimensional shapcs of rcgions (i.c., projcction of surfaces) in the image convey information about the
three-dimensional shape of an object in the sccnc. This is illustrated by such simple drawings in Figurc 7. Figurcs 7(a)
and (b) are topologically the samc and the slight diffcrcnce in the 2D shape of the lower two rcgions results in different
perceptions “'cube™ and "trapezoidal block". In fact, cven such simple figurcs as Figurcs 7 (c) and (d) alrcady invoke
the pereeption of surface oncntations. Certain gcomctrical propcrtics should be the source of that pereeption. These
phenomena may havc bcen often studicd in their psychological aspects. but until recently very little has bcen
formulated in a manner usable for machine vision.

Kanadc [15] dcmonstratcd a systcmatic method to rccover 3-dimensional shapcs from a single view by mapping
image propcrtics into shape constraints. “The 21D shapc property of Figure 7 (c) and (d) is onc of the propcrtics he
studicd. It was named skewed symmetry, because they arc intcrpreted as symmetric figurcs viewed obliquely. In other
word, whercas in the usual symmctry reflective correspondenccs arc found along the dircction perpendicular to the
symrnctry axis, in the skewed syrmmctry it is is found along the dircction not necessarily perpendicular to the axis, but
ata fixcd anglc to it. Formally. such shapcscan bec dcfined as 2-1) Affine transforms of rcal symmctrics.

'I'ncrc arc a good body of psychological cxpcriments which suggests that human ebservers can perecive surface
oricntations from figurcs with this propcny. This s probably bccausc such qualitative syrnmctry in the image is oftcn
duc to rcal symmctry in the scenc.

(a) ®)

\
-——-*————

a
&

(e)

Figure 7. (a)Xb) Simple line drawings: (a) "'cube™: (b) "trapezoidal block": (c}d) skewed symmctry: (c) axes
of skewed symmctry of (¢)
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Figure 8 The hypcrbola ofcq. (8) corresponding to Figurc 7(c). The axis of the hypcrbola is the bisector of
the obtuse anglc madc by a and 8. The asymptotes rnakc the same anglc as the acute anglc made by
a and 8. 'T'he tips or vertices G and  G.v of the hyperbola represent special oricntations with
intcresting propertics. Especially, since they arc closcst to the origin of the gradicnt spacc. and since in
genceral the distancc  from the origin to a gradient (p.q) rcprescnts the magnitudc of the surface
slant G y and G,ﬂ corrcspond to the Icast stanted oricntations that can produce the skewed symmctry
in the picture from a rcal symmctry in the scene.

Now let us associate the following assumption with this imagc property: " A skewed symmetry depicts a real
symmetry viewed from some unknown view angle." Notc that the converse of this assumption is always truc in
orthographic projcction. As shown in Figurc 7(c). a skewed syrnmctry dctincs two directions: let us call them the
skewed-symmetry axis and the skcwed-transversc axis, and denotc their directional angles in the picturc by a and 8.

respectively. Let G=(p.q) be the gradient of the plane which includes the skewed syrnmctry. In gencral the 2-ID unit
vector e in the direction y is e=(cosy,siny). From (3), the 3-D vector corresponding to € on the plane in the space is
given &s:

uy =(cosy. siny. -(pcosy +gsiny)). (7

The assumption about the skcwcd symmetry demands that the two 3D vectors u, and u, be pcrpendicular in the 3D

space: i.e., their inner product vanishes, u_- ug =0, or: A

cos(a—B)+ (peosa T gsinaXpcosB + qsing) = 0. (8)

By rotating the p-q coordinates by the amount A = (a+ 8)/2 into the p-g' coordinates so that the new p'-q' axes
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are the bisects of the anglc made by the skewed-symmetry and skewed- the skewed-symmetry and skcwcd-transverse
axes, it is easy to show that (8) represents a hypcrbola in the gradient spacc shown in Figurc 8. That is. the skewed
symmetry defined by a and B in the picture can be a projection of a real symmetry if and only if its surfacc gradient
(p.q) is on this hyperbola. The skcwcd symmetry thus imposes a one-dimensional family of constraints on the
underlying surface orientation. Figure 9 illustrates how this skewed symmetry constraint can be used to rccovcr the
shapc of "'cube" from the image.

The same approach was extended to other properties: parallel lines, affine-transformable patterns. and textures
[17]. We can summarize the assumptions used in these cases: regular properties observable m the picture are not by
accident, but are projections of some preferred corresponding 3-0 properties. Figure 10 listsinstances of this principle of
non-accidental image regufarizy. Note also that the principle used in classifying the edge types in the previous section is
also the same effect: the cohcrence in the image reftects the real cohcrence. Since the mapping from the picturc
domain to the Scene domain is one-to-many (ambiguous), we nccd to rely on this type of general assumptions or
task-specific constraints to rcsolvc the ambiguity.

3.2.2Shadow

Shadow gives good clucs on spatial relationship between objccts and surfaces.  Acrial photo interpreters make
much usc of it in figuring out. for cxamplc. the hcight of the objccts. l.owe and Binford [19] dcmonstrated the
reconstructing of the shape of an airplanc by using shadow information. They first paired shadow-making cdgcs and
castcd-shadow cdgcs on the ground by assuming the ground planc and the sun anglc. Then the hcight of the airplane
along the contour made of shadow-making cdgcs was estimated, which gave the shapc of the airplanc.

Shafcr and Kanadc [31] invcstigatcd a general and compact gradient-space rcprescntation of geometrical
constraints given by shadow. Figurc 11 shows a basic shadow prohlcm. It consists of the parallel-light illuminator |,
the shadow making (occluding) surfacc S and the shadow surfacc 5. 'I'hc problems includes six paramcters to be
cornputcd: the gradicnt GO:(po‘qo) ()fSO, the gradicnt Ost:(ps‘ qs) of SS and the dircction of illumination (8 q,).

This problem can bc studicd by considcring two other surfaces Sy, and S, (and thir gradicnts G, and G,
cach of which includcs a pair of shadow making and castcd shadow cdgcs: for cxarnplc, F’m and define S;;. Note
that S, and SS makc a concave cdge along F,SI, and so do S and $_along FQ. Now thrcc constraints are provided
from the basic shadow problem gcomctry: 1) The angle G -G, -G.. which comes from the angle b _ - ;2 2) 'T'he angle

v, G3
Ve @ %
Vs s
Ve
G
G2 1
(a) (b)

Figure9:  (a) A labeled linc drawing: the dotted lincs show the axes of skewed symrnctry. (b) The
constraints on the gradients of the three surfaces duc to their intcrconncction:  the gradients form a
triangle in the gradicnt spacc whase shapc and oricntation should as shown. but the location and the
size arc arbitrary. {c) 'I'nc hypcrholas shown corrcspond io the skewed symmetrics of the  three
rcgions. 'lI'nc prohlem is thus how to place the trianglc of (b). by translation and scale changc. so that so
that cach vcrtex is on the corrcsponding hypcerbola. ‘The locations shown is praven to be the only
position. and the resultant shapc is a cube.
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G -G,,-G. which comcs from the angle between E , and E,: 3) The direction of the linc /. (containing G, and
G),). which comcs from the dircction of E,, (line containing the two vertices V_,, and V) We would thercforc
cxpect that threc paramctcrs must be given in advance. and the other three can hc computed from the geornctry.

Figurc 12 showsa construction for the case that the dircction of illumination (actually the rclative depth component of
illumination vector - one parameter - is given) and the the orientation of shadow casted surface (G arc known.

The basic shadow gcomctry provides thrcc constraints, and thus thrce parameters have to given by othcr means
to solve the problcm. It 1s interesting to compare this situation with the situation without shadows: an image which
only depicts S_ and S, intersceting along F . Here. there arc four paramcters (G and G ) to compute, and one
constraint from the image (E). o thrcc picces of information arc still nccded in advance. With shadows, the Same
numhcr of a priori paramctcrs arc nccded, but one of them can be a description of the light source position instcad of a
description of a surfacc oricntation. The gcomctrical significance of shadows is that thcy allow information about the
light source to be used to solve the problem as a substitute for information about the surface orientations themselves.

3.3.Texture

Pcreeption of depth and surface from texture gradient has been studicd by psychologists. Recently, Kender [18]
developed a very powerful computational paradigm for shape from texture. His central idca is a normalized texture
propcrty map (NTPM}), which is again for mapping image features (texture in this case) into scene properties.

Let us show an example of NTPM for length. Suppose we have a texture pattern shown in Figurc 13. which is
madc of line segments with two orientations: the horizontal ones with length L, and the diagonal ones (45") with
length 1... Consider in general a line segment in the image whose direction is of angle y with the x axis and whose
Icngth is /. If that line scgment is on a plane whose gradient is (p. q), what is the real length of the 3-dimensional line in
the scene? From (7). /u s the corresponding 3D vector, and its 3D length is

Iy =1 =1 \/1 + (peosy T gsiny)? 9)

[(y.h) is the NTPM for a linc scgmcent with slope y and length /, As with the rcflcctance map. we can
rcpresent (9) as a set of contours in the gradicnt space, I.(y.)=1.. cach corresponding to such (p.q)'s that the 30 lincs
which arc on the surface and which will be projcctcd onto the image as a linc of Icngth / and angle A arc of length
[.. Figure 14 shows the NTPM for y=45° In gcncral. the NTPM is a function of surface oricntations. and its value
rcprescnts a scenc property (e.g.. 3D line length) that the scene constituent in that surface orientation should take if the
observed imagc property (cg. 21D linc length) comes from it. In other word, it rcpresents deprojected scene properties
from image.

Picture
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Parallel in 2D
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Similar color edge profile
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Figure 10: Instances of the principle of non-accidental image rcgularity. Notice that the rules arc mostly true
when going from the scene to the picture. but the other direction is heuristic.
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Figure 11: Basic shadow problem: the suffixes are
given to show the correspondences; for
cxample. E , is a shadow making edge and
Esl is acorresponding shadow edge.
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Figure 12:  The construction in the gradient space for computing G0 proceeds as follows:

1. Draw the line parallel to E,, through the origin. Plot the given G, (it should be on this line). Let k
be the distance from the origin to G; Draw the line L, so that it is perpendicular to Ey;, opposite
to G, with respect to the origin and at the distance of 1/k from the origin.

2. Plot G, which wasgiven. Through this point, draw a line perpendicular to E ;. Where it intersects

L,jjum Must be Gy, Through G, draw aline per perpendicular to E ;. G_ must lie on this line.

illu 11*

3. From Gg. draw a line perpendicular to Esr Where it intersects Lmum will be ze- From there,
draw a line perpendicular to E_,. Since GO must lic on this line. the intersection of this line with
the final line from step (2) above must be G .



Figure 13: A texture imagc of linc segments. It is assumed that all linc scgments are on a planc surface and
the their real length arc the samc. What oricntations are possible?

/|

Figure 14: A normalized texture propcny map for length. 1.(45°,1).
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In Figure 13. if we assumc that all the linc scgmcents are on the same planc and arc of the samc lcngth in the
space, the possihlc oricntations of the surfacc can be obtaincd by

100,1.)=145% L)) (10)

or hy graphically intcrsccting the NTPM surfaccs. This is hypcrbola in the gradient spacc. Though this is a very simple
example, the same techniquce can he uscd to esumate the surface orientations of walls of buildings in outdoor scenes or
of mechanical parts with textures.

W can obscrve a striking similarity bctween the case of texturc and shading. Wce can makc the correspondence
between

Shading Texture
pixcl texcl
imaging set-up scene constituent
reflectance map NTPM

In fuct. as in shape {rom shading, shape recovery of a cunved surfuce which has a textured pattern on 1t can be
performed by assurming surface smoothness and regularity in the texture. {17][11]

3.4. Remarks

I he rechnigiics and approaches in obtaining and representing constraints from the physical level of knowlcdge
arc suggestive to other arcas of robotics which deal with sensing and interpreting natural environments. I'hc key idca is
to modcl the projcction process and represent 1t in a form that can be uscd for inversc projcction in conjunction with
other constraints involved in interpretation. It is noteworthy that the forward projection rules used in Section 2
(reflection or projective geometry) arc simple and fairly well understood. But they arc oftcn so local or microscopic
that their direct application may result in gigantic unmanipulative cqiiations. hppropriatc representational spaces,
such as gradient spacc. enable them to be applied in a macroscopic manner.

4. 3D Model-Based Vision

I hc theorics presented in the previous section extract natural constraints undcr reasonable physical. mostly task
independent assumptions.  In this sense. those methods are modcl weak. Model-based vision attcmpts to use task-
dcpendcent semantc constraints. This idea is not new. In fact. ad hoc methods can be regarded as modcl based. Also
two dimensional relationship among parts of objccts, rcpresented as cither graphs or procedures. have been uscd to do
dircct two-dimensional patiern analvsis such as face rccognition. chest X-ray analysis and region scgmentation of aerial
photos. Hut xhat wc aim at is 31> model-based vision which can cope with difficultics due to variations of object
shapes and vicw angles. Although such pcrfcct systems are probably still far away, we can see important progress.

An carly atrcmpt in model-based vision {6] used a prcdctcrmincd set of models with fixed shapes to validate the
hypothesized recognition result. Given an impcerfect linc drawing. the system cxtractcd features and dccided what
objects appeared in what anglcs in the scene, then gencrated a linc drawing anticipdted if the recognition result was
correct. 1t was comparcd with the input. and if thcy werc close the rccognition result was correct. otherwise other
possibilitics were pursued.

3-dimensional shapc modcls can be also uscd to predict 2-dimensional appcaranccs of objects beforchand under
various lighting conditions. Then intcrprctation consists of mostly verification (verification vision). An cxamplc chown
in Figure 15 Is cspecially interesting because the appearances of siable postures of a part are computed from its
3-dimensionat geometric model. [34] First. the cnnvex hull of the ohjcct is obtaincd, and cach of its surfaces is tcsted
whether it provides a stable support of the-object.

A general model-based vision systcm should have variable or gencric modcls of objccts and interpret an input
image as instances of the generic model (recall Figure 1) to recognize the specific objccts (c.g. st7e. shape) which appear
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in a spccific manner (c.g. oricntation, distance). The basic difficulty herc is the diffcrence in the coordinate framces
uscd in the gencric modcls and in the rcprescntation obtained from images. ‘I’hcgencric models arc (and should be)
described by viewer-independent represcntations, whcercas the image fcaturcs and surfacc represcntation obtaincd
from images arc vicwcer-dependent. Somchow the two types of representations must be made compatible. Most of the
previous systems did this cithcr by quickly hypothesizing the paramctcrs from a very small set of imagc fcaturcs or by
gencrating 2-dimensional appcarances So that thcy could work totally in the picturc domain. Both werc possible
bccausc the shapes werc fixed and limited.

What is nccded is a morc systcmatic way to access the model and to renson about the parameters.  ’I’hc
ACRONYM systcm at Stanford [4] uses invariant and pseudo-invariant fcaturcs which arc predictcd from the given
object models. In ACRONYM. an objcct is modeled by its subparts and thcir affixment (spatial rclationships).
Volume primitives to rcprescnt subparts arc generalized cones: A generalized cone is a volume swept by moving a
cross scction along a 3-dimensional curve (called a spinc). When a cross scction is a round disc and it is moved along a
straight linc with its size varying linearly, a ordinary cone is gcncratcd. Parameters that specify the generalized cones
and thcir affixment are given not only by spccific values but also by free variables with which rangc and mutual
constraints can be associated. In this way one can rcpresent gencric objcct modcls which allow variations in size and
shape. The imagc fcaturcs that ACRONYM uses arc ribbons (two dimensional stripc) and cllipscs, which can provide
an approximation as the projcction of the straight spine and the circular cross scction. rcspectively, of the
corresponding generalized cylinder.

(d)

Figure 15: Anticipating the appearances of a parts in stable positions. (@ 3D modcl of a pan: (&) convex
convex hull; (¢) computed stable positions; (d) silhouettes of stable postures viewed from overhead.
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Figure 16: An example of analysis by ACRONYM:
(a) Line segments for the input image; (b}
instances of class models of Boeing-747a and
L-1011sy(c) ribbon description: (d) an
L-1011located.

(b)

===

(c)

(d)
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One important idea is to predict from the model invariant and pseudo-invariant features of an object. which will
be invariantly observable in the image over the modclcd range of variations. They include parallclism, collinearity, and
the length ratio and anglcs between spines. (Hcrc we sce an application of the principle of non-accidental regularity.)
They provide a coarse filter for hypothesizing possible objects. For hypothesized objects, the unknown parameters
(variations of object shape and distance and orientations of the object) are estimated by the algebraic constraints
obtained by associating the observation (such as length and angle in the image) with the anticipated range of its value.

Figure 16 shows an example scene: (a) is the line segmented image extracted from input. (b) shows the instances
of modcls of a Bocing-747 and an L-1011; after extracting ribbons (shown in (c)) from the line segment image, an
1.-1011 was identified as shown in (d). This deduction is not based on the size of the image, but on the relationships
between the subparts, such as wingspan-to-fuselage-length.

5. Construction of Scene Description

The goal of the visual process is to construct the description of the environment which is sensed by visual
methods: it must be recognized that this is different from classifying parts of an image, detecting the objcct existence
or scgmenting the images. The difference is most easily understood in the scenario of robot navigation where
classification or detection is not enough to plan actions of the robot: it must have a 3D description of its environment.

At CMU. Kanade and Hcrman [16] arc dcvcloping a system called Incremental 3D Mosaic. which builds a scene
description from a scquencc of (stcrco) images. It is currently applied to an urban scene for building a 3-dimcnsional
model of the target arca from low-altitude aerial photos. A single pair of stereo photos can give only partial
information on the scene: only limited portions are visible in both images and the stcrco system cannot be perfect
anyway. ‘The information must be incrementally accumulated into a consistent description as new imagcs arc available.
The information on the portions of the sccnc which become visible should be added, and the information on the
previously known portion should be uscd to improve the description. either by correcting errors or by increasing the
confidence and precision.

Figurc 17 shows a typical sequcnce. Wc havc a stcrco pair of imagces (Figurc 17(a)). Lines and junctions are
extracted from thcm (Figurcs 17(b)). Then, junctions and lines are matchcd. ‘I'hcy arc mostly corners and cdgces of
buildings. Here we usc the fact that buildings arc mostly block-shaped, and thcy havc (gravitational) vertical cdgcs.
This allows onc to hypothesize the changes of junction appcaranccs along the cpipolar linc of stcrco. and to cope with
the difficulty in matching wide-angle stcrco images with large disparity jumps. such as urban scenes. Wc can compute
the 3-dimensional locations of the matched junctions and lincs, thus forming wircframes. Figurc 17(c) shows their
perspective Vicw.

'I'hnc wircframe representation docs not yet identify surfaces. The next step is to perform reasoning on surfaces.
‘this 1s done by assigning planar surfaces so that an cnclosed object is obtained with the wireframes as cdges. ‘The
proccss is similar to obtaining solid objects from wircframcs[21], but we assume that our wircframcs arc not always
complete. Figurc 17(d) shows a pcrspcctive vicw of the constructed blocks objcen. Once we have such a description,
we can crop imagc patches from original imagcs to know the normalized appcarances of surfaccs (c.g. window
patterns). A natural looking display can bc generated for the scene viewed from any angle by appropriately
transforming such appcaranccs according to surface oricntations. Figure 17(e) is an cxamplc. Notice that parts of
surfaccs which werc not visiblein the original imagcs are displayed distinctively as such (i.e. red color).

‘I'nis kind of description is uscful, for cxamplc. for planning the angles that the ncxt images should take: it is
generally better to cover as much of the “red" portions as possible to increase the knowledge of the target area. This
scenario of 31YMosaic is applicable to robot navigation and to change detection in a scene.

6. Organization and Control of Vision Systems

A key attribute of an image-understanding system is the interaction between high-level knowlcdgc---object
models---and low-level knowledge--~ image or scene features. While the general flow of information is botfom-up, from
pixcls to image features. to scene fcatures. to object labeling, many systems also have some it top-down information
flow from objcct modcls to image fcaturcs. In the face rccognition program by Kanadc [13]. for cxamplc. a model of
the arrangement and intcnsity characteristics of face components guides all of the low-level processing. After finding
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Figure 17: 3D Mosaic: (a) Irnagcs of right and left views: (b) linc segments cxtracted; (¢) perspective view of
3-1) wircfrarncs which arc madc by edges obtaincd by stcrco matching: (d) planc-surfaced modcls of
buildings: (¢) synthesized image of the scene from the angle different from original angle.
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Figure 17: (continued)

the outline of the head, the program estimates the probable position of the eyes, and look for the dark spots that
characterize the pupils in and around the predicted locations. When it fails in finding components with such
characteristics, it goes back to the previous steps. assuming a certain error there, and try another possibilities. This
model-driven processing can be both efficient and effective. However, programs that depend very much on high-level
control of low-level processing tend to be too domain-dependent and respond poorly when viewing conditions change
even slightly. In this section we will examine the organization and control of three different types of vision systems.The
following descriptions focus on mechanisms for achieving cooperation and flow of control between low-level and
high-level processing stages.

6.1. Production System Organization for Outdoor Scene Analysis

Ohta, Kanade and Sakai [27, 26] developed a semantic region analysis system for outdoor scenes. Given a color
image of outdoor scene, the system assigns semantic labels. such as tree and buildings. to regions. As shown in Figure
18 the system consists of bottom-up part and top-down part. Initially the bottom-up part first segments the image into
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Figure 18 Organization ofthc region-based scene analysis program by Ohta. Kanadc and Sakai

homogcncous regions by an Ohlander-type region secgmentation mcthod [28]. ‘1 hc segmentation rcsult is described as a
patchcry data nctwork which stores propertics of all the patches extracted.

Then a plan is gencrated from it by sclccting regions by large arca, called kcypatches.  After merging small
patches adjacent to kcypatchcs. the systcm tentatively assigns a set of object labels with corresponding estimates of
correctness which arc computed first from the unary propertics of the keypatches, such as size, shapc. and color, and
then from the binary rclations between them. such as rclative positions.

Figurc 19 shows an cxamplc scene: (a) is an input color imagc. (b) is the result of preliminary segmentation, and
(c) 1s the plan imagc. 'I'hc first plan obtaincd by using only the unary propcrty rules is shown in Figurc 20(a), and
Figurc 20(b) shows a rcviscd onc by by using the binary rclations.

The top-down process then starts symbolic interpretation of the image by analyzing dctailed structure of the
scene in the context given by the plan. (‘I'he system still can change the interpretations in the plan, in which case the
bottom-up prtress is re-activated.) ‘I'hc analysis uscs a production systcrn organization with knowledge of the world
(outdoor scenc) represented as a set of rules.  Fach production rulc has a condition part and an action part, 'I'nc
condition part is madc of fuzzy predicatcs on propertics of and relations hetween regions. 'The action part is @ sct of

actions to manipulate the database (patchery network, plan, and scene description) to build the scenc description. Fach

action is dcscribed as a form in Lisp. There are TO-DO and IF-DONE rules, corrcsponding to the antcccdent and
consequent thcorcms of PLANNER.

The world model is described as a network of knowledge blocks (K B) which dcfinc the objects. materials, and
concepts in the given task world. The production rules arc dicided into subsets according to the roles they play in the

analysis: For cxamplc. the subsct for the scene phase analysis is storcd in the KB SCENE and the subsct to analyze
the "sky' is storcd in the KB SKY.
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Control of the production system is handled by an agenda which registers all the executable rules (i.e., whose
condition parts are satisfied). The analysisiterates the following three steps:

1.An executable action with the highest Score on the agenda is executed. A patch or a set of patches is
interpreted and the database is modified.

2. Ifakeypatch is interpreted in step 1 the control enters into the Scene phase. The production rules included
in the KB SCENE are activated to (re-)examine the keypatches not yet interpreted. The scene phase. in
general. considers the overall structure of the Scene, such as the location of horizon and relationships
among objects.

3. Otherwise the control enters into the object phase Corresponding to the object as which the patch has been
just interpreted in step 1. The production rules in the corresponding KB are activated. This phase mainly
analyze the local structure related to the particular object.

Figure 21 shows how the plan is modified as the analysis proceeds: (a) when the horizon is determined, and (b)
when the outline of the building is extracted. Figure 21(c) shows the final labeled interpretation.

. (a) digitized input scene (b) result of preliminary
segmentation

Figure 190 An outdoor scenc:

(c) plan image
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Figure 20: Plan I*hc brightness shows the corrcctncss of the  assignments: (a) by use of unary
properties of regions: (b) after using binary relations

~ROAD BUILDING
(a) (v)

BUILDING

Figure 210 (a) Plan when the horizon is determined. (b) Plan when the outline of the building is determined.
(c) final result of interpretation: S: SKY;1: TREE: R: RO AD: B: BUILDING, U: UNKNOWN
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Figure 22: Structure of a blackboard of the systcm by Nagao, Matsuyama and lkeda

6.2. Blackboard Architecture for Interpreting Multiband Aerial Photographs

Nagao, Matsuyama, and lkeda [24, 25] devclopcd a systcm that interpreted a class of multiband acrial photos.
Their image-interpretation system employs multiple. indcpendent knowledge sources that opcratc on a common,
multilevel database. This database. or blackboard. is rcpresented as shown in Figure 22. The abstraction lcvcls of
image information are elementary region. cue region. objecf,and objecf category. Modcls arc described in terms of
two-dimensional fcatures that can bc obscrved in irnages. In general. it is not possible to do scenc interpretation with
two-dimensional models, but it is an acccptablc tcchniquc for acrial photography bccausc the view angle is so
constraincd that objcct shapcs change fittle and occlusion is not much of a problem.

The first stcp of processing is to smooth the imagc. A nonsemantic scgmenter defines a set of clenentary
regions---a set Of patches that arc homogcncous in multispectral properties.

The next step is to extract cue regions. The types of cue regions arc large homogencous rcgions. shadow and
shadow-causing rcgions. clongatcd rcgions, vcgctation rcgions. high-contrast rcgions. and high-contrast vcgctation
rcgions. Each typc of cuc rcgion triggers onc or morc objcct recognizers. Different cue rcgions may overlap; for
cxamplc. high-contrast vcgctation rcgions arc simply the intcrscction of high-contrast rcgions and vegctation rcgions.

Cue rcgions arc cxtracted by screening clementary rcgions: for cxample. any patch with very low intensity.
particularly in red and infrarcd. is classified as a shadow. An adjacent rcgion with an appropriate boundary on the
sunward side is a shadow-makcr. Vcgctation rcgions havc a high ratio of infrarcd to red: high-contrast arcas arc
aggregations of small clementary rcgions. Shadow-making rcgions trigger the house dctcctor. while high-contrast
vegetation regionsare fikely to he considered forest.

Each clementary rcgion is represented by a node in the lowest lcvel of the blackboard. Nodes at higher levcls
rcpresent cue rcgions and objects; they arc linked to the clementary rcgions they subsurnc. Furthcrinorc. a node can
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have a dcpendcncy link to another node, indicating that its intcrprctation was aided by the prior intcrprctation of the
other node.

The property table shown in Figurc 22 stores the coordinate rangc. or hounding rectangle, of a rcgion and records
whcther the rcgion is wnanalyzed, recognized, irregularly shaped. or it rejected. Each rcgion has only onc cntry. which
means that there can be only one objcct hypothesis for a rcgion. ‘The first intcrprctation of a rcgion is kept until a
contradiction ariscs. T'o rcsolve contradictions. the systcrn dclcetes the conflicting rcgion interpretation for xhich it is
least confident. It marks the rcgion as unanalyzed, restarting the intcrprctation of the rcgion; ohjcct hypothescs that
dcpend on the delcted node arc themsclvef deleted.

6.3.Schema-based System: VISIONS

The  University of Massachusctts VISIONS systern[8) is patterned  after the [HEARSAY--I1 specch-
understanding systcrn[S].  In VISIONS, hypothcscs are posted and accessed on a blackboard by indcpendent
procedural knowledge sourceds: K.S Their activation and scheduling are under the control of a central exccutive. ‘The
systcrn has been tested with outdoor seenes. Figurc 23 outlines the structurc of VISIONS.

The blackboard in this systcm rcpresents a laycred description of the contents of an irnage. The lowest levels
rcpresent regions, segments, and vertices: they form a structure called an RSV graph.

Preprocessing stages arc shown in the Icft half of Figurc 23. "T'here arc three stages of information representation.
The first is the image itself, represented by a resolution pyramid (processing cone). 'I'hc second stage comprises
separate edge and region analysis. The third stage is a merged reprcscntation of the results of a corrclation hctween the
edge analysis and region analysis. The representations at these low Icvcls arc of image characteristics. rather than of
Scene characteristics.

Blackboard
ST™M LTM
Image Specific General
Model Knowledge
Schemas Schema Classes
Objects Object Classes
Boundary Curve Smoolhing Volumes Volume Classes
Analysis and Fining Surtaces Surface Classes
—/ Regions Region Classes
Merged Segments Segment Classes
Representations ’ .
\ Vertices Vertex Classes
Region Feature
Analysis Extraction
Processing
Cone
I KS
V\_\’\_- KS l
Feedback o e ®
Knowledge Sources

Figure 23: Overview of VISION systcm by Hanson and Riseman
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The next two levels in the blackboard work with surfaces and volumes. At thesc levels, the system attempts to
reconstruct the three-dimensional configuration of the sccnc. The top two levels work with representations of objccts
and schemas. At the objcct lcvel, hypothescs arc formed about what the objccts in the scenc must have been to result
in the observed imagc. The schema level imposes constraints on the selection of objcct modcls. There may be office
schemas. airport schernas, and so on. Schemas serve the same purpose as Minsky's frames [23].

The blackboard model in Figure 23 illustrates the distinction made in VISIONS bctwceen a priori models and
image-specific models. though both may bc rcpresented in the same manner. The a priori models arc storcd in
long-fenn memory (LTM), while the unagc-specific modcls arc storcd in skhort-term memory (STM). Recognizing that
thcy did not have adequate KSs to rnakc surface and volume hypotheses reliably, the designers of VISIONS
compensated by relying heavily on top-down hypotheses represented by modcls in 1.TM. By projecting thcsc models
into two dimcnsions. thcy construct RSV-level models ofobjccts, and thesc arc matched to the actual image.

VISIONS chooses a KS by traversing a decision tree. Its model builder dccidcs to expand or to dcvclop a new
hypothesis for a model. To expand a model. the level focuser first decides which ievel of the blackboard to work on.
Then, that level is expanded under the control of the node focuser. the node expander. and the node verifier. The focuser
selects a node from the blackboard to proccss further, the expander calls @ KS to create new hypotheses. and the
verifier checks the results for satisfaction of constraints.

6.4. Remarks

Some other interesting computer vision systems that interpret natural scencs include: Shirai [33] (procedural
representation), Rubin {29} (constraint network rcprescntation) and Ballard, Brown and Feldman 2} (query-oriended
analysis). The image/map databasc MAPS. being developed at CMU by McKecown {22], attcmpts to usc multi-level
multi-source knowlcdge (such as terrain map and cultural maps) for photo intcrprctation.

7 .Conclusion
We have first discussed a gencral structure of vision. and then identified important arcas to work on for realizing
a morc capable and gencral vision systcm than current robotics vision. Emphasis has been put on:

e Computational aspects of vision

* Obtaining constraints from physical and scmantic knowlcdge
o Multi-lcvel represcntations

» Use of gencric modcls

* Scenc descriptions

o Control and information flow in the vision system
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